
System Design and Programming II

CSCI – 1943

David L. Sylvester, Sr., Professor

Chapter 15

Inheritance, Polymorphism,

And Virtual Functions

What is Inheritance?
Inheritance allows a new class to be based on an existing class. The
new class inherits all the member variables and functions (except the
constructors and destructors) of the class it is based on.

Inheritance and the “is a” Relationship

When one object is a specialized version of another object, there is an
“is a” relationship between them.

Ex: A poodle is a dog.

A car is a vehicle.

A tree is a plant.

A rectangle is a shape.

A football player is an athlete.

When a “is a” relationship exists between classes, it means that the
specialized class has all of the characteristics of the general class, plus
additional characteristics, that make it special.

Inheritance involves a base class and a derived class. The base class is
the general class and the derived class is the specialized class.

The derived class inherits the member variables and member
functions of the base class without any of them being rewritten.
Furthermore, new member variables and functions may be added to
the derived class to make it more specialized than the base class.

The following page show the GradedActivity class that has the general
characteristics of a student’s graded activity. Many different types of
graded activities exist, such as quizzes, midterm exams, final exams,
lab reports, essays, and so on. Because the numeric scores might be
determined differently for each of the graded activities, we can create
derived classes to handle each one.

Therefore, a FinalExam class can be derived from the Graded Activity
class. The FinalExam class has member variables for the number of
questions, the number of points each question is worth, and the
number of questions missed.

To declare the class FinalExam, you would do the following:

class FinalExam : public GradedActivity

If we want to express the relationship between the two classes, we

can say that a FinalExam is a GradedActivity.

The word public, which precedes the name of the base class is the
bass class access specification. It affects how the members of the
base class are inherited by the derived class. When you create an
object of a derived class, you can think of it as being built on top of
the base class. The members of the base class object become
member of the derived class object. How the base class members
appear in the derived class is determined by the base class access
specification.

Class being declared
(the derived class)

Base class

The GradedActivity class has both private members and public
members. The FinalExam class is derived from the GradedActivity
class, using public access specification. This means that the public
members of the GradedActivity class will become public members of
the FinalExam class. The private members of the GradedActivity class
cannot be accessed directly by code in the FinalExam class.

Although the private members of the GradedActivity class are
inherited, it’s as though they are invisible to the code in the
FinalExam class. They can only be accessed by the member functions
of the GradedActivity class.

Sample Program

#include <iostream>
using namespace std;

class GradedActivity
{
private:
double score; // To hold the numeric score
public:

// Default constructor
GradedActivity()
{ score = 0.0; }

// Constructor
GradedActivity(double s)
{ score = s; }

// Mutator function
void setScore(double s)
{ score = s; }

// Accessor functions
double getScore() const
{ return score; }

char getLetterGrade() const;
};

char GradedActivity::getLetterGrade() const
{
char letterGrade;// To hold the letter
grade
if (score > 89)
letterGrade = 'A';
else if (score > 79)
letterGrade = 'B';
else if (score > 69)
letterGrade = 'C';
else if (score > 59)
letterGrade = 'D';
else
letterGrade = 'F';

return letterGrade;
}

int main()
{
double testScore;// To hold a test score

// Create a GradedActivity object for the
test.
GradedActivity test;

// Get a numeric test score from the user.
cout << "Enter your numeric test score: ";
cin >> testScore;

// Store the numeric score in the test
object.
test.setScore(testScore);

// Display the letter grade for the test.
cout << "The grade for that test is " <<
test.getLetterGrade() << endl;

return 0;
}

Program Output with example input Shown in Bold
Enter your numeric test score: 80 [Enter]
The grade for that test is B

Program Output with Different Examples Input shown in Bold
Enter your numeric test score: 75 [Enter]
The grade for that test is C

#include "C:\Users\David\Documents\Visual Studio
2010\Projects\chapter15b\chapter15b\GradedActivity.h"

//
// Member function GradedActivity::getLetterGrade
//

char GradedActivity::getLetterGrade() const
{
char letterGrade;// To hold the letter grade

if (score > 89)
letterGrade = 'A';
else if (score > 79)
letterGrade = 'B';
else if (score > 69)
letterGrade = 'C';
else if (score > 59)
letterGrade = 'D';
else
letterGrade = 'F';
return letterGrade;
}

#ifndef GRADEDACTIVITY_H
#define GRADEDACTIVITY_H

// GradedActivity class declaration

class GradedActivity
{
private:

double score; // To hold the numeric score
public:

// Default constructor
GradedActivity()

{ score = 0.0; }

// Constructor
GradedActivity(double s)

{ score = s; }

// Mutator function
void setScore(double s)

{ score = s; }

// Accessor functions
double getScore() const

{ return score; }

char getLetterGrade() const;
};
#endif

GRADEDACTIVITY (.h) GRADEDACTIVITY (. cpp)

in
h

erited

Po
ly

m
o

rp
h

is
m

(o
ve

rl
o

ad
in

g)

#include <iostream>
#include "GradedActivity.h"
using namespace std;

int main()
{
double testScore;// To hold a test score

// Create a GradedActivity object for the test.
GradedActivity test;

// Get a numeric test score from the user.
cout << "Enter your numeric test score: ";
cin >> testScore;

// Store the numeric score in the test object.
test.setScore(testScore);

// Display the letter grade for the test.
cout << "The grade for that test is "
<< test.getLetterGrade() << endl;

return 0;
}

MAIN PROGRAM (.cpp)

Program Output with example input Shown in Bold
Enter your numeric test score: 80 [Enter]
The grade for that test is B

Program Output with Different Examples Input shown
in Bold
Enter your numeric test score: 75 [Enter]
The grade for that test is C

Ex: FinalExam class

Private members:

int numQuestions declared in the FinalExam class

double pointsEach declared in the FinalExam class

int numMissed declared in the FinalExam class

Public members:

FinalExam() defined in the FinalExam class

FinalExam(int, int) defined in the FinalExam class

set(int, int) defined in the FinalExam class

getNumQuestions() defined in the FinalExam class

getPointsEach() defined in the FinalExam class

getNumMissed() defined in the FinalExam class

setScore() inherited from GradedActivity

getScore() inherited from GradedActivity

getLetterGrade() inherited from GradedActivity

#include "FinalExam.h"

//
// Set function
// The parameters are the number of questions and the
// number of questions missed.

void FinalExam::set(int questions, int missed)
{
double numericScore;// To hold the numeric score

// Set the number of questions and number missed

numQuestions = questions;
numMissed = missed;

// Calculate the points for each question.
pointsEach = 100.0 / numQuestions;

// Calculate the numeric score for this exam.
numericScore = 100.0 - (missed * pointsEach);

// Call the inherited setScore function to set
// the numeric score.
setScore(numericScore);
}

FINALEXAM (.h) FINALEXAM (.cpp)

#ifndef FINALEXAM_H
#define FINALEXAM_H
#include "GradedActivity.h"

class FinalExam : public GradedActivity
{
private:

int numQuestions; // Number of questions
double pointsEach; // Points for each question
int numMissed; // Number of questions missed

public:
// Default constructor
FinalExam()

{ numQuestions = 0;
pointsEach = 0.0;
numMissed = 0; }

// Constructor
FinalExam(int questions, int missed)

{ set(questions, missed); }

// Mutator function
void set(int, int); // Defined in FinalExam.cpp

// Accessor functions
double getNumQuestions() const

{ return numQuestions; }

double getPointsEach() const
{ return pointsEach; }

int getNumMissed() const
{ return numMissed; }

};
#endif

Declares FinalExam class
derived from GradedActivity

MAIN PROGRAM (.cpp) Program Output with Example Input Shown in Bold
How many questions are on the final exam? 20 [Enter]
How many questions did the student miss? 3 [Enter]

Each question counts 5 points.
The exam score is 85
The exam grade is B

#include <iostream>
#include <iomanip>
#include "FinalExam.h"
using namespace std;

int main()
{
int questions;// Number of question on the exam
int missed;// Number of questions missed by the student

// Get the number of questions on the final exam.
cout << "How many questions are on the final exam? ";
cin >> questions;

// Get the number of questions the student missed.
cout << "How many questions did the student miss? ";
cin >> missed;

// Define a FinalExam object and initialize it with
// the values entered.
FinalExam test(questions, missed);

// Display the test results.
cout << setprecision(2);
cout << "Product =: " << setprecision(3) <<
test.getProduct() << " " << endl;
cout << "\nEach question counts " << test.getPointsEach()
<< " points.\n";

cout << "The exam score is " << test.getScore() << endl;
cout << "The exam gade is " << test.getLetterGrade() <<
endl;

return 0;
}

Overloading Constructors
The polymorphism feature of an object-oriented language allows the
programmer to provide multiple definitions of an operator or for a
function. Another term used to refer to polymorphism is overloading.

More than one function may have the same name, if the argument
list is different. When the program is compiled the appropriate
occurrence of the function will be linked base on the data type that is
used in the call to the function.

Therefore it is possible to have multiple constructor functions within a
single class.

Ex: // Default constructor
GradedActivity()

{ score = 0.0; }

// Constructor
GradedActivity(double s)

{ score = s; }

Notice that both constructor functions have the
same name GradedActivity(), the difference is
within the parentheses. When an object is
declared, the contents in the parentheses
determine which function is called.

There may also be multiple functions with arguments, but the
arguments are of different types or have a different number of
arguments for overloaded functions.

Ex: GradedActivity();

GradedActivity(float);

GradedActivity(int);

GradedActivity(float, int);

GradedActivity(int, float);

All of the above are different and could be used within a single class
or independently of classes. A function may be redefined with
different argument lists using the same function name. It is possible
to have different return types. However, the return types cannot be
the only differing factor in the function declarations because the
compiler would not be able to distinguish between the two functions
at the point of the function call.

