
Software Design & Programming I

Starting Out with C++ (From Control Structures through Objects) 7th Edition
Written by: Tony Gaddis

Pearson - Addison Wesley
ISBN: 13-978-0-132-57625-3

Chapter 3

Introduction to C++

The cin Object

 cin can be used to read data typed at the keyboard.

 Just as C++ provides the cout object to produce console
output, it provides an object named cin that is used to read
console input. (You can think of the word cin as meaning console
input.) Program 3-1 shows cin being used to read values input by
the user.

Sample Program (cin)

 Instead of calculating the area of one rectangle, this
program can be used to compute the area of any rectangle.
The values that are stored in the length and width variables
are entered by the user when the program is running. Look
at lines 12 and 13.

 cout << "What is the length of the rectangle? ";

 cin >> length;

In line 12 cout is used to display the question “What is the
length of the rectangle?” This is called a prompt. It lets the
user know that an input is expected and prompts them as to
what must be entered. When cin will be used to get input
from the user, it should always be preceded by a prompt.

cin Object

 Gathering input from the user is normally a two-step
process:

 1. Use cout to display a prompt on the screen.

 2. Use cin to read a value from the keyboard.

The prompt should ask the user a question, or tell the user
to enter a specific value. For example, the code we just
examined from Program 3-1 displays the following prompt:

What is the length of the rectangle?

 This tells the user to enter the rectangle’s length.
After the prompt displays, the program uses cin to read a
value from the keyboard and store it in the length variable.

cin Object

 Notice that the << and >> operators appear to point
in the direction that data is flowing. It may help to think of
them as arrows. In a statement that uses cout, the <<
operator always points toward cout, as shown here. This
indicates that data is flowing from a variable or a literal to
the cout object.

 cout << "What is the length of the rectangle? ";

 cout ← "What is the length of the rectangle? ";

In a statement that uses cin, the >> operator always points
toward the variable receiving the value. This indicates that
data is flowing from the cin object to a variable.

 cin >> length;

 cin → length;

cin Object

 The cin object causes a program to wait until data is
typed at the keyboard and the [Enter] key is pressed. No
other lines will be executed until cin gets its input.

 When the user enters characters from the keyboard,
they are temporarily placed in an area of memory called the
input buffer, or keyboard buffer. cin automatically converts
this data to the data type of the variable it is to be stored in.
If the user types 10, it is read as the characters ‘1’ and ‘0’,
but cin is smart enough to know this will have to be
converted to the int value 10 before it is stored in length.

cin Object

 If the user enters a floating-point number like 10.7,
however, there is a problem. cin knows such a value cannot
be stored in an integer variable, so it stops reading when it
gets to the decimal point, leaving the decimal point and the
rest of the digits in the input buffer. This can cause a
problem when the next value is read in.

cin Object

cin Object (floating-point Entered for integer)

cin Object (Examples)

 Entering Multiple Values

 cin >> length >> width;

 Enter the length and width of the rectangle separated by a space.

 10 20[Enter]

- - - - - - - - - - - - - - - - - - -

 Entering Multiple Values of Different Data Types

 cin >> whole >> fractional >> letter;

 Enter an integer, a double, and a character:

 4 5.7 b[Enter]

cin Object
 As you can see in the previous sample output, the
values are stored in the order entered in their respective
variables.

But what if the user had entered the values in the wrong
order?

 Entering Multiple Values of Different Data Types

 cin >> whole >> fractional >> letter;

 Enter an integer, a double, and a character:

 5.7 4 b[Enter]

 Because the data was not entered in the specified
order, there is a complete mix-up of what value is stored for
each variable.

cin Object

 The cin statement reads 5 for int variable whole, .7

for double variable fractional, and 4 for char variable letter.

The character b is left in the input buffer. For a program to
function correctly it is important that the user enter data
values in the order the program expects to receive them and
that a floating-point number not be entered when an
integer is expected.

Mathematical Expressions
 C++ allows you to construct complex mathematical
expressions using multiple operators and grouping symbols.

 An expression is a programming statement that has a

value. Usually, an expression consists of an operator and its
operands. Look at the following

statement:

 sum = 21 + 3;

 Since 21 + 3 has a value, it is an expression. Its value,
24, is stored in the variable sum. Expressions do not have to
be in the form of mathematical operations. In the following

statement, 3 is an expression.

 number = 3;

Mathematical Expressions
 Although some instructors prefer that you not
perform mathematical operations within a cout statement,
it is possible to do so.

 NOTE: When sending an expression that includes an
operator to cout, it is always a good idea to put parentheses
around the expression. Some operators will yield
unexpected results otherwise.

Enclosed in parenthesis

Operator Precedence
 It is possible to build mathematical expressions with
several operators. The following

statement assigns the sum of 17, x, 21, and y to the variable
answer.

 answer = 17 + x + 21 + y;

 Some expressions are not that straightforward,
however. Consider the following statement:

 outcome = 12 + 6 / 3;

What value will be stored in outcome? 14 or 6

 The answer is 14 because the division operator has

higher precedence than the addition operator. This is exactly
the same as the operator precedence found in algebra.

Operator Precedence

 The multiplication, division, and modulus operators
have the same precedence. Same is true for addition and
subtraction.

Associativity
 Associativity is the order in which an operator works
with its operands. Associativity is either left to right or right
to left. The associativity of the division operator is left to
right, so it divides the operand on its left by the operand on
its right. Table 3-3 shows the arithmetic operators and their
associativity.

Grouping with Parentheses
 Parts of a mathematical expression may be grouped
with parentheses to force some operations to be performed
before others. In the following statement, the sum of a plus
b is divided by 4.

 average = (a + b) / 4;

Without the parentheses b would be divided by 4 before
adding a to the result. Table 3-4 shows more expressions
and their values.

Converting Algebraic Expressions to
Programming Statements

 In algebra it is not always necessary to use an
operator for multiplication. C++, however, requires an
operator for any mathematical operation. Table 3-5 shows
some algebraic expressions that perform multiplication and
the equivalent C++ expressions.

Converting Algebraic Expressions to
Programming Statements

 When converting some algebraic expressions to C++,
you may have to insert parentheses that do not appear in
the algebraic expression. For example, look at the following

expression:

To convert this to a C++ statement, a + b will have to be
enclosed in parentheses:

x = (a + b) / c;

Converting Algebraic Expressions to
Programming Statements

 Unlike many programming languages, C++ does not
have an exponent operator. Raising a number to a power
requires the use of a library function. One of the library
functions is called pow, and its purpose is to raise a number
to a power. Here is an example of how it’s used:

 area = pow(4.0, 2); Equivalent to: 42

Converting Algebraic Expressions to
Programming Statements

 The statement contains a call to the pow function. The
numbers inside the parentheses are arguments. Arguments
are information being sent to the function. The pow function
always raises the first argument to the power of the second
argument. In this example, 4.0 is raised to the power of 2. The
result is returned from the function and used in the statement
where the function call appears. The pow function expects
floating-point arguments.

Class Exercise

Implicit Type Conversion
 When an operator’s operands are of different data
types, C++ will automatically convert them to the same data
type. This can affect the results of mathematical
expressions.

 If a floating-point value is assigned to an int variable,
what value will the variable receive? If an int is multiplied
by a float, what data type will the result be? What if a
double is divided by an unsigned int? Is there any way of
predicting what will happen in these instances? The answer
is yes. C++ follows a set of rules when performing
mathematical operations on variables of different data
types. It’s helpful to understand these rules to prevent
subtle errors from creeping into your programs.

Implicit Type Conversion

 When C++ is working with an operator, it strives to
convert the operands to the same type. This implicit, or
automatic, conversion is known as type coercion. When a
value is converted to a higher data type, it is said to be
promoted. To demote a value means to convert it to a lower
data type.

Implicit Type Conversion
 Specific rules that govern the evaluation of

mathematical expressions:

 Rule 1: char, short, and unsigned short are
automatically promoted to int. (Anytime these data types are used
in a mathematical expression, they are automatically promoted to an

int.)

 Rule 2: When an operator works with two values
of different data types, the lower-ranking value is promoted to
the type of the higher-ranking value.

 Assume that years is an int and interestRate is a double:

 years * interestRate

Before the multiplication takes place, the value in years will be
promoted to a double.

Implicit Type Conversion
 Rule 3: When the final value of an expression is
assigned to a variable, it will be converted to the data type of
that variable.

• If the variable receiving the value is of a lower data type
than the value it is receiving, the value will be demoted to
the type of the variable.

• If the variable’s data type does not have enough storage
space to hold the value, part of the value will be lost, and
the variable could receive an inaccurate result.

• If the variable receiving the value is an integer and the
value being assigned to it is a floating-point number, the
value will be truncated before being stored in the
variable.

Implicit Type Conversion
 int x;

 double y = 3.75;

 x = y; // x is assigned 3

 // y remains 3.75

If the variable receiving the value has a higher data type than
the value being assigned to it, there is no problem.

In the following statement, assume that area is a long int,
while length and width are both int:

 area = length * width;

Because length and width are both an int, they will not be
converted to any other data type. The result of the
multiplication, however, will be converted to long so it can be

stored in area.

Explicit Type Conversion
 Type casting allows you to explicitly perform data
type conversion.

 A type cast expression lets you manually promote or
demote a value. The general format of a type cast
expression is

 static_cast<DataType>(Value)

where Value is a variable or literal value that you wish to
convert and DataType is the data type you wish to convert it
to. Here is an example of code that uses a type cast

expression:

 double number = 3.7;

 int val;

 val = static_cast<int>(number);

number is converted to int
and the fraction is truncated

Explicit Type Conversion

 The type cast expression is used to prevent integer division from
taking place; allowing booksPerMonth to display the factional value.

books is converted to a double
before it is used in the division
operation.

Explicit Type Conversion
 WARNING! In Program 3-7, the following statement
would still have resulted in integer division:

 booksPerMonth = static_cast<double>(books / months);

 The result of the expression books / months is 4. When
4 is converted to a double, it is 4.0. To prevent the integer
division from taking place, one of the operands should be
converted to a double prior to the division operation. This
forces C++ to automatically convert the value of the other
operand to a double.

 In the above statement, books will be divided by months
using integer division, then the results will be converted to
double.

Explicit Type Conversion

 The type cast expression converts the value in
number to the char data type before sending it to cout.

C-style and Prestandard C++ Type Cast Expressions
 Examples of Prefix Notation

 cout << (int) 2.6; // Displays integer 2

 intVal = (int)number; // Assigns intVal the value of

 // number, converted to an int

 booksPerMonth = // Converts a copy of the value

 (double)books / months; // stored in books to a double

 // before performing the
 // division operation

 Examples of Functional Notation (Prestandard C++)

 cout << int(2.6);

 intVal = int(number);

 booksPerMonth = double(books) / months;
The static_cast expression is recommended by the ANSI standard for this type of data

type conversion

Overflow and Underflow
 When a value cannot fit in the number of bits
provided by a variable’s data type, overflow or underflow
occurs.

 Just as a bucket will overflow if you try to put more
water in it than it can hold, a variable will experience a
similar problem if you try to store a value in it that requires
more bits than it has available. Let’s look at an example.
Suppose a short int that uses 2 bytes of memory has the
following value stored in it.

Overflow and Underflow

 This is the binary representation of 32,767, the largest
value that will fit in this data type. Without going into the
details of how negative numbers are stored, it is helpful to
understand that for integer data types that store both
positive and negative numbers, a number with a 0 in the
high order (i.e., leftmost) bit is interpreted as a positive
number and a number with a 1 in the high order bit is
interpreted as a negative number. If 1 is added to the value
stored above, the variable will now be holding the following
bit pattern.

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Overflow and Underflow
 But this is not 32,768. It is interpreted as a negative
number instead, which was not what was intended. A binary
1 has “flowed” into the high bit position. This is called

overflow.

 Likewise, when an integer variable is holding the
value at the far end of its data type’s negative range and 1 is
subtracted from it, the 1 in its high order bit will become a 0
and the resulting number will be interpreted as a positive
number. This is another example of overflow.

 In addition to overflow, floating-point values can also
experience underflow. This occurs when a value is too close
to zero, so small that more digits of precision are needed to
express it than can be stored in the variable holding it.

Overflow and Underflow

Overflow and Underflow
 Some systems display an error message when an
overflow or underflow occurs. But, most do not. The
variable simply holds an incorrect value now and the
program keeps running. Therefore, it is important to select a
data type for each variable that has enough bits

to hold the values you will store in it.

Named Constants
 Constants may be given names that symbolically
represent them in a program.

 Let’s assume this statement appears in a banking
program that calculates data pertaining to loans. In such a
program, two potential problems arise. First, it is not clear
to anyone other than the original programmer what 0.129
is. It appears to be an interest rate, but in some situations
there are fees associated with loan payments. How can the
purpose of this statement be determined without
painstakingly checking the rest of the program?

 The second problem occurs if this number is used in
other calculations throughout the program and must be
changed periodically.

Named Constants
 Both of these problems can be addressed by using
named constants. A named constant, also called a constant
variable, is like a variable, but its content is read-only and
cannot be changed while the program is running. Here is a
definition of a named constant:

 const double INTEREST_RATE = 0.129;

Incorrect usage:

 const double INTEREST_RATE; // illegal

 INTEREST_RATE = 0.129; // illegal

 When a named constant is defined it must be
initialized with a value. It cannot be defined and then later
assigned a value with an assignment statement.

Named Constants (Advantages)
1. Make programs more self-documenting.

 const double INTEREST_RATE = 0.129;

 newAmount = balance * INTEREST_RATE;

2. Widespread changes can easily be made to the program.

No matter how many places the interest rate is used in the
program, if the rate changes the programmer only has to change
one line of code—the statement that defines and initializes the
named constant.

 It is important to realize the difference between constant
variables created with the key word const and constants created
with the #define directive. Constant variables are defined like
regular variables. They have a data type and a specific storage
location in memory. They are like regular variables in every way
except that you cannot change their value while the program is
running.

The #define Directive
 The older C-style method of creating named
constants is with the #define preprocessor directive.
Although it is preferable to use the const modifier, there are
programs with the #define directive still in use. In addition,
the #define directive has other uses, so it is important to
understand.

 Ex:

 #define PI 3.14159 // PI is "defined" to be 3.14159

 Constants created with the #define directive are not
variables at all, but text substitutions. Each occurrence of
the named constant in your source code is removed and the
value of the constant is written in its place when it is sent to
the compiler.

NOTE: no semi colon

Multiple and Combined Assignment
 Multiple assignment means to assign the same value
to several variables with one statement.

 C++ allows you to assign a value to multiple variables
at once. If a program has several variables, such as a, b, c,
and d, and each variable needs to be assigned a value, such
as 12, the following statement may be constructed:

 a = b = c = d = 12;

 The value 12 will be assigned to each variable listed in
the statement. This works because the assignment
operations are carried out from right to left. First 12 is
assigned to d. Then d’s value, now a 12, is assigned to c.
Then c’s value is assigned to b, and finally b’s value is
assigned to a.

Combined Assignment Operators

 The table below shows the common way of writing
expressions.

Combined Assignment Operators

Quite often programs have assignment statements of the
following form:
 number = number + 1;
The expression on the right side of the assignment
operator gives the value of number plus 1. The result is
then assigned to number, replacing the value that was
previously stored there. Effectively, this statement adds 1
to number. In a similar fashion, the following statement
subtracts 5 from number.
 number = number – 5;
 Note that in both examples, the same variable name
appears on both sides of the assignment operator.

Combined Assignment Operators
 Because these types of operations are so common in
programming, C++ offers a special set of operators designed
specifically for these jobs.

 result *= a + 5; is equivalent to

 result = result * (a + 5); not result = result * a + 5;

which is different.

Formatting Output
 cout provides ways to format data as it is being
displayed. This affects the way data appears on the screen.

 The same data can be printed or displayed in several
different ways. For example, all of the following numbers
have the same value, although they look different:

 720 720.0 720.00000000 7.2e+2 +720.0

The way a value is printed is called its formatting. The cout
object has a standard way of formatting variables of each
data type. Sometimes, however, you need more control over
the way data is displayed.

Formatting Output
 When outputting numbers, the numbers may not line
up in columns. This is because some of the numbers, such
as 5 and 7, occupy one position on the screen, while others
occupy two or three positions. cout uses just the number of
spaces needed to print each number.

 To remedy this, cout offers a way of specifying the
minimum number of spaces to use for each number. A
stream manipulator, setw, can be used to establish print
fields of a specified width. Here is an example of how it is
used:

 value = 23;

 cout << setw(5) << value;

Formatting Output
 The number inside the parentheses after the word setw
specifies the field width for the value immediately following it.
The field width is the minimum number of character positions,
or spaces, on the screen to print the value in. In our example,
the number 23 will be displayed in a field of five spaces.

 To further clarify how this works, look at the following
statements:

 value = 23;

 cout << "(" << setw(5) << value << ")";

 This will produce the following output:

 (23)

 Because the number did not use the entire field, cout
filled the extra three positions with blank spaces.

Formatting Output

Without using setw()

This header file is
needed to use setw()

