
Software Design & Programming I

Starting Out with C++ (From Control Structures through Objects) 7th Edition
Written by: Tony Gaddis

Pearson - Addison Wesley
ISBN: 13-978-0-132-57625-3

Chapter 3

Introduction to C++

The setprecision Manipulator

Floating-point values may be rounded to a number
of significant digits, or precision, which is the total number
of digits that appear before and after the decimal point.
You can control the number of significant digits with which
floating-point values are displayed by using the
setprecision manipulator.

Combined Assignment Operators

If the value of a number is expressed in fewer digits of
precision than specified by setprecision, the manipulator
will have no effect.

The setprecision Manipulator

Floating-point values may be rounded to a number
of significant digits, or precision, which is the total number
of digits that appear before and after the decimal point.
You can control the number of significant digits with which
floating-point values are displayed by using the
setprecision manipulator.

The fixed Manipulator
If a number is too large to print using the number of

digits specified with setprecision, many systems print it in
scientific notation.

To prevent this, you can use another stream manipulator,
fixed, which indicates that floating-point output should be
printed in fixed-point, or decimal, notation.

cout << fixed;

The fixed Manipulator
fixed specifies the number of digits to be displayed

after the decimal point of a floating-point number, rather
than the total number of digits to be displayed.

By using fixed and setprecision together, we get the
desired output. Notice in this case, however, we set the
precision to 2, the number of decimal places we wish to
see, not to 5.

The showpoint Manipulator
Another useful manipulator is showpoint, which

indicates that a decimal point should be printed for a
floating-point number, even if the value being displayed
has no decimal digits.

The showpoint Manipulator
Actually, when the fixed and setprecision

manipulators are both used, it is not necessary to use the
showpoint manipulator. For example,

cout << fixed << setprecision(2);

will automatically display a decimal point before the two
decimal digits. However, many programmers prefer to use
it anyway as shown here:

cout << fixed << showpoint << setprecision(2);

The left and right Manipulators
Previously, we have seen, output that was right-

justified. This means if the field it prints in is
larger than the value being displayed, it is printed on the
far right of the field, with leading blanks. There are times
when you may wish to force a value to print on the left
side of its field, padded by blanks on the right. To do this
you can use the left manipulator. It remains in effect until
you use a right manipulator to set it back. These
manipulators can be used with any type of value, even a
string.

The left and right Manipulators

The left and right Manipulators

Working with Characters and String Objects
Special functions exist for working with characters

and string objects.
A char variable can hold only one character, whereas

a variable defined as a string can hold a whole set of
characters. The following variable definitions and
initializations illustrate this.

char letter1 = 'A',
letter2 = 'B';

string name1 = "Mark Twain",
name2 = "Samuel Clemens";

Working with Characters and String Objects
As with numeric data types, characters and strings

can be assigned values.

letter2 = letter1; // Now letter2's value is 'A'
name2 = name1; // Now name2's value is

// "Mark Twain"
They can also be displayed with the cout statement. The
following line of code outputs a character variable, a string
constant, and a string object.

cout << letter1 << ". " << name1 << endl;

The output produced is

A. Mark Twain

Inputting a String
Although it is possible to use cin with the >>

operator to input strings, it can cause problems you need
to be aware of. When cin reads data it passes over and
ignores any leading whitespace characters (spaces, tabs, or
line breaks). However, once it comes to the first nonblank
character and starts reading, it stops reading when it gets
to the next whitespace character. If we use the following
statement

cin >> name1;

we can input “Mark”, or even “ Mark”, but not
“Mark Twain” because cin cannot input strings that
contain embedded spaces.

space

space

Inputting a String

First and last name
entered, but the program
accepted John for name
and Doe for city.

Inputting a Character

Sometimes you want to read only a single character
of input. Some programs display a menu of items for the
user to choose from. The simplest way to read a single
character is with cin and the >> operator.

Using cin.get

As with string input, however, there are times when
using cin >> to read a character does not do what we want.
For example, because it passes over all leading whitespace,
it is impossible to input just a blank or [Enter] with cin >>.
The program will not continue past the cin statement until
some character other than the spacebar, the tab key, or the
[Enter] key has been pressed. (Once such a character is
entered, the [Enter] key must still be pressed before the
program can continue to the next statement.) Thus,
programs that ask the user to "Press the enter key to
continue." cannot use the >> operator to read only the
pressing of the [Enter] key.

Using cin.get
In those situations, a cin function called get becomes

useful. The get function reads a single character, including
any whitespace character. If the program needs to store the
character being read, the get function can be called in
either of the following ways. In both cases, ch is the name
of the variable that the character is being read into.

cin.get(ch);
ch = cin.get();

If the program is using the get function simply to
hold the screen until the [Enter] key is pressed and does
not need to store the character, the function can also be
called like this:

cin.get();

Using cin.get

Mixing cin >> and cin.get
Mixing cin >> with cin.get can cause an annoying and

hard-to-find problem. For example, look at the following
code segment. The lines are numbered for reference.

1 char ch; // Define a character variable
2 int number; // Define an integer variable
3 cout << "Enter a number: ";
4 cin >> number; // Read an integer
3 cout << "Enter a character: ";
6 ch = cin.get(); // Read a character
7 cout << "Thank You!\n";

Mixing cin >> and cin.get
These statements allow the user to enter a number,

but not a character. It will appear that the cin.get statement
on line 6 has been skipped. This happens because both cin
>> and cin.get read the user’s keystrokes from the keyboard
buffer. After entering a number in response to the first
prompt, the user presses the [Enter] key. Pressing this key
causes a newline character ('\n') to be stored in the
keyboard buffer.

When the cin >> statement reads data from the keyboard buffer, it stops reading at
the newline character. In our example, 100 is read in and stored in the number variable. The
newline character is left in the keyboard buffer. However, cin.get always reads the next
character in the buffer, no matter what it is, without skipping over whitespace.

Using cin.ignore

cin >> only waits for the user to input a value if the
keyboard buffer is empty. When cin.get finds the newline
character in the buffer, it uses it and does not wait for the
user to input another value. You can remedy this situation
by using the cin.ignore function, described in the following
section.

Using cin.ignore To Solve This Problem. The
cin.ignore function can be used. This function tells the cin
object to skip characters in the keyboard buffer.

Using cin.ignore
Here is its general form:
cin.ignore(n, c);

The arguments shown in the parentheses are optional. If
they are used, n is an integer and c is a character. They tell
cin to skip n number of characters, or until the character c
is encountered. For example, the following statement
causes cin to skip the next 20 characters or until a newline
is encountered, whichever comes first:
cin.ignore(20,'\n');

If no arguments are used, cin will only skip the very
next character. Here’s an example:

cin.ignore();

Using cin.ignore
The statements that mix cin >> and cin.get can be

repaired by inserting a cin.ignore statement after the cin
>> statement:

cout << "Enter a number: ";
cin >> number;
cin.ignore(); // Skip the newline character
cout << "Enter a character: ";
cin.get(ch);
cout << "Thank You!" << endl;

Useful String Functions and Operators

The C++ string class provides a number of functions,
called member functions, for working with strings. One that
is particularly useful is the length function, which tells you
how many characters there are in a string. Here is an
example of how to use it.

string state = "New Jersey";
int size = state.length();

The size variable now holds the value 10. Notice that a
blank space is a character and is counted just like any other
character. On the other hand, notice that the ‘\0’ null
character.

Useful String Functions and Operators
The string class also has special operators for working

with strings. One of them is the + operator.

You have already encountered the + operator to add two
numeric quantities. Because strings cannot be added, when
this operator is used with string operands it concatenates
them, or joins them together. Assume we have the
following definitions and initializations in a program.

string greeting1 = "Hello ",
greeting2;

string name1 = "World";
string name2 = "People";

Useful String Functions and Operators
The following statements illustrate how string

concatenation works.
greeting2 = greeting1 + name1; // greeting2 now holds "Hello World"

greeting1 = greeting1 + name2; // greeting1 now holds "Hello People“

Notice that the string stored in greeting1 has a blank
as its last character. If the blank were not there, greeting2
would have been assigned the string "HelloWorld".
The last statement could also have been written using the

+= combined assignment operator.

greeting1 += name2;

Useful String Functions and Operators
The following statements illustrate how string

concatenation works.
greeting2 = greeting1 + name1; // greeting2 now holds "Hello World"

greeting1 = greeting1 + name2; // greeting1 now holds "Hello People“

Notice that the string stored in greeting1 has a blank
as its last character. If the blank were not there, greeting2
would have been assigned the string "HelloWorld".
The last statement could also have been written using the

+= combined assignment operator.

greeting1 += name2;

Using C-Strings
In C, and in C++ prior to the introduction of the string

class, strings were stored as a set of individual characters. A
group of contiguous 1-byte memory cells was set up to hold
them, with each cell holding just one character of the
string. A group of memory cells like this is called an array.

Because this was the way to create a string variable
in C, a string defined in this manner is called a C-string.

char word[10] = "Hello";

Defines word to be an array of characters that will
hold a C-string and initializes it to "Hello".

H e l l o \n

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

word can only hold a string
of nine characters because
of the null character

Using C-Strings

Assigning a Value to a C-String

The first way in which using a C-string differs from
using a string object is that, except for initializing it at the
time of its definition, it cannot be assigned a value using
the assignment operator. In Program 3-25 we could not, for
example, replace the cin statement with the following line
of code.

name = "Sebastian"; // Wrong!

Instead, to assign a value to a C-string, we must use a
function called strcpy (pronounced string copy) to copy the
contents of one string into another. Example:

strcpy(Cstring, value);

Using C-Strings

Keeping Track of a How Much a C-String Can Hold

Another crucial way in which using a C-string differs
from using a string object involves the memory allocated
for it. With a string object, you do not have to worry about
there being too little memory to hold a string you wish to
place in it. If the storage space allocated to the string object
is too small, the string class functions will make sure more
memory is allocated to it. With C-strings this is not the case.
The number of memory cells set aside to hold a C-string
remains whatever size you originally set it to in the
definition statement.

Characters that don’t fit will spill over into the
following memory cells, overwriting whatever was
previously stored there. This type of error, known as a
buffer overrun, can lead to serious problems.

Ways of preventing a Buffer Overrun
One way to prevent this from happening is to use the

setw stream manipulator. This manipulator, which we used
earlier in this chapter to format output, can also be used to
control the number of characters that cin >> inputs on its
next read, as illustrated here:

char word[5];
cin >> setw(5) >> word;

Another way to do the same thing is by using the cin
width function.

char word[5];
cin.width(5);
cin >> word;

In both cases the field width specified is 5 and cin will read, at most, one character less
than this, leaving room for the null character at the end.

Ways of preventing a Buffer Overrun

Ways of preventing a Buffer Overrun

There are three important points to remember about
the way cin handles field widths:

• The field width only pertains to the very next item entered by the user.
• To leave space for the '\0' character, the maximum number of characters read and
stored will be one less than the size specified.
• If cin comes to a whitespace character before reading the specified number of
characters, it will stop reading.

Reading a Line of Input
Still another way in which using C-strings differs from

using string objects is that you must use a different set of
functions when working with them. To read a line of input,
for example, you must use cin.getline rather than getline.
These two names look a lot alike, but they are two
different functions and are not interchangeable. Like
getline, cin.getline allows you to read in a string containing
spaces. It will continue reading until it has read the
maximum specified number of characters, or until the
[Enter] key is pressed. Here is an example of how it is used:

cin.getline(sentence, 20);

The getline function takes two arguments separated
by a comma. (name of the array, size of the array)

Reading a Line of Input

Random Numbers
Some programs need to use randomly generated

numbers. The C++ library has a function called rand() for this
purpose. To use the rand() function, you must include the
cstdlib header file in your program. The number returned by
the function is an int. Here is an example of how it is used.

randomNum = rand();
However, the numbers returned by the function are really
pseudorandom. This means they have the appearance and
properties of random numbers, but in reality are not
random.
They are actually generated with an algorithm. The
algorithm needs a starting value, called a seed, to generate
the numbers. If it is not given one, it will produce the same
stream of numbers each time it is run.

Random Numbers

Introduction to Files
Program input can be read from a file and program

output can be written to a file.
If a program is to retain data between the times it

runs, it must have a way of saving it. Data is saved in a file,
which is usually stored on a computer’s disk. Once the data
is saved by writing it into a file, it will remain there after
the program stops running. The data can then be retrieved
and used at a later time.

Introduction to Files
There are five steps that must be taken when a file is used
by a program:

1. Include the header file needed to perform file
input/output.

2. Define a file stream object.
3. Open the file.
4. Use the file.
5. Close the file.

Step 1: Include the header file needed to perform
file input/output.

Just as cin and cout require the iostream file to be included
in the program, C++ file access requires another header file.
The file fstream contains all the definitions necessary for
file operations. It is included with the following statement:

#include <fstream>

Step 2: Define a file stream object.

The next step in setting up a program to perform file I/O is
to define one or more file stream objects. They are called
stream objects because a file can be thought of as a stream
of data.

The fstream header file contains definitions for the
data types ofstream, ifstream, and fstream. Before a C++
program can work with a file, it must define an object of
one of these data types. The object will be associated with
an actual file stored on some secondary storage medium,
and the operations that may be performed on that file
depend on which of these three data types you pick for the
file stream object.

Step 2: Define a file stream object.

Here are example statements that define ofstream
and ifstream objects:

ofstream outputFile;
ifstream inputFile;

outputFile and inputFile, could
have been named using any legal
C++ identifier names.

Step 3: Open the file.
Before data can be written to or read from a file, the file
must be opened. Outside of the C++ program, a file is
identified by its name. Inside a C ++ program, however, a
file is identified by a stream object. The object and the file
name are linked when the file is opened.
Files can be opened through the open function that exists
for file stream objects. Assume inputFile is an ifstream
object, defined as

ifstream inputFile;
The following statement uses inputFile to open a file named
customer.dat:

inputFile.open("customer.dat"); //Open an input file

Step 3: Open the file.
The argument to the open function in this statement is the
name of the file. This links the file customer.dat with the
stream object inputFile. Until inputFile is associated with
another file, any operations performed with it will be
carried out on the file customer.dat.

It is also possible to define a file stream object and
open a file all in one statement. Here is an example:

ifstream inputFile("customer.dat");

In our example open statement, the customer.dat file
was specified as a simple file name, with no path given.

Step 3: Open the file.
If the file you want to open is not in the default

directory, you will need to specify its location as well as its
name.

For example, on a Windows system the following
statement opens file C:\data\inventory.dat and associates it
with outputFile.

outputFile.open("C:\\data\\invetory.dat");

Notice the use of the double back slashes in the file’s
path. This is because, as mentioned earlier, two back
slashes are needed to represent one backslash in a string.

NOTE: Some systems cannot handle file names that contain spaces. In this case,
the entire pathname should be enclosed in an additional set of quotation marks.

outputFile.open("\"C:\\data\\Truck Inventory.dat\"");

Step 4: Use the file.
Now that the file is open and can be accessed through

a file stream object, you are ready to use it. When a program
is actively working with data, the data is located in random-
access memory, usually in variables. When data is written into
a file, it is copied from variables into the file.

Writing Information to a file
You already know how to use the stream insertion

operator (<<) with the cout object to write information to
the screen. It can also be used with file stream objects to
write information to a file. Assuming outputFile is a file
stream object, the following statement demonstrates using
the << operator to write a string to a file:

outputFile << "I love C++ programming";

As you can see, the statement looks like a cout
statement, except the file stream object name replaces
cout. Here is a statement that writes both a string and the
contents of a variable to a file:

outputFile << "Price: " << Price;

Opening, Writing to and Closing a File

1. Header file
2. Object stream

3. Open file

4. Use file

5. Close file

Reading Information from a file
The >> operator not only reads user input from the

cin object, but it can also be used to read data from a file.
Assuming inFile is a file stream object, the following
statement shows the >> operator reading data from the file
into the variable name:

inFile >> name;

Opening, Reading From and Closing a File

1. Header file
2. Object stream

3. Open file

4. Use file

5. Close file

Step 5: Close the file.
The opposite of opening a file is closing it. Although a

program’s files are automatically closed when the program
shuts down, it is a good programming practice to write
statements that explicitly close them. Here are two reasons
a program should close files when it is finished using them:

• Most operating systems temporarily store information in a file buffer before
it is written to a file. A file buffer is a small holding section of memory that file-
bound information is first written to. When the buffer is filled, all the
information stored there is written to the file. This technique improves the
system’s performance. Closing a file causes any unsaved information that may
still be held in a buffer to be saved to its file. This means the information will
be in the file if you need to read it later in the same program.
• Some operating systems limit the number of files that may be open at one
time. When a program keeps open files that are no longer being used, it uses
more of the operating system’s resources than necessary.

Calling the file stream object’s close function closes a file. Here is an example:

outputFile.close();

