
System Design and Programming II

CSCI – 1943

David L. Sylvester, Sr., Professor

Chapter 12

Advanced File Operation

File Operations
A file is a collection of data that is usually stored on a computer’s disk.

File Stream

Data Type Description

ifstream Input File Stream. This data type can be used only to read data
from files into memory.

ofstream Output File Stream. This data type can be used to create files and
write data to them.

fstream File Stream. This data type can be used to create files, write data to
them, and read data from them.

Using the fstream Data Type
You define an fstream object just as you define objects of other data
types.

Ex: fstream dataFile;

As with ifstream and ofstream objects, you use an fstream object’s
open function to open a file. An fstream object’s open function
requires two arguments. The first argument is a string containing the
name of the file, and the second argument is a file access flag that
indicates the mode in which you wish to open the file.

Ex: dataFile.open(“info.txt”, ios::out);

The first argument is the name of the file info.txt. The second
argument is the file access flag ios::out. This tells C++ to open the file
in output mode, which allows data to be written to the file.

Ex: dataFile.open(“info.txt”, ios::in);

This statement uses the ios::in access flag to open a file in input
mode, which allows data to be read from the file.

Access Flags

File Access Flags Meaning

ios::app Append mode. If the file already exists, its contents are preserved and
all output is written to the end of the file. By default, this flag causes
the file to be created if it does not exist.

ios::ate If the file already exists, the program goes directly to the end of it.
Output may be written anywhere in the file.

ios::binary Binary mode. When a file is opened in binary mode, data are written to
or read from it in pure binary format. (Default mode is text.)

ios::in Input mode. Data will be read from the file. If the file does not exist, it
will not be created and the open function will fail.

ios::out Output mode. Data will be written to the file. By default, the file’s
content will be deleted if it already exists.

ios:: trunc If the file already exists, its contents will be deleted (truncated). This is
the default mode use by ios::out.

Several flags may be used together if they are connected with the |
operator.

Ex: dataFile.open(“info.txt”, ios::in |ios::out);

This statement opens the file info.txt in both input and output mode.
This means that data may be written to and read from the file.

Note: When used by itself, the ios::out flag causes the file’s contents to be deleted if
the file already exists. When used with the ios::in flag, however, the file’s existing
contents are preserved. If the file does not already exist, it will be created.

The following statement opens the file in such a way that data will
only be written to its end.

dataFile.open(“info.txt”, ios::out | ios::app);

By using different combinations of access flags, you can open files in
many possible modes.

Sample Program
• // This program uses an fstream object to write data to a file.
• #include <iostream>
• #include <fstream>
• using namespace std;

• int main()
• {
• fstream dataFile;

• cout << "Opening file...\n";
• dataFile.open("demofile.txt", ios::out); // Open for output
• cout << "Now writing data to the file.\n";
• dataFile << "Jones\n"; // Write line 1
• dataFile << "Smith\n"; // Write line 2
• dataFile << "Willis\n"; // Write line 3
• dataFile << "Davis\n"; // Write line 4
• dataFile.close(); // Close the file
• cout << "Done.\n";
• return 0;
• }

Causes each name to
appear on a new line.

The \n characters are written to the file along with all the other
characters. The characters are added to the file sequentially, in the
order they are written by the program. The very last character is an
end-of-file marker. It is a character that marks the end of the file and
is automatically written when the file is closed. The particular mark
used depends on the operating system being used. Just like the new
line character, the eof marker is a non-printable character also.

J o n e s \n S m i t h \n W i l

l i s \n D a v i s \n <EOF>

Sample Program
// This program writes data to a file, closes the file,

// then reopens the file and appends more data.

#include <iostream>

#include <fstream>

using namespace std;

int main()

{

ofstream dataFile;

cout << "Opening file...\n";

// Open the file in output mode.

dataFile.open("demofile.txt", ios::out);

cout << "Now writing data to the file.\n";

dataFile << "Jones\n"; // Write line 1

dataFile << "Smith\n"; // Write line 2

cout << "Now closing the file.\n";

dataFile.close(); // Close the file

cout << "Opening the file again...\n";

// Open the file in append mode.

dataFile.open("demofile.txt", ios::out | ios::app);

cout << "Writing more data to the file.\n";

dataFile << "Willis\n"; // Write line 3

dataFile << "Davis\n"; // Write line 4

cout << "Now closing the file.\n";

dataFile.close(); // Close the file

cout << "Done.\n";

return 0;

}

Note: if the ios::out flag had been alone, without ios::app the second
time the file was opened, the file’s contents would have been deleted
and only Willis and Davis would be the contents of the file.

J o n e s \n S m i t h \n <EOF>

J o n e s \n S m I t h \n W i l

l i s \n D a v i S \n <EOF>

The first time file is opened, two names are written.

The file is closed and an end-of-file character is automatically
written. When the file is reopened, the new output is appended to
the end of the file.

File Open Mode with
ifstream and ofstream Objects

The ifstream and ofstream data types each have a default mode in
which they open files. This mode determines the operations that may
be performed on the file, and what happens if the file that is being
open already exists.

You cannot change the fact that ifstream may only read from and
ofstream files may only be written to. But, you can vary the way
operations are carried out on these files by providing a file access flag
as an optional second argument to the open function.

File Type Default Open Mode

ofstream The file is opened for output only. Data may be written to the file,
but not read from the file. If the file does not exist, it is created. If
the file already exists, its contents are deleted.

ifstream The file is opened for input only. Data may be read from the file but
not written to it. The file’s contents will be read from its beginning.
If the file does not exist, the open function fails.

Ex: ofstream outputFile;

outputFile.open(“Values.txt”, ios::out | ios::app);

The ios::app flag specifies that data written to the Values.txt file
should be appended to its existing contents.

Checking for a File’s Existence
Before Opening It

Sometimes you may want to determine whether a file already exists before
opening it for output. You can do this by first attempting to open the file for
input. If the file does not exist, the open operation will fail. In that case,
you can create the file by opening it for output.

Ex: fstream dataFile;

dataFile.open(“Values.txt”, ios::in);

if (dataFile.fail())

{

// The file does not exist, so create it.

dataFile.open(“Values.txt”, ios::out);

//

// Continue to process the file

//

}

else // The file already exists.

{

dataFile.close();

cout << “The file Values.txt already exists.\n”;

}

Opening a File with the File Stream
Object Definition Statement

An alternative to using the open member function is to use the file
stream object definition statement to open the file.

Ex: fstream dataFile(“names.txt”, ios::in | ios::out);

This statement defines an fstream object named dataFile and uses it
to open the file names.txt. The file is opened in both input and
output modes. This technique eliminates the need to call the open
function when you know the name and access mode of the file at the
time the object is defined.

Another example: ifstream inputFile(“info.txt”);

ofstream outputFile(“addresses.txt”);

ofstream dataFile(“customers.txt’,

ios::out | ios::app);

To test for errors after you have opened a file with this technique,
you can use the following:

ifstream inputFile(“SalesData.txt”)

if (!inputFile)

cout << “Error opening SalesDate.txt”;

File Names and Extensions

Name &
Extension

File Content
Name &
Extension

File Content

myprog.bas BASIC program vacation.jpg JPEG image file

menu.bat Windows batch file invent.obj Object file

install.doc Microsoft Word document instructions.pdf Adobe Portable Document
Format File

crunch.exe Executable file prog1.prj Borland C++ project file

bob.html Hypertext Markup Language ansi.sys System device driver

3dmodel.java Java program or applet readme.txt Text file

File Output Format
The setprecision and fixed manipulators may be called to establish
the number of digits of precisions that floating point values are
rounded to.

// This program uses the setprecision and fixed
// manipulators to format file output.
#include <iostream>
#include <iomanip>
#include <fstream>
using namespace std;

int main()
{

fstream dataFile;
double num = 17.816392;

dataFile.open("numfile.txt", ios::out);
// Open in output mode

dataFile << fixed;
// Format for fixed-point notation

dataFile << num << endl;
// Write the number

dataFile << setprecision(4);
// Format for 4 decimal places

dataFile << num << endl;
// Write the number

dataFile << setprecision(3);
// Format for 3 decimal places

dataFile << num << endl;
// Write the number

dataFile << setprecision(2);
// Format for 2 decimal places

dataFile << num << endl;
// Write the number

dataFile << setprecision(1);
// Format for 1 decimal place

dataFile << num << endl;
// Write the number

cout << "Done.\n";
dataFile.close();

// Close the file
return 0;

}

Using setw to Format Output
// This program writes three rows
// of numbers to a file.
#include <iostream>
#include <fstream>
#include <iomanip>
using namespace std;

int main()
{

const int ROWS = 3; // Rows to write
const int COLS = 3; // Columns to write
int nums[ROWS][COLS] = { 2897, 5, 837,

34, 7, 1623,
390, 3456, 12 };

fstream outFile("table.txt", ios::out);

// Write the three rows of numbers with each
// number in a field of 8 character spaces.
for (int row = 0; row < ROWS; row++)
{

for (int col = 0; col < COLS; col++)
{

outFile << setw(8) << nums[row][col];
}
outFile << endl;

}
outFile.close();
cout << "Done.\n";
return 0;

}

2 8 9 7 5 8 3 7 \n

3 4 7 1 6 2 3 \n

3 9 0 3 4 5 6 1 2 \n

Representation of Output

