
Scheduling
The Basics

Scheduling refers to a set of policies and mechanisms to control
the order of work to be performed by a computer system. Of all
the resources in a computer system that are scheduled before
use, the CPU is by far the most important.

Multiprogramming is the (efficient) scheduling of the CPU. The
basic idea is to keep the CPU busy as much as possible by
executing a (user) process until it must wait for an event, and
then switch to another process.

Processes alternate between consuming CPU cycles (CPU-burst)
and performing I/O (I/O-burst).

Scheduling
Types of Scheduling

In general, (job) scheduling is performed in three stages: short-,
medium-, and long-term. The activity frequency of these stages
are implied by their names.

Long-term (job) scheduling is done when a new process is
created. It initiates processes and so controls the degree of
multi-programming (number of processes in memory).

Medium-term scheduling involves suspending or resuming
processes by swapping (rolling) them out of or into memory.

Short-term (process or CPU) scheduling occurs most frequently

and decides which process to execute next.

Scheduling
Long-Term and Medium-Term Scheduling

Acting as the primary resource allocator, the longterm scheduler
admits more jobs when the resource utilization is low, and blocks
the incoming jobs from entering the ready queue when
utilization is too high.

When the main memory becomes over-committed, the medium-
term scheduler releases the memory of a suspended (blocked or
stopped) process by swapping (rolling) it out.

In summary, both schedulers control the level of
multiprogramming and avoid (as much as possible) overloading
the system by many processes and cause ‘‘thrashing’’.

Scheduling
Short-Term Scheduling

Short-term scheduler, also known as the process or CPU
scheduler, controls the CPU sharing among the ‘‘ready’’
processes. The selection of a process to execute next is done by
the short-term scheduler.

Usually, a new process is selected under the following

circumstances:
• When a process must wait for an event.

• When an event occurs (e.g., I/O completed, quantum expired).

• When a process terminates.

Scheduling
Short-Term Scheduling Criteria

The goal of short-term scheduling is to optimize the system
performance, and yet provide responsive service. In order to
achieve this goal, the following set of criteria is used:

• CPU utilization

• I/O device throughput

• Total service time

• Responsiveness

• Fairness

• Deadlines

Scheduling
Algorithms

The following are some common scheduling algorithms:

In general, scheduling policies may be non-preemptive. In a non-
preemptive pure multiprogramming system, the short-term scheduler
lets the current process run until it blocks, waiting for an event or a
resource, or it terminates.

Preemptive policies, on the other hand, force the currently active
process to release the CPU on certain events, such as a clock interrupt,
some I/O interrupts, or a system call.

Non-preemptive Preemptive

First-Come-First-Served (FCFS) Round-Robin (RR)

Shortest Job First (SJF) Priority

Background “batch Good for jobs” Foreground “Good for” interactive jobs

Scheduling
First Come First Serve (FCFS)

FCFS, also known as First-In-First-Out (FIFO), is the simplest scheduling policy.

Arriving jobs are inserted into the tail (rear) of the ready queue and the
process to be executed next is removed from The head (front) of the queue.

FCFS performs better for long jobs. Relative importance of jobs measured
only by arrival time

(poor choice). A long CPU

-bound job may hog the

CPU and may force shorter

(or I/O-bound) jobs to wait

prolonged periods. This

in turn may lead to a

lengthy queue of ready

jobs, and thence to the

‘‘convoy effect.’’

Scheduling
Shortest Job First (SJF)

SJF policy selects the job with the shortest (expected) processing time
first. Shorter jobs are always executed before long jobs. One major
difficulty with SJF is the need to know or estimate the processing time
of each job (can only

predict the future!)

Also, long running jobs

may starve, because the

CPU has a steady supply

of short jobs.

Scheduling
Round Robin (RR)

RR reduces the penalty that short jobs suffer with FCFS by preempting
running jobs periodically. The CPU suspends the current job when the
reserved) is exhausted. The job is then time-slice (quantum put at the
end of the ready
queue if not yet
completed.
The critical issue with
the RR policy is the
length of the quantum.
If it is too short, then
the CPU will be
spending more time on
context switching.
Otherwise, interactive
processes will suffer.

Scheduling
Priority

Each process is assigned a priority. The ready list contains an entry for each
process ordered by its priority. The process at the beginning of the list
(highest priority) is picked first.
A variation of this
scheme allows
preemption of the
current process when
a higher priority
process arrives.
Another variation of
the policy adds an
aging scheme, where
the priority of a
process increases as
it remains in the
ready queue; hence,
will eventually execute
to completion.

Scheduling
Comparisons

Unfortunately, the performance of scheduling policies vary
substantially depending on the characteristics of the jobs entering the
system (job mix), thus it is not practical to make definitive
comparisons.

For example, FCFS performs better for “long” processes and tends to
favor CPU-bound jobs. Whereas SJF is risky, since long processes may
suffer from CPU starvation. Furthermore, FCFS is not “interactive” jobs,
and similarly, RR is not suitable for long “batch” jobs.

Deadlocks
Deadlock - Occurs when resources needed by one process are held by
some other waiting process.

Deadlock not only occurs in OS.
Kansas state legislature in the early 20th century passed the following
legislation:

"When two trains approach each other at a crossing, both shall come
to a full stop and neither shall start up again until the other has
gone. "

Assume we have the following operating system:

1. Finite number of resources to be distributed among some
number of competing processes

2. Resources may be of several types and there may be several
instances of each

Deadlocks
 3. When a process requests a resource any instance of that resource
will satisfy the process

4. Processes can

a. request a resource
b. use the resource
c. release the resource

5. A set of processes is in a deadlock state when every process in
the set is waiting for an event that can be caused only by another
process in the set.

1. Same resource type - three tape drives, three processes

request a tape drive then they each request
another. Dining philosophers request chopsticks held by
another.

2. Different resource type - process A has a printer process B
has a file, Each requests the other's resource.

Deadlocks

 Four Necessary Conditions for Deadlock
1. Mutual exclusion: At least one resource is not sharable, i.e. can

only be used by one process at a time
2. Hold and wait: A process holds at least one resource and

requests resources held by other processes
3. No preemption: resource cannot be preempted, it must be

voluntarily released by the process.
4. Circular wait: Given a set of processes { P1, P2, P3, …Pn} P1 has

a resource needed by P2, P2 has a resource needed by P3, …,
Pn has a resource needed by P1.

Deadlocks
Deadlock Avoidance

Avoidance

– Provide information in advance about what resources will be
needed by processes to guarantee that deadlock will not
happen

– System only grants resource requests if it knows that the
process can obtain all resources it needs in future requests

– Avoids circularities (wait dependencies)

Tough

– Hard to determine all resources needed in advance

– Good theoretical problem, not as practical to use

