
System Design and Programming II

CSCI – 1943

David L. Sylvester, Sr., Professor

Chapter 9

Pointers

Pointers – Getting the Address of a Value

char one bytes

shorts two bytes

int, long, float four bytes

double eight bytes

The address operator (&) returns the memory address of a variable.

Every variable is allocated a section of memory large enough to hold a

value of the variable data type.

Commonly

Each byte of memory has a memory address. A variable’s address is
the address of the first byte allocated to that variable.

Ex: char letter;

short number;

float amount;

The addresses of the variables above are used as an example. Getting
the address of a variable is accomplished by using the (&) operator in
front of the variable name. It allows the system to return the address
of that variable in hexadecimal.

Ex: &amount //returns the variable’s address

cout << &amount // displays the variable’s address

Note: Do not confuse the address operator with the & symbol used
when defining a referenced variable.

numberletter amount

1200 1201 1203

Pointers – Sample Program
// This program uses the & operator to determine a variable's

// address and the sizeof operator to determine its size.

#include <iostream>

using namespace std;

int main()

{

int x = 25;

cout << "The address of x is " << &x << endl;

cout << "The size of x is " << sizeof(x) << " bytes\n";

cout << "The value of x is "<< x << endl;

}

Sample output

Pointers Variables

Pointer variables or pointers, are special variables that hold a memory
address. Just as int variables are designed to hold integers, pointers
variables are designed to hold memory addresses. Pointers variables
allow you to indirectly manipulate data stored in other variables.

Memory addresses identify specific locations in the computer’s
memory. Because a pointer variable holds a memory address, it can
be used to hold the location of some other piece of data. (i.e. points
to some piece of data that is stored in the computer’s memory).
Pointer variable allows you to work with data that they point to.

Ex: const int SIZE = 5;

int numbers[SIZE] = {1, 2, 3, 4, 5};

showValues(numbers, SIZE);

Here we are passing the name of the array, numbers, and its size as
arguments to the showValues function.

showValues Defined

void showValues(int values[], int size)

{

for (int count = 0; count < size; count ++)

cout << values[count] << endl;

}

The values parameter receives the address of the numbers array. It
works like a pointer because it “points” to the number array.

showValues(numbers, SIZE);

void showValues(int values[], int size)

{

for (int count – 0; count < size; count ++)

cout << values[count] << endl;

}

Inside the showValues function, anything that is done to the values parameter is
actually done to the numbers array. (values parameter referenced the numbers
array)

1 2 3 4 5

address 5

numbers array

Ex: int jellyDonuts;

getOrder(jellyDonuts);

getOrder Defined

void getOrder(int &donuts)

{

cout << “How many doughnuts do you want? ”;

cin >> donuts;

}

In this function, the donuts parameter is a reference variable, and
receives the address of the jellyDonuts variable. Anything that is
done to the donuts parameter is actually done to the jellyDonuts
variable.

getOrder(jellyDonuts);

void getOrder(int &donuts)

{

cout << “How many doughnuts? “;

cin >> donuts;

}

When the user enters a value, the cin statement uses the donuts reference variable
to indirectly store the value in the jellyDonuts variable. The connection between
the two variables are automatically established, so there is no need to worry about
finding the memory address of the jellyDonuts variable.

address

jellyDonuts variable

In C++, pointer variables are yet another mechanism for using
memory addresses to work with pieces of data. Pointer variables are
similar to reference variables, but pointer variables operate at a lower
level. This means that C++ does not automatically do as much work
for you with pointer variables as it does with reference variables. In
order to make a pointer variable reference another item in memory,
you have to write code that fetches the memory address of that item
and assign the address to the pointer variable. Also, when you use a
pointer variable to store a value in the memory location that the
pointer references, your code has to specify that the value should be
stored in the location referenced by the pointer variable, and not in
the pointer variable itself.

As you can see, reference variable are easier to work with, but
pointers are useful, and even necessary for operations such as

• Dynamic memory allocation

• Algorithms that manipulate arrays and C-strings

Creating and Using Pointer Variables
Sample pointer variable: int *ptr; // reads ptr is a pointer of int

• Asterisk in front of variable indicates that ptr is a pointer variable

• int data type indicates that ptr can hold the addresses of an integer
value

Note: int does not mean that ptr is an integer variable, but rather ptr
can hold the address of an integer variable. (pointer can hold only
addresses)

Two different programming styles when defining pointers.

int *ptr;

int* ptr;
Both are correct.

Storing Address of Pointers
// This program stores the address of a variable in a pointer.

#include <iostream>

using namespace std;

int main()

{

int x = 25; // int variable

int *ptr; // Pointer variable, can point to an int

ptr = &x; // Store the address of x in ptr

cout << "The value in x is " << x << endl;

cout << "The address of x is " << ptr << endl;

return 0;

}
Sample output

x which is located at address 0016FB08, contains the number 25.

One real benefit of pointers is that they allow you to indirectly access
and modify the variable being pointed to. (i.e. ptr could be used to
change the contents of the variable x using the indirection operator
“*”, the asterisk)

0016FB08

25

Address of x: 0016FB08

ptr

x

Storing Address of Pointers
// This program demonstrates the use of the indirection operator.
#include <iostream>
using namespace std;

int main()
{

int x = 25; // int varialbe
int *ptr; // Pointer variable, can point to an int

ptr = &x; // Stores address of x in ptr

// Use both x an ptr to display the value in x.
cout << "Here is the value in x, printed twice:\n";
cout << x << endl; // Displays the contents of x
cout << *ptr << endl; // Displays the content of x

// Assign 100 to the location pointed to by ptr. This
// will actually assign 100 t0 x.
*ptr = 100;

// Use both x and ptr to display the value of x.
cout << "Once again, here is the value in x:\n";
cout << x << endl; // Displays the contents of x
cout << *ptr << endl; // Dis plays the contents of x
return 0;

}

Sample output

Assigns the address of the x
variable to the ptr variable.

When applying the indirection operator (*) to a
pointer variable, you are working, not with the
pointer variable itself, but with the item it points to.

Ex: cout << *ptr << endl;

This statement references the value ptr is pointing to,
which is that address of the value.

Ex: cout << ptr << endl;

Notice that this statement does not have the
indirection operator (*) in front of ptr, which now will

output the memory location that is stored at ptr.

Ex: *ptr = 100;

Given that the indirection operator (*) is used with ptr,

100 is assigned to the item ptr points to, which is the
variable x.

Pointer Referencing Different Variables
// This program demonstrates a pointer

// variable referencing different variables.

#include <iostream>

using namespace std;

int main()

{

int x = 25, y = 50, z = 75; // Three int variables

int *ptr;// Pointer variable

// Display the contents of x, y, and z.

cout << "\n\n\tHere are the values of x, y,

and z:\n";

cout << "\t" << x << " " << y << " " << z << endl;

// Use the pointer to manipulate x, y, and z.

ptr = &x; // Store the address of x in ptr.

*ptr += 100;// Add 100 to the value in x.

Sample output

ptr = &y;// Store the address of y in ptr.

*ptr += 100;// Add 100 to the value in y.

ptr = &z;// Store the address of z in ptr.

*ptr += 100;// Add 100 to the value in z.

// Display the contents of x, y, and z.

cout << "\tOnce again, here are the values of

x, y and z:\n";

cout << "\t" << x << " " << y << " " << z

<< endl << endl;

return 0;

}

Ex: ptr = &x; ptr = &y; ptr = &z;

These statements, when executed, assigns the address of x, y
and z to the ptr variable.

Ex: *ptr += 100; *ptr += 100; *ptr += 100;

Notice in these statements the indirection operator (*) is
used. This means that you are not working with ptr, but

rather the item that ptr points to.

Ex: cout << ptr;

cout << *ptr;

Will out the address of the
item ptr is pointing to.

Will output the value of
the item ptr is pointing to.

Three different uses of the asterisk (*) so far.

Multiplication Operator distance = speed * time;

Definition of Pointer Variable int *ptr;

Indirection Operator *ptr = 100;

Arrays and Pointers - Relationship
// This program shows an array name being

// dereferenced with the * operator.

#include <iostream>

using namespace std;

int main()

{

short numbers[] = {10, 20, 30, 40, 50};

cout << "The first element of the array is ";

cout << *numbers << endl;

return 0;

}

As we have learned in Chapter 7, an
array name without brackets and a
subscript, actually represents the
starting address of the array.
Therefore, an array name is actually
a pointer. This is done by using the
array name preceded by the
indirection operator.

Because numbers in the above code works like a pointer to the
starting address of the array, the first element is retrieved when
numbers is dereferenced. Remember, array element are stored
together in memory.

It is important to know that pointers do not work like regular variables
when used in mathematical statements. In C++ when you add a value
to a pointer, you are actually adding that value times the size of the
data type being referenced by the pointer. Therefore, if you add one
to numbers, you are actually adding 1*sizeof(shorts) to numbers. If
you add two to numbers, the result is numbers + 2 * sizeof(short),
and so forth.

Ex: *(numbers + 1) is actually *(numbers + 1 * 2)

*(numbers + 2) is actually *(numbers + 2 * 2)

*(numbers + 3) is actually *(numbers + 3 * 2)

This automatic conversion means that an element in an array can be
retrieved by using its subscript or by adding its subscript to a pointer
to the array. If the expression *numbers, which means *(numbers +
0), retrieves the first element in the array, the *(numbers + 1)
retrieves the second element.

size of data type

The parentheses are critical when adding values to pointers. The *
operator has precedence over the + operator, so the expression
*numbers + 1 is not equivalent to *(numbers +1).

When working with arrays, remember the following:

• array[index] is equivalent to *(array + index)

• C++ does not do bound checking, so when stepping through
an array with pointers, it’s possible to give the pointer an address
outside of the array.

numbers[0] numbers[2]numbers[1] numbers[3] numbers[4]

*numbers *(numbers + 2)*(numbers + 1) *(numbers + 3) *(numbers + 4)

numbers array

// This program shows the difference between

// *(array + n) and *array + n.

#include <iostream>

using namespace std;

int main()

{

short numbers[] = {10, 20, 30, 40, 50};

cout << "x” << “*(numbers + x)" << "*numbers + x" << endl;

cout << "\t---" << endl;

for (int x = 0; x < 5; x++)

cout << x << *(numbers + x) << *numbers + x << endl;

cout << endl << endl;

return 0;

}

The use of the & operator would be incorrect,
because the name of the array is already an address.

// This program use the address operator to get

// the address of an individual element in an array.

#include <iostream>

using namespace std;

short *prt_num;

int main()

{

short numbers[] = {10, 20, 30, 40, 50};

cout << "\n\n\tx\t" << "*prt_num + x" << endl;

cout << "\t----------------------------" << endl;

for (int x = 0; x < 5; x++)

{

prt_num = &numbers[x];

cout << "\t" << x << "\t\t" << *prt_num << endl;

}

cout << endl << endl;

return 0;

}

The only difference between array names and pointer variables is that you cannot
change the address an array name points to.

Ex: Given double readings[20] , totals[20];

double *dprt;

Legal statements

dprt = readings; // Make dprt point to readings starting address.

dprt = totals; // Make dprt point to totals starting address.

Illegal statements

readings = totals; // Illegal – cannot change readings or totals starting
address.

totals = dprt; // Illegal – cannot change starting address of an array.

NOTE: Array names are pointer constants. (They can only point to the array they
represent.)

Pointer Arithmetic
The content of pointer variables can be changed with mathematical
statements that perform addition and subtraction.

// This program you to manipulate and array by

// using pointers with addition and subtraction

#include <iostream>

using namespace std;

short *prt_num;

int main()

{

short numbers[] = {10, 20, 30, 40, 50};

prt_num = numbers;

cout << "\n\n\tArray Content" << endl;

cout << "\t-------------" << endl;

cout << "\tAscending" << " ";

for (int x = 0; x < 5; x++)

{

cout << *prt_num << " ";

prt_num++;

}

cout << "\n\tDescending" << " ";

prt_num--;

for (int x = 0; x < 5; x++)

{

cout << *prt_num << " ";

prt_num--;

}

cout << endl << endl;

return 0;

}

Sample output

Ex: short *prt_num;

Because prt_num is a pointer of short data type, the increment
operator adds the size of one integer to prt_num, so it points to the
next element in the array. Likewise, the decrement operator
subtracts the size of one integer from the pointer.

Not all arithmetic operations may be performed on pointers. You
cannot multiply or divide a pointer.

Operations Allowable by Pointers

1. The ++ and – operators may be used to increment or decrement a pointer
variable.

2. An integer may be added to or subtracted from a pointer variable. This may
be performed with the + and – operators, or the += and -= operators.

3. A pointer may be subtracted from another pointer.

Initializing Pointers
Pointers are designed to point to objects of a specific data type.
When a pointer is initialized with an address, it must be the address
of an object the pointer can point to.

Ex: int to int

float to float

Ex: int myValue;

int *pint = &myValue;

also,

int ages[20];

int *pint = ages;

but

float myFloat;

int *pint = &myFloat;

Is legal because pint and myValue is an integer

Is legal because ages is an array of integer

illegal because myFloat is not an integer

Pointers can be defined in the same statement as other variables of
the same data type.

Ex: int myValue, *pint = &myValue;

The following statement defines an array, called readings, and a
pointer, called marker, which is initialized with the address of the first
element in the array.

Ex: int readings[50], *marker = readings;

However, int *pint = &myValue;

int myValue;

Is invalid because myValue has not been declared, but is used to
initialize pint.

Comparing Pointers
If one address comes before another address in memory, the first
address is considered “less than” the second. C++ relational
operators may be used to compare pointer values.

Relational Operators used to compare Pointers

> Greater than

< Less than

= = Equal to

!= Not equal to

>= Greater than or equal to

<= Less than or equal to

If one address comes before another address in memory, the first
address is considered “less than” the second. C++ relational
operators may be used to compare pointer values.

Because the address grows larger for each subsequent element in the
array, the following if statements are all true.

if (&arr[1] > &arr[0])

if (arr < &arr[4])

if (arr == &arr[0])

if (&arr[2] != &arr[3])

Comparing two pointers is not the same as comparing the values the
two pointers point to. Ex: If(prt1 < prt2) if (*prt1 < *prt2)

arr[0] arr[1] arr[2] arr[3] arr[4]

0x5A00 0x5A080x5A04 0x5A0C 0x5A10
(Addresses)

Array of five integers

Compares the prt1
and ptr2 addresses

Compares the values prt1
and ptr2 is pointing to.

// This program uses a pointer to display

// the contents of an integer array

#include <iostream>

using namespace std;

int main()

{

int set[8] = {5, 10, 15, 20, 25, 30, 35, 40};

int *nums = set; // Make nums point to set

// Display the numbers in the array.

cout << "The numbers in set are:\n";

cout << *nums << " "; // Display first element

while (nums < &set[7])

{

// Advance nums to point to the next element.

nums++;

// Display the value pointed to by nums.

cout << *nums << " ";

}

// Display the numbers in reverse order.

cout << "\nThe numbers in set backward are:\n";

cout << *nums << " ";// Display first element

while (nums > set)

{

// move backward to the previous element.

nums--;

// Display the value pointed to by nums.

cout << *nums << " ";

}

return 0;

}

First time through the loop nums
equals the starting address of set

Nums has been set to next
address in memory list

Address of last
element in array

Nums has been set back
one, to next address in
memory list

Nums in the previous loop has
been incremented to the address
of the last memory location

Starting address
of the set array

Pointers as Function Parameters
A pointer can be used as a function parameter. It gives the function
access to the original argument, much like a reference parameter
does.

You can pass an argument by reference by using pointer variables as
the parameter. Reference variables are much easier to work with
than pointer, because reference variables hide all the “mechanism” of
dereferencing and indirection. This is helpful when dealing with
strings and the C++ library has many functions that use pointers as
parameters.

Pointers as Function Parameters

Function prototype with a pointer parameter

void getNumber(int *);

void doubleValue(int *);

Function call with a pointer parameter

getNumber(&number);

doubleValue(&number);

Function definition with a pointer parameter

void doubleValue(int *val)

{

*val *= 2;

}

This function doubles the
variable pointed to by val.

Calls the function getNumber passing
address of number as argument

Calls the function doubleValue passing
address of number as argument

Shows that the function will pass a pointer
argument of integer

// This program uses two function that

// accept addresses of variables as

// as arguments.

#include <iostream>

using namespace std;

// Function prototypes

void getNumber(int *);

void doubleValue(int *);

int main()

{

int number;

// Call getNumber and pass the address of

// number.

getNumber(&number);

// Call doubleValue and pass the address of

// number.

doubleValue(&number);

// Display the value in number.

cout << "That value doubled is " << number <<

endl;

return 0;

}

// Definition of getNumber.

void getNumber(int *input)

{

cout << "Enter an integer number: ";

cin >> *input;

}

// Definition of doubleValue.

void doubleValue(int *val)

{

*val *=2;

}

The address of number is
passed as the argument.

The value entered is
stored in number.

The address of number is
passed as the argument.

Doubles the value
stored in number.

Pointer variables can also be use to accept array address as
arguments. Either subscript or pointer notation may then be used to
work with the contents of the array.
// This program demonstrates that a pointer
// may be used as a parameter to accept the
// address of an array.
#include <iostream>
#include <iomanip>
using namespace std;

// Function prototypes
void getSales(double *, int);
double totalSales(double *, int);

int main()
{

const int QTRS = 4;
double sales[QTRS];

// Get the sales data for all quarters.
getSales(sales, QTRS);

// Set the numeric output formatting.
cout << fixed << showpoint << setprecision(2);

// Display the total sales for the year.
cout << "The total sales for the year are $";
cout << totalSales(sales, QTRS) << endl;
return 0;

}

// Definition of getSales
void getSales(double *arr, int size)
{

for (int count = 0; count < size; count++)
{

cout << "Enter the sales figure for quarter ";
cout << (count + 1) << ": ";
cin >> arr[count];

}
}

// Definition of totalSales
double totalSales(double *arr, int size)
{

double sum = 0.0;

for (int count = 0; count < size; count++)
{

sum += *arr;
arr++;

}
return sum;

}

arr defined as a pointer parameter,
but subscript notation is used in cin
statement.

arr is used with the
indirection operator

arr incremented to point
to the next element

