
Symmetrically Constructed Clusters (cont.)

Advantages:

1. Greater computational power by running applications
concurrently on all computers in the cluster.

Disadvantages:

1. Applications must be written specifically to take
advantage of the cluster by using a technique known as
parallelization (dividing a program into separate
components that run in parallel on individual
computers in the cluster).

Parallelization – dividing a program into separate
components that run in parallel on individual
computers in the cluster.

Computer-System Architecture (cont.)

Computer-System Architecture (cont.)

computercomputer computer

storage area
network (SAN)

interconnect interconnect

General structure of a clustered system.

Operating-System Structure
The operating system provides the environment within
which programs are executed.

Operating systems must have the ability to multiprogram.
(A single program cannot, in general, keep either the CPU or
the I/O devices busy at all times.)

Single users frequently have multiple programs running.
Multiprogramming increases CPU utilization by organizing
jobs (code and data) so that the CPU always has one to
execute.

The operating system keeps several jobs in memory (on
disk) simultaneously, which is called a job pool.

This pool consists of all processes residing on disk awaiting
allocation of main memory. (to be executed)

Operating-System Structure
operating

system

job 1

job 2

job 3

job 4

job 5

0

512M

Memory layout for the multiprogramming system.

The set of jobs in memory can be a subset of the jobs kept in the
job pool. The operating system picks and begins to execute one
of the jobs in memory. Eventually, the job may have to wait for
some task, such as an I/O operation to complete. (causes CPU to
sit idle until process of needed job is complete)

Operating-System Structure
Multiprogrammed systems provide an environment which
the various system resources (i.e. CPU, memory, and
peripheral devices) are utilized effectively, but they do not
provide for user interaction with the computer system.

In time sharing (or multitasking) systems, the CPU executes
multiple jobs by switching among them, but the switch
occurs so frequently that the user can interact with each
program while it is running. Time sharing requires an
interactive (or hands-on) computer system, which provides
direct communication between the user and the system.
The user gives instructions to the operating system or to a
program directly, using an input device such as a keyboard
or a mouse, and waits for immediate results on an output
device. (response time should be short)

Operating-System Structure
A time-shared operating system allows many users to share
the computer simultaneously. Since each action or
command in a time-shared system tends to be short, only a
little CPU time is needed for each user. As the system
switches rapidly from one user to the next, each user is
given the impression that the entire computer system is
dedicated to his use, even though it is being shared among
many users.

Time-shared operating systems uses CPU scheduling and
multiprogramming to provide each user with a small
portion of a time-shared computer. Each user has at least
one separate program in memory. A program loaded into
memory and executing is called a process.

Operating-System Structure

The Execution of a process

•Executes for a short time.

•Either finishes or performs I/O.

–Display output for user

–User may respond using keyboard, mouse, etc.
•Which compared to computer speed could be slow

•Or if user leaves computer, CPU may be waiting on response

•Rather than sit idle, the operating system rapidly switch
the CPU to the program of another user.

Operating-System Structure
Job Scheduling

Both time sharing and multiprogramming require that
several jobs be kept simultaneously in memory. If several
jobs are required to load and there is not enough

room in memory, the system must choose among them.

Making the decision is called job scheduling.

Jobs are selected and loaded into memory. If several jobs
are ready to run at the same time, the system must choose
among them. Making this decision is called CPU scheduling.

Several factors need to be considered when running
multiple jobs concurrently. (i.e. process scheduling, disk
storage, and memory management)

Operating-System Structure
In a time-sharing system, the operating system must ensure
reasonable response time, that is sometimes accomplished
through swapping (by keeping portions of the primary
memory in secondary storage).

While multitasking and memory swapping are two
completely unrelated techniques, they are very often used
together, as swapping memory allows more tasks to be
loaded at the same time.

Multitasking system allows another process to run when
the running process hits a point where it has to wait for
some portion of memory to be reloaded from secondary
storage.

Operating-System Structure
Another way of insuring reasonable response time is virtual
memory. This technique allows the execution of a process
that is not completely in memory.

The main advantage of the virtual memory scheme is that
it enable users to run programs that are larger than the
actual physical memory. This allows programmers not to be
concerned with memory-storage limitations.

Time-sharing systems must also provide a file system. The
file system resides on a collection of disks; hence, disk
management must be provided. Also time-sharing system
provide a mechanism for protecting resources from
inappropriate use. To ensure orderly execution, the system
must provide mechanisms for job synchronization and
communication, ensuring that jobs do not get stuck in a
deadlock (forever waiting for one another).

Operating-System Operations
Modern operating systems are interrupt driven. If there are
no process to execute, no I/O devices to service, and no
users to who to respond, the operating system will sit
quietly, waiting for something to happen.

Events are almost always signaled by the occurrence of an
interrupt or a trap. A trap (or an exception) is a software-
generated interrupt caused either by an error (division by
zero or invalid memory access) or by a specific request from
a user program that an operating system service be
performed.

For each type of interrupt, separate segments of code in the
operating system determine what action should be taken.

Operating-System Operations
Dual-Mode Operation

In order to ensure the proper execution of the operating
system, we must be able to distinguish between the
execution of operating-system code and user-defined code.

Computer must have two modes of operation.

A bit, called the mode bit, is added to the hardware of the
computer to distinguish between a task that is executed on
behalf of the operating system and one that is executed on
behalf of the user.

Kernel mode (0 bit) User mode (1 bit)

Supervisor mode

System mode

Privilege mode

Operating-System Operations

At system boot time, the hardware starts in kernel mode.
The operating system is then loaded and starts user
application in user mode. Whenever a trap or interrupt
occurs, the hardware switches from user mode to kernel
mode (changes mode bit to 0).

user progress

kernel

user progress executing calls system call

execute system call

user progress executing

trap
mode bit = 0

return
mode bit = 1

user mode
(mode bit = 1)

user mode
(mode bit = 1)

Transition from user to kernel mode.

Process Management
The dual mode of operation provides the means for
protecting the operating system from errant users and
errant users from one another. This protection is
accomplished by designating some of the machine
instructions that may cause harm as privileged instructions.

Once hardware protection is in place, the OS detects errors
that violate modes. (attempting to execute illegal
instructions, or access memory not in user’s address space)

Operating-System Operations
Timer

We must ensure that the operating system maintains control over
the CPU. We cannot allow the user program to get stuck in an
infinite loop or to fail to call system services and never return control
to the operating system. To accomplish this goal, we can use a timer.
A timer can be set to interrupt the computer after a specified time.
(fixed or variable - i.e. 1 millisecond to 1 second)

The operating system ensures that the timer is set to interrupt. A
program with a 7 minute time limit would have its counter
initialized to 420. Every second, the timer interrupts and the
counter is decremented by 1. As long as the counter is positive,
control is returned to the user program. When the counter becomes
negative, the operating system terminates the program for
exceeding the assigned time limit.

Process Management
A program does nothing unless its instructions are executed
by the CPU. A program in execution is a process. A time-
shared user program such as a compiler is a process. A
word-processing program being run by an individual user
on a PC is a process. A system task, such as sending output
to a printer can also be a process.

A process needs certain resources – including CPU time,
memory, files, and I/O devices – to accomplish its task.

A single-thread process has one program counter specifying
the next instruction to execute.

In short, a thread of execution is the smallest unit of
processing that can be scheduled by an operating
system.

Process Management
The operating system is responsible for the following
activities in connection with process management:

• Scheduling processes and threads on the CPUs

• Creating and deleting both user and system processes

• Suspending and resuming processes

• Providing mechanisms for process synchronization

• Providing mechanisms for process communication

Memory Management
The main memory is central to the operation of a modern
computer system. Main memory is a large array of words
or bytes, ranging in size from hundreds of thousands to
billions. Each word or byte has its own address. Main
memory is a repository of quickly accessible data shared by
the CPU and I/O devices. The central processor reads
instructions from main memory during the instruction-fetch
cycle and both reads and write data from main memory
during the data-fetch cycle (von Neumann architecture).

For the CPU to process data from disk, data must first be
transferred to main memory by CPU-generated I/O calls.

Memory Management
To improve both the utilization of the CPU and the speed of
the computer’s response to its user, general-purpose
computers must keep several programs in memory, creating
a need for memory management.

The operating system is responsible for the following
activities in connection with memory management:

• Keeping track of which parts of memory are currently
being used and by whom

• Deciding which processes and data to move into and out
of memory

• Allocating and deallocating memory space as needed

Storage Management
The operating system provides a uniform, logical view of
information storage. The operating system abstracts from
the physical properties of its storage devices to define a
logical storage unit, the file. The operating system maps
files onto physical media and access these files via the
storage device.

File-System Management

Most Common Types of Physical Storage

• Magnetic disk

• Optical disk

• Magnetic tape

