
Operating System Structures

• While process management, memory management, file
systems, and I/O provide an idea of what an operating
system does (its verbs), additional concepts help define
what an operating system is made of (its nouns)

• Three different perspectives for these concepts:

users
user interface, programs (“system programs,”

“system utilities,” “application programs”)

programmers
application programming interfaces (APIs),

system calls

operating system
designers

mechanisms, policies, layers, microkernels,
modules, virtual machines

User Interfaces to Operating
Systems

• Command interpreter or shell

Text-driven, command-response interface style

A shell is ultimately just a program, so there may be more than one

Two variations: embed system calls in shell, or separate all system calls as external
programs (keeps the shell small, and protects it from operating system changes)

• Graphical user interface

Menu-driven and/or direct manipulation interface style

Also “just a program,” so there may also be more than one GUI environment available

• In many cases, both UI types are provided; really an
orthogonal issue to the operating system itself

Programs: “System,” “Utility,”
“Application”

• Primarily an end-user distinction; they’re all the same
to the operating system

• “Application programs” generally refer to the
programs that directly perform the work that we need
to do: e-mail, Web browsing, document creation, etc.

• When a program’s work involves something on the
computer itself, it may be viewed as a “system utility”

• Finally, programs whose functions correspond most
directly with an operating system’s underlying services
may be viewed as “system programs”

APIs and System Calls

• “Beneath” the programs that end-users run are
application programming interfaces (APIs) — functions
that the programs’ developers invoke

• APIs themselves are implemented by another layer of
developers; ultimately, they invoke an OS’s system calls

APIs hide system call-specific details from your average programmer; they keep semantics
at the level of the programming language and may facilitate portability (e.g., standard C
interfaces), but not always (e.g., Windows APIs)

• System calls define the direct programming interface to
operating system services, and form the boundary
between user and kernel modes

Operating System Design and
Implementation

• In the end, operating systems are software programs,
and are as subject to good software engineering
practices and principles as any other program

• Interesting side reading: The Art of Unix Programming by
Eric S. Raymond (http://www.faqs.org/docs/artu)

• Also notable: The Mythical Man-Month by Frederick P.
Brooks (primarily about the software development
process, but the software in question is an operating
system, IBM’s OS/360)

Mechanisms and Policies

• A mechanism defines how something is done; a policy
states what is actually done

• General principle: separate mechanism from policy; or,
allow for a single mechanism to support the widest
possible range of policies (i.e., a change in policy should
not necessitate a change in mechanism)

• Good principle to follow in all software design, but
particularly important in operating systems

• Yet another way: separate the interface (policy) from
the engine (mechanism)

Operating System
Implementation

• Originally machine or assembly language

• Feasible these days in a higher-level language, such as C
or C++ — allows for (potentially) better portability
and improvements based on compiler technology

• C and C++ have reigned for quite a while; some
research has involved going beyond these languages
(Java for “native” object-orientation, Haskell for the
benefits of functional languages)

• Subject to possible inefficiencies; frequently coupled
with changes at the hardware level

Interesting Operating System
Language Choices
Or, “neither assembly nor C/C++” :)

Operating System Implementation Era

Master Control
Program (MCP)

ESPOL (ALGOL
variant)

1960s

Multics PL/1 1960s–1980s

Hello Standard ML 1999 (master’s thesis)

House, Osker Haskell present (research)

Overall Operating System
Structure

• The usual rules apply: we want easy modification,
robust operation, and efficiency (speed)

• Simplest case first: monolithic structure (MS-DOS, early
Unix versions)

Hardware below, programs above, no other
distinctions in between

MS-DOS (and other early PC operating systems) had
it even worse — hardware didn’t support dual-mode
operation, so many protections taken for granted
today weren’t even available

Layered Approach

• Strict separation of functions and data structures;
“layer zero” represents the hardware

• Each layer may only call functions and use data
structures from itself and the layers below it

• Benefits: the usual “good things” that come from
abstraction, information hiding, and isolation

• Drawbacks: strict top-down approach makes the actual
layers hard to define — cyclic dependencies between
functions must be avoided or else layer separation
can’t be done; possible efficiency issues as well

Microkernels

• Minimalist approach to the kernel — include only what
is absolutely necessary, and everything else is a
program in user space

• Introduced by CMU in the Mach operating system

• Services communicate using message passing

• Benefits: ease of OS extension and porting; somewhat
enhanced security because more code is in user space

• Drawbacks: performance issues due to increased
overhead (message passing, fine-grained separation)

Modules

• Current “best-of-both-worlds” approach, particularly
for existing Unix derivatives such as Solaris, Linux, and
Mac OS X (Darwin)

• What matters is the abstraction: module-based kernels
publish well-defined interfaces to their services

• Developers expand kernel functionality by adding
modules that “plug into” the relevant interfaces

Solaris: 7 types of loadable modules

Mac OS X (Darwin): Mach microkernel is actually one of the components inside the kernel

Virtual Machines

• The ultimate abstraction: a user-mode program that
runs an operating system kernel

• Device drivers in the virtual machine actually connect
to hardware abstractions provided by the virtual
machine software; for example, a “disk drive” in the
virtual machine may map to a file in the physical host

• Dual-mode simulation: virtual user and kernel modes
that are both in user mode on the physical host

• Virtual environment may go as far as translating
machine instructions, but not necessarily

Notable Virtual Machine
Implementations

• VMware: x86 virtual machine supporting multiple
operating systems

• User Mode Linux: Runs Linux kernel as a user process

• VirtualPC: x86 virtual machine on Mac OS X, all the way
down to the CPU; translates PowerPC instructions to
x86, but provides some PowerPC-native
implementations of some functions

• Java: special bytecode format to represent code, with a
just-in-time (JIT) compiler translating into native code

Operating System
Generation and System Boot
• In the end, operating systems are ultimately sets of

files, built from source code

• Installation sometimes requires customization, based
on the installation target’s hardware and devices

• A restart (warm or cold) points the CPU to start
executing from a predetermined location

For large, general purpose OSes, this initial program is a bootstrap program or loader (e.g.,
BIOS, OpenFirmware, EFI [Extensible Firmware Interface]) that locates the rest of the OS
in secondary storage and loads/runs it, usually from a known boot block

In other systems, the predetermined start location is the start of the operating system’s
code (firmware); other variations include booting off the network

Exercise: Build an Operating
System Kernel

• It’s easier than you think!

• Easily obtainable kernel sources:

Linux (of course)

XNU (a Mach/BSD kernel; a.k.a. the Darwin or Mac
OS X kernel)

• In addition to the sources, you will need: developer
tools (compile/make) and instructions

• Finally, note how it’s just the beginning — many more
files are involved before you have a “full” OS

