
System Design and Programming II

CSCI – 1943

David L. Sylvester, Sr., Professor



Chapter 10

Characters, Strings, 

and the string Class



Character Testing
The C++ library provides several functions for testing characters.  To 
use these functions you must include the cctype header file.

These libraries provide several functions that allow you to test the 
value of a character.  These functions test a single char argument and 
return either true or false.  They actually return an int value (0 – false, 
nonzero – true).

Ex: char letter = ‘a’;

if (isupper(letter));

cout << “Letter is uppercase.\n”;

else

cout << “Letter is lowercase.\n”;

will output    Letter is lowercase.



Character Testing Functions

Character 
Function

Description

isalpha
Returns true ( nonzero number) if the argument is a letter of the 
alphabet.  Return 0 if the argument is not a letter

isalnum
Returns true (nonzero number) if the argument is a letter of the 
alphabet or a number.  Otherwise, it returns 0.

isdigit
Returns true ( nonzero number) if the argument is a digit from 0 
through 9. Otherwise, it returns 0.

islower
Returns true (nonzero number) if the argument is a lowercase letter.  
Otherwise, it returns 0.

isprint
Returns true (nonzero number) if the argument is a printable 
character (including a space). Otherwise, it returns 0.

ispunct
Returns true (nonzero number) if the argument is a printable 
character other than a digit, letter or space.  Otherwise, it returns 0.

isupper
Returns true (nonzero number) if the argument is an uppercase letter.  
Otherwise, it returns 0.

isspace
Returns true (nonzero number) if the argument is a whitespace 
character.  ( i.e. space  ‘ ‘, vertical tab  ‘\v’, newline  ‘\n’, tab  ‘\t’).  
Otherwise, it returns 0.



Character Functions – Sample Program

#include <iostream>

// This program demonstrates some

// character-testing functions.

#include <iostream>

#include <cctype>

using namespace std;

int main()

{

char input;

cout << “Enter any character: ";

cin.get(input);

cout << "The character you entered is: " 
<< input << endl;

if (isalpha(input))

cout << "That's an alphabetic character.\n";

if (isdigit(input))

cout << "That's a numeric digit.\n";

if (islower(input))

cout << "The letter you entered is 
lowercase.\n";

if (isupper(input))

cout << "The letter you entered is 
uppercase.\n";

if (isspace(input))

cout << "That's a whitespace character.\n";

return 0;

}



Character Functions – Sample Program
// This program test a customer number

// to determine whether it is in the 

// proper format.  

#include <iostream>

#include <cctype>

using namespace std;

// Function prototype

bool testNum(char[], int);

int main()

{

const int SIZE = 8;// Array size

char customer[SIZE];// To hold a customer number

// Get the customer number. 

cout << "Enter a customer number in the form ";

cout << "LLLNNNN\n";

cout << "(LLL = letters and NNNN = numbers): ";

cin.getline(customer, SIZE);

// Determine whether it is valid.

if (testNum(customer, SIZE)) 

cout << "That's a valid customer number.\n";

else

{

cout << "That is not the proper format for the ";

cout << "customer number.\nHere is an example\n";

cout << "  ABC1234\n";

}

return 0;

}

// Definition of Function testNum.

bool testNum(char custNum[], int size)

{

int count;// Loop counter

// Test the first three characters for alphabetic letters.

for (count = 0; count < 3; count++)

{

if (!isalpha(custNum[count]))

return false;

}

// Test the remaining characters for numeric digits.

for (count = 3; count < size -1; count++)

{

if (!isdigit(custNum[count]))

return false;

}      

return true;   

}



Character Case Conversion
The C++ library provides two functions, toupper and tolower, for 
converting the case of a character.  These functions are also 
prototyped in the header file cctype, so be sure to include it.

Note:  These functions accept a single character argument.

Ex: cout << toupper (‘a’);     outputs       A

If the argument is already an uppercase letter, toupper return is 
unchanged.  Any nonletter argument passed to toupper is returned as 
it is.

Additional Character Functions

toupper Returns the uppercase equivalent of its argument.

tolower Returns the lowercase equivalent of its argument.



Ex: cout << toupper(‘*’) // Displays *

cout << toupper(‘&’) // Displays &

cout << toupper(‘%’) // Displays %

toupper and tolower do not actually cause the character argument to 
change (change the stored value), they simply return the upper or 
lower equivalent of the argument. 

Ex: char letter = ‘A’;

cout << tolower(letter) << endl;

cout << letter;

Will output   A

Will output    a



Character Functions – Sample Program
// This program calculates the area of a circle.

// It asks the user if he or she wishes to continue.

// A loop that demonstrates the toupper function repeats

// until the user enters 'y', 'Y' or 'n', 'N'.

#include <iostream>

#include <cctype>

#include <iomanip>

using namespace std;

char goAgain;// To hold Y or N

int main()

{

const double PI = 3.14159;// Constant for pi

double radius;// The circle's radius

cout << "This program calculates the area of a      

circle.\n";

cout << fixed << setprecision(2);

do

{

// Get the radius and display the area.

cout << "Enter the circle's radius: ";

cin >>radius;

cout << "The area is "<< (PI * radius * radius);

cout << endl;

// Does the user want to do this again?

cout << "Calculate another?  (Y or N) ";

cin >> goAgain;

// Validate the input.

while (toupper(goAgain) != 'Y' && toupper(goAgain)

!= 'N')

{

cout << "Please enter Y or N: ";

cin >> goAgain; 

}

} while (toupper(goAgain) == 'Y');

return 0;

}

Prompts the user for  the radius  

Calculates and output area of circle

Makes only 2 comparison 
rather than 4 (Y,y,N,n)



Review of the Internal Storage of C-Strings
String in a generic term that describes any consecutive sequence of 
characters.

Ex: word

sentence “Have a nice day.”

person’s name

title of a song

A string may be constant or variable in nature, and may be stored in a 
variety of ways.

C-strings describes a string whose characters are stored in consecutive 
memory locations and are followed by a null character, or null 
terminator.  The null terminator marks the end of the C-string.  
Without it a function has no way of knowing the length of a C-string 
argument.

T O M O R R O W \0



String Literals
A string literal or string constant is enclosed in a set of double 
quotes.

Ex: “Have a nice day.”

“What is your name?”

“John Smith”

“Please enter your age:”

“Part Number 45q1798”

All of a program’s string literals are stored in memory as C-
strings, with the null terminator automatically appended.



Character Functions – Sample Program
// This program contains string literals.

#include <iostream>

using namespace std;

int main()

{

char again;

do

{

cout << "C++ programming is great fun!" << endl;

cout << "Do you want to see the message again? ";

cin >> again;

} while (again == 'Y' || again == 'y');

return 0;

} 2 string literals

Although the strings are 
not stored in arrays, they 
are still part of the 
program’s data.  The first 
string occupies 30 bytes of 
memory and the second 
occupies 39 bytes. Both 
sizes include the null 
terminator.



The string literals on the previous page would be represented as such:

It is important to realize that a string literal has its own storage 
location, just like a variable or an array.  When a string literal appears 
in a statement, it’s actually its memory address that C++ uses.

Ex: cout << “Do you want to see the message again? “;

In this statement, the memory address of the string literal “Do you 
want to see the message again? “ is passed to the cout object.  cout 
displays the consecutive characters found in this address and stop 
displaying characters when a null terminator is encountered.

C + + p r o g r a m m i n g i s g r e a t

f u n ! \0

D o y o u w a n t t o s e e t h e m e

s s a g e a g a i n ? \0



Strings Stored in Array
When defining a character array for holding a C-string, be sure the 
array is large enough for the null terminator.

Ex: char company[12] // holds no more than 11 characters

String input can be performed by using the cin object. It allows a 
string to be entered that has no whitespace characters into the 
company array.  If a user enters more than 11 characters, cin will 
write past the end of the array, because it has no way of knowing that 
the variable company has 12 elements.

Ex: cin  >> company
Because company is an array and is being used 
without the brackets or subscripts, it indicate  the 
address  in memory where string is to be stored.



The cin problem can be solved by using the cin’s getline member 
function.

Ex: char line[80];

cin.getline(line,80);

cin will read 79 characters, or until the user presses the [ENTER] key, 
whichever comes first.  cin will automatically append the null 
terminator.

Gets a line of input (including whitespace 
characters) and store it in the line array.

Starting address 
of line array

Number of character to accept 
including null terminator.



Sample Program
// This program displays a string stored 

// in a char array.

#include <iostream>

using namespace std;

int main()

{

const int SIZE = 80;// Array size

char line[SIZE];// To hold a line of input

int count = 0;// Loop counter variable

// Get a line of input.  

cout << "Enter a sentence of no more than " 

<< (SIZE - 1) << " characters.\n";

cin.getline(line,80);

// display the input one character at a time.

cout << "The sentence you entered is:\n";

while(line[count] != '\0')

{

cout << line[count];

count ++;

}

return 0;

}



Library Functions for Working with C-strings
The C++ library has numerous functions for handling C-strings.  They perform 
various tests and manipulations, and require that the cstring header file be 
included.

Function Description    (*Accepts 1 C-string or pointer;  **Accepts 2 C-strings or pointers to  a C-string)

strlen
Returns the length of the C-string (not including the null terminator)
Ex:  len = strlen(name);

strcat
Appends the contents of the second string to the first C-string. (The first string is altered, the 
second string is unchanged.) 
Ex:  strcat(string1, string2);

strcpy
Copies the second C-string to the first C-string.  The second is unchanged.
Ex:  strcpy(string1, string2);

strncat
The third argument, an integer, indicates the maximum number of characters to copy from 
the second C-string to  the first C-string.
Ex:  strncat(string1, string2, n);

strncpy
The third argument, an integer, indicates the maximum number of characters to copy from 
the second C-string to the first C-string.  (string1 padded with \0 if n > string 2;
Ex:  strncpy(string1, string2, n);

strcmp
If string1 and string2 are the same, returns 0. If string2 alphabetically greater will return -1, if 
string 2 alphabetically less than it will return 1.
Ex:  if (strcmp(string1, string2))

strstr
Searches for the first occurrence of string2 in string1.  If found returns a pointer to it.
Otherwise returns a NULL pointer (address 0)
Ex:  cout << strstr(string1, string2);

*

**

**

**

**

**

**



The strlen Function
Ex: char name[50] = “Thomas Edison”;

int length;

length = strlen(name);

The strlen function accepts a pointer to a C-string as its argument.  It 
returns the length of the string, which is the number of characters 
up to, but not including the null terminator. 

The variable length will have the value integer value 13.

Note:  Do not confuse the length of the string with the size of the 
array.  The only information being passed to strlen is the beginning 
address of a C-string.  It does not know where the array ends, so it 
looks for the null terminator to indicate the end of the string.

Using strlen with a literal string.

Ex: length  = strlen(“Thomas Edison”);



The strcat Function
The strcat function concatenates, or appends one string to another. 

Ex: char string1[13] = “Hello “;

char string2[7] = “World!”;

cout << string1 << endl;

cout << string2 << endl;

strcat(string1, string2);

cout << string1;

Code produces this output

Hello
World!
Hello World!

Appends string1 
with string2

H e l l o W o r l d ! \0

H e l l o \0

W o r l d ! \0

W o r l d ! \0

string1

string2

string1  after strcat is executed

string2 after strcat is executed  (unchanged)



Sample program segment that uses sizeof operator to test an array’s 
size before strcat is called.

if (sizeof(string1) >= (strlen(string1) + strlen(string2) + 1))

strcat(string1, string2);

else

cout << “String1 is not large enough for both strings.\n”;

Returns value of the 
size of the array

Return size of string  
stored in  string1 array

Return size of string  
stored in  string1 array

Accounts for 
null terminator



The strcpy Function
Unlike copying arrays where you have to copy one element at a time, 
usually using a for loop, with strings the strcpy function can be used to 
copy one string into another. 

Ex: char name[20];
strcpy(name, “Albert Einstein”);

The second argument of the strcpy function is copied into the first 
argument including the null terminator.  Hence, copying “Albert 
Einstein” into the name array.

If anything is already stored in the location referenced by the first 
argument, it is overwritten.

Ex: char string1[10] = “Hello”, string2[10] = “World”;
cout  <<  string1  <<  endl;
cout  <<  string2  <<  endl;
strcpy(string1, string2);
cout  <<  string1  <<  endl;
cout  <<  string2  <<  endl;

Overwrites string1 
with string2

Code produces this output

Hello
World!
World!
World!



The strncat and strncpy Function

Because the strcat and strcpy functions can potentially overwrite the 
bounds of an array, it is possible to write unsafe code.  As an 
alternative, you should use the strncat and strncpy wherever 
possible.  

The strncat function works like strcat, except it takes a third 
argument specifying the maximum number of characters from the 
second string to append to the first.

Ex: strncat(string1, string2, 10); Copies no more than 10 characters 
from string2 into string1.



Sample program shows an example of calculating the maximum 
number of characters that can be appended to an array.

Ex: int maxChars;

char string1[17] = “Welcome “;

char string2[18] = “to North Carolina”;

maxChars = sizeof(string1) – (strlen(string1) + 1);

strncat(string1, string2, maxChar2);

cout << string1 << endl;

Accounts for 
null terminator

maxChars = 17 – (8 + 1)
maxChars =  8



Calling strncpy is similar to calling strcpy, except you pass a third 
argument specifying he maximum number of characters from the 
second string to copy to the first.

Ex: strncpy(string1, string2, 5);

When executed, strncpy will copy no more than five characters from 
string2 to string1.

– If the number of characters is less than or equal to the length 
of string2, a null terminator is not appended to string1.

– If the specified number of characters is greater than the length 
of string2, then string 1 is padded with null terminators (up to 
the specified number of characters)



strncpy example: int maxChars;

char string1[11];

char string2[ ] = “I love C++ programming!”;

maxChars = sizeof(string1 -1);

strncpy(string1, string2, maxChars);

// Put the null terminator at the end.

string1[10] = ‘\0’;

cout << string1 << endl;

The above statement adds the null terminator at the end of string1.  
This is done because maxChars was less than the length of string2, 
and strncpy did not automatically place a null terminator there.



The strstr Function
The strstr function searches for a string inside of a string.  The 
function’s first argument is the string to be searched, and the second 
argument is the string to look for.  If the function finds the second 
string inside the first, it returns the address of the occurrence of the 
second string within the first string.  Otherwise it returns the 
address 0, or the NULL address.

Ex char arr[ ] = “Four score and seven years ago”;
char *strPtr;
cout << arr << endl;
strPtr = strstr(arr, “seven”); // search for “seven”
cout << strPtr << endl;

In this code, strstr locates the string “seven” inside the string “Four 
score and seven years ago.”  It returns the address of the first 
character in “seven” which will be stored in the pointer variable 
strPtr.

Will output:  Four score and seven years ago

Will output:  seven years ago



// This program uses the strstr 

// function to search an array.

#include <iostream>

#include <cstring>// For strstr

using namespace std;

int main()

{

// Constants for array lengths

const int NUM_PRODS = 5; // Number of   products

const int LENGTH = 27; // String length

// Array of products

char products[NUM_PRODS][LENGTH] =

{"TV327 31-inch Television",

"CD257 CD Player",

"TA677 Answering Machine",

"CS109 Car Stereo",

"PC955 Personal Computer"};

char lookUp[LENGTH]; // To hold user's input

char *strPtr = NULL;  // To point to the found product

int index; // Loop counter

// Prompt the user for  a product number.

cout << "\tProduct Database\n\n";

cout << "Enter a product number to

search for: ";

cin.getline(lookUp,LENGTH);

// Search the array for a match substring

for (index = 0; index < NUM_PRODS; index++)

{

strPtr = strstr(products[index], lookUp);

if (strPtr != NULL)

break;

}

// If a matching substring was found,

// display the product info.

if (strPtr != NULL)

cout << products[index] << endl;  

else

cout << "No matching product was      

found.\n";

return 0;

}

Sample Program



String/Numeric Conversion Function
The C++ library provides functions for converting a string 
representation of a number to a numeric data type and vice versa. 
These functions require the cstdlib header file to be included.  The 
string “26792” isn’t actually a number, but a series of ASCII codes 
representing the  individual digits of the number.  It uses six bytes of 
information including the null terminator and it is not possible to 
perform mathematical operations with it.

String Conversion Functions

Function Description

atoi Converts the C-string to an integer and return that value.
Ex:  num = atoi(“4569”);

atol Converts the C-string to a long integer and return that value.
Ex:  lnum = atol(500000”);

atof Converts the C-string to a double and returns that value.
fnum = atof(“3.14159”);

itoa Converts integer to C-string. (8 = octal, 10 = decimal , 16 = hexadecimal)
itoa(value, string, base);



The atoi Function

Ex: int num;
num = atoi(“1000”);

The atol Function

Ex: long bignum;
bignum = atol(“500000”);

The atof Function

Ex: double;
num = atof(“12.67”);

The itoa Function

Ex: char numArray[10]
itoa(1200, numArray, 10);
cout << numArray << endl;



The C++ string Class
Standard C++ provides a special data type for storing and 

working with strings.

The string class is an abstract data type.  This means it is not 
a built-in, primitive data type line int or char.  Instead, it is a 
programmer-defined data type that accompanies the C++ language.  
It provides many capabilities that make storing and working with 
strings easy and intuitive.

The first step in using the string class is to #include the string 
header file.  This accomplished with the following preprocessor 
directive:

#include <string>
Now you are ready to define a string object.  Defining a string 

object is similar to defining a variable of a primitive type.  
Ex:   string movieTitle;



The C++ string Class
You assign a string value to the movieTitle object with the 

assignment operator, as
movieTitle = “Wheels of Fury”;


