
Chapter 3:

Modules, Hierarchy Charts, and 

Documentation

Programming Logic and 

Design, 4th Edition Introductory



Programming Logic and Design, 4th Edition Introductory 2

Objectives

• After studying Chapter 3, you should be able to:

• Describe the advantages of modularization

• Modularize a program

• Understand how a module can call another 

module

• Explain how to declare variables 

• Create hierarchy charts



Programming Logic and Design, 4th Edition Introductory 3

Objectives (continued)

• Understand documentation

• Create print charts

• Interpret file descriptions

• Understand the attributes of complete 

documentation



Programming Logic and Design, 4th Edition Introductory 4

Modules, Subroutines, Procedures, 

Functions, or Methods

• Programmers seldom write programs as one long 

series of steps

• Instead, they break the programming problem 

down into reasonable units, and tackle one small 

task at a time

• These reasonable units are called modules

• Programmers also refer to them as subroutines, 

procedures, functions, or methods



Programming Logic and Design, 4th Edition Introductory 5

Modules, Subroutines, Procedures, 

Functions, or Methods (continued)

• The process of breaking a large program into 

modules is called modularization

– Provides abstraction

– Allows multiple programmers to work on a problem

– Allows you to reuse your work

– Makes it easier to identify structures



Programming Logic and Design, 4th Edition Introductory 6

Modularization Provides Abstraction

• Abstraction:

– Process of paying attention to important properties 

while ignoring nonessential details (selective 

ignorance)

– Makes complex tasks look simple

– Some level occurs in every computer program



Programming Logic and Design, 4th Edition Introductory 7

Modularization Provides Abstraction

• Fifty years ago, an understanding of low-level 

circuitry instructions was necessary

• Now, newer high-level programming languages 

allow you to use English-like vocabulary in which 

one broad statement corresponds to dozens of 

machine instructions

• Modules or subroutines provide another way to 

achieve abstraction



Programming Logic and Design, 4th Edition Introductory 8

Modularization Allows Multiple 

Programmers to Work on a Problem

• When you dissect any large task into modules, 

you gain the ability to divide the task among 

various people

• Rarely does a single programmer write a 

commercial program that you buy off the shelf

• Modularization thus allows professional software 

developers to write new programs in weeks or 

months, instead of years



Programming Logic and Design, 4th Edition Introductory 9

Modularization Allows You to Reuse 

Your Work

• If a subroutine or function is useful and well-

written, you may want to use it more than once 

within a program or in other programs

• You can find many real-world examples of 

reusability where systems with proven designs 

are incorporated, rather than newly invented, by 

individuals beginning a certain task



Programming Logic and Design, 4th Edition Introductory 10

Modularization Makes It Easier to 

Identify Structures

• When you 
combine 
several 
programming 
tasks into 
modules, it 
may be 
easier for 
you to 
identify 
structures



Programming Logic and Design, 4th Edition Introductory 11

Modularization Makes It Easier to 

Identify Structures (continued)

• When you 
work with a 
program 
segment 
that looks 
like Figure 
3-2, you 
may 
question 
whether it 
is 
structured



Programming Logic and Design, 4th Edition Introductory 12

Modularization Makes It Easier to 

Identify Structures (continued)

• If you can 

modularize some of 

the statements and 

give them a more 

abstract group 

name, as in Figure 

3-3, easier to see

– that the program 

involves a major 

selection 

– that the program 

segment is 

structured



Programming Logic and Design, 4th Edition Introductory 13

Modularizing a Program

• When you create a module or subroutine, you 

give it a name

• In this text, module names follow the same two 

rules used for variable names:

– Must be one word

– Should have some meaning



Programming Logic and Design, 4th Edition Introductory 14

Modularizing a Program (continued)

• When a program uses a module, you can 

refer to the main program as the calling 

program

• Whenever a main program calls a module, the 

logic transfers to the module

• When the module ends, the logical flow 

transfers back to the main calling program 

and resumes where it left off



Programming Logic and Design, 4th Edition Introductory 15

Modularizing a Program (continued)

• Draw each module separately with its own 

sentinel symbols

• The symbol that is equivalent of the start symbol 

in a program contains the nameOfModule

– This name must be identical to the name used in the 

calling program.

• The symbol that is equivalent of the end symbol 

in a program contains return



Programming Logic and Design, 4th Edition Introductory 16

Modularizing a Program (continued)



Programming Logic and Design, 4th Edition Introductory 17

Modules Calling Other Modules

• Determining when to break down any particular 

module further into its own subroutines or 

submodules is an art

• Some companies may have arbitrary rules, such 

as:

– ―a subroutine should never take more than a 

page,‖ or

– ―a module should never have more than 30 

statements in it,‖ or 

– ―never have a method or function with only one 

statement in it‖



Programming Logic and Design, 4th Edition Introductory 18

Modules Calling Other Modules 

(continued )

• A better policy is to place together statements 

that contribute to one specific task

• The more the statements contribute to the same 

job, the greater the functional cohesion of the 

module



Programming Logic and Design, 4th Edition Introductory 19

Declaring Variables

• The primary work of most modules in most 

programs you write is to manipulate data

• Many program languages require you to declare 

all variables before you use them

• Declaring a variable involves:

– providing a name for the memory location where 

the computer will store the variable values, and 

– notifying the computer of what type of data to 

expect



Programming Logic and Design, 4th Edition Introductory 20

Declaring Variables (continued)

• Every programming language has specific rules 
for declaring variables, but all involve identifying 
at least two attributes for every variable:

– Declaring a data type

– Giving the variable a name

• In many modern programming languages, 
variables typically are declared within each 
module that uses them

– Known as local variables



Programming Logic and Design, 4th Edition Introductory 21

Declaring Variables (continued)

• Global variables—variables given a type and 

name once, and then used in all modules of the 

program

• Annotation symbol or annotation box – an 

attached box containing notes

– Use when you have more to write than can 

conveniently fit within a flowchart symbol

• Data dictionary — a list of every variable name 

used in a program, along with its type, size, and 

description



Programming Logic and Design, 4th Edition Introductory 22

Creating Hierarchy Charts

• You can use a hierarchy chart to illustrate 

modules’ relationships

– Does not tell you what tasks are to be performed 

within a module

– Does not tell you when or how a module executes

– Rather, identifies which routines exist within a 

program and which routines call which other 

routines

• The hierarchy chart for the last version of the 

number-averaging program looks like Figure 3-7, 

and shows which modules call which others



Programming Logic and Design, 4th Edition Introductory 23

Creating Hierarchy Charts (continued)



Programming Logic and Design, 4th Edition Introductory 24

Understanding Documentation

• Documentation refers to all supporting material 

that goes with a program

• Two broad categories:

– Documentation intended for users 

– documentation intended for programmers

• People who use computer programs are called 

end users, or users for short



Programming Logic and Design, 4th Edition Introductory 25

Understanding Documentation 

(continued)

• Programmers require instructions known as 

program documentation to plan the logic of or 

modify a computer program

• End users never see program documentation

• Divided into internal and external



Programming Logic and Design, 4th Edition Introductory 26

Understanding Documentation 

(continued)

• Internal program documentation consists of 

program comments, or nonexecuting statements 

that programmers place within their code to 

explain program statements in English

• External program documentation includes all the 

supporting paperwork that programmers develop 

before they write a program

• Because most programs have input, processing, 

and output, usually there is documentation for all 

these functions



Programming Logic and Design, 4th Edition Introductory 27

Output Documentation

• Usually the first to be written

• A very common type of output is a printed report

• You can design a printed report on a printer 

spacing chart, which is also referred to as a print 

chart or a print layout

• Figure 3-10 shows a printer spacing chart, which 

basically looks like graph paper



Programming Logic and Design, 4th Edition Introductory 28

Output Documentation (continued)



Programming Logic and Design, 4th Edition Introductory 29

Output Documentation (continued)

• Not all program output takes the form of printed 

reports

• If your program’s output will appear on a monitor 

screen, particularly if you are working in a GUI, or 

graphical user interface environment like 

Windows, your design issues will differ

• In a GUI program, the user sees a screen, and can 

typically make selections using a mouse or other 

pointing device



Programming Logic and Design, 4th Edition Introductory 30

Output Documentation (continued)

• Instead of a 
print chart, 
your output 
design might 
resemble a 
sketch of a 
screen

• Figure 3-21 
shows how 
inventory 
records 
might be 
displayed in 
a graphical 
environment



Programming Logic and Design, 4th Edition Introductory 31

Input Documentation

• Once you have planned the design of the output, 

you need to know what input is available to 

produce this output

• If you are producing a report from stored data, 

you frequently will be provided with a file 

description that describes the data contained in a 

file

• You usually find a file’s description as part of an 

organization’s information systems 

documentation



Programming Logic and Design, 4th Edition Introductory 32

Input Documentation (continued)



Programming Logic and Design, 4th Edition Introductory 33

Input Documentation (continued)

• A byte is a unit of computer storage that can 

contain any of 256 combinations of 0s and 1s that 

often represent a character

• The input description in Figure 3-22 shows that 

two of the positions in the price are reserved for 

decimal places

• Typically, decimal points themselves are not 

stored in data files; they are implied, or assumed

• Also, typically, numeric data are stored with 

leading zeroes so that all allotted positions are 

occupied



Programming Logic and Design, 4th Edition Introductory 34

Input Documentation (continued)

• Typically, programmers create one program 

variable for each field that is part of the input file

• In addition to the field descriptions contained in 

the input documentation, the programmer might 

be given specific variable names to use for each 

field, particularly if such variable names must 

agree with the ones that other programmers 

working on the project are using 

• In many cases, however, programmers are 

allowed to choose their own variable names



Programming Logic and Design, 4th Edition Introductory 35

Input Documentation (continued)

• Organizations may use different forms to relay 

the information about records and fields, but the 

very least the programmer needs to know is:

– What is the name of the file?

– What data does it contain?

– How much room do the file and each of its fields 

take up?

– What type of data can be stored in each field—

character or numeric?



Programming Logic and Design, 4th Edition Introductory 36

Completing the Documentation

• User documentation includes 

– all manuals or other instructional materials that 

non-technical people use, as well as

– operating instructions that computer operators 

and data-entry personnel need

• Needs to be written clearly, in plain language, 

with reasonable expectations of the users’ 

expertise



Programming Logic and Design, 4th Edition Introductory 37

Completing the Documentation 

(continued)

• User documentation may address:

– How to prepare input for the program

– To whom the output should be distributed

– How to interpret the normal output

– How to interpret and react to any error message 

generated by the program

– How frequently the program needs to run



Programming Logic and Design, 4th Edition Introductory 38

Summary

• Programmers break programming problems 

down into smaller, reasonable units called 

modules, subroutines, procedures, functions, or 

methods

• When you create a module or subroutine, you 

give the module a name that a calling program 

uses when the module is about to execute

• A module can call other modules



Programming Logic and Design, 4th Edition Introductory 39

Summary

• Declaring a variable involves providing a name 

for the memory location where the computer will 

store the variable value, and notifying the 

computer of what type of data to expect

• Documentation refers to all of the supporting 

material that goes with a program

• A file description lists the data contained in a file, 

including a description, size, and data type


