
Software Design & Programming I

Starting Out with C++ (From Control Structures through Objects) 7th Edition
Written by: Tony Gaddis

Pearson - Addison Wesley
ISBN: 13-978-0-132-57625-3

Chapter 4

Making Decisions

 Numeric data is compared in C++ by using relational
operators. Characters can also be compared with these
operators, because characters are considered numeric
values in C++. Each relational operator determines whether
a specific relationship exists between two values. For

example, the greater-than operator (>) determines if a value
is greater than another. The equality operator (==)
determines if two values are equal.

Relational Operators

 Relational expressions are Boolean expressions, which
means their value can only be true or false. If x is greater
than y, the expression x > y will be true, while the
expression y == x will be false.

 The == operator determines whether the operand on
its left is equal to the operand on its right. If both operands
have the same value, the expression is true. Assuming that a
is 4, the following expression is true:

 a == 4

But the following is false:

 a == 2

The Value of a Relationship

Note that the equality operator
Is two (=) symbols together.

 A couple of the relational operators actually test for
two relationships. The >= operator determines whether the
operand on its left is greater than or equal to the operand
on the right. Assuming that a is 4, b is 6, and c is 4, both of
the following expressions are true:

 b >= a

 a >= c

But the following is false:

 a >= 5

Relational Operators

 The <= operator determines whether the operand on
its left is less than or equal to the operand on its right. Once
again, assuming that a is 4, b is 6, and c is 4, both of the
following expressions are true:

 a <= c

 b <= 10

But the following is false:

 b <= a

Relational Operators

 The last relational operator is !=, which is the not-
equal operator. It determines whether the operand on its
left is not equal to the operand on its right, which is the
opposite of the == operator. As before, assuming a is 4, b is
6, and c is 4, both of the

following expressions are true:

 a != b

 b != c

These expressions are true because a is not equal to b and b
is not equal to c. But the following expression is false
because a is equal to c:

 a != c

Relational Operators

 in C++ zero is considered false and any non-zero value
is considered true. The C++ keyword false is stored as 0 and
the keyword true is stored as 1. And when a relational
expression is false it evaluates to 0.

Relational Operators

Relational Operators

 Let’s examine the statements containing the relational
expressions a little closer:

 trueValue = (x < y);

 falseValue = (y == x);

 Parentheses are not actually required, however,
because even without them the relational operation is
carried out before the assignment operation is performed.
This occurs because relational operators have a higher
precedence than the assignment operator. Likewise,
arithmetic operators have a higher precedence than
relational operators.

Relational Operators

 The statement

 result = x < y - 8;

is equivalent to the statement

 result = x < (y - 8);

In both cases, y - 8 is evaluated first. Then this value is
compared to x. Notice, however, how much clearer the
second statement is. It is always a good idea to place
parentheses around an arithmetic expression when its
result will be used in a relational expression.

Relational Operators

 Relational operators also have a precedence order
among themselves. The two operators that test for equality
or lack of equality (== and !=) have the same precedence as
each other. The four other relational operators, which test
relative size, have the same precedence as each other.
These four relative relational operators have a higher
precedence than the two equality relational operators.

Relational Operators

 Here is an example of how this is applied. If a = 9, b =
24, and c = 0, the following statement would cause a 1 to be
printed.

 cout << (c == a > b);

Because of the relative precedence of the operators in this
expression, a > b would be evaluated first. Since 9 is not
greater than 24, it would evaluate to false, or 0. Then c == 0

would be evaluated. Since c does equal 0, this would
evaluate to true, or 1. So a 1 would be inserted into the
output stream and printed.

Relational Operators

 The if statement can cause other statements to
execute only under certain conditions.

 Code is to be of a sequence structure when the
instructions take each step, one after the other (in
sequence).

 Programs often need more than one path of
execution, however. Many algorithms require a program to
execute some statements only under certain circumstances.
This can be accomplished with a decision structure.

 In a decision structure’s simplest form a specific
action, or set of actions, is taken only when a specific
condition exists. If the condition does not exist, the actions
are not performed.

The if Statement

The if Statement

In the flowchart, the actions “Wear a coat”, “Wear a hat”, and “Wear gloves” are performed
only when it is cold outside. If it is not cold outside, these actions are skipped. The actions
are conditionally executed because they are performed only when a certain condition (cold
outside) exists.

The if Statement

NOTICE
1. if is all lowercase
2. Condition enclosed in ()
3. No semi-colon at end of

statement
4. Block of statements

surrounded by curly
braces { }

 If the block of statements to be conditionally
executed contains only one statement, the braces can be
omitted. In the program, if the two cout statements were
combined into one statement, they could be written as
shown here.

 if (average == 100)

 cout << "Congratulations! That's a perfect score!\n";

I prefer that you always place braces around a conditionally
executed block, even when it consists of only one
statement. Because if you have to add additional
statements for the if, your block is already defined.

The if Statement

The if Statement

 Even though if statements usually span more than
one line, they are technically one long statement. For
instance, the following if statements are identical except in
style:

 if (a >= 100)

 cout << "The number is out of range.\n";

 if (a >= 100) cout << "The number is out of range.\n";

The first of these two if statements is considered to be
better style because it is easier to read. By indenting the
conditionally executed statement or block of statements you
are causing it to stand out visually. This is so you can tell at a
glance what part of the program the if statement executes.

Programming Style and the if Statement

 Here are two important style rules you should adopt
for writing if statements:

• The conditionally executed statement(s) should begin
 on the line after the if statement.

• The conditionally executed statement(s) should be
 indented one “level” from the if statement.

 NOTE: You will not get errors by not following these
rules, but your program may be harder to read.

Programming Style and the if Statement

When writing if statements, there are three common errors
you must watch out for.

1. Misplaced semicolons

2. Missing braces

3. Confusing = with ==

Be Careful with Semicolons

Semicolons do not mark the end of a line, but the end of a
complete C++ statement. The if statement isn’t complete
without the conditionally executed statement that comes
after it. So, you must not put a semicolon after the if
(condition) portion of an if statement.

Three Common Errors to Watch Out For

 If you inadvertently put a semicolon after the if part,
the compiler will assume you are placing a null statement
there. The null statement is an empty statement that does
nothing.

 This will prematurely terminate the if statement,
which disconnects it from the block of statements that
follows it.

Three Common Errors to Watch Out For

Notice what would have happened in Program 4-2 if the if
statement had been prematurely terminated with a
semicolon, as shown here.

 if (average == 100); // Error. The semicolon terminates

 { // the if statement prematurely.

 cout << "Congratulations! ";

 cout << "That's a perfect score!\n";

 }

 If average is 80.0,

 Congratulations! That's a perfect score!

would print because the if statement ends when the
premature semicolon is encountered.

Three Common Errors to Watch Out For

 The cout statements inside the braces are considered
to be separate statements following the if, rather than
statements belonging to the if. Therefore, they always
execute, regardless of whether average equals 100 or not.

Three Common Errors to Watch Out For

 The if/else if statement is a chain of if statements.
They perform their tests, one after the other, until one of
them is found to be true.

 We make certain mental decisions by using sets of
different but related rules. For example, we might decide
the type of coat or jacket to wear by consulting the
following rules:

 if it is very cold, wear a heavy coat,

 else, if it is chilly, wear a light jacket,

 else, if it is windy, wear a windbreaker,

 else, if it is hot, wear no jacket.

The if/else if Statement

 The purpose of these rules is to determine which type
of outer garment to wear. If it is cold, the first rule dictates
that a heavy coat must be worn. All the other rules are then
ignored. If the first rule doesn’t apply, however (if it isn’t
cold), then the second rule is consulted. If that rule doesn’t
apply, the third rule is consulted, and so forth.

 The way these rules are connected is very important.
If they were consulted individually, we might go out of the
house wearing the wrong jacket or, possibly, more than one
jacket. For instance, if it is windy, the third rule says to wear
a windbreaker. What if it is both windy and very cold? Will
we wear a windbreaker? A heavy coat? Both?

The if/else if Statement

 Because of the order that the rules are consulted in,
the first rule will determine that a heavy coat is needed. The
third rule will not be consulted, and we will go outside
wearing the most appropriate garment.

 This type of decision making is also very common in
programming. In C++ it can be accomplished through the
if/else if statement. Figure 4-5 shows its format and a
flowchart visually depicting how it works.

The if/else if Statement

The if/else if Statement

The if/else if Statement

The if/else if Statement

The if/else if Statement

 Logical operators connect two or more relational
expressions into one or reverse the logic of an expression.

 In the previous section you saw how a program tests
two conditions with two if statements. In this section you
will see how to use logical operators to combine two or
more relational expressions into one. Table 4-6 lists C++’s
logical operators.

Logical Operators

Logical Operators

Logical Operators

 When a block is nested inside another block, a
variable defined in the inner block may have the same name
as a variable defined in the outer block. As long as the
variable in the inner block is visible, however, the variable in
the outer block will be hidden.

Variables with the Same Name

Variables with the Same Name

 The cin and cout statements in the inner block
)belonging to the if statement) can only work with the
number variable defined in that block. As soon as the
program leaves that block, the inner number goes out of
scope, revealing the outer number variable.

Variables with the Same Name

 String objects can also be compared with relational
operators. As with individual characters, when two strings are
compared, it is actually the ASCII value of the characters
making up the strings that are being compared. For example,
assume the following definitions exist in a program:

 string set1 = "ABC";

 string set2 = "XYZ";

The object set1 is considered less than the object set2 because
the characters "ABC“ alphabetically precede (have lower ASCII
values than) the characters "XYZ". So, the following if
statement will cause the message “set1 is less than set2.” to
be displayed on the screen.

 if (set1 < set2)

 cout << "set1 is less than set2.";

Comparing String Objects

 One by one, each character in the first operand is
compared with the character in the corresponding position in
the second operand. If all the characters in both strings match,
the two strings are equal. Other relationships can be
determined if two characters in corresponding positions do
not match. The first operand is less than the second operand if
the first mismatched character in the first operand is less than
its counterpart in the second operand. Likewise, the first
operand is greater than the second operand if the first
mismatched character in the first operand is greater than its
counterpart in the second operand.

For example, assume a program has the following definitions:

 string name1 = "Mary";

 string name2 = "Mark";

Comparing String Objects

 The value in name1, "Mary", is greater than the value in
name2, "Mark". This is because the first three characters in
name1 have the same ASCII values as the first three characters

in name2, but the 'y' in the fourth position of "Mary" has a
greater ASCII value than the 'k' in the corresponding position
of "Mark".

Any of the relational operators can be used to compare two
string objects. Here are some of the valid comparisons of
name1 and name2.

 name1 > name2 // true

 name1 <= name2 // false

 name1 != name2 // true

String objects can also, of course, be compared to string
constants: name1 < "Mary Jane" // true

Comparing String Objects

 You can use the conditional operator to create short
expressions that work like if/else statements.

 The conditional operator is powerful and unique. It
provides a shorthand method of expressing a simple if/else
statement. The operator consists of the question-mark (?)
and the colon(:). Its format is expression ? expression :
expression;

 x < 0 ? y = 10 : z = 20;

 NOTE: Because it takes three operands, the
conditional operator is a ternary operator.

The Conditional Operator

if then else

 This statement is called a conditional expression and
consists of three sub-expressions separated by the ? and :
symbols. The expressions are x < 0, y = 10, and z = 20.

 x < 0 ? y = 10 : z = 20;

 The conditional expression above performs the same
operation as this if/else statement:

 if (x < 0)

 y = 10;

 else

 z = 20;

The Conditional Operator

 The part of the conditional expression that comes
before the question mark is the condition to be tested. It’s like
the expression in the parentheses of an if statement. If the
condition is true, the part of the statement between the ? and
the : is executed. Otherwise, the part after the : is executed.

 If it helps, you can put parentheses.

 (x < 0) ? (y = 10) : (z = 20);

The Conditional Operator

 In C++ all expressions have a value, and this includes the
conditional expression. If the first sub-expression is true, the
value of the conditional expression is the value of the second
sub-expression. Otherwise it is the value of the third
subexpression.

 a = (x > 100) ? 0 : 1;

The value assigned to variable a will be either 0 or 1,

depending upon whether x is greater than 100. This statement

has the same logic as the following if/else statement:

 if (x > 100)
 a = 0;
 else
 a = 1;

Using the Value of a Conditional Expression

 a = 1;

Using the Value of a Conditional Expression

 As you can see, the conditional operator gives you the
ability to pack decision-making power into a concise line of
code. With a little imagination it can be applied to many
other programming problems. For instance, consider the
following statement:

 cout << "Your grade is: " << (score < 60 ? "Fail." : "Pass.");

 If you were to use an if/else statement, this statement
would be written as follows:

 if (score < 60)
 cout << "Your grade is: Fail.";
 else
 cout << "Your grade is: Pass.";

Using the Value of a Conditional Expression

 The switch statement lets the value of a variable or
expression determine where the program will branch to.

 A branch occurs when one part of a program causes
another part to execute. The if/else if statement allows your
program to branch into one of several possible paths. It
performs a series of tests (usually relational) and branches
when one of these tests is true. The switch statement is a
similar mechanism. It, however, tests the value of an integer
expression and then uses that value to determine which set
of statements to branch to.

The switch Statement

switch (IntegerExpression)

{

 case ConstantExpression: // Place one or more

 // statements here

 case ConstantExpression: // Place one or more

 // statements here

 // case statements may be repeated

 // as many times as necessary

 default: // Place one or more

 // statements here

}

Format of the switch Statement

 The first line of the statement starts with the word
switch, followed by an integer expression inside
parentheses. This can be either of the following:

– A variable of any of the integer data types (including
char).

– An expression whose value is of any of the integer data
types.

Format of the switch Statement

WARNING! The expressions of each case statement
in the block must be unique.

 On the next line is the beginning of a block containing
several case statements. Each case statement is formatted in
the following manner:

 case ConstantExpression: // Place one or more

 // statements here

 After the word case is a constant expression (which
must be of an integer type such as an int or char), followed by
a colon. The constant expression can be either an integer
literal or an integer named constant. The expression cannot be
a variable and it cannot be a Boolean expression such as x < 22
or n == 25. The case statement marks the beginning of a
section of statements. These statements are branched to if the
value of the switch expression matches that of the case
expression.

Format of the switch Statement

Format of the switch Statement

 An optional default section comes after all the case
statements. This section is branched to if none of the case
expressions match the switch expression. Thus it functions
like a trailing else in an if/else if statement.

 The first case statement is case 'A':, the second is case
'B':, and the third is case 'C':. These statements mark where
the program is to branch to if the variable choice contains
the values 'A', 'B', or 'C'. (Remember, character variables and
constants are considered integers.) The default section is
branched to if the user enters anything other than A, B, or C.

Notice the break statements at the end of the case 'A',
case 'B', and case 'C' sections.

Format of the switch Statement

 switch (choice)
{
case 'A':cout << "You entered A.\n";
 break;
case 'B':cout << "You entered B.\n";
 break;
case 'C':cout << "You entered C.\n";
 break;
default:cout << "You did not enter A, B, or C!\n";
}

 The break statement causes the program to exit the
switch statement. The next statement executed after
encountering a break statement will be whatever statement
follows the closing brace that terminates the switch statement. A
break statement is needed whenever you want to “break out of”
a switch statement because it is not automatically exited after
carrying out a set of statements like an if/else if statement.

Format of the switch Statement

 The case statements show the program where to start
executing in the block and the break statements show the
program where to stop. Without the break statements, the
program would execute all of the lines from the matching
case statement to the end of the block.

 NOTE: The default section (or the last case section if
there is no default) does not need a break statement. Some
programmers prefer to put one there anyway for
consistency.

Format of the switch Statement

 An enumerated data type in C++ is a data type whose
legal values are a set of named constant integers.
 C++ also allows programmers to create their own data
types. An enumerated data type is a programmer-defined
data type that contains a set of named integer constants.
Here is an example of an enumerated type declaration.

 enum Roster { Tom, Sharon, Bill, Teresa, John };

 This creates a data type named Roster. It is called an
enumerated type because the legal set of values that
variables of this data type can have are enumerated, or
listed, as part of the declaration. A variable of the Roster
data type may only have values that are in the list inside the
braces.

Enumerated Data Types

 It is important to realize that the example enum
statement does not actually create any variables—it just
defines the data type. It says that when we later create
variables of this data type, this is what they will look like—
integers whose values are limited to the integers associated
with the symbolic names in the enumerated set. The
following statement shows how a variable of the Roster data
type would be defined.

 Roster student;

 The form of this statement is like any other variable
definition: first the data type name, then the variable name.
Notice that the data type name is Roster, not enum Roster.

Enumerated Data Types

 Because student is a variable of the Roster data type,
we may store any of the values Tom, Sharon, Bill, Teresa, or
John in it. An assignment operation would look like this:
 student = Sharon;
 The value of the variable could then be tested like
this:
 if (student == Sharon)
 Notice in the two examples that there are no
quotation marks around Sharon. It is a named constant, not
a string literal.

Enumerated Data Types

 We have learned that named constants are constant
values that are accessed through their symbolic name. So
what is the value of Sharon? The symbol Tom is stored as
the integer 0. Sharon is stored as the integer 1. Bill is stored
as the integer 2, and so forth.

 Even though the values in an enumerated data type
are actually stored as integers, you cannot always substitute
the integer value for the symbolic name. For example,
assuming that student is a variable of the Roster data type,
the following assignment statement is illegal.

 student = 2; // Error!

Enumerated Data Types

 You can, however, test an enumerated variable by
using an integer value instead of a symbolic name. For
example, the following two if statements are equivalent.
 if (student == Bill)
 if (student == 2)
 You can also use relational operators to compare two
enumerated variables. For example, the following if
statement determines if the value stored in student1 is less
than the value stored in student2:
 if (student1 < student2)
 If student1 equals Bill and student2 equals John, this
statement would be true. However,
if student1 equals Bill and student2 equals Sharon, the
statement would be false.

Enumerated Data Types

By default, the symbols in the enumeration list are assigned
the integer values 0, 1, 2, and so forth. If this is not
appropriate, you can specify the values to be assigned, as in
the following example.

 enum Department { factory = 1, sales = 2, warehouse = 4 };

 Remember that if you do assign values to the
enumerated symbols, they must be integers.
The following value assignments would produce an error.

 enum Department { factory = 1.1, sales = 2.2, warehouse = 4.4 };
 // Error!

Enumerated Data Types

Enumerated Data Types

enumerator

switch statement

 When opening a file you can test the file stream
object to determine if an error occurred.
 We have already been introduced to file operations
and saw that the file stream member function open is used
to open a file. Sometimes the open member function will
not work. If the file info.txt does not exist, the following
code will not work.

 ifstream inputFile;
 inputFile.open("info.txt");

 You can determine when a file has failed to open by
testing the value of the file stream object with the !
operator.

Testing for File Open Errors

 The following program segment attempts to open the
file customers.txt. If the file cannot be opened, an error
message is displayed.

 ifstream inputFile;
 inputFile.open("customers.txt");
 if (!inputFile)
 {
 cout << "Error opening file.\n";
 }

Testing for File Open Errors

 Another way to detect a failed attempt to open a file
is with the fail member function
 ifstream inputFile;
 inputFile.open("customers.txt");
 if (inputFile.fail())
 {
 cout << "The customer.txt file could not be opened.\n"
 << "Make sure it is located in the default directory\n"
 << "where your program expects to find it.\n";
 }
The fail member function returns true whenever an
attempted file operation is unsuccessful. When using file
I/O, you should always test the file stream object to make
sure the file was opened successfully.

Testing for File Open Errors

Returns true if fails
REMBER: You are asking if it has failed.

