
CSCI 192
Comparisons, Implied Conditions

and Decision

Relational and logical operators are used to compare values in variables and
constants. Conditional expressions may contain relational operators or may
have an implied condition. The processing of data often requires the use of an
if statement to decide if the calculation or another operation should be
performed, or to select a particular option to be performed.

Relational operators can be used in conditional statements to determine
whether or not a block will be executed.

No matter how complex, any algorithm can be constructed using a combination
of four standardized flow of control structures: sequential, selection, repetition,
and invocation.

The term flow of control refers to the order in which a program’s statements are
executed. Unless directed otherwise, the normal flow of control for all
programs is sequential. This means that statements are executed in sequence,
one after another, in the order in which they are placed within the program.

Selection, repetition, and invocation structures permit the sequential flow of
control to be altered in precisely defined ways. The selection structure is used
to select which statements are to be performed next and the repetition
structure is used to select which statements are to be performed next and the
repetition structure is used to repeat a set of statements.

Making Comparisons Using Relational
Operators

Relational operators are used to compare data items. It is possible to compare
two variables or a variable and a constant. The comparison determines the
relationship between the two fields.

Relational expressional are sometimes called conditions, for short, and we use
both terms to refer to these expressions. Like all C++ expressions, relational
expressions are evaluated to yield a numerical result. The value of a relational
expression can only be the integer value of 1 or 0, which is interpreted as true
or false, respectively.

Operator Meaning Example

< Less Than age < 30

> Greater Than height > 6.2

<= Less than or equal to taxable <= 20000

>= Greater than or equal to temp >= 98.6

== Equal to grade == 100

!= Not equal to number != 250

Expression Value Interpretation

‘A’ > ‘C’ 0 False

‘D’ <= ‘Z’ 1 True

‘E’ == ‘F’ 0 False

‘G’ >= ‘M’ 0 False

‘B’ != ‘C’ 1 True

Comparing Data

Numeric

int iCount;

iCount == 0

float fNumber;

fNumber < 200.00

Numeric comparisons of data are determined to be true or false based upon the
actual value of one number compared to the numerical value of the second
operand.

To determine if the character condition is true or false, compare the value of
the character as it is positioned in the ASCII code table (for DOS machines).
This means that numeric characters would come before uppercase characters,
which are then followed by lowercase characters.

Character

char cLetter1 = ‘A’;

char cLetter2 = ‘a’;

cLetter2 > cLetter1

String Comparisons

Strings cannot be compared using relational operations. Instead, they require
the use of special functions designed for handling string data. The basic
function used to compare strings is strcmp().

Name Description Example

strcpy(string-var, string-exp) Copies string-exp to string-var. strcpy(test,”efgh”)

strcat(string-var, string-exp) Appends string-exp to the end of the string value

contained in string-var.
strcat(test,”there”)

strlen(string-exp) Returns the length of the string. Does not include

the ‘\0’ in the length count.
strlen(“Hello World!”)

strcmp(string-exp1, string-exp2 Compares string-exp1 to string-exp2. Returns a

negative integer if string-exp < string-exp2, 0 if

string-exp1== string-exp2, and a positive integer if

string-exp1 > string-exp2.

strcmp(“Bebop”, “Beehive”)

strncpy(string-var, string-exp,n) Copies at most n characters of string-exp to string-

var. If string-exp has fewer than n characters it

pads string-var with ‘\0’s.

strncpy(str1,str2,5)

strncmp(string-exp1, string-exp2,n) Compares at most n characters of string-exp1 to

string-exp2. Returns the same value as strcmp()

based on the number of characters compared.

strncmp(“Bebop”,”Beehive”,2)

strchar(string-exp, character) Locates the position of the first character within the

string. Returns the address of the character
strchr(“Hello”, ‘l’)

stricmp(string1, string2) Compares the contents of string1 and string2

without regard to the case of the two strings.
stricmp(“Happy”, “happy”)

String Comparisons (cont.)

Evaluation Return Value

(if) string1 less than string2 Negative value

(if) string1 equal to string2 0

(if) string1 greater than string2 Positive value

Expression Interpreted as

strcmp(fSalaryStatus, “Salary”) == 0 If fSalaryStatus equal “Salary”

strcmp(stString1, stString2) !=0 If stString1 not equal stString2

(strncmp(string1, “All”,3) == 0) If string1 length of 3 is equal to “All”

strlen(string1) != 0 If string length of string1 not equal 0

Logical Operators
In addition to using simple relational expressions as conditions, more complex
conditions can be created using the logical operations AND, OR, and NOT.

Logical Operator Purpose

&& And

| | Or

! Not

When the AND operator, &&, is used with two expressions, the condition is only if
both individual expressions are true by themselves. Thus, the compound condition

(age > 40) && (term < 10)

is true (has a value of 1) only if age is greater than 40 and term is less than 10)

The logical OR operator, | |, is also applied between two expressions, When using the
OR operator, the condition is satisfied if either one or both of the two expressions are
true. Thus, the compound condition

(age > 40) | | (term < 10)

is true if either age is greater than 40, term is less than 10, or both
conditions are true.

Note: In both cases, being that logical operators has precedence over relational operators, the parentheses are not needed.

Binary and Unary Operators

Binary

Operators

Purpose

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus or

Remainder

Multiplicative
Operators

Additive
Operators

The order of precedence is multiplicative
operators from left to right, followed by
additive operators from left to right.

The order of precedence can be altered
through the use of parentheses to indicate
the desired sequence of calculations.
Anything inside of parentheses will be
calculated first.

Binary operators has two factors or operands.

 Ex: iAge = iNum1 + iNum2;

Unary

Operators
Purpose

+ +
Increment

Operator

- -
Decrement

Operator

Unary operators has one factor or operand.

 Ex: iNum1 + +; is the same as writing iNum = iNum + 1;

The increment and decrement operators
will increase or decrease the value of an
integer variable by one.

The increment and decrement operators
may be used either as a prefix or as a
postfix. This means that the increment
may be expressed as iNum++ or ++iNum.

NOTE: This placement determines the timing

 of the calculation.

Table 4.2 Operator Precedence

Operator Associativity

! Unary - ++ -- Right to left

* / % Left to Right

+ - Left to Right

< <= > >= Left to Right

== != Left to Right

&& Left to Right

|| Left to Right

= += -= /= Right to Left

Write the following as an expression.

x greater than y or x less than z

t less than or equal to 0 and y greater than 2

1. (x > y)

2. (t < x)

3. (m != 6)

4. (y <= 1)

5. (c >=1)

6. (x == 2)

7. (t > 0)

8. (m != 5)

9. (c <= m)

10. (y < 4)

11. (t < x + c)

Determine if expression returns
True of False

X = 2, y = 4, t = 0, m = 5, c = 1

8. (t < 4) && (x > t)

9. (m == 5) && (y < 2)

10.(m < 8) || (t ==0)

11.(x != m) || (y < 4)

12.(t >=2) && (x >=4)

13.((t < 4) && (x > t)) && (t == 0)

14.(m = 5) && ((y < 2) || (y = t))

15.((m < 8) || (t =0)) && ((x != m) || (y < 4))

16.(t >=2) && (x >=4) || ((c < m) && (x <= 4)

