
System Design and Programming II

CSCI – 1943

David L. Sylvester, Sr., Professor

Chapter 13

Introduction to Classes

Procedural and Object-Oriented
Programming

Procedural programming is a method of writing software. It is a
programming practice centered on the procedures or action that take
place in a program. Object-oriented programming is centered around
the object. Objects are created from abstract data types that
encapsulate data and functions together.

Encapsulation is the process of combining data and functions into a
single unit called class.

Two programming methods used today

Procedural programming - what we have been using so far

Object-oriented programming (OOP)

Typical procedural programming consists of data being stored in a
collection of variables and/or structures, coupled with a set of
functions that perform operations on the data. (The data and the
functions are separate entities.

Ex: A program written to work with the geometry of a rectangle
might have

Variables

double width; // to hold the rectangle’s width

double height; // to hold the rectangle’s height

Functions

setData() // to store values in width and length

displayWidth() // to display the rectangle’s width

displayLength() // to display the rectangle’s length

displayArea() // to display rectangle’s area

Usually the variables and data structures in a procedural program are
passed to the function that performs the desired operations. The
focus on procedural programming is on creating the functions that
operate on the program’s data.

Procedural programming has worked well for software developers for
many years. However, as programs become larger and more complex,
the separation of a program’s data and the code that operates on the
data can lead to problems. (i.e. if the format of the data is altered.)

When the structure of the data changes, the code that operates on
the data must also change to accept the new format.

Whereas procedural programming is centered on creating procedures
or functions, object-oriented programming is entered on creating
objects. An object is a software entity that contains both data and
procedures. Procedures that an object performs are called member
functions.

The object is a self-contained unit consisting of attributes (data) and
procedures (functions).

In other programming languages, the procedures that an object
performs are often called methods.

Object-Oriented Programming (OOP) addresses the problem that can
result from separation of code and data through encapsulation and
hiding data.

Data hiding refers to an object’s ability to hide its data from code that
is outside the object. Only the object’s member functions may
directly access and make changes to the object’s data. An object
typically hides its data, but allows outside code to access its member
functions. When an object’s internal data are hidden from outside
code, and access to that data is restricted to the object’s member
functions, the data are protected from accidental corruption.

Also, the programming code outside the object does not need to
know about the format or internal structure of the object’s data. The
code only needs to interact with the object’s function. When a
programmer changes the structure of an object’s internal data, he or
she also modifies the object’s member function so they may properly
operate on the data. The way in which outside code interacts with
the member functions, does not change.

Object-oriented Example

Automobile

ignition switch, steering wheel, gas pedal, brake pedal and gear shift

(each having simple user interfaces , starting vehicle, steering, etc.)

Users need not have any mechanical knowledge, meaning more people
are likely to become customers. It’s good for users of automobiles because

they can learn just a few simple procedures and operate almost any
vehicle.

A real-world program is rarely written by only one person. Even the
programs you have created so far weren’t written entirely by you. If
you incorporated C++ library functions, or objects like cin and cout,
you used code written by someone else. In the world of professional
software development, programmers commonly work in teams, buy
and sell their code, and collaborate on projects. With OOP,
programmers can create objects with powerful engines tucked away
“under the hood”, protected by single interfaces that safeguard the
object’s algorithms.

Object Reusability
In addition to solving the problems of code/data separation, the use
of OOP has also been encouraged by the trend of object reusability.
An object is not a stand-alone program, but is used by programs that
need its service.

Ex: Sharon is a programmer who has developed an object for
rendering 3D images. She is a math whiz and knows a lot about
computer graphics, so her object is coded to perform all the
necessary 3D mathematical operations to handle the computer’s
video hardware. Tom, who is writing a program for an architectural
firm, needs his application to display 3D images for buildings.
Because he is working under a tight deadline and does not possess a
great deal of knowledge about computer graphics, he can use
Sharon’s object to perform the 3D rendering. (Normally this is done
for a small fee.)

Classes and Objects
Before an object can be created, it must be designed by a
programmer. The programmer determines the attributes and
functions that are necessary, and then creates a class. A class is code
that specifies the attributes and member functions that a particular
type of object may have. A class can be thought of as a blueprint that
objects may be created from; a blueprint being a detailed description
of the object. Using this blueprint, several separate instances can be
created.

A class is not an object, but it is a description of an object. When the
program is running, it uses the class to create, in memory, as many
objects of a specific type as needed. Each object that is created from
a class is called an instance of the class.

Ex: An entomologist enjoys writing computer programs. She
designs a program to catalog different types of insects. As part of the
program, she creates a class named Insect, which specifies attributes
and member functions for holding and manipulating data common to
all types of insects. She then writes a programming statement that
creates a housefly object, which is an instant of the Insect class. She
then writes programming statements that create a mosquito object.
The mosquito object is also an instance of the Insect class.

Even though the housefly and mosquito objects are two separate
entities in the computer’s memory, they were both created from the
Insect class; each object having the attributes and member functions
described by the Insect class.

Previously we discussed how a procedural program that works with
rectangles might have variables and hold the rectangle’s width and
length, and separate functions to do things like store values in the
variables and make decisions; passing variables to functions as
needed. In an object-oriented program, we would create a Rectangle
class which should encapsulate the data (width and length) and the
functions that work with the data.

Insect
Class

Mosquito
object

Housefly
object

The Insect class describes
the attributes and functions

that a particular type of
object may have.

The housefly object is an
instance of the insect class. It

has the attributes and functions
described by the Insect class.

The mosquito object is an
instance of the Insect class.

It has the attributes and
functions described by the

Insect class.

In the object-oriented approach, the variables and functions are all
members of the Rectangle class.

Ex:
Member Variables

double width;
double length;

Member Functions
void setWidth(double w)
{. . . function code . . .}

void setLength(double len)
{. . . function code . . .}

void getWidth()
{. . . function code . . .}

void getLength()
{. . . function code . . .}

void getArea()
{. . . function code . . .}

When we need to work with a rectangle in our program, we create a
Rectangle object, which is an instance of the Rectangle class. When
we need to perform an operation on the Rectangle object’s data, we
use the object to call the appropriate private member function.

Ex: To get the area of a rectangle, we use the object to call the
getArea member function. The getArea member function would be
designed to calculate the area of that object’s rectangle and return
the value.

Using a Class You Already Know
When we need to work with a rectangle in our program, we create a
Rectangle object, which is an instance of the Rectangle class. When
we need to perform an operation on the Rectangle object’s data, we
use the object to call the appropriate private member function.

Ex: To get the area of a rectangle, we use the object to call the
getArea member function. The getArea member function would be
designed to calculate the area of that object’s rectangle and return
the value.

cityName = “Baton Rouge”;

After this statement executes, the string “Baton Rouge” will be stored
in the cityName object. “Baton Rouge” will become the object’s data.

Introduction to Classes
The class is the construct primarily used to create objects. A class is
similar to a structure. It is a data type defined by the programmer,
consisting of variables and functions.

Ex: class Classname
{

declaration;
// more declarations
//…

// …
};

The declaration statements inside a class declaration are for variables
and functions that are members of the class.

Ex: class Rectangle

{

double width;

double length;

}; // don’t forget the semicolon

There would be a problem with the previous defined class. Unlike
structures, the members of a class are private by default. Private
class member cannot be accessed by programming statements
outside the class. So, no statements outside this Rectangle class can
access the width and length members. Again, in C++, a class’s private
members are hidden, and can be accessed only by functions that are
members of the same class. A class’s public members may be
accessed by code outside the class.

Access Specifiers

C++ provides the key words private and public which you may use in
class declarations. These key words are known as access specifiers
because they specify how class members may be accessed.

General format of a class declaration that uses the private and public
access specifiers.

Ex: class Classname

{
private:

// declarations of private members
// …

public:
// Declarations of public member
//

};

Notice that the access specifiers are followed by a colon (:), and then followed by one or
more member declaration.

Public Member Functions
To allow access to a class’s private member variables, you create
public member functions that work with the private member
variables.

Ex: class Rectangle

{
private:

double width;
double length;

public:
void setWidth(double);
void setLength(double);
double getWidth() const;
double getLength() const;
double getArea() const;

};

In this declaration, the member variables width and length are
declared as private. However, the member functions are declared as
public, which means they can be called from statements outside the
class. (The public functions provide an interface for code outside the class to use Rectangle objects.)

Private member
variables

Public member
functions

const - Specifies that the function will not

change any data stored in the calling object.
Will get an error if changes are attempted.

Even though the default access of a class is private, it’s still a good
idea to use the private key word to explicitly declare private
members. This clearly documents the access specification of all the
members of the class.

Using const with Member Functions

When the key word const appears after the parentheses in a
member function declaration, it specifies that the function will not
change any data stored in the calling object. If you inadvertently
write code in the function that changes the calling object’s data, the
compiler will generate an error. Note: The const key word must also
appear in the function header.

Placement of public and private Members

There is no rule requiring you to declare private member before
public members. Also, it is not require that all members of the same
access specification be declared in the same place.

class Rectangle

{

private:

double width;

double length;

public:

void setWidth(double);

void setLength(double);

double getWidth() const;

double getLength() const;

double getArea() const;

};

class Rectangle

{

private:

double width;

public:

void setWidth(double);

void setLength(double);

double getWidth() const;

double getLength() const;

double getArea() const;

private:

double length;

};

class Rectangle

{

public:

void setWidth(double);

void setLength(double);

double getWidth() const;

double getLength() const;

double getArea() const;

private:

double width;

double length;

};

Three Valid way to Declare a class

Defining Member Functions
The Rectangle class declaration contains declarations (prototypes) of
five member functions: (setWidth, setLength, getWidth, getLength, and getArea)

// setWidth: assigns its argument to the private member width.
void Rectangle::setWidth(double w)
{

width = w;
}

// setLength: assigns its argument to the private member length.
void Rectangle::setLength(double len)
{

length = len;
}

// getWidth: returns the value in the private member width.
double Rectangle::getWidth() const
{

return width;
}

// getLength: returns the value in the private member length.
double Rectangle::getLength() const
{

return length;
}

// getArea: returns the product of width times length.
double Rectangle::getArea() const
{

return width * length;
}

classname:: precedes each function

definition. Classname being Rectangle.

In each function definition, the following precedes the name of each
function: Rectangle::

The two colons are called the scope resolution operator. When
Rectangle:: appears before the name of a function in a function
header, it identifies the function as a member of the Rectangle class.

Ex: ReturnType className::functionName(parameterList)

In the general format, ReturnType is the function’s return type.
className is the name of the class that the function is a member of.
functionName is the name of the member function. parameterList is
an optional list of parameter variable declarations.

Accessors and Mutators
A member function that gets a value from a class’s member variable but
does not change it is known as an accessor. A member function that stores
a value in member variables or changes the value of member variable in
some other way is known as a mutator. In the Rectangle class, the member
functions getWidth and getLength are accessors (only passes the values of
width and length), and the member functions setLength and setWidth are
mutators (assigns width and length to a value).

In the Rectangle class, all accessors are marked as constants (const). Being
that assessors are member functions that do not change a member’s value,
it is a good practice to mark all accessor functions as const. This ensures
that you do not inadvertently write code in the function that changes the
calling object’s data.

Defining an Instance of a Class
Like structure variables, class objects are not created in memory until they
are defined. Remember, a class declaration by itself does not create an
object, but is merely the description of an object. We must use the class to
create one or more objects, which are call instances of the class.

Class objects are created with simple definition statements.

Ex: ClassName objectName;

ClassName being the name of a class and objectName being the name we
are giving the object.

Ex: Rectangle box;

Defining a class object is called the instantiation of a class. In the above
statement, box is an instance of the Rectangle class.

Accessing an Object’s Member
The box object is an instance of the Rectangle class. To change the value in
the box object’s width variable, you must use the box object to call the
setWidth member function.

Ex: box.setWidth(12.7);

Just as you use the dot operator to access a structure’s member, you use the
dot operator to call a class’s member function.

Examples

Note: Inside the Rectangle class’s member functions, the dot operator is not used to access any of the class’s
member variables. This is because when an object is used to call a member function, the member function has direct
access to that object’s member variable.

box.setWidth(12.7);
Uses the box object to call the setWidth member function, passing
12.7 as an argument.

box.setLength(4.8); Sets box’s length to 4.8.

x = box.getWidth(); Assigns box’s width to x.

cout << box.getLength(); Displays box’s length.

cout << box.getArea(); Displays box’s area.

Sample Code
// This program demonstrates a simple class.

#include <iostream>

using namespace std;

// Rectangle class declaration.

class Rectangle

{

private:

double width;

double length;

public:

void setWidth(double);

void setLength(double);

double getWidth() const;

double getLength() const;

double getArea() const;

};

// setWidth assigns a value to the width member. *

void Rectangle::setWidth(double w)

{

width = w;

}

// setLength assigns a value to the length member. *

void Rectangle::setLength(double len)

{

length = len;

}

// getWidth returns the value in the width member. *

double Rectangle::getWidth() const

{

return width;

}

// getLength returns the value in the length member. *
double Rectangle::getLength() const
{

return length;
}

// getArea returns the product of width times length. *
double Rectangle::getArea() const
{

return width * length;
}

// Function main *
int main()
{

Rectangle box; // Define an instance of the Rectangle class
double rectWidth; // Local variable for width
double rectLength; // Local variable for length

// Get the rectangle's width and length from the user.
cout << "This program will calculate the area of a\n";
cout << "rectangle. What is the width? ";
cin >> rectWidth;
cout << "What is the length? ";
cin >> rectLength;

// Store the width and length of the rectangle
// in the box object.
box.setWidth(rectWidth);
box.setLength(rectLength);

// Display the rectangle's data.
cout << "Here is the rectangle's data:\n";
cout << "Width: " << box.getWidth() << endl;
cout << "Length: " << box.getLength() << endl;
cout << "Area: " << box.getArea() << endl;
return 0;

}

Sample Code
// Demonstrates the use of a class.

#include <iostream>

#include <iomanip>

#include <string>

#include <fstream>

#include <math.h>

using namespace std;

fstream datafile;

fstream outfile;

const int SIZE = 10;

class PersonalInfo

{

private:

char fname[12];

char lname[18];

char sex;

int weight;

int age;

int age_double;

int age2();

void getinfo();

void putinfo() const;

public:

void results();

void results2();

};

void PersonalInfo::results()

{

getinfo();

age2();

}

void PersonalInfo::results2()

{

putinfo();

}

// main function

int main()

{

datafile.open("names2.txt", ios::in);

outfile.open("namesout.dat", ios::out);

PersonalInfo kids[SIZE];

for (int x = 1; x < SIZE; x++)

kids[x].results();

cout << endl << endl << endl;

for (int x = 1; x < SIZE; x++)

kids[x].results2();

return 0;

}

// Function to input data

void PersonalInfo::getinfo()

{

datafile >> fname;

datafile >> lname;

datafile >> sex;

datafile >> weight;

datafile >> age;

}

// Function to double age

int PersonalInfo::age2()

{

age_double = age * 2;

return age_double;

}

// Function to output data

void PersonalInfo::putinfo() const

{

outfile << fname;

outfile << "\t" ;

outfile << lname;

outfile << "\t" ;

outfile << sex;

outfile << "\t" ;

outfile << weight;

outfile << "\t" ;

outfile << age ;

outfile << "\t" ;

outfile << age_double;

outfile << endl;

}

Inline Functions and Performance
A lot goes on behind the scenes each time a function is called. A number of
special items, such as the function’s return address in the program and the
values of arguments, are stored in a section of memory called the stack. In
addition, local variables are created and a location is reserved for the
function’s return value. All this overhead, which sets the stage for a
function call, takes precious CPU time. Although the time needed is
minuscule (small), it can add up if a function is called many times, as in a
loop.

Inline functions are compiled differently than other functions. In the
executable code, inline functions aren’t called in the conventional sense. In
a process known as inline expansion, the computer replaces the call to an
inline function with the code of the function itself. This means that the
overhead needed for a conventional function call is not necessary for an
inline function. And can result in improved performance.

Functions that are defined inside of the struct or class declaration are
considered to be inline. An inline function has its statements placed
in the code at every location that calls the function. The result is that
the object code is longer but the execution time is faster.

Ex: class Invoice

{

char stProduct[20];

float fPrice, fAmtDue, fTaxRate;

void iQuantity();

void Calculate();

void ObtainData();

void Print();

public:

Invoice()

{

// This function is inline because the definition

// of the function is within the class declaration.

fTaxRate = 0.875;

}

void Run();

};

Notice that there is no semicolon after the
function header Invoice(). This is not a prototype,

it is the actual function header and the function
definition.

Constructors
A constructor is a member function that has the same name as the
class. It is automatically called when the object is created in memory,
or instantiated. They are very useful for initializing member variables
or performing other setup operations.

// This program demonstrates a constructor.
#include <iostream>
using namespace std;

// Demo class declaration.

class Demo
{
public:

Demo(); // Constructor
};

Demo::Demo()
{

cout << "Welcome to the constructor!\n";
}

// Function main.
int main()
{

Demo demoObject; // Define a Demo object;

cout << "This program demonstrates an object\n";
cout << "with a constructor.\n";
return 0;

}

Notice that the constructor’s function header looks
different than that of a regular member function. There
is no return type – not even void. This is because
constructors are not executed by explicit function calls
and cannot return a value.

demoObject’s constructor executes automatically when
the object is defined. Because the object is defined
before the cout statement in the function main, the
constructor displays its message first.

Program Output

Welcome to the constructor!
This program demonstrates an object
with a constructor.

Destructors
Destructors are member functions that are automatically called when
an object is destroyed. They have the same name as the class,
preceded by a tilde (~) character.

// Function main.

int main()

{

Demo demoObject; // Define a Demo object;

cout << "This program demonstrates an object\n";

cout << "with a constructor and destructor.\n";

return 0;

}

// This program demonstrates a constructor.
#include <iostream>
using namespace std;

// Demo class declaration.

class Demo
{

public:
Demo(); // Constructor
~Demo(); // Destructor

};

Demo::Demo()
{

cout << "Welcome to the constructor!\n";
}

Demo::~Demo()
{

cout << “The destructor is now running.\n”;
}

Program Output

Welcome to the constructor!
This program demonstrates an object
with a constructor and destructor.
The destructor is now running.

