
Software Design & Programming I

Starting Out with C++ (From Control Structures through Objects) 7th Edition
Written by: Tony Gaddis

Pearson - Addison Wesley
ISBN: 13-978-0-132-57625-3

Chapter 1

Introduction to Computers
and Programming

Why Program?

 Computers can do such a wide variety of
things because they can be programmed. This
means that computers are not designed to do
just one job, but any job that their programs tell
them to do. A program is a set of instructions
that a computer follows to perform a task.

 Programs are commonly referred to as
software. Software is essential to a computer
because without software, a computer can do
nothing. All of the software that we use to
make our computer useful is created by
individuals known as programmers or software
developers. A programmer, or software
developer, is a person with the training and skills
necessary to design, create, and test computer
programs. Computer programming is an exciting
and rewarding career.

Today, you will find programmers working in
business, medicine, government, law enforcement,
agriculture, academics, entertainment, and almost
every other field.

 Computer programming is both an art and a
science. It is an art because every aspect of a
program should be carefully designed.

Listed below are a few of the things that must
be designed for any real-world computer
program:

– The logical flow of the instructions

– The mathematical procedures

– The appearance of the screens

– The way information is presented to the user

– The program’s “user-friendliness”

– Manuals and other forms of written
documentation

 There is also a scientific, or engineering
side to programming. Because programs rarely
work right the first time they are written, a lot of
testing, correction, and redesigning is required.
This demands patience and persistence from the
programmer. Writing software demands
discipline as well. Programmers must learn
languages like C++ because computers do not
understand English or other human languages.
Languages such as C++ have strict rules that
must be carefully followed.

Hardware and Software

 All computer systems consist of similar
hardware devices and software components.

Hardware

 Hardware refers to the physical components
that a computer is made of. A computer, as we
generally think of it, is not an individual device, but
a system of devices.

A typical computer system consists of the following
major components:

1. The central processing unit (CPU), 2. Main memory (RAM), 3.
Secondary storage devices (hard drive, disks, etc.), 4. Input devices
(keyboard, mouse), 5. Output devices (printer, speakers)

CPU

 When a computer is performing the tasks
that a program tells it to do, we say that the
computer is running or executing the program.
The central processing unit, or CPU, is the part of a
computer that actually runs programs. The CPU is
the most important component in a computer
because without it, the computer could not run
software.

 The CPU’s job is to fetch instructions,
follow the instructions, and produce some
result. Internally, the CPU consists of two parts:
the control unit and the arithmetic and logic
unit (ALU). The control unit coordinated all of
the computer’s operations. It is responsible for
determining where to get the next instruction
and regulating the other major components of
the computer with control signals. The ALU is
designed to perform mathematical operations.

CPU (Instruction Flow)

 A program is sequence of instructions stored
in the computer’s memory. When a computer is
running a program, the CPU is engaged in a process
known formally as the fetch/decode/execute cycle.

The steps in the fetch/decode/execute cycle are
as follows:

– Fetch The CPU’s control unit fetches, from
 main memory, the next instruction in
 the sequence of program instructions.

– Decode The instruction is encoded in the form
 of a number. The control unit decodes
 the instruction and generates an
 electronic signal.

– Execute The signal is routed to the appropriate
 component of the computer (ALU, disk
 drives, etc.) The signals cause the
 components to perform an operation.

These steps are repeated as long as there are instructions to perform.

Main Memory
 You can think of main memory as the
computer’s work area. This is where the computer
stores a program while the program is running, as
well as the data that the program is working with.

 Main memory is commonly known as random
access memory (RAM). It is called this because the
CPU is able to quickly access data stored at any
random location in RAM. RAM is usually a volatile
type of memory that is used only for temporary
storage while the program is running. When the
computer is turned off, the contents of RAM is
erased.

 A computer’s memory is divided into tiny
storage locations known as bytes. One byte is
enough memory to store only a letter of the
alphabet or a small number. Most computers
today have millions, or even billions, of bytes of
memory.

 Each byte is divided into eight smaller
storage locations known as bits. The term bit
stands for binary digit. Computer scientists
usually think of bits as tiny switches that can be
either on or off (1’s and 0’s)

Secondary Storage

 Secondary storage is a type of memory that
can hold data for long periods of time-even when
there is no power to the computer. Frequently
used programs are stored in secondary memory
and loaded into main memory as needed.
Important information, such as word processing
documents, payroll data, and inventory figures, is
saved to secondary storage as well.

 The most common type of secondary storage
device is the disk drive. A disk drive stores data by
magnetically encoding it onto a circular disk.

Input Devices

 Input is any information the computer
collects from the outside world. The device that
collects the information and sends it to the
computer is called an input device. Common input
devices are the keyboard, mouse, scanner, digital
camera, and microphone. Disk drive, CD/DVD
drives, and USB drives can also be considered input
devices because programs and information are
retrieved from them and loaded into the
computer’s memory.

Output Devices

 Output is any information the computer
sends to the outside world. It might be a sales
report, a list of names, or a graphic image. The
information is sent to an output device, which
formats and presents it. Common output devices
are monitors, printers, and speakers. Output sent
to a monitor is sometimes called “softcopy,” while
output sent to a printer is called “hardcopy.” Disk
drives, USB drives, and CD/DVD recorders can also
be considered output devices because the CPU
sends them information to be saved.

Hardware and Software
 All computer systems consist of similar
hardware devices and software components.

Software

 If a computer is to function, software is not
optional. Everything that a computer does from
the time you turn the power switch on until you
shut the system down, is under the control of
software. There are two general categories of
software: system software and application
software. Most computer program clearly fit into
one of these two categories.

System Software
 The programs that control and manage the
basic operations of a computer are generally
referred to as system software. System software
typically includes the following types of programs:

–Operating systems: an operating system is the
most fundamental set of programs on a
computer. The operating system controls the
internal operations of the computer’s
hardware, manages all devices connected to
the computer, allows data to be saved to and
retrieved from storage devices, and allow
other programs to run on the computer.

System Software (cont.)
– Utility Programs: a utility program performs

a specialized task that enhances the
computer’s operation or safeguards data.
Examples of utility programs are virus
scanners, file-compression programs, and
data-backup programs.

– Software Development Tools: the software
tools that programmers use to create, modify,
and test software. Compilers and integrated
development environments are examples of
programs that fall into this category.

Application Software
 Programs that make a computer useful for
everyday tasks are known as application software.
These are the programs that people normally
spend most of their time running on their
computers.

Programs and Programming Languages
 A program is a set of instructions a computer
follows in order to perform a task. A programming
language is a special language used to write
computer programs.

What is a Program?

 A computer program is a set of instructions
that tells the computer how to solve a problem or
perform a task.

 A program that calculates someone’s pay
should do the following:

1. Display a message on the screen asking “How many hours did
you work?”

2. Wait for the user to enter the number of hours worked.
Once the user enters a number, store it in memory.

3. Display a message on the screen asking “How much do you
get paid per hour?”

4. Wait for the user to enter an hourly pay rate. Once the user
enters a number, store it in memory.

5. Multiply the number of hours by the amount paid per hour,
and store the results in memory

6. Display a message on the screen that tells the amount of
money earned. The message must include the result of the
calculation performed in step 5.

 Collectively, the previous instructions (steps)
are called an algorithm. An algorithm is a set of
well-defined steps for performing a task or solving
a problem. Notice these steps are sequentially
ordered. Step 1 should be performed before Step
2, and so forth. It is important that these
instructions be performed in their proper
sequence.

 Although you and I may understand the
instruction in the pay-calculating algorithm, it is
not ready to be executed by a computer. A
computer can only process instructions that are
written in machine language. (0’s and 1’s)

Pay-calculating Algorithm

Inclass/Homework Assignment (Program #1)
Using Visual Studio 2012, input, successfully compile, and print source
code and output. Due date will be given once assigned.

Also: Following the first commented line in the program add three
additional commented lines that include you First and Last Name,
Course Number and Section and Date Submitted.

Ex:

 // ***** David Sylvester *****

 // ***** CSCI 193-02 *****

 // ***** January 22, 2013 *****

Assignment should be turned in stapled with a Cover Sheet, Source
Code, Output, and Data Dictionary.

All documents must be typed and printed through the use of a printer, and stapled

in the order stated above. No exceptions!!

Homework Assignment (Program #2)
Using Visual Studio 2012, write a program that will input three numbers and then
calculate and print the sum, then calculate and print the average. Due date will be
given once assigned.

Also: The first four lines should be commented with Program #, your First and Last
Name, Course Number and Section and Date Submitted. All cin, cout and
assignment statements should be commented.

Ex:

 // ***** Program #2 *****

 // ***** David Sylvester *****

 // ***** CSCI 193-02 *****

 // ***** January 22, 2013 *****

Assignment should be turned in stapled with a Cover Sheet, Statement of the
Problem, Flowchart, Source Code, Output, and Data Dictionary.

All documents must be typed and printed through the use of a printer, and stapled

in the order stated above. No exceptions!!

Programming Languages
 There are two categories of programming
languages: low-level and high-level. A low-level
language is close to the level of the computer,
which means it resembles the numeric machine
language of the computer more than the natural
language of humans. The easiest languages for
people to learn are high-level languages. They are
called “high-level” because they are closer to the
level of human-readability than computer-
readability.

Language Levels
 C++ is based on the C language,
which was invented for
purposes such as writing
operating systems and
compilers. Since C++ evolved
from C, it carries all of C’s low-
level capabilities with it.

C++ is popular not only
because of its mixture of low-
and high-level features, but
also because of its portability.

Well-known High-Level Languages

Source Code, Object Code &
Executable Code

 When a C++ program is written, it must be
typed into the computer and saved to a file. A text
editor, which is similar to a word processing
program, is used for this task. The statements
written by the programmer are called source code,
and the file they are saved in is called the source
file.

 After the source code is saved to a file, the
process of translating it to machine language can
begin.

 During the first phase of this process
(translation), a program called the preprocessor
reads the source code. The preprocessor searches
for special lines that begin with the # symbol.
These lines contain commands that cause the
preprocessor to modify the source code in some
way. During the next phase the compiler steps
through the preprocessor source code, translating
each source code instruction into the appropriate
machine language instruction. This process will
uncover any syntax errors that may be in the
program. Syntax errors are illegal uses of key
words, operators, punctuation and other language
elements

If the program is free of syntax errors, the compiler
stores the translated machine language
instructions, which is called object code, in an
object file.

 Although an object file contains machine
language instructions, it is not a complete program,
because C++ is equipped with a library or
prewritten code for performing common
operations or sometimes-difficult tasks. Such as:
libraries for IO, math function, etc. This code call
the run-time library, is extensive. Programs almost
always use part of it.

When the compiler generates an object file,
however, it does not include machine code for any
run-time library routines the programmer might
have used. During the last phase of the translation
process, another program called the linker
combines the object file with the necessary library
routines. Once the linker has finished with this
step, an executable file is created. The executable
file contains machine language instructions, or
executable code, and is ready to run on the
computer.

From Source Code to Executable File

 Many development systems, particularly
those on personal computers, have integrated
development environments (IDE’s). These
environments consist of a text editor, compiler,
debugger, and other utilities integrated into a
package with a single set of menus. Preprocessing,
compiling, linking, and even executing a program is
done with a single click of a button, or by selecting
a single item from a menu.

Microsoft Visual Studio (IDE)

What is a Program Made of?

Program Elements

Key Words (Reserved Words)

– using

– namespace

– double

 These words, which are always written in
lowercase, each have a special meaning in C++ and
can only be used for their intended purposes. Part
of learning a programming language is learning
what the key words are, what they mean, and how
to use them.

Programmer-Defined Identifiers

 In Program 1-1, the words hour, rate and pay
that appear in lines 7, 11, 15, 18 and 21 are
programmer-defined identifiers. They are not part
of the C++ language but rather are names made up
by the programmer. In this particular program,
these are the names of variables. Variables are the
names of memory locations that may hold data.

Operators

 On line 18 the following code appears:

 pay = hours * rate;

The = and * symbols are both operators. They
perform operations on pieces of data know as
operands. The * operator multiplies its two
operands, which in this example are the variables
hours and rate. The = symbol is called the
assignment operator. It takes the value of the
expression on the right and stores it in the variable
whose name appears on the left.

Punctuation

 Notice that lines 3, 7, 10, 11, 14, 15, 18, 21
and 22 all end with a semicolon. A semicolon in
C++ is similar to a period in English. It marks the
end of a complete sentence (or statement, as it is
called in programming jargon). Semicolons do not
appear at the end of every line in a C++ program,
however. There are rules that govern where
semicolons are required and where they are not.
Part of learning C++ is learning where to place
semicolons and other punctuation symbols.

Lines and Statements
 Often, the contents of a program are thought
of in terms of lines and statements. A “line” is just
that-a single line as it appears in the body of a
program. Program 1-1 is shown with each of its
lines numbered. Most of the lines contain
something meaningful; however, some of the lines
are empty. The blank lines are only there to make
the program more readable.

 A statement is a complete instruction that
causes the computer to perform some action.

 cout << “How many hours did you work? “;

Variables

 A variable is a named storage location in the
computer’s memory for holding a piece of
information. The information stored in variables
may change while the program is running (hence
the name “variable”). Notice that in Program 1-1
the words hours, rate and pay appears in several
places.

Note: Notice that the variables have names that reflect
their purpose.

 Variables are symbolic names that represent
locations in the computer’s random-access memory
(RAM). When information is stored in a variable, it is
actually stored in RAM. Assume a program has a
variable named length; this could be the way the
variable name is represented in memory.

The variable length is holding the value 72. The number
72 is actually stored in RAM at address 23, but the name
length symbolically represents this storage location. 72
is replaced when another value is stored in address 23.

Variables Definitions
 In programming, there are two general types
of data: numbers and characters. Numbers are
used to perform mathematical operations and
characters are used to print data on the screen or
on paper.

 Numeric data can be categorized even
further. (whole numbers and real numbers).

 Whole numbers (integer) Real number (floating point)

5
7

-129
32154

3.14159
6.7

1.002

 When creating a variable in a C++ program, you
must know what type of data the program will be
storing in it. On line 7 of Program 1-1;

 double hours, rate, pay;

The word double in this statement indicates that the
variables hours, rate, and pay will be used to hold
double precision floating-point numbers. This
statement is called a variable definition. It is used to
define one or more variables that will be used in the
program, and to indicate the type of data they hold.
The variable definition causes the variable to be created
in memory, so all variables must be defined before they
can be used. Note: Variable definitions must come
before any other statement using those variables.

Input, Processing, and Output

 These are the three activities of a program.

 Computer programs typically perform a
three-step process of gathering input, performing
some process on the information gathered, and
then producing output. Input is information a
program collects from the outside world. It can be
sent to the program from the user, who is entering
data at the keyboard or using the mouse. It can
also be read from disk files or hardware devices
connected to the computer.

Program 1-1 allows the user to enter two pieces of
information: The number of hours worked and the
hourly pay rate. Lines 11 and 15 use the cin,
(pronounced “see in”), object to perform these input
operations.

 cin >> hours;

 cin >> rate;

 Once information is gathered from the outside

world, a program usually processes it in some manner.
In the program, the hours worked and hourly pay are
multiplied in line 18 and the result is assigned to pay
rate.

 pay = hours * rate;

 Output is information that a program sends to the
outside world. It can be words or graphics displayed on
a screen, a report sent to the printer, data stored in a le,
or information sent to any device connected to the
computer. Lines 10, 14, and 21 in Program 1-1 all
perform output:

cout << "How many hours did you work? ";

cout << "How much do you get paid per hour? ";

cout << "You have earned $" << pay << endl;

These lines use the cout, (pronounced “see out”), object
to display messages on the computer’s screen.

The Programming Process

 The programming process consists of several
steps, which include design, creation, testing, and
debugging activities.

Designing and Creating a Program

 Quite often, when inexperienced students are
given programming assignments, they have trouble
getting started because they don’t know what to
do first. If you find yourself in this dilemma, follow
these recommended steps.

Steps in Writing a Program

1. Clearly define what the program is to do.

2. Visualize the program running on the computer.

3. Use design tools such as a hierarchy chart, flowcharts, or
pseudocode to create a model of the program.

4. Check the model for logical errors.

5. Type the code, save it, and compile it.

6. Correct any errors found during compilation.

 Repeat Steps 5 and 6 as many times as necessary.

7. Run the program with test data for input.

8. Correct any errors found while running the program.

 Repeat Steps 5 through 8 as many times as necessary.

9. Validate the results of the program.

Step 1 – Clearly define what the problem is to do.

 This step requires that you identify the purpose of
the program, the information that is to be input, the
processing that is to take place, and the desired output.
Let s examine each of these requirements for the
example program:

Purpose To calculate the user’s gross pay.

Input Number of hours worked, hourly pay rate.

Process Multiply number of hours worked by hourly pay
rate. The result is the user’s gross pay

Output Display a message indicating the user’s gross pay.

Step 2 – Visualize the program running on the
computer.

 Try to imagine what the computer screen looks
like while the program is running. If it helps, draw
pictures of the screen, with sample input and output, at
various points in the program.

In this step, you must put yourself in the shoes of the
user. What messages should the program display? What
questions should it ask? By addressing these concerns,
you will have already determined most of the program’s
output.

Step 3 – Use design tools such as a hierarchy chart,
flowcharts, or pseudocode to create a model of the

program.

 Three common design tools are hierarchy charts,
flowcharts, and pseudocode. A hierarchy chart is a
diagram that graphically depicts the structure of a
program. It has boxes that represent each step in the
program. The boxes are connected in a way that
illustrates their relationship to one another.

Hierarchy Chart

 A hierarchy chart begins with the overall task,
and then refines it into smaller subtasks. Each of
the subtasks is then refined into even smaller sets
of subtasks, until each is small enough to be easily
performed. For instance, in Figure 1-10, the overall
task Calculate Gross Pay is listed in the top-level
box. That task is broken into three subtasks. The
first subtask, Get Payroll Data from User, is broken
further into two subtasks. This process of divide
and conquer is known as top-down design.

Hierarchy Chart Example

Flowchart

 A flowchart is a diagram that shows the
logical flow of a program. It is a useful tool for
planning each operation a program performs, and
the order in which the operations are to occur.

Common Flowchart Symbols

Process Decision Terminal Input/Output

Connector

Line Flow

Off-Page Connector

Pseudocode
 Pseudocode is a cross between human
language and a programming language. Although
the computer can’t understand pseudocode,
programmers often find it helpful to write an
algorithm in a language that s almost a
programming language, but still very similar to
natural language. For example, here is pseudocode
that describes the pay-calculating program:

Get payroll data.

Calculate gross pay.

Display gross pay.

 The pseudocode above gives a broad view of
the program; it doesn’t reveal all the program’s
details. A more detailed version of the pseudocode
follows.

Display How many hours did you work? .

Input hours.

Display How much do you get paid per hour? .

Input rate.

Store the value of hours times rate in the pay variable.

Display the value in the pay variable.

Notice the pseudocode contains statements that look more like
commands than the English statements that describe the algorithm.

Step 4 – Check the model for logical errors.

 Logical errors are mistakes that cause the program
to produce erroneous results. Once a hierarchy chart,
flowchart, or pseudocode model of the program is
assembled, it should be checked for these errors. The
programmer should trace through the charts or
pseudocode, checking the logic of each step. If an error
is found, the model can be corrected before the next
step is attempted.

Step 5 – Type the code, save it and compile it.

 Once a model of the program (hierarchy chart,
flowchart, or pseudocode) has been created, checked,
and corrected, the programmer is ready to write source
code on the computer. The programmer saves the
source code to a file, and begins the process of
translating it to machine language. During this step the
compiler will find any syntax errors that may exist in the
program.

Step 6 – Correct any errors found during compilation.

 If the compiler reports any errors, they must be
corrected. Steps 5 and 6 must be repeated until the
program is free of compile-time errors.

Step 7 – Run the Program with test data for input.

 Once an executable le is generated, the program is
ready to be tested for run-time errors. A run-time error
is an error that occurs while the program is running.
These are usually logical errors, such as mathematical
mistakes.

 Testing for run-time errors requires that the
program be executed with sample data or sample input.
The sample data should be such that the correct output
can be predicted. If the program does not produce the
correct output, a logical error is present in the program.

Step 8 – Correct any run-time errors found while

running the program.
 When run-time errors are found in a program, they must be
corrected. You must identify the step where the error occurred and
determine the cause. Desk-checking is a process that can help locate
run-time errors. The term desk-checking means the programmer
starts reading the program, or a portion of the program, and steps
through each statement. A sheet of paper is often used in this process
to jot down the current contents of all variables and sketch what the
screen looks like after each output operation. When a variable’s
contents change, or information is displayed on the screen, this is
noted. By stepping through each statement, many errors can be
located and corrected. If an error is a result of incorrect logic (such as
an improperly stated math formula), you must correct the statement
or statements involved in the logic.

Step 9 – Validate the results of the program.

 When you believe you have corrected all the run-
time errors, enter test data and determine whether the
program solves the original problem.

 It includes designing, writing, testing, debugging,
documenting, modifying, and maintaining complex
software development projects. Like traditional
engineers, software engineers use a number of tools in
their craft. Here are a few examples:

– Program specifications

– Charts and diagrams of screen output

– Hierarchy charts and flowcharts

– Pseudocode

– Examples of expected input and desired output

– Special software designed for testing programs

What is Software Engineering?

 Most commercial software applications are very
large. In many instances one or more teams of
programmers, not a single individual, develop them. It is
important that the program requirements be thoroughly
analyzed and divided into subtasks that are handled by
individual teams, or individuals within a team.

 If the program is very large or complex, a team of
software engineers can be assigned to work on the
individual modules. As the project develops, the
modules are coordinated to finally become a single
software application.

 C++ is a language that can be used for two
methods of writing computer programs: procedural
programming and object-oriented programming.

 In procedural programming, the programmer
constructs procedures (or functions, as they are called in
C++). The procedures are collections of programming
statements that perform a specific task. The procedures
each contain their own variables and commonly share
variables with other procedures.

Procedural and Object-Oriented
Programming

 Procedural programming is centered on the
procedure, or function.

Procedural Programming Example

 Object-oriented programming (OOP), on the other
hand, is centered on the object. An object is a programming
element that contains data and the procedures that operate

on the data. It is a self-contained unit.

Object-Oriented Programming Example

 The objects contain, within themselves, both
information and the ability to manipulate the
information. Operations are carried out on the
information in an object by sending the object a
message. When an object receives a message
instructing it to perform some operation, it carries out
the instruction.

