
System Design and Programming II

CSCI – 1943

David L. Sylvester, Sr., Professor

Chapter 16

Exceptions, Templates, and the

Standard Template Library (STL)

Exceptions
Exceptions are used to signal errors or unexpected events that occur
while a program is running.

Error testing is usually the straight-forward process involving IF
statements or other control mechanisms.

Ex: if (denominator == 0)

cout << “Error: cannot divide by zero.\n”;

else

quotient = numerator / denominator;

But what if similar code is part of a function that returns the
quotient?

Ex: // An unreliable division function

double divide(int numerator, int denominator)
{

if (denominator == 0)
{

cout << “ERROR: Cannot divide by zero.\n”;
return 0;

}
else

return static_cast<double>(numerator) / denominator;
}

Functions commonly signal error conditions by returning a predefined
value. This example returns 0 when division by zero is attempted.
Even though the function displays an error message, the part of the
program that calls the function will not know when an error has
occurred. Problems like these require sophisticated error handling
techniques.

Throwing an Exception
One way of handling complex error conditions is with exceptions. An exception is a
value or an object that signals an error. When the error occurs, an exception is
“thrown.” The following example of the previous code is modified to throw the
exception when division by zero has been attempted.

Ex: // An unreliable division function

double divide(int numerator, int denominator)
{

if (denominator == 0)
throw “ERROR: Cannot divide by zero.\n”;

else
return static_cast<double>(numerator) / denominator;

}

The throw key word is followed by an argument, which can be any
value. The line containing a throw statement is known as the throw
point. When a throw statement is executed, control is passed to
another part of the program known as an exception handler. When
an exception is thrown by a function, the function aborts.

Causes the exception
to be thrown

Handling and Exception
To handle an exception, a program must have a try/catch construct.

Ex: try

{
// code here calls functions or object member
// functions that might throw an exception.

}
catch(exceptionParameter)
{

// code here handles the exception
}
// repeat as many catch blocks as needed.

The first part of the construct is the try block. This starts with the key
word try and is followed by a block of code executing any statements
that might directly or indirectly cause an exception to be thrown. The
try block is immediately followed by one or more catch blocks, which
are the exception handlers. A catch block starts with the key word
catch, followed by a set of parentheses containing the definition of an
exception parameter.

Ex: try
{

quotient = divide(num1, num2);
cout << “The quotient is “ << quotient << endl;

}
catch(string exceptionString)
{

cout << exceptionString);
}

Because the divide function throws an exception whose value is a
string, there must be an exception handler that catches a string. The
catch block shown catches the error message in the exceptionString
parameter, and then displays it with cout.

// This program demonstrates an exception being thrown and caught.

#include <iostream>

#include <string>

using namespace std;

// Function prototype

double divide(int, int);

int main()

{

int num1, num2; // To hold two numbers

double quotient; // To hold the quotient of the numbers

// Get two numbers.

cout << "Enter two numbers: ";

cin >> num1 >> num2;

// Divide num1 by num2 and catch any

// potential exceptions.

try

{

quotient = divide(num1, num2);

cout << "The quotient is " << quotient << endl;

}

catch (string exceptionString)

{

cout << exceptionString;

}

cout << "End of the program.\n";

return 0;

}

//**

// The divide function divides numerator by *

// denominator. If denominator is zero, the *

// function throws an exception. *

//**

double divide(int numerator, int denominator)

{

if (denominator == 0)

{

string exceptionString = "ERROR: Cannot divide by zero.\n";

throw exceptionString;

}

return static_cast<double>(numerator) / denominator;

}

Sample Program

If the exception is a string, the
program jumps to this catch clause

After the catch block is finished,
the program resumes here.

What if an Exception is Not Caught
There are two possible ways for a thrown exception to go uncaught.
The first possibility is for the try/catch construct to contain no catch
blocks with an exception parameter of the right data type. The
second possibility is for the exception to be thrown from outside a try
block. In either case, the exception will cause the entire program to
abort execution.

// This program demonstrates Rectangle class exceptions.
#include <iostream>
#include "Rectangle.h"
using namespace std;

int main()
{

int width;
int length;

// Create a Rectangle object.
Rectangle myRectangle;

// Get the width and length.
cout << "Enter the rectangle's width: ";
cin >> width;
cout << "Enter the rectangle's length: ";
cin >> length;

// Store these values in the Rectangle object.
try
{

myRectangle.setWidth(width);
myRectangle.setLength(length);
cout << "The area of the rectangle is "

<< myRectangle.getArea() << endl;
}
catch (Rectangle::NegativeSize)
{

cout << "Error: A negative value was entered.\n";
}
cout << "End of the program.\n";

return 0;
}

Object-Oriented Exception Handling

In the setWidth function, the parameter w is tested by
the if statement. If w holds a negative number, the

statement throw NegativeSize(); is executed.

// Implementation file for the Rectangle class.
#include "Rectangle.h"
//**
// setWidth sets the value of the member variable width. *
//**

void Rectangle::setWidth(double w)
{

if (w >= 0)
width = w;

else
throw NegativeSize();

}

//**
// setLength sets the value of the member variable length. *
//**

void Rectangle::setLength(double len)
{

if (len >= 0)
length = len;

else
throw NegativeSize();

}

This way of reporting errors is much more
graceful than simply aborting the program. Any
code that uses the Rectangle class must simply
have a catch block to handle the negativeSize
exceptions that the Rectangle class might throw.

Multiple Exceptions
When writing programs, you may have the need to test several
different types of errors and signal which one has occurred. C++
allows you to throw and catch multiple exceptions. The only
requirement is that each different exception be of a different type.
You then code a separate catch block for each type of exception that
may be thrown in the try block.

The previous example only tested for a negative number with no
specifications as to what value was negative. To expand the rectangle
class so it throws one type of exception when a negative value is
specified for the width, and another type of exception when a
negative value is specified for the length, we would first declare two
different exception classes.

Ex: // Exception class for a negative width
class NegativeWidth

{ };

// Exception class for a negative length
class NegativeLength

{ };

// Specification file for the Rectangle class

#ifndef RECTANGLE_H

#define RECTANGLE_H

class Rectangle

{

private:

double width; // The rectangle's width

double length; // The rectangle's length

public:

// Exception class

class NegativeSize

{ }; // Empty class declaration

// Default constructor

Rectangle()

{ width = 0.0; length = 0.0; }

// Mutator functions, defined in Rectangle.cpp

void setWidth(double);

void setLength(double);

// Accessor functions

double getWidth() const

{ return width; }

double getLength() const

{ return length; }

double getArea() const

{ return width * length; }

};

#endif

Sample of Multiple Exceptions

Rectangle.h file

// Implementation file for the Rectangle class.

#include "Rectangle.h"

//**

// setWidth sets the value of the member variable width. *

//**

void Rectangle::setWidth(double w)

{

if (w >= 0)

width = w;

else

throw NegativeWidth();

}

//**

// setLength sets the value of the member variable length. *

//**

void Rectangle::setLength(double len)

{

if (len >= 0)

length = len;

else

throw NegativeLength();

}

Sample of Multiple Exceptions
// This program demonstrates Rectangle class exceptions.
#include <iostream>
#include "Rectangle.h"
using namespace std;

int main()
{ int width;

int length;

// Create a Rectangle object.
Rectangle myRectangle;

// Get the width and length.
cout << "Enter the rectangle's width: ";
cin >> width;
cout << "Enter the rectangle's length: ";
cin >> length;

// Store these values in the Rectangle object.
try
{

myRectangle.setWidth(width);
myRectangle.setLength(length);
cout << "The area of the rectangle is "

<< myRectangle.getArea() << endl;
}
catch (Rectangle::NegativeWidth)
{

cout << "Error: A negative value was given "
<< "for the rectangle's width.\n";

}
catch (Rectangle::NegativeLength)
{

cout << "Error: A negative value was given "
<< "for the rectangle's length.\n";

}

cout << "End of the program.\n";
return 0; }

Rectangle.cpp file

Source.cpp file

Function Templates
A function template is a “generic” function that can work with any
data type. The programmer writes the specifications of the function,
but substitutes parameters for data types. When the compiler
encounters a call to the function, it generates code to handle the
specific data type(s) used in the call.

Overloaded functions make programming convenient because only
one function name must be remembered for a set of functions that
perform similar operations. Each of the functions, must still be
written individually, even if they perform the same operations.

Ex:

The only differences between these two functions are the data types
of their return values and there parameters.

int square(int number)
{

return number * number;
}

double square(double number)
{

return number * number;
}

In situations like this, it is more convenient to write a function
template than an overloaded function. Function templates allow you
to write a single function definition that works with many different
data types, instead of having to write a separate function for each
data type used.

A function template is not an actual function, but a “mold” the
compiler uses to generate one or more functions. When writing a
function template, you do not have to specify actual types for the
parameters, return value, or local variables. Instead, you use a type
parameter to specify a generic data type. When the compiler
encounters a call to the function, it examines the data types of its
arguments and generates the function code that will work with those
data types.

Ex:

The beginning of a function template is marked by a template prefix, which begins
with the keyword template. Next is a set of angled brackets that contains one or
more generic data types used in the template. A generic data type starts with the
key word class followed by a parameter name that stands for the data type. The
example only uses one parameter name, which is named T. If there are more
parameters, you would list them separated by a comma. After this, the function
definition is written as usual, except the type parameter are substituted for the
actual data type names.

Ex: T square(T number)

T is the type parameter or generic data type. The header defines square as a
function that returns a value of type T and uses a parameter called number, which
is also of type T. The compiler examines each call to square and fills in the
appropriate data type for T.

template <class T>
T square(T number)
{

return number * number;
}

// This program uses a function template.

#include <iostream>

#include <iomanip>

using namespace std;

// Template definition for square function.

template <class T>

T square(T number)

{

return number * number;

}

int main()

{

int userInt; // To hold integer input

double userDouble; // To hold double input

cout << setprecision(5);

cout << "Enter an integer and a floating-point value: ";

cin >> userInt >> userDouble;

cout << "Here are their squares: ";

cout << square(userInt) << " and "

<< square(userDouble) << endl;

return 0;

}

Sample Template Program

Because the compiler encountered two calls to
square, each with a different parameter type, it
generated the code for two instances of the
function: one with and int parameter and int
return type, the other with a double parameter
and double return type.

Notice that the template appears before all
calls to square. As with regular functions, the
compiler must already know the template’s
contents when it encounters a call to the
template function. Note: Templates should be placed

near the top of the program or in a header file.

Square is being called with int
parameter and returns an int

Square is being called with double
parameter and returns a double

// This program demonstrates the swapVars function
template.

#include <iostream>

using namespace std;

template <class T>

void swapVars(T &var1, T &var2)

{

T temp;

temp = var1;

var1 = var2;

var2 = temp;

}

int main()

{

char firstChar, secondChar; // Two chars

int firstInt, secondInt; // Two ints

double firstDouble, secondDouble; // Two doubles

Sample Template Program (by Reference)
// Get and swapVars two chars

cout << "Enter two characters: ";

cin >> firstChar >> secondChar;

swapVars(firstChar, secondChar);

cout << firstChar << " " << secondChar << endl;

// Get and swapVars two ints

cout << "Enter two integers: ";

cin >> firstInt >> secondInt;

swapVars(firstInt, secondInt);

cout << firstInt << " " << secondInt << endl;

// Get and swapVars two doubles

cout << "Enter two floating-point numbers: ";

cin >> firstDouble >> secondDouble;

swapVars(firstDouble, secondDouble);

cout << firstDouble << " " << secondDouble << endl;

return 0;

}

