
Software Design & Programming I 

Starting Out with C++ (From Control Structures through Objects) 7th Edition 
Written by: Tony Gaddis  

Pearson - Addison Wesley 
ISBN: 13-978-0-132-57625-3 

 



Chapter 2 
(Part II) 

Introduction to C++ 
 



The char Data Type (Sample Program) 



Character and String Constants 



 Program 2-12 assigns character constants to the 
variable letter. Anytime a program works with a character, it 
internally works with the code used to represent that 
character, so this program is still assigning the values 65 and 
66 to letter. 

 Character constants can only hold a single character. To 
store a series of characters in a constant we need a string 
constant. In the following example, 'H' is a character constant 
and "Hello" is a string constant. Notice that a character 
constant is enclosed in single quotation marks whereas a 
string constant is enclosed in double quotation marks. 

 cout <<  ‘H’  << endl; 

 cout << “Hello” << endl; 

The char Data Type 



 Strings, which allow a series of characters to be stored 
in consecutive memory locations, can be virtually any length. 
This means that there must be some way for the program to 
know how long the string is. In C++ this is done by appending 
an extra byte to the end of string constants. In this last byte, 
the number 0 is stored. It is called the null terminator or null 
character and marks the end of the string. 

 Don’t confuse the null terminator with the character 
'0'. If you look at Appendix A you will see that the character '0' 
has ASCII code 48, whereas the null terminator has ASCII code 
0. If you want to print the character 0 on the screen, you use 
ASCII code 48. If you want to mark the end of a string, you use 
ASCII code 0. 

The char Data Type 



 Let’s look at an example of how a string constant is 
stored in memory. Figure 2-5 depicts the way the string 
"Sebastian" would be stored. 
 

 

 

 

 First, notice the quotation marks are not stored with 
the string. They are simply a way of marking the beginning 
and end of the string in your source code. Second, notice the 
very last byte of the string. It contains the null terminator, 
which is represented by the \0 character.  The addition of this 
last byte means that although the string is 9 characters long, it 
occupies 10 bytes of memory. 

The char Data Type 



 The null terminator doesn’t print on the screen when 
you display a string, but nevertheless, it is there silently 

doing its job. 
 

 NOTE: C++ automatically places the null terminator 
at the end of string constants. 
 

  

The char Data Type 



 Let’s compare the way a string and a char are stored. 
Suppose you have the constants 'A‘ and "A" in a program. 

 

 
 

 As you can see, 'A' is a 1-byte element and "A" is a 2-
byte element. Since characters are really stored as ASCII 
codes, Figure 2-7 shows what is actually being stored in 
memory. 

The char Data Type 



 Because a char variable can only hold a single  
character, it can be assigned the character 'A', but not the 
string "A".  
 

 char letterOne = 'A'; // This will work. 

 char letterTwo = "A"; // This will NOT work! 
 

You have learned that some strings look like a single 
character but really aren’t. It is also possible to have a 
character that looks like a string. A good example is the 
newline character, \n. Although it is represented by two 
characters, a slash and an n, it is internally represented 

as one character. In fact, all escape sequences, internally, 
are just 1 byte. 

The char Data Type 



 Program 2-13 shows the use of \n as a character 
constant, enclosed in single quotation marks. 

 

The char Data Type 



 Standard C++ provides a special data type for storing 
and working with strings. 
 

 Because a char variable can store only one character 
in its memory location, another data type is needed for a 
variable able to hold an entire string. While C++ does not 
have a built-in data type able to do this, Standard C++ 
provides something called the string class that allows the 
programmer to create a string type variable. 

The C++ string Class 



 The first step in using the string class is to #include 
the string header file. This is accomplished with the 
following preprocessor directive: 
 

 #include <string> 
 

 The next step is to define a string type variable, called 
a string object. Defining a string object is similar to defining 
a variable of a primitive type. For example, the following 
statement defines a string object named movieTitle. 
 

 string movieTitle; 
 

 

Using the string Class 



 You can assign a string literal to movieTitle with the 
assignment operator: 
 

 movieTitle = "Wheels of Fury"; 
 

The contents of movieTitle can be displayed on the screen 
with cout, as shown in the next statement: 
 

 cout << "My favorite movie is " << movieTitle << endl; 

 

Using the string Class 



 As you can see, working with string objects is similar to 
working with variables of other types. 

Using the string Class 



 Floating-point data types are used to define variables 
that can hold real numbers. 

 Whole numbers are not adequate for many jobs. If 
you are writing a program that works with dollar amounts 
or precise measurements, you need a data type that allows 
fractional values. In programming terms, these are called 
floating-point numbers. 

 Internally, floating-point numbers are stored in a 
manner similar to scientific notation. Take the number 
47,281.97. In scientific notation this number is 4.728197 × 
104. (104 is equal to 10,000, and 4.728197 × 10,000 is 
47,281.97.) The first part of the number, 4.728197, is called 
the mantissa. The mantissa is multiplied by a power of 10. 

 

Floating-Point Data Types 



 In C++ there are three data types that can represent 
floating-point numbers. They are 

float 

double 

long double . 

 

Floating-Point Data Types 



 The float data type is considered single precision. The 
double data type is usually twice as big as float, so it is 
considered double precision. As you’ve probably guessed, 
the long double is intended to be larger than the double. 
The exact sizes of these data types is dependent on the 
computer you are using. The only guarantees are 

 • A double is at least as big as a float. 

 • A long double is at least as big as a double. 

Floating-Point Data Types 



 You will notice there are no unsigned floating-point 
data types. On all machines, variables of the float, double, 
and long double data type can store both positive and 
negative numbers. 

Floating-Point Data Types 



 Floating-point constants may be expressed in a 
variety of ways. As shown in Program 2-15, E notation is 
one method. When you are writing numbers that are 
extremely large or extremely small, this will probably be the 
easiest way. E notation numbers may be expressed with an 
uppercase E or a lowercase e. Notice in the source code the 
constants were written as 1.496E8 and 1.989E30, but the 
program printed them as 1.496e+008 and 1.989e+030. The 
uppercase E and lowercase e are equivalent. The plus sign 
in front of the exponent is also optional. 

 You can also express floating-point constants in 
decimal notation. The constant 1.496E8 could have been 
written as 149600000.0 

Floating-Point Constants 



 Obviously the E notation is more convenient for 
lengthy numbers; but for numbers like 47.39, decimal 
notation is preferable to 4.739E1. 
 

 All of the following floating-point constants are 
equivalent: 
 

 1.496E8  

 1.496e8 

 1.496E+8 

 1.496e+8 

 149600000.0 

  

Floating-Point Constants 



 Floating-point constants are normally stored in 
memory as doubles. Just in case you need to force a 
constant to be stored as a float, you can append the letter F 
or f to the end of it. For example, the following constants 
would be stored as float numbers: 
 

 1.2F 

 45.907f 
 

 Because floating-point constants are normally stored 
in memory as doubles, some compilers issue a warning 
message when you assign a floating-point constant to a 
float variable.  

Floating-Point Constants 



 For example, assuming num is a float, the following 
statement might cause the compiler to generate a warning 
message: 
 

 num = 14.725; 
 

 You can suppress the error message by appending 
the f suffix to the floating-point constant, as shown here: 
 

 num = 14.725f; 

If you want to force a value to be stored as a long double, 
append an L to it, as shown here: 

 1034.56L 

The compiler won’t confuse this with a long integer 
because of the decimal point. 

Floating-Point Constants 



 When a floating-point value is assigned to an integer 
variable, the fractional part of the value (the part after the 
decimal point) is discarded. This occurs because an integer 
variable cannot hold any value containing decimals. For 
example, look at the following code. 
 

 int number; 

 number = 7.8;  // Assigns 7 to number 
 

 This code attempts to assign the floating-point value 
7.8 to the integer variable number. Because this is not 
possible, the value 7 is assigned to number, and the 
fractional part is discarded. When part of a value is 
discarded in this manner, the value is said to be truncated. 

Assigning Floating-Point Values to Integer Variables 



 Assigning a floating-point variable to an integer 
variable has the same effect. For example, look at the 
following code. 

 int intVar; 

 double doubleVar = 7.8; 

 intVar = doubleVar;  // Assigns 7 to intVar 

     // doubleVar remains 7.8 
 

 Floating-point variables can hold a much larger range of 
values than integer variables can. If a floating-point value is 
stored in an integer variable, and the whole part of the value 
(the part before the decimal point) is too large for the integer 
variable, an invalid value will be stored in the integer variable. 

Assigning Floating-Point Values to Integer Variables 



The modulus Operator 

 Without using the modulus operation, write a 
program to determine if an inputted number is even or odd. 

 

 



 Boolean variables are set to either true or false. 

 Expressions that have a true or false value are called 
Boolean expressions, named in honor of English 
mathematician George Boole (1815–1864). 
 

 The bool data type allows you to create variables that 
hold true or false values.  Program 2-16 demonstrates the 
definition and use of a bool variable. Although it appears 
that it is storing the words true and false, it is actually an 
integer variable that stores 0 for false and 1 for true, as you 
can see from the program output. 

The bool Data Type 



The bool Data Type 



 The sizeof operator may be used to determine the 
size of a data type on any system. 

 A special operator called sizeof will report the 
number of bytes of memory used by any data type or 
variable. Program 2-17 illustrates its use. The first line that 
uses the operator is line 9. 
 

 cout << "The size of an integer is " << sizeof(int); 
 

 The name of the data type or variable is placed inside 
the parentheses that follow the operator. The operator 
“returns” the number of bytes used by that item. This 
operator can be used anywhere you can use an unsigned 
integer, including in mathematical operations. 

Determining the Size of a Data Type 



The sizeof() Command 



 An assignment operation assigns, or copies, a value 
into a variable. When a value is assigned to a variable as 
part of the variable’s definition, it is called an initialization. 

 A value is stored in a variable with an assignment 
statement. For example, the following statement copies the 
value 12 into the variable unitsSold. 
  

 unitsSold = 12; 
 

The = symbol, as you recall, is called the assignment 
operator. Operators perform operations on data. The data 
that operators work with are called operands. The 
assignment operator has two operands. In the previous 
statement, the operands are unitsSold and 12. 

More on Variable Assignments and Initialization 



 It is important to remember that in an assignment 
statement, C++ requires the name of the variable receiving 
the assignment to appear on the left side of the operator. 
The following statement is incorrect. 
 

 12 = unitsSold; // Incorrect! 
 

 It is possible to assign values to variables when they 
are defined.  This is called initialization. When multiple 
variables are defined in the same statement, it is possible to 
initialize some of them without having to initialize all of 
them. 

More on Variable Assignments and Initialization 



Assignment Statement Example 



 A variable’s scope is the part of the program that has 
access to the variable. 

 Every variable has a scope. The scope of a variable is 
the part of the program where it may be used. The rules 
that define a variable’s scope are complex, and we will just 
introduce the concept here. Later in the book we will cover 
this topic in more depth. 

The first rule of scope is that a variable cannot be used in 
any part of the program before it 

is defined. 

Scope 



Sample Program 

 The program will not work because line 7 attempts to 
send the contents of the variable value to cout before the 
variable is defined. The compiler reads a program from top 
to bottom. If it encounters a statement that uses a variable 
before the variable is defined, an error will result. 



 There are many operators for manipulating numeric 
values and performing arithmetic operations. 

 C++ provides many operators for manipulating data. 
Generally, there are three types of operators: unary, binary, 
and ternary. These terms reflect the number of operands an 
operator requires. 

Unary operators only require a single operand. For 
example, consider the following expression: −5 

Of course, we understand this represents the value negative 
five. The constant 5 is preceded by the minus sign. The 
minus sign, when used this way, is called the negation 
operator. Since it only requires one operand, it is a unary 
operator. 

Arithmetic Operators 



 Binary operators work with two operands. Ternary 
operators, as you may have guessed, require three 
operands. 
 

Binary Operators 

 

 

 

 
 

 
 total = 4 + 8;  // total is assigned the value 12 

 candyBars = 8 – 3  // candyBars is assigned the value 5 

 points = 3 * 7  // points is assigned the value 21 

Arithmetic Operators 



 The division operator works differently depending on 
whether its operands are integer or floating-point numbers. 
When both numbers are integers, the division operator 
performs integer division. This means that the result is 
always an integer. If there is any remainder, it is discarded. 
 

 fullBoxes = 26 / 8;  // fullBoxes is assigned the value 3 
 

The variable fullBoxes is assigned the value 3 because 8 
goes into 26 three whole times with a remainder of 2. The 
remainder is discarded. 

Arithmetic Operators 



 If you want the division operator to perform regular 
division, you must make sure at least one of the operands is 
a floating-point number. 
 

 boxes = 26.0 / 8;  // boxes is assigned the value 3.25 
 

 The modulus operator computes the remainder of 
doing an integer divide. 
 

 leftOver = 26 % 8;  // leftOver is assigned the value 2 

Arithmetic Operators 



Assignment Statement Example 



Due date:  March 21, 2013 

 

 Referring to Program 2-20, write a program that will 
calculate a person’s total commission.  The person sold 32 
items with a commission of $12.50 for each item sold. Plus 
$15.23 commission per 12 items sold over. 

 

Output should appear as: 

 Total commission for this week is $999.99 

 

NOTE:  The ‘9’s in the sample output represent the numeric value of 
 the output. 

Program Assignment #10 



 Comments are notes of explanation that document 
lines or sections of a program. 

 Comments are part of the program, but the compiler 
ignores them. They are intended for people who may be 
reading the source code. 

 It is crucial, however, that you develop the habit of 
thoroughly annotating your code with descriptive 
comments. It might take extra time now, but it will almost 
certainly save time in the future. 

Comments 



 As was illustrated in previous programs, you simply 
place two forward slashes (//) where you want the 
comment to begin. The compiler ignores everything from 
that point to the end of the line. 

Single Line Comments 

Multi-Line Comments 
 Multi-line comments start with /* (a forward slash 
followed by an asterisk) and end with */ (an asterisk 
followed by a forward slash). Everything between these 
markers is ignored. 



 Unlike a comment started with //, a multi-line 
comment can span several lines. This makes it more 
convenient to write large blocks of comments because you 
do not have to mark every line. On the other hand, the 
multi-line comment is inconvenient for writing single line 
comments because you must type both a beginning and 
ending comment symbol. 

 Many programmers use a combination of single line 
comments and multi-line comments. 

 When using multi-line comments: 

• Be careful not to reverse the beginning symbol with the 
ending symbol. 

• Be sure not to forget the ending symbol. 

Multi-Line Comments 



 Programming style refers to the way a programmer 
uses identifiers, spaces, tabs, blank lines, and punctuation 
characters to visually arrange a program’s source code. 
These are some, but not all, of the elements of 
programming style. 

 When the compiler reads a program it processes it as 
one long stream of characters. The compiler is not 
influenced by whether each statement is on a separate line, 
or whether spaces separate operators from operands. 
Humans, on the other hand, find it difficult to read 
programs that aren’t written in a visually pleasing manner. 

Focus on Software Engineering: Programming Style 



 Although the program is syntactically correct (it 
doesn’t violate any rules of C++), it is difficult to read. 

Focus on Software Engineering: Programming Style 



 Although you are free to develop your own style, you 
should adhere to common programming practices. By doing 
so, you will write programs that visually make sense to 
other programmers and that minimize the likelihood of 
errors. 

Focus on Software Engineering: Programming Style 

 



 Another aspect of programming style is how to 
handle statements that are too long to fit on one line. 
Because C++ is a free-flowing language, it is usually possible 
to spread a statement over several lines. For example, here 
is a cout statement that uses four lines: 

 cout << "The fahrenheit temperature is " 

 << fahrenheit 

 << " and the celsius temperature is " 

 << celsius << endl; 

This statement works just as if it were typed on one line. 
You have already seen variable definitions treated similarly: 

int fahrenheit, 

celsius, 

kelvin;                                                                                                                                                                                                                                                                            

Focus on Software Engineering: Programming Style 


