
Introduction to PC Operating
Systems

Operating System Concepts 8th Edition
Written by: Abraham Silberschatz, Peter Baer Galvin and Greg Gagne

John Wiley & Sons, Inc.

ISBN: 978-0-470-12872-5

Chapter 2

The design of a new operating system is a major task. It is
important that the goals of the system be well defined before
the design begins. These goals for the basis for choices among
various algorithms and strategies.

What can be focused on in designing an operating system

• Services that the system provides

• The interface that it makes available to users and
programmers

• Its components and their interconnections

Operating-System Structure

Operating-System Services
The operating system provides:
• An environment for the execution of programs
• Certain services to programs and to the users of those

programs.
Note: (services can differ from one operating system to another)

A view of operating system services

GUI batch command line

user interfaces

system calls

program
execution

error
detection

I/O
operations

file
systems

communication
Resource
allocation

accounting

protection
and security services

user and other system programs

operating system

hardware

Operating-System Services
Almost all operating systems have a user interface.

Types of user interfaces:

1. Command Line Interface (CLI) – method where user enter
text commands

2. Batch Interface – commands and directives that controls
those commands are within a file and the files are executed

3. Graphical User Interface – works in a windows system using
a pointing device to direct I/O, using menus and icons and a
keyboard to enter text.

Operating-System Services
Services

Program Execution – the system must be able to load a program
into memory and run that program. The program must be able
to end its execution, either normally or abnormally (indicating
error).

I/O Operations – this operation may involve files and I/O
devices. (i.e. recording to CD or DVD or blanking a screen) For
efficiency and protection, users usually cannot control I/O
devices. Therefore, the operating system must be programmed
to do this.

File Manipulation – this involves reading and writing files,
creating and deleting files and folders. It also involves searching
and listing files by name. It also involves granting and denying
access to files and folders based upon ownership.

Operating-System Services
The command Attrib displays, sets, or removes the read-only,
archive, system, and hidden attributes assigned to files or
directories. Used without parameters, attrib displays attributes
of all files in the current directory.

attrib [{+r|-r}] [{+a|-a}] [{+s|-s}] [{+h|-h}] [[Drive:][Path] FileName] [/s[/d]]

Parameters

+r : Sets the read-only file attribute.

-r : Clears the read-only file attribute.

+a : Sets the archive file attribute.

-a : Clears the archive file attribute.

+s : Sets the system file attribute.

-s : Clears the system file attribute.

+h : Sets the hidden file attribute.

-h : Clears the hidden file attribute.

Operating-System Services
The command chmod changes the permission of a file.
Syntax

• chmod [OPTION]... MODE[,MODE]... FILE...
chmod [OPTION]... OCTAL-MODE FILE... Numeric Permissions:

CHMOD Numeric Permissions:

400 read by owner
040 read by group
004 read by anybody (other)
200 write by owner
020 write by group
002 write by anybody
100 execute by owner
010 execute by group
001 execute by anybody

The command chmod 755 file.txt would yield the permission

Permissions
u – Owner/User who owns the file.
g - Group that owns the file.
o - Other.
a - All.
r - Read the file.
w - Write or edit the file.
x - Execute or run the file as a program.

- rwx r-x r-x 1 hope 123 Feb 03 15:36 file.txt

File Owner group everyone else links owner size mod date file name

Operating-System Services
Communications – being that computer are often times
communicating with other computers normally through a
network, where memory is shared, or through message passing,
information is moved between processes by the operating
system in packets (formatted units of data).

Error Detection – The operating system needs to be constantly
aware of possible errors. Errors may occur in the CPU and
memory hardware (such as a memory error or a power failure),
in I/O devices (such as a parity error on tape, a connection
failure on a network, or lack of paper in the printer), and in the
user program (such as an arithmetic overflow, an attempt to
access an illegal memory location , or a too-great use of CPU
time. For each type of error, the operating system should take
the appropriate action to ensure correct and consistent
computing.

Operating-System Services
Resource Allocation, Accounting and Protection and Security are
operating system functions that exist for the purpose of ensuring
the efficient operation of the system.

Resource allocation - it becomes important when there are
multiple users or multiple jobs running at the same time;
resources must be allocated to each of them. (i.e. CPU cycles,
main memory and file storage)

Accounting – It may come a time when we may want to keep
track of each users time usage of resources. This may be done
for billing purposes or simply to accumulate statistics on the
usage of resources in order to improve your computing service.

Protection and Security – Protection involves ensuring that all
access to system resources are controlled (i.e. process
interference). Security through passwords authenticate each
user attempting to gain access to system resources.

User Operating-System Interface
As mentioned earlier there are several ways for a user to
interface with the operating system.

1. Command line

2. Batch processing

3. Graphical User Interfaces (Icons)

Command Interpreter

Some operating systems include the command interpreter in the
kernel. Others, such as Windows and UNIX, treats the command
interpreter as a special program that is running when a job is
initiated or when a user first logs on.

On system with multiple command interpreters to choose from,
the interpreters are know as shells.

UNIX and LINUX Shells

(Korn, Bourne, C and Bourne-Again)

User Operating-System Interface
Command Interpreter (cont.)

The main function of the command interpreter is to get and
execute the next user-specified command. Many of the
commands given at this level manipulate files: create, delete,
list, print, copy, execute, etc.

Graphical User Interfaces

A second strategy for interfacing with the operating system is
through a user friendly graphical user interface, or GUI. Rather
than entering commands directly via a command-line interface,
users employ a mouse-based window-and-menu system on a
computer’s desktop. Depending on the mouse pointer’s location,
clicking a mouse button will invoke a program, select a file or
directory (folder), or pull down a menu that contains commands.

User Operating-System Interface
Graphical User Interfaces (cont.)

GUI’s first appeared due in part to research taking place in the
early 1970s at Xerox PARC research facility. The first GUI
appeared on the Xerox Alto computer in 1973 and soon became
more widespread with the advent of Apple Macintosh
computers in the 1980s. Microsoft’s first version of Windows,
(Windows – Version 1.0), was based on the addition of a GUI
interface to the MS-DOS operating system.

User Operating-System Interface
System Calls

System calls provide an interface to the services made available by
an operating system. These calls are generally available as routines
written in C and C++, although certain low-level tasks many need to
be written when hardware must be accessed directly.

System calls are invoked when instructions, are displayed, a file
needs to read an input file, write to an output file, close both files
and writing a confirmation message.

Example of how system calls are used.

 Example System Call Sequence
Acquire input file name
 Write prompt to screen
 Accept input
Acquire Output file name
 Write prompt to screen
 Accept input
Open the input file
 if file doesn’t exist, abort
Create output file
 if file exits abort
Loop
 Read from input file
 Write to output file
Until read fails
Close output file
Write completion message to screen
Terminate normally

source file destination file

User Operating-System Interface

Write a program using
these stages of system
calls to simulate
copying a data file.

User Operating-System Interface
Types of System Calls

1. Process control

2. File manipulation

3. Device manipulation

4. Information manipulation

5. Communications

6. Protection

User Operating-System Interface
Types of System Calls

1. Process control – the halting of a running program’s
execution whether it halts normally (programs end) or
abnormally (aborted).

If a system call is made to terminate the currently running
program abnormally, or if the program runs into a problem and
causes an error trap, a dump of memory is sometimes taken and
an error message generated. The dump is written to disk and
may be examined by a debugger (system programmer).

Under either normal or abnormal circumstances, the operating
system must transfer control to the invoking command
interpreter.

User Operating-System Interface
Types of System Calls (Process Control)

Interactive system, the command interpreter simply continues
with the next command; it assumes that the user will issue an
appropriate command to respond to an error.

GUI system, a pop-up window might alert the user to the error
and ask for guidance.

Batch system, the command interpreter usually terminates the
entire job and continues with the next job.

User Operating-System Interface
Types of System Calls (Process Control)

Summary of System calls

• End , Abort

• Load, Execute

• Create process, Terminate process

• Get process attributes, Set process attributes

• Wait for time

• Wait event, Signal event

• Allocate and free memory

Example of Windows and Unix System Calls

Windows Unix

Process
Control

CreateProcess() fork()

ExitProcess() exit()

WaitForSingleObject() wait()

User Operating-System Interface
Types of System Calls

2. File Management– the creation, deleting, reading, writing or
repositioning of files.

These system calls require the name of the file and perhaps
some of the file’s attributes. After the action of the file has be
invoked, we need to open it for use. Once the action of the file
has been completed, we need to close the file, indicating that we
no longer want to use it.

We may need these same sets of operations for directories if we
have a directory structure for organizing files in the file system.
In addition, for either files or directories, we need to be able to
determine the value of various attributes and perhaps to reset
them if necessary.

User Operating-System Interface
Types of System Calls (File Management)

File Attributes

• File size in bytes

• file date/time (creation time, last-modify time, last-access time)

• file attributes archive bit (shows that the file has not been archived yet)

• read-only bit (write-protect the file) directory bit (distinguishes a directory

from a file)

• hidden bit (hides from an ordinary directory listing)

• system bit (denotes a system file whatever that means)

User Operating-System Interface
Types of System Calls (File Management)

Summary of System calls

• Create file, Delete file

• Open, Close

• Read, Write, Reposition

• Get File Attributes, Set File Attributes

Example of Windows and Unix System Calls

Windows Unix

File
Management

CreateFile() open()

ReadFile() read()

WriteFile() write()

CloseHandle() close()

User Operating-System Interface
Types of System Calls

3. Device Management– making resources available for process
execution.

A process may need several resources to execute (i.e. main
memory, disk drives, access files, etc.). If resources are available,
they can be granted and control can be returned to the user
process. Otherwise, the process will have to wait until sufficient
resources are available. Resources can also be thought of as
devices (physical – disk drives, abstract - files).

A system with multiple users may require us to first request the
device, to ensure exclusive use of it. Then, once finished with the
device, release it. (Similar to file management)

So similar that many OS merge the two into a combined file-
device structure.

User Operating-System Interface
Types of System Calls (Device Management)

Summary of System calls

• Request device, release device

• Read, Write, reposition

• Get Device Attributes, Set Device Attributes

• Logically attach or detach devices

Example of Windows and Unix System Calls

Windows Unix

Device
Management

SetConsoleMode() loctl()

ReadConsole() read()

WriteConsole() write()

User Operating-System Interface
Types of System Calls (Information Maintenance)

4. Information Maintenance – transferring information
between the user program and the operating system.

• Program trace – lists each system call as it is executed

• Time profile – indicate the amount of time a program
executes at a specific location or set of locations

The operating system keeps information about all its processes.

User Operating-System Interface
Types of System Calls (Information Maintenance)

Summary of System calls

• Get time or date, Set time or Date

• Get system date, Set system date

• Get process, file or device attribute

• Set process, file, or device attribute

Example of Windows and Unix System Calls

Windows Unix

Information
Maintenance

GetCurrentProcessID() getpid()

SetTimer() alarm()

Sleep() sleep()

User Operating-System Interface
Types of System Calls

5. Communication – (two common models)
a) Message-passing model – communicating processes exchange

messages with one another to transfer information.

a) Shared-memory model - processes used shared memory create and
shared memory attach system calls to create and gain access to
regions of memory owned by other processes

User Operating-System Interface
Types of System Calls (Communication)

a) Message-passing model - Messages can be exchanged between processes

either directly or indirectly through a common mailbox

1. A connection must be opened

2. The name of other communicator must be known. Can be;
1. Another process on the same system

2. A process on another computer connected by a communications network
(i.e. host name, ip address, process name), which is translated into an
identifier in which the operating system refers to.

Both of the models are common in operating systems, and most
systems implement both. Message passing is useful for
exchanging smaller amounts of data, because no conflicts need
be avoided. It is also easier to implement than is shared
memory for intercomputer communication. Shared memory
allows maximum speed and convenience of communication,
since it can be done at memory transfer speed.

User Operating-System Interface
Types of System Calls (Communication)

a) Shared-memory model – requires that two or more processes agree to remove

the restriction of preventing one process from accessing another process’s memory.

1. Information is exchanged by reading and writing data in shared areas.

2. The form of data is determined by the process (is not under the OS
control)

3. Process are responsible for ensuring that they are not writing to the
same memory location simultaneously

The get hostid and get processid system calls do this translation.
The identifiers are then passed to the general-purpose open and
close calls provided by the file system or to specific open
connection and close connection system calls. The recipient
process must usually give its permission for communication to
take place with an accept connection call.

User Operating-System Interface
Types of System Calls (Communication)

Summary of System calls

• Create, delete communication connection

• Send, receive messages

• Transfer status information

• Attach or detach remote devices.

Example of Windows and Unix System Calls

Windows Unix

Information
Maintenance

CreatePipe() pipe()

CreateFileMapping() shmget()

MapViewOfFile() mmap()

User Operating-System Interface
Types of System Calls

4. Protection – provides the mechanism for controlling access
to the resources provided by a computer system

All computer systems, from servers to PDA’s, must be concerned
with protection. Typically, system calls providing protection
include set permission and get permission, which manipulate
the permission settings of the resources such as files and disk.
The allow user and deny user system calls specify whether
particular users can – or cannot – be allowed access to certain
resources.

User Operating-System Interface
System Programs – also known as system utilities, provides a
convenient environment for program development and
execution. Some of them are simply interfaces to system calls;
others are considerably more complex. These are the categories:

• File management – which are programs that create, delete,
copy, rename, print, dump, list, and generally manipulates
files and directories.

• Status information – the collecting of data pertaining to the
system or process (i.e. system date, available memory, disk
space, number of users, other status information,
performance details, and logging, and debugging information.

• File modification (text editors) – the ability to create and
modify the content of files stored on disk or other storage
devices; may even include searches or transformation of text.

User Operating-System Interface
• Programming-language support – Compilers, assemblers,

debuggers, and interpreters for common programming
languages (such as C, C++, Java, Visual Basic, and PERL) are
often provided to the user with the operating system.

• Program loading and execution – Once a program is
assembled or compiled, it must be loaded into memory to be
executed. The system may provide absolute loaders,
relocatable loaders, linkage editors, and overlay loaders.
Debugging systems for either high-level languages or machine
languages are needed as well.

• Communications – These programs provide the mechanism
for creating virtual connections among processes users, and
computer systems. They allow users to send messages to one
another’s screens, to browse Web pages, to send electronic-
mail, to log in remotely, or to transfer file from one machine
to another.

Operating-System Structure

• Simple Structure

Many commercial operating systems do not have well-defined
structures. Frequently, such systems started as small, simple, and
limited systems and then grew beyond their original scope. MS-
DOS is an example of such a system. It was originally designed
for a few people who had no idea that it would become so
popular. It was written to provide the most functionality in the
least space, so it was not divided into modules carefully.

Another example would be the original UNIX operating system.
Like MS-DOS, UNIX initially was limit by hardware functionality.

It consist of two parts the kernel and the system programs.

Operating-System Structure

MS-DOS Layer Structure

application program

resident system
program

MS-DOS
device driver

ROM BIOS device driver

In MS-DOS, application programs are able to
access the basic I/O routines to write
directly to the display and disk drives. Such
freedom leaves MS-DOS vulnerable to errant
(or malicious) programs, causing entire
system crashes when user programs fails.

Operating-System Structure
• Layered Approach

With proper hardware support, operating systems can be broken
into pieces that are smaller and more appropriate than those
allowed by the original MS-DOS and UNIX systems.

A system can be made modular in many ways.

1. Layered Approach (levels) – where the bottom layer (layer 0)
is hardware and the highest layer (layer N) is the user
interface.

An operating-system layer is an implementation of an abstract
object made up of data and the operations that can manipulate
that data. A typical operating system layer – say, layer M –
consists of data structures and a set of routines that can be
invoked by higher-level layers. Layer M, in turn can invoke
operations on lower-level layers.

Operating-System Structure

• Layered Approach

layer 0
hardware

layer 1

.

.

.

layer N
user interface

Operating-System Structure

• Layered Approach

The main advantage of the layered approach is simplicity of
construction and debugging. The first level can be debugged
without concern for the rest of the system, because, by
definition, it uses only the basic hardware (which we assume is
correct) to implement its functions. Once the first layer is
debugged, its correct functioning can be assumed while the
second layer is debugged, and so on.

The layered approach is simplified because each layer is
implemented with only those operations provided by lower-level
layers. A layer does not need to know how these operations are
implemented; it needs to know only what these operations do.

Operating-System Structure
• Microkernels

Mach OS developed in mid-1980s at Carnegie Mellon University
modularized the UNIX kernel using the microkernel approach.

This method structures the operating by removing all
nonessential components from the kernel and implementing
them as system and user-level programs, which results to a
smaller kernel. It provides minimal process and memory
management, in addition to a communication facility.

The main function of the microkernel is to provide a
communication facility between the client program and the
various services that are also running in user space, which
provided by message passing.

Microkernels can suffer from performance decreases due to
increased system functions (i.e. Window NT).

Operating-System Structure
• Modules

Considered the best current methodology for operating-system
design because it involves using object-oriented programming
techniques to create a modular kernel.

The kernel has a set of core components and links in additional
services either during boot time or during run time. This
strategy uses dynamically loadable modules and is common in
modern implementations of UNIX, such as Solaris, Linux, and
Mac OS X.

This design allows the kernel to provide core services yet also
allows certain features to be implemented dynamically. For
example, device and bus drivers for specific hardware can be
added to the kernel, and support for different file systems can be
added as loadable modules.

Operating-System Structure
• Solaris Loadable Modules

scheduling
classes

device and
bus drivers

miscellaneous
modules

file
systems

loadable
system calls

STREAMS
modules

executable
formats

Core Solaris
kernel

Operating-System Structure
• Modules

The overall result resembles a layered system in that each kernel
section has defined, protected interfaces; but it is more flexible
than a layered system in that any module can call any other
module. The approach is like the microkernel approach in that
the primary module has only core functions and knowledge of
how to load and communicate with other modules; but it is
more efficient, because modules do not need to invoke message
passing in order to communicate.

