
Software Design & Programming I

Starting Out with C++ (From Control Structures through Objects) 7th Edition
Written by: Tony Gaddis

Pearson - Addison Wesley
ISBN: 13-978-0-132-57625-3

Chapter 5

Looping

 C++ provides a pair of unary operators for
incrementing and decrementing variables.
 To increment a value means to increase it, and to
decrement a value means to decrease it. In the example
below, qtyOrdered is incremented by 10 and numSold is
decremented by 3.
 qtyOrdered = qtyOrdered + 10;
 numSold = numSold � 3;
Although the values stored in variables can be increased or
decreased by any amount, it is particularly common to
increment them or decrement them by 1. In fact, if we say
that a value is being incremented or decremented without
specifying by how much, it is understood that it is being
incremented or decremented by 1.

The Increment and Decrement Operators

 C++ provides a pair of unary operators to do this. The
++ operator increases its operand’s value by 1. The – –
operator decreases its operand’s value by 1.
Here are three different ways to increment the value of the
variable num by 1.

 num = num + 1;
 num += 1;
 num++;

And here are three different ways to decrement it by 1:

 num = num - 1;
 num -= 1;
 num--;
NOTE: The expression num++ is pronounced “num plus plus,” and num- - is
pronounced “num minus minus.”

The Increment and Decrement Operators

 Our examples so far show the increment and
decrement operators used in postfix mode, which means
the operator is placed after the variable. The operators also
work in prefix mode, where the operator is placed before
the variable name:

 ++num;
 --num;

 In both prefix and postfix mode, these operators add
1 to, or subtract 1 from, their operand.

The Increment and Decrement Operators

 The following example illustrates the use of these
operators in both prefix and postfix mode. Notice that there
is no space between the name of the variable and the ++ or
– – preceding it or following it.

 num = 4;
 num++; // now num has the value 5
 ++num; // now num has the value 6
 num--; // now num has the value 5 again
 --num; // now num has the value 4 again

The Increment and Decrement Operators

 In the simple statements used in Program 5-1, it
doesn’t matter if the increment or decrement operator is
used in postfix or prefix mode. The difference is important,
however, when these operators are used in statements that
do more than just increment or decrement.
For example, look at the following lines:

 num = 4;
 cout << num++;

 This cout statement is doing two things: 1) displaying
the value of num, and 2) incrementing num. But which
happens first? cout will display a different value if num is
incremented first than if num is incremented last. The
answer depends on the mode of the increment operator.

The Difference Between Postfix and Prefix Modes

 Postfix mode causes the increment to happen after
the value of the variable is used in the expression. In the
example, cout will display 4, then num will be incremented
to 5. Prefix mode, however, causes the increment to happen
first. In the following statements, num will first be
incremented to 5, then cout will display 5:

 num = 4;
 cout << ++num;

The Difference Between Postfix and Prefix Modes

The Difference Between Postfix and Prefix Modes

 Example, look at the following code:
 int x = 1;
 int y
 y = x++; // Postfix increment

 The first statement defines the variable x (initialized
with the value 1) and the second statement
defines the variable y. The third statement does two things:

• It assigns the value of x to the variable y.
• The variable x is incremented.

The Difference Between Postfix and Prefix Modes

 Let's look at the same code, but with the ++ operator
used in prefix mode:
 int x = 1;
 int y;
 y = ++x; // Prefix increment

 In the third statement, the ++ operator is used in
prefix mode, causing variable x to be incremented before
the assignment takes place. So, this code will store 2 in y.
After the code has executed, x and y will both contain 2.

The Difference Between Postfix and Prefix Modes

 The increment and decrement operators can also be
used on variables in mathematical expressions. Consider the
following program segment:

 a = 2;
 b = 5;
 c = a * b++;
 cout << a << " " << b << " " << c;

 In the statement c = a * b++, c is assigned the value of
a times b, which is 10. The variable b is then incremented.
The cout statement will display

 2 6 10

Using ++ and -- in Mathematical Expressions

 If the statement were changed to read

 c = a * ++b;

the variable b would be incremented before it was
multiplied by a. In this case c would be assigned the value of
2 times 6, so the cout statement would display

 2 6 12

You can pack a lot of action into a single statement using the
increment and decrement operators, but don’t get too
tricky with them. You might be tempted to try something
like the following, thinking that c will be assigned 11:
a = 2;
b = 5;
c = ++(a * b); // Error!

Using ++ and -- in Mathematical Expressions

 The ++ and -- operators may also be used in relational
expressions. Just as in mathematical expressions, the
difference between postfix and prefix mode is critical.
Consider the following program segment:

 x = 10;
 if (x++ > 10)
 cout << "x is greater than 10.\n";

 Two operations are happening in this if statement: 1)
The value in x is tested to determine if it is greater than 10,
and 2) x is incremented. Because the increment operator is
used in postfix mode, the comparison happens first. Since
10 is not greater than 10, the cout statement won’t execute.

Using ++ and -- in Relational Expressions

 If the mode of the increment operator is changed,
however, the if statement will compare 11 to 10 and the
cout statement will execute:
 x = 10;
 if (++x > 10)
 cout << "x is greater than 10.\n";

Using ++ and -- in Relational Expressions

 -

Introduction to Loops: The while Loop

 -

The do-while Loop

 -

The for Loop

