
Software Design & Programming I

Starting Out with C++ (From Control Structures through Objects) 7th Edition
Written by: Tony Gaddis

Pearson - Addison Wesley
ISBN: 13-978-0-132-57625-3

Chapter 2

Introduction to C++

The Parts of a C++ Program
 Every C++ program has an anatomy. Unlike human

anatomy, the parts of C++ programs are not always in the same
place. Nevertheless, the parts are there and your first step in
learning C++ is to learn what they are.

The // marks the beginning of a comment. The compiler
ignores everything from the double-slash to the end of the
line.

// A simple C++ program

#include <iostream>

This line must be included in a C++ program in order to get
input from the keyboard or print output to the screen. Since
the cout statement (on line 7) will print output to the
computer screen, we need to include this line. When a line
begins with a # it indicates it is a preprocessor directive. The
preprocessor reads your program before it is compiled and
only executes those lines beginning with a # symbol.

The statement using namespace std; declares that the
program will be accessing entities whose names are part of
the namespace called std. The program needs access to the
std namespace because every name created by the iostream
file is part of that namespace.

using namespace std;

int main()
This marks the beginning of a function. A function can be
thought of as a group of one or more programming
statements that has a name. The name of this function is
main, and the set of parentheses that follows the name
indicates that it is a function. The word int stands for
“integer.” It indicates that the function sends an integer value
back to the operating system when it is finished executing.

Important Note:

1. Although most C++ programs have more than
one function, every C++ program must have a
function called main. It is the starting point of the
program.

2. C++ is a case-sensitive language. That means it
regards uppercase letters as being entirely
different characters than their lowercase
counterparts. In C++, the name of the function
main must be written in all lowercase letters. C++
doesn’t see “main” the same as “Main” or
“MAIN.”

This is called a left-brace, or an opening brace, and it is
associated with the beginning of the function main. All the
statements that make up a function are enclosed in a set of
braces. If you look at the third line down from the opening
brace you’ll see the closing brace. Everything between the
two braces is the contents of the function main.

{

Important Note:

1. Make sure you have a closing brace for every
opening brace in your program.

This line displays a message on the screen. You will read
more about cout and the << operator later in this chapter.
The message “Programming is great fun!” is printed without
the quotation marks. In programming terms, the group of
characters inside the quotation marks is called a string
literal, a string constant, or simply a string.

cout << “Programming is fun!”;

Note: The line with cout ends with a semicolon. Just as a
period marks the end of a sentence, a semicolon is
required to mark the end of a complete statement in C++.
But many C++ lines do not end with semicolons. Some of
these include comments, preprocessor directives, and
the beginning of functions.

Here are some examples of when to use, and not
use, semicolons.

// Semicolon examples // This is a comment

include <iostream> // This is a preprocessor directive

int main() // This begins a function

cout << "Hello"; // This is a complete statement

This sends the integer value 0 back to the operating
system upon the program’s completion. The value 0
usually indicates that a program executed successfully.

return 0;

This brace marks the end of the main function. Because
main is the only function in this program, it also marks
the end of the program.

}

Special Characters used in C++

The cout Object
 The simplest type of screen output that a program

can display is console output, which is merely plain text.
The word console is an old computer term. It comes from
the days when a computer operator interacted with the
system by typing on a terminal. The terminal, which
consisted of a simple screen and keyboard, was known as
the console.

 On modern computers, running graphical operating
systems such as Windows or Mac OS X, console output is
usually displayed in a window. C++ provides an object
named cout that is used to produce console output. (You
can think of the word cout as meaning console output.

 cout is classified as a stream object, which means it

works with streams of data. To print a message on the
screen, you send a stream of characters to cout.

 Ex:

 cout << "Programming is great fun!";

The << operator is used to send the string “Programming is
great fun!” to cout. When the <<

symbol is used this way, it is called the stream-insertion
operator. The item immediately to

the right of the operator is sent to cout and then displayed
on the screen.

 As you can see, the stream-insertion operator
can be used to send more than one item to cout.

 cout Examples

 As you can see, the cout statement can be
used in difference ways to produce the same
output.

 cout Examples

 Notice that the layout of the actual output
looks nothing like the arrangement of the strings in
the source code.

 cout Examples

 The endl (end “L”) is used to create a new line.

 cout Examples

 The \n is an escape sequence and is also used
to create a new line.

 cout Examples

 Escape sequences must be preceded by the
“\” not the “/” and be included inside of double
quotes.

Escape Sequences

 The #include directive causes the contents of another

file to be inserted into the program.

The following line has appeared near the top of every
example program.

 #include <iostream>

The header file iostream must be included in any program
that uses the cout object. This is because cout is not part of
the “core” of the C++ language. Specifically, it is part of the
input-output stream library. The header file, iostream,
contains information describing iostream objects. Without
it, the compiler will not know how to properly compile a
program that uses cout.

The #include Directive

 Preprocessor directives are not C++ statements. They

are commands to the preprocessor, which runs prior to the
compiler (hence the name “preprocessor”). The
preprocessor’s job is to set programs up in a way that
makes life easier for the programmer.

For example, any program that uses the cout object must
contain the extensive setup information found in the
iostream file. The programmer could type all this
information into the program, but it would be too time
consuming. An alternative would be to use an editor to “cut
and paste” the information into the program, but that
would still be inefficient. The solution is to let the
preprocessor insert the contents of iostream automatically.

The #include Directive

 An #include directive must always contain the name

of a file. The preprocessor inserts the entire contents of the
file into the program at the point it encounters the #include
directive.

The compiler doesn’t actually see the #include directive.
Instead it sees the code that was inserted by the
preprocessor, just as if the programmer had typed it there.

The code contained in header files is C++ code. Typically it
describes complex objects like

cout.

The #include Directive

 Variables represent storage locations in the

computer’s memory.

Constants are data items whose values cannot change while
the program is running.

The concept of a variable in computer programming is
somewhat different from the concept of a variable in
mathematics. In programming, a variable is a named
storage location for holding data. Variables allow you to
store and work with data in the computer’s memory. They
provide an “interface” to RAM. Part of the job of
programming is to determine how many variables a
program will need and what type of information each will
hold.

Variables, Constants, and the Assignment Statement

A variable definition tells the compiler the variable’s name
and the type of data it will hold.

Variables, Constants, and the Assignment Statement

Variable Definition

Assignment Statement

 Placing quotation marks around a variable name

made it a string constant, or string literal. When string
literals are sent to cout, they are printed exactly as they
appear inside the quotation marks.

 NOTE: If we were to put the following line in a
program, it would print out the word endl, rather than
cause subsequent output to begin on a new line.

 cout << "endl"; // Wrong!

Sometimes a Number Isn’t a Number

 Placing double quotation marks around anything that

is not intended to be a string literal will create an error of
some type. For example, in Program 2-7 the number 5 was

assigned to the variable number. It would have been
incorrect to write the assignment this way:

 number = "5"; // Wrong!

In this line, 5 is no longer an integer, but a string literal.
Because number was defined to be an integer variable, you
can only store integers in it. The integer 5 and the string
literal “5” are not the same thing.

Sometimes a Number Isn’t a Number

 The fact that numbers can be represented as strings

frequently confuses people who are new to programming.
Just remember that strings are intended for humans to
read. They are to be printed on computer screens or paper.
Numbers, however, are intended primarily for
mathematical operations. You cannot perform math on
strings, and you cannot display numbers on the screen
without first converting them to strings. (Fortunately, cout
handles the conversion automatically when you send a
number to it.)

Sometimes a Number Isn’t a Number

 Unlike a variable, a constant is a data item whose

value cannot change during the program’s execution.

Constants

Constants (20, 15)

Constants are commonly used to store known values in
variables and to display messages on the screen.

Constants

NOTE: A variable name should indicate what the variable is used for.

An identifier is a programmer-defined name that represents
some element of a program. Variable names are examples
of identifiers. You may choose your own variable names in
C++, as long as you do not use any of the C++ key words.
The key words make up the “core” of the language and
have specific purposes.

Identifiers

C++ Key Words
Note that all key words are lowercase!

You should always choose names for your variables that
give an indication of what the variables are used for. You
may be tempted to give variables names like this:

 int x;

However, the rather nondescript name, x, gives no clue as
to the variable’s purpose. Here is a better example.

 int itemsOrdered;

The name itemsOrdered gives anyone reading the program
an idea of the variable’s use. This way of coding helps
produce self-documenting programs, which means you can
get an understanding of what the program is doing just by
reading its code.

Identifiers

 Referring to itemsOrdered, it is OK to use uppercase
and lowercase when naming variables. The O is capitalized
for in the variable name for readability purposes.

 Capitalization of the first letter of the second word
and any succeeding words makes variable names like
itemsOrdered easier to read and is the convention we use
for naming variables in this book. However, this style of coding
is not required.

You are free to use all lowercase letters, all uppercase
letters, or any combination of both. In fact, some
programmers use the underscore character to separate
words in a variable name. int items_ordered;

Identifiers

 Regardless of which style you adopt, be consistent
and make your variable names as sensible as possible. Here
are some specific rules that must be followed with all C++
identifiers.

• The first character must be one of the letters a through z,
A through Z, or an underscore character (_).

• After the first character you may use the letters a through
z or A through Z, the digits 0 through 9, or underscores.

• Uppercase and lowercase characters are distinct. This

means ItemsOrdered is not the same as itemsordered.

Legal Identifiers

Legal Identifiers

 There are many different types of data. Variables are
classified according to their data type, which determines
the kind of information that may be stored in them. Integer
variables can only hold whole numbers.

Although C++ offers many data types, in the very broadest
sense there are only two: numeric and character. Numeric
data types are broken into two additional categories:

integer and floating-point.

Integer Data Types

Integer Data Types

 Here are some examples of integer variable
definitions. Notice that an unsigned int variable

can also be defined using only the word unsigned, as shown
below.

 short count;

 unsigned short age;

 int speed;

 unsigned int days; // These two definitions

 unsigned days; // are equivalent.

 long deficit;

 unsigned long insects;

Integer Data Types

 Notice also that in Table 2-6 the int and long data
types have the same sizes and ranges, and the unsigned int
data type has the same size and range as the unsigned long
data type. This is not always true because the size of
integers is dependent on the type of system you are using.
Here are the only guarantees:

• Integers are at least as big as short integers.

• Long integers are at least as big as integers.

• Unsigned short integers are the same size as short integers.

• Unsigned integers are the same size as integers.

• Unsigned long integers are the same size as long integers.

Integer Data Types

 In most programs you will need more than one variable
of any given data type. If a program uses two integers, length
and width, they can be defined separately, like this:

 int length;

 int width;

It is also possible to combine both variable definitions in a
single statement:

 int length, width;

Many instructors, however, prefer that each variable be
placed on its own line:

 int length,

 width;

Integer Data Types

 Look at the following statements

 int floors = 15,

 rooms = 300,

 suites = 30;

 This statement contains three integer constants. In
C++, integer constants are normally stored in memory just
as an int.

One of the pleasing characteristics of the C++ language is
that it allows you to control almost every aspect of your
program.

Integer and Long Integer Constants

 If you need to change the way something is stored in
memory, the tools are provided to do that. For example,
what if you are in a situation where you have an integer
constant, but you need it to be stored in memory as a long
integer? (Rest assured, this is a situation that does arise.)
C++ allows you to force an integer constant to be stored as
a long integer by placing the letter L at the end of the
number.

 Here is an example:

 32L

 On a computer that uses 2-byte integers and 4-byte
long integers, this constant will use 4 bytes. This is called a
long integer constant.

Integer and Long Integer Constants

 Note: A variable of the char data type holds only a single
character.

 You might be wondering why there isn’t a 1-byte
integer data type. Actually there is. It is called the char data
type, which gets its name from the word “character.” A
variable defined as a char can hold a single character, but
strictly speaking, it is an integer data type.

On some systems the char data type is larger than 1 byte.

The reason an integer data type is used to store characters
is because characters are internally represented by
numbers. Each printable character, as well as many
nonprintable characters, are assigned a unique number.

The char Data Type

 The most commonly used method for encoding
characters is ASCII, which stands for the American Standard
Code for Information Interchange. (There are other codes,
such as EBCDIC, which is used by many IBM mainframes.)

 When a character is stored in memory, it is actually
the numeric code that is stored. When the computer is
instructed to print the value on the screen, it displays the
character that corresponds with the numeric code.

Appendix A, shows the ASCII character set. The number 65
is the code for A, 66 is the code for B, and so on.

The char Data Type

The char Data Type (Sample Program)

The char Data Type (Sample Program)

Figure 2-4 illustrates that when you think of characters,
such as A, B, and C, being stored in memory, it is really the
numbers 65, 66, and 67 that are stored.

