
System Design and Programming II

CSCI – 1943

David L. Sylvester, Sr., Professor

Chapter 8

Searching and Sorting

Arrays

Introduction to Search Algorithms
A search algorithm is a method of locating a specific item in a larger
collection of data.

It is very common for programs not only to store and process data
stored in arrays, but to search arrays for specific items.

We will discuss two search algorithms
– Linear Search

– Binary Search

The Linear Search
A very simple algorithm, sometimes called a sequential search.

– Uses a loop to sequentially step through an array

– Starts the search with the first element

Search process

It compares each element with the value being searched for, and stops when
either the value is found or the end of the array is encountered. If the value
being searched for is not found in the array, the algorithm will unsuccessfully
search to the end of the array.

Linear Search pseudocode

set found to false.

set position to -1.

Set index to 0.

while found is false and index < number of elements

if list[index] is equal to search value

found = true.

position = index.

end if

add 1 to index.

return position.

element location of found
value assigned to position

returns the value of position to
the calling function (i.e. main)

increment index by 1 in order to
check the next element of the array

found set to true when value found;
will cause the program to exit the loop

Linear Search Sample Code
int searchList (int list[] , int numElems, int value)

{

int index = 0; // used as a subscript to search the array

int position = -1; // used to record position of search value

bool found = false; // Flag to indicate if the value was found

while (index < numElems && !found)

{

if (list[index] == value) // If the value is found

{

found = true; // Set the flag

position = index; // Record the value’s subscript

}

index++;

}

return position;

}

element location of found
value assigned to position

returns the value of position to
the calling function (i.e. main)

increment index by 1 in order to
check the next element of the array

If the array being searched contains 20,000 elements, and the value is
in the last element the algorithm will search the entire array to get to
the searched value. (Reading the array 20,000 times.)

On average, an item is just as likely to be found at the beginning of the array as near
the end. Typically, for an array of N items, the linear search will locate an item in
N/2 attempts. If an array has 50,000 elements, the linear search will make a
comparison with 25,000 items of them in a typical case. This is assuming, of course,
that the search item is consistently found in the array. (If not found in the array,
you will be searching each element; from start to finish.)

N/2 is the average number of comparisons, where N is the maximum number of
comparisons.

Linear Search

Advantages Disadvantages

Simple algorithm Inefficient

Easy to understand

No special requirement on stored data

The Binary Search
It’s a clever algorithm that is much more efficient than the linear
search. Its only requirement is that the values in the array be sorted
in order.

Instead of testing the array’s first element, this algorithm starts with
element in the middle. If that element happens to contain the
desired value, then the search is over.

Otherwise, the value on the middle element is either greater than or
less than value being searched for.

If greater than, (and in the list), the value will be found somewhere in
the last half of the array.

If less than, (and again, in the list), the value will be found
somewhere in the first half of the array.

(In either case, half of the array has been eliminated.)

If the desired value is not found in the middle element, the procedure
is repeated for the half of the array that potentially contains the
value.

For instance, if the last half of the array is to be searched, the
algorithm immediately tests its middle element. If the desired value
isn’t found there, the search is narrowed to the quarter of the array
that resides before or after that element.

This procedure continues the value searched until found or there are
no more elements to test.

Ex: Search for 83 using binary search

Sorted List

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

10 18 22 38 45 49 50 58 60 63 77 79 80 81 83 90 93 95

Binary Search pseudocode
set first index to 0.

set last index to the last subscript in the array.

set found to false.

set position to -1.

while found is not true and first is less than or equal to last

set middle to the subscript halfway between array(first)

and array(last)

if array[middle] equals the desired value

set found to true.

set position to middle.

else if array[middle] is greater than the desired value

set last to middle - 1.

else

set first to middle + 1.

end if.

end while.

return position.

element location of found
value assigned to position

returns the value of position to
the calling function (i.e. main)

Set last to check lower
half of array elements

found set to true when value found;
will cause the program to exit the loop

Set first to check greater
half of array elements

Binary Search Sample Code
int binarySearch(int array[], int numElems, int value)

{

int first = 0, // First array element

last = numElems - 1, // Last array element

middle, // Midpoint of search

position = -1; // Position of search value

bool found = false; // Flag

while (!found && first <= last)

{

middle = (first + last) /2; // Calculate midpoint

if (array[middle] == value) // If value is found at middle

{

found = true;

position = middle;

}

else if (array[middle] > value) // if value is in lower half

last = middle – 1;

else

first = middle + 1;

}

return position;

}

element location of found
value assigned to position

returns the value of position to
the calling function (i.e. main)

Set last to check lower
half of array elements

found set to true when value found;
will cause the program to exit the loop

Set first to check greater
half of array elements

The binary search obviously is much more efficient than the linear
search. Every time it make a comparison and fails to find the desired
item, it eliminates half of the remaining portion of the array that must
be searched.

To search an array of 1,000 elements, would take no more than 10
comparisons. Compared to the linear search algorithm, which would
make an average of 500 comparisons.

Powers of 2 are used to calculate the maximum number of
comparisons the binary search will make on an array or any size.
Simply find the smallest power of 2 that is greater than or equal to
the number of elements in an array.

Ex: A maximum of 16 comparisons will be made on an array of
50,000 elements (216 = 65,536) and a maximum of 20 comparisons
will be made on an array of 1,000,000 elements (220 = 1,048,576).

Efficiency of Binary Search

Sorting algorithms are used to arrange data into some order.

Oftentimes the data in an array must be sorted in some order.
Char data sorted alphabetically, or grouped

Int data highest to lowest

To sort data in an array, programmers must use an appropriate sorting algorithm. A
sorting algorithm is a technique for scanning through an array and rearranging its
contents in some specific order.

Two simple sorting algorithms are the:

• Bubble sort

• Selections sort

Introduction to Sorting Algorithms

The bubble sort is an easy way to arrange data in ascending or
descending order.

• Ascending (lowest to highest)

• Descending (Highest to lowest)

Given the following array,

• Bubble sort starts by comparing the first two elements in the array. If element
0 is greater than element 1, they are exchanged (swapped).

• This method is repeated with element 1 and 2. If element 1 is greater than
element 2, they are exchanged. This is done

Bubble Sort

7 2 3 8 9 1

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

2 7 3 8 9 1

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

2 3 7 8 9 1

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

• Next elements 2 and 3 are compared. These elements are already in proper
order (element 2 is less than 3), so no exchange takes place.

• As the cycle continues, elements 3 and 4 are compared. Once again, no
exchange is necessary.

• When elements 4 and 5 are compared, however, an exchange must take place
because element 4 is greater than element 5.

• At this point, the entire array has been scanned, but its contents aren’t quite in
the right order yet. So, the sort starts over again with elements 0 and 1, and so
on.

• The sort repeatedly passes through the array until no exchanges are made.
Ultimately, the array appears as follows:

2 3 7 8 1 9

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

2 3 7 1 8 9

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

1 2 3 7 8 9

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

Bubble Sort pseudocode
do

set swap flag to false.

for count is set to each subscript in array from 0 through the

next-to-last subscript

if array[count] is greater than array[count+1]

swap the contents of array[count] and array[count+1].

set swap flag to true.

end if.

end for.

while any elements have be swapped.

Loop will performed from the 0
element to the max size of the array -1

check to see if one element is
greater that the following one

flag set to true if swap was done

d
o

 w
h

ile
 lo

o
p

N
e

st
ed

 f
o

r
lo

o
p

// This program asks for the number of hours worked
// by six employees. It stores the values in an array.
#include <iostream>
using namespace std;

void sortArray(int[], int);
void showArray(int[], int);

int main()
{

// Array of unsorted values
int values[6] = {10, 2, 30, 40, 22, 6};

// Display the values
cout << "The unsorted values are:\n";
showArray(values, 6);

// Sort the values.
sortArray(values, 6);

// Display them again.
cout << "The sorted values are:\n";
showArray(values, 6);
return 0;

}

Bubble Sort Program
Array in Ascending Order

void sortArray(int arr[], int size)
{

bool swap;
int temp;

do
{

swap = false;
for (int count = 0;count < size-1; count++)
{

If (arr[count] > arr[count+1])
{

temp = arr[count];
arr[count] = arr[count+1];
arr[count+1] = temp;
swap = true;

}
}

} while (swap);
}

void showArray(int arr[], int size)
{

for (int count = 0; count < size -1; count++)
cout << arr[count] << " ";
cout << endl;

}

Inside the sortArray function is a for loop nested inside a do-loop. The for loop
sequences through the entire array, comparing each element with its neighbor, and
swapping them if necessary. Anytime two elements are exchanged, the flag
variable is set to true.

The for-loop must be executed repeatedly until it can sequence through the entire
array without making any exchanges. This is why it is nested inside a do-while loop.
The do-while loop sets swap to false, and then executes the for loop. If swap is set
to true after the for loop has finished the do-while loop repeats.

for (int count = 0; count < (size-1); count++)

if (array[count] > array[count+1];

The variable count holds the array subscript values. It starts at zero and is
incremented as long as it is less than size-1. the value of size is the number of
elements in the array, and count stops just short of reaching this value because the
following line compares each element with the one after it.

When array[count] is the next-to-last element, it will be compared to the last
element. If the for loop were allowed to increment count past size-1, the last
element in the array would be compared to a value outside the array.

The Selection Sort
The bubble sort is inefficient for large arrays because items only move
by one element at a time. The selection sort, however usually
performs fewer exchanges because it moves items immediately to
their final position in the array.

Selection Sort Procedures:
1. Smallest value in array is located and moved to element 0,

2. The next smallest value is located and moved to element 1,

3. The process continues until all elements have been placed in their proper
order.

The selection sort scans the array starting with element 0, and locates the element
with the smallest value. The contents of this element are then swapped with the
content of element 0.

Given the following array,

The first pass would yield,

The second pass would yield,

The third pass would yield,

The process is repeated until all elements have been place in their proper order.

Selection Sort

5 7 2 8 9 1

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

1 7 2 8 9 5

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

1 2 7 8 9 5

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

1 2 5 8 9 7

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

Selection Sort pseudocode
for startScan is set to each subscript in array from 0 through the next-to-
last subscript.

set index variable to startScan.

set minIndex to startScan.

set minValue to array[startScan].

for index is set to each subscript in array from (startScan +1) through
the last subscript

if array[index] is less than minValue

set minValue to array[index].

set minIndex to index.

endif.

end for.

set array[minIndex] to array[startScan].

set array[startScan] to minValue.

end for.

Loop will performed from the 0
element to the max size of the array -1

check to see if one element is
greater that the following one

flag set to true if swap was done

fo
r

lo
o

p

N
es

te
d

 f
o

r
lo

o
p

Inner loop sequences through the array, starting
at startScan +1, searching for the smallest value.

Outer loop then exchanges the contents of this element
with array[startScan] and increments startScan

Selection Sort Program
// This program uses the selection sort algorithm to sort an

// array in ascending order.

#include <iostream>

using namespace std;

// Function prototypes

void selectionSort(int[], int);

void showArray(int[], int);

int main()

{

// Define an array with unsorted values

const int SIZE = 6;

int values[SIZE] = {5, 7, 2, 8, 9, 1};

// Display the values.

cout << "The unsorted values are\n“;

showArray(values, SIZE);

// Sort the values.

selectionSort(values, SIZE);

// Display the values again.

cout << "The sorted values are\n";

showArray(values, SIZE);

return 0;

}

// Definition of function selectSort.

void selectionSort(int array[], int size)

{

int startScan, minIndex, minValue;

for (startScan = 0; startScan < (size - 1); startScan++)

{

minIndex = startScan;

minValue = array[startScan];

for(int index = startScan + 1; index < size; index++)

{

if (array[index] < minValue)

{

minValue = array[index];

minIndex = index;

}

}

array[minIndex] = array[startScan];

array[startScan] = minValue;

}

}

// Definition of function showArray

void showArray(int array[], int size)

{

for (int count = 0; count < size; count++)

cout << array[count] << " ";

cout << endl;

}

Vectors - Initialization
When writing a c++ program, you must remember that vectors do not
accept initialization lists. In order to input values into the vector must use
the push_back member function.

Ex:
for (int value = 912; value <= 922; value++)

id.push_back(value);

//initialize the units vector with data.

units.push_back(842);

units.push_back(416);

units.push_back(127);

units.push_back(514);

units.push_back(437);

units.push_back(269);

units.push_back(97);

units.push_back(492);

units.push_back(212);

Notice that each time a value is added to the vector, the
push_back function is called because the [] operators

cannot be used to add values to the vector

Vectors - Initialization
The code on the previous page appears repetitious because the
push_back member function is written each time a value is placed in
the vector.

This code can be simplified by storing valued needing to stored into
the vector into an array, then using loops to call the push_back
member function.

Ex: const int NUM_PRODS = 9;

int unitsSold[NUM_PRODS] = {843, 416, 127, 514, 437

269, 97, 492, 212};

// Loop initializing units vector

for (count = 0; count < NUM_PRODS; count++)

units.push_back(unitsSold[count]);

Vectors – Function Headers
Ex: void initVector (vector<int> &id, vector<int> &units

vector<double> &prices)

Vector parameters are references (as indicated by the & that
precedes the parameter name). This is not needed when using
arrays, because by default, vectors are passed by value, whereas
arrays are only passed by reference. When a value in a vector
argument will be changed, the vector must be passed into a reference
parameter.

Function prototype
Ex: void initVector(vector<int> &, vector<int> &,

vector<double> &)

Function call
Ex: void initVector(id, units, prices);

