
PC & Network Security

CNET – 250 Section 01

David L. Sylvester, Sr., Assistant Professor

http://www.amazon.com/gp/product/images/0321512944/ref=dp_image_0?ie=UTF8&n=283155&s=books

Chapter 1

Introduction

Fundamental Concepts

An important aspect of computer security is the identification of
vulnerabilities in computer systems, which can, for instance allow a
malicious user to gain access to private data and even assume full
control of a machine. Vulnerabilities enable a variety of attacks.

Analysis of these attacks can determine the severity of damage that
can be inflicted and the likelihood that the attack can be further
replicated. Actions that need to be taken to defend against attacks
include:

• Identifying compromised machines,

• Removing the malicious code, and

• Patching systems to eliminate the vulnerability.

In order to have a secure computer system, sound models are a first
step. This involves:

– Defining the security properties that must be assured,

– Anticipate the types of attacks that could be launched, and

– Develop specific defenses.

The design should also take into account usability issues (Security
measures that are difficult to understand and inconvenient are likely
not to be adopted.)

Next, the hardware and software implementation of a system needs
to be vigorously tested to detect programming errors that introduce
vulnerabilities.

Once the system is put into operation, procedures should be put into
place to monitor the system for security breaches.

Finally, security patches must be applied as soon as they become
available.

Confidentiality, Integrity, Availability
(The CIA Concepts)

Computers and networks are being misused at a growing rate. Spam,
phishing, and computer viruses are becoming multibillion-dollar
problems, as is identity theft, which poses a serious threat to the
personal finances and credit ratings of users, and create liabilities for
corporations.

Spam is flooding the Internet with many copies of the same message, in an attempt to force the message on

people who would not otherwise choose to receive it.

Phishing is the act of sending an e-mail to a user falsely claiming to be an established legitimate enterprise

in an attempt to scam the user into surrendering private information that will be used for identity theft.

Computer viruses are computer programs that can copy itself and infect a computer.

Information security has been defined in terms of the acronym C.I.A.,
which in this case stands for confidentiality, integrity and availability.

Confidentiality is the avoidance of the unauthorized disclosure of
information. This involves the protection of data (keeping the data
secret), providing access for those who are allowed to see that data
while disallowing others from learning anything about its content.

With the various threats to the confidentiality of data today,
computer security researchers and system designers have come up
with a number of tools for protecting sensitive information.

These tools incorporate the following concepts:
– Encryption which is the transformation of information using a secret, called

an encryption key, so that the transformed information can only be read
using another secret, called the decryption key.

– Access Controls are rules and policies that limit access to confidential
information to those people and/or systems with a “need to know.” This
need to know may be determined by identity, (name, computer’s serial
number, or the role of that person)

Confidentiality

– Authentication which is the determination of the identity or role that
someone has. (smart card, radio key for storing secret keys, password, or
fingerprint)

– Authorization which involves determining if a person or system is allowed
access to resources, based on an access control policy. (These authorization
policies should prevent an attacker from tricking the system into letting
them have access to protected resources.

– Physical Security involves the establishment of physical barriers to limit
access to protected computational resources. (Barriers may include locks on
cabinets and doors, the placement of computers in windowless rooms, the
use of sound dampening materials and even the construction of buildings or
rooms with walls incorporating copper mesh so that electromagnetic signals
cannot enter or exit the enclosure.

Example
When we visit a web page that asks for your credit card number and
the internet browser shows a little lock icon in the corner, several
things happen in the background to help ensure the confidentiality of
your credit card number.

– The browser begins by performing an authentication procedure to verity
that the web site connected to is indeed who it say it is.

– The web site checks to see if the browser is authentic and have the
appropriate authorizations to access the web page according to its access
control policy.

– Your browser may then asks the web site for an encryption key to encrypt
the credit card, which it then uses to send the credit card information in
encrypted form.

– Finally, once the credit card number reaches the server that is providing the
web site, the data center where the server is located should have
appropriate levels of physical security, access policies, and authorization and
authentication mechanisms to keep your credit card number safe.

Integrity which is the property that information has not been altered
in an unauthorized way.

The importance of integrity is often demonstrated to school children
in the Telephone game. (A message is whispered onto others and the
last person says the message aloud.)

Typically, the message has been so mangled by this point that it is a
great joke for all the children. This game is done to show that as the
statement is passed from person to person it may and almost always
lose it’s integrity.

There are a number of ways that data integrity can be compromised
in computer systems and networks, and these compromises can be
benign (i.e. disk drive crash), or malicious (i.e. virus effecting the
system, deliberately changing files of the operating system, and the
system replicates the virus and sends it to other computers).

Integrity

• Backups: periodically archiving your data. Archiving is done for
restoration purposes, in case data is altered in an unauthorized or
unintended way.

• Checksums: computation of a function that maps the contents of
a file to a numerical value. This technique is used to detect when a
breach of data integrity has occurred.

• Data Correcting Codes: methods that involves storing data in such
a way that small changes can be easily detected and automatically
corrected.

These tools for achieving data integrity all possess a common trait-
they use redundancy; which involves the replication of some
information content or functions of the data so that we can detect
and sometimes even correct breaches in data integrity.

Tools That Support Integrity

In addition to maintaining the integrity of the actual data, the
integrity of the metadata for each file must also be maintained.

metadata - data about other data (access attributes, owner of file, last user to modify file,

last user to read the file, dates and times file was created modified and
accessed, name and location of the file and the list of users or groups who can
read or write the file.

Example
A computer intruder might not actually modify the content of any
user files in a system he has infiltrated, but he may be modifying
metadata, such as access time stamps, by looking at our files (and
thereby compromising their confidentiality if they are not encrypted).
If the system has integrity checks in place for this type of metadata, it
may be able to detect and intrusion that would have otherwise gone
unnoticed.

Besides confidentiality and integrity, another important property of
information security is availability, which is the property that
information is accessible and modifiable in a timely fashion by those
authorized to do so.

Example
If someone stole your credit card and it took weeks before the credit
card company could notify anyone, because its list of stolen numbers
was unavailable to merchants. Thus, as with confidentiality and
integrity, computer security researchers and system designers have
developed a number of tools for providing availability.

Availability

Two tools used for providing availability

– Physical protections: infrastructure meant to keep
information available even in the event of physical
challenges (i.e. storms, earthquakes, and bomb blasts).
These structures are outfitted with generators and other
electronic equipment to be able to cope with power
outages and surges.

– Computational redundancies: computers and storage
devices that serve as fallbacks in the case of failures.

• RAID (redundant array of inexpensive disks), use storage
redundancies to keep data available to their clients.

• Web servers are often organized in multiples called “farms” so
that the failure of any single computer can be dealt with
without degrading the availability of the web site.

Example
An attacker who otherwise doesn’t care about the confidentiality or
integrity of data may choose to attack its availability. A thief who
steals lots of credit cards might wish to attack the availability of the
list of stolen credit cards that is maintained and broadcasted by a
major credit card company. Thus, availability forms the third leg of
support for the vital C.I.A. triad of information security.

In addition to the C.I.A. concepts, there are a number of additional
concepts that are also important in modern computer security
applications. These concepts are categorized by the acronym A.A.A,
which in this refers to Assurance, Authenticity, and Anonymity.

Unlike the C.I.A. concepts, the A.A.A concepts are independent of
each other.

Assurance, Authenticity, and Anonymity
A.A.A.

Assurance refers to how trust is provided and managed in computer
systems. Trust involves the following.

Policies – specifies behavior expectations that people or systems have for

themselves and others. (Ex: the designer of an online music system
may specify policies that describe how user can access and copy
songs.

Permission – describes the behavior that are allowed by the agents that

interact with a person or system. (i.e. online music store provide
permissions for limited access and copying to people who have
purchased certain songs.

Protections – describes mechanisms that are put in place to enforce

permissions and policies. (i.e. online music store build in
protections to prevent people from unauthorized access and
copying of its songs.)

Assurance

The designers of a computer systems want to protect more than just
confidentiality, integrity, and availability of information. They also
want to protect and manage the resources of these systems and they
want to make sure users don’t misuse these resources.

This could involve keeping unauthorized people from:
• using CPU memory

• Accessing networks

Trust management deals with the design of effective, enforceable policies, methods
for granting permission to trusted users, and the components that can enforce
those policies and permissions for protecting and managing the resources in the
system.

Another important part of system assurance involves software engineering, where
the software on the system be designed to conform to the engineer’s system
design.

Authenticity is the ability to determine that statements, policies, and
permissions issued by persons or systems are genuine. If such things
can be faked, there is no way to enforce the implied contracts that
people and systems engage in when buying and selling items online.

Protocols that achieve such type of authenticity demonstrates
nonrepudiation, which is the property that authentic statements
issued by some person or system cannot be denied.

This is done through the use of digital signatures, which are
cryptographic computations that allow a person or system to commit
to the authenticity of their documents in a unique way that achieves
nonrepudiation.

Digital signatures typically have some additional benefits over blue-
ink signatures, in that digital signatures also check the integrity of
signed documents. If document is modified, it becomes invalid.

Authenticity

When we interact with systems in ways that involves our real-world
identities, we end up spreading our identity across a host of digital
records, which ties our identity to:

• Our medical history,

• Purchase history,

• Legal records,

• Email communications,

• Employment records, etc.

Therefore, we have a need for anonymity, which is the property that
certain records or transactions not be attributable to any individual.

Anonymity

To publish data in a privacy-preserving fashion, it can be done using
the following tools:

– Aggregation – combining data from many individuals so that disclosed sums
or averages cannot be tied to any individual.

– Mixing – intertwining transactions, information, or communications in a way
that cannot be traced to any individual.

– Proxies – trusted agents that engage in actions for an individual in a way
that the action cannot be traced back to that person.

– Pseudonyms – fictional identities that can fill in for real identities in
communications and transactions, but are otherwise known only to a
trusted entity. (i.e. anonymous user names on social networks)

– Eavesdropping – the interception of information intended for someone else
during its transmission over a communication channel. (confidentiality)

– Alteration – unauthorized modification of information. (integrity)

• Man-in-the-middle attack - where information is intercepted, modified and retransmitted

• Viruses – critical system files are modified to perform some malicious action

– Denial of Service – the interruption or degradation of a data service or
information access (availability)

• Email spam - fill up and slow down email server

– Masquerading – the fabrication of information that is claimed to be
someone who is not actually the author. (confidentiality and/or anonymity)

• Phishing – creating a web site that looks like a real bank or other e-commerce site, but is
intended only for gathering passwords,

• Spoofing – which may involves sending on a network, data packets that have false return
addresses.

– Repudiation – denial of a commitment, which may involves an attempt to
back out of a contract or a protocol that requires the different parties to
provide receipts acknowledging that data has been received. (assurance)

Threats and Attacks

– Correlation and Traceback – the integration of multiple data sources and
information flows to determine the source of a particular data stream or
piece of information. (anonymity)

– Economy of mechanism – This principle stresses simplicity in the design and
implementation of security measures.

– Fail-safe default – This principle states that the default configuration of a
system should have a conservative protection scheme. For example, when
adding a new user to an operating system, the default group of the user
should have minimal access rights to file and services.

– Complete mediation – every access to a resource must be checked for
compliance with a protection scheme. One should be wary of performance
improvement techniques that save the results of previous authorization
checks, since permissions can change over time. (i.e. systems should require
webpages with important information to time out)

– Open design – the security architecture and design of a system should be
made publicly available. Security should rely only on keeping cryptographic
keys secret. Open design allows for a system to be scrutinized by multiple
parties, which leads to the early discovery and correction of security
vulnerabilities caused by design errors. (i.e. open source software)

Security Principles

– Separation of privilege – dictates that multiple conditions should be
required to achieve access to restricted resources or have a program
perform some action. It also refers to the separation of components of a
system, to limit the damage cause by a security breach on any individual
component.

– Least privilege – Each program and user of a computer system should
operate with the bare minimum privileges necessary to function properly.
With this function in place, the abuse of privileges are restricted and the
damage caused by the compromise of a particular application or user
account is minimized. The military concept of need-to-know information is a
good example of this principle.

– Least common mechanism – In systems with multiple users, mechanisms
allowing resources to be shared by more than one user should be
minimized. For example, if a file or application needs to be accessed by
more than one user, then these users should have separate channels by
which to access these resources, to prevent unforeseen consequences that
could cause security problems.

– Psychological acceptability – states that user interfaces should be well
designed and intuitive, and all security-related settings should adhere to
what an ordinary user might expect. (could cause security problems such as
misconfiguration

– Work factor – the cost of circumventing a security mechanism should be
compared with the resources of an attacker when designing a security
scheme. For example, a system developed to protect student grades in a
university database, which may be attacked by snoopers, probably needs
less sophisticated security measures than a system built to protect military
secrets, which may be attacked by government intelligence organizations.
But remember, technology advances so rapidly that intrusion techniques
considered infeasible at a certain time may become trivial to perform within
a few years.

– Compromise recording – this principle states that sometimes it is more
desirable to record the details of an intrusion than to adopt more
sophisticated measures to prevent it. (i.e. internet-connected surveillance
cameras rather than reinforcing doors and windows) The compromise
recording principle does not hold as strongly on computer systems, since it
may be difficult to detect intrusion and adept attackers may be able to
remove their tracks on the compromised machine by deleting log entries.

One of the best ways to defend against attacks is to prevent them in
the first place. By providing a rigorous means of determining who has
access to various pieces of information, we can often prevent attacks
on confidentiality, integrity, and anonymity.

Access Control Matrices

A useful tool for determining access control rights is the access
control matrix, which is a table that defines permission. Each row in
this table is associate with a subject, which is a user, group, or system
that can perform actions. Each column of the table is associated with
an object, which is a file, directory, document, device, resource, or
any other entity for which we want to define access to.
Matrix Example

Access Control Models

/etc/password /usr/bin/ /u/roberto/ /admin

root read, write read, write, exec read, write, exec read, write, exec

Mike read read, exec

Roberto read read, exec read, write, exec

backup read read, exec read, exec read, exec

Advantage

An access control matrix allows for fast and easy determination of the
access control rights for any subject-object pair. Also, the access
control matrix gives administrators a simple, visual way of seeing the
entire set of access control relationships all at once.

Disadvantage

The size of the matrix, (number of rows and columns), can make it
difficult for a system manager to fine the desires access control in a

timely manner.

Access Control Models
(Advantages / Disadvantages)

The access control list (ACL) model takes an object-centered
approach. It takes each column of the access control matrix and
compresses it into a list by ignoring all the subject-object pairs in that
column that corresponds to empty cells.

Access Control Lists

/etc/password /usr/bin/ /u/roberto/ /admin/

root: r,w
mike: r
roberto: r
backup: r

root: r,w,x
mike: r,x
roberto: r,x
backup: r,x

root: r,w,x
roberto: r,w,x
backup: r,x

root: r,w,x
backup: r,x

Advantage

Access control lists are much smaller than an access control matrix.
Also, the ACL of an object can be stored directly with that object as
part of its metadata, which is particularly useful for file systems. (The

system need only consult the ACL of that object for it’s access controls.)

Disadvantage

An access control list do not provide an efficient way to enumerate all
the access rights for a given subject. In order to determine all the
access rights for a given subject, a secure system based on ACLs
would have to search the access control list of every object looking for
records that involves the record in question. (Requires that a complete

search of all the ACLs in the system to determine the access, whereas an access

control matrix involves examining the row for the subject.)

Access Control Lists
(Advantages / Disadvantages)

Another approach known as capabilities, takes a subject-centered
approach to access control. It defines, for each subject s, the list of
the objects which s has nonempty access control rights, together with
the specific rights of each subject object. Thus, it is essentially a list
of cells for each row in the access control matrix, compressed to
remove any empty cells.

Capabilities

root
/etc/passwrd: r,w,x; /usr/bin: r,w,x,
/u/roberto: r,w,x; /admin/: r,w,x

mike /etc/passwrd: r; /usr/bin: r,x,

roberto
/etc/passwrd: r; /usr/bin: r,
/u/roberto: r,w,x;

backup
/etc/passwrd: r,x; /usr/bin: r,x,
/u/roberto: r,x; /admin/: r,x

NOTE: r = read, w = write, x = execute

Advantage
The capabilities and access control list have the same advantages in regards to
space. The system administrator only needs to create and maintain access control
relationships for subject-object pairs that have nonempty access control rights. It
also makes it easy for an administrator to quickly determine, for any subject, all the
access rights that the subject has.

The administrator still needs to read off the capabilities list for that subject. Each
time a subject s requests a particular access right for an object o, the system needs
only to examine the complete capabilities list for s looking for o. If s has that right
for o, then it is granted it. (If the size of the capabilities list for a subject is not too
big, this is a reasonably fast computations.

Disadvantage
The subjects are not associated directly with objects. Therefore, the only way to
determine all the access rights for an object o is to search all the capabilities lists
for all the subjects. With the access control matrix, such a computation would
simply involve searching the column associated with object o.

Capabilities
(Advantages / Disadvantages)

In role-based access control (RBAC), administrators define roles and then specify
access control rights for these roles (groups), rather than for subject directly.

For example at a university, there could be the following roles, faculty, student,
administrative personnel, administrative manager, backup agent, lab manager.
Each role is granted the access rights that are appropriate for the class of users
associated with that role.

The access rights for any subject are the union of the access rights for the roles
that they have. For example a student that is part-time as a system administrator’s
assistant to perform backups on a departmental file system would have the roles
“student” and “lab manager”.

A hierarchy can be defined over roles so that access rights propagate up the
hierarchy. (Ex: if a role (R1) is above another role(R2), in the hierarchy, then R1
inherits the access rights of R2.)

Hierarchies of roles simply the definition and management of permissions thanks to
the inheritance property.

Role-Based Access Control

Computer Science Department

Example of Hierarchy of Role
Department

Chair

Administrative
Manager

Lab
Manager

System
Administrator

Undergraduate
TA

Graduate
TA

Faculty

Undergraduate
Student

Graduate
Student

Student

Department
Member

Accountant Secretary Lab
Technician

Backup
Agent

Administrative
Personnel

Technical
Personnel

Technological solutions are the primary mechanism for enforcing security policies
and achieving security goals. That’s were cryptography comes in. Cryptographic
techniques are used to achieve a broad range of security goals.

– Encryption: a means to allow two parties to establish confidential
communication over an insecure channel that is subject to eavesdropping.

Example:

M = message (plaintext),

E = encryption algorithm,

C = ciphertext (encrypted text)

D = decryption algorithm,

Before the message is sent is it encrypted. The encryption process is denoted by:

C = E(M)

Once the message is received, a decryption algorithm is applied to recover the
original plaintext. It is denoted by:

M = D(C)

Cryptographic Concepts

The decryption key is normally attained by the input of a secret
number or string. Likewise, the encryption algorithm uses encryption
key to encrypt information.

Before the start of encryption can begin, the two parties need to
agree on the ground rules they will be using to encrypt and/or
decrypt the message. A cryptosystem consists of seven components.

1. The set of possible plaintexts

2. The set of possible ciphertexts

3. The set of encryption keys

4. The set of decryption keys

5. The correspondence between encryption keys and decryption keys

6. The encryption algorithm to use

7. The decryption algorithm to use

Let c be a character of the classical Latin alphabet (which consists of 23
characters) and k be an integer in the range [-22, +22]. We denote with
s(c,k) the circular shift by k of character c in the Latin alphabet. The shift is
forward when k > 0 and backward for k < 0. Example, s(D, 3) = G, s(R, -2) =
P, s(Z, 2) = B, and s(C, -3) = Z. In the Caesar cipher, the set of plaintexts and
the set of ciphertexts are the strings consisting of characters from the Latin
alphabet. The set of encryption keys is {3}, that is, the set consisting of
number 3. The set of decryption keys is {-3}, that is the set consisting of the
number -3. The encryption algorithm consists of replacing each character x
in the plain text with s(x, e), where e = 3 is the encryption key. The
decryption algorithm consists of replacing each character x in the plaintext
with s(x, d), where d = -3 is the decryption key. Note the encryption
algorithm is the same as the decryption algorithm and that the encryption
and decryption keys are one the opposite of the other.

Example

There are modern cryptosystems that are much more complicated
than the Caesar cipher, and much harder to break. The Advanced
Encryption Standard (AES) algorithm, uses keys that are 128, 196, or
256 bits in length, so that it is practically infeasible for an
eavesdropper, to try all possible keys in a brute-force attempt to
discover the corresponding plaintext from a given ciphertext.

Symmetric Encryption – is when the same key k is used for both encryption
and decryption. Symmetric cryptosystems are also called shared-key
cryptosystem.

Symmetric Key Distribution

Symmetric cryptosystems, including the AES algorithm tend to run fast, but
they require some way of getting the key k to both parties without an
eavesdropper discovering it.

Suppose n number of parties wanted to exchange the same encrypted
message with each other, in such a way that each message can be seen only
by the sender and the recipient. Using a symmetric cryptosystem, a distinct
secret key is needed for each pair of parties, for a total of n(n-1)/2.

Public-Key Encryption – An alternate approach to a symmetric cryptosystem
is the concept of a public-key cryptosystem. In this case, a recipient has two
keys: a private key, SB, which the recipient keeps secret, and a public key, PB,
which is broadcasted widely, possibly even posting it on his web page. In
order for the sender to send an encrypted message to recipient, the sender
need only obtain the public key, PB, use that to encrypt the message, M and
send the result, C = EPB

(M), to recipient. The recipient then uses the secret
key to decrypt the message M = DSB

(C).

Note: In a public-key cryptosystem, the sender uses the public key of the
recipient to encrypt and the recipient uses its private key to decrypt.

Advantages
– Public-key cryptosystems sidestep the problem of getting a single shared

key to both recipient and sender.

– Only private keys need to be kept secret, whereas public keys can be shared
with anyone, including the attacker.

– Public-key cryptosystems support efficient pairwise confidential
communication among n users.

Pairwise confidential communication among n users with a public-key cryptosystem
requires n key pairs. (one per user)

Disadvantages.

– The encryption and decryption algorithms such as RSA and ElGamal are
much slower than those for existing symmetric encryption schemes.

– Public-key cryptosystems require a key length that is one order of
magnitude larger than that of symmetric cryptosystems. (RSA commonly
use 2,048-bit keys while AES typically uses 256-bit keys)

In order to get around these disadvantages, public-key cryptosystems are
often used just to allow the sender and recipient to exchange a shared
secret key, which they subsequently use for communicating with a
symmetric encryption scheme.

Another problem that is solved by public-key cryptosystems is the construction of
digital signatures. Derived from reversing the order in which encryption and
decryption algorithms are applied.

EPB
(DSB

(M)) = M

This example demonstrates that a sender can give as input to the decryption
algorithm a message (M), with it’s private key (SB), which the encrypted algorithm
(EPB

) and the public key (PB) can be applied, yielding the message (M).

Using a Private Key for a Digital Signature
Anyone that knows the senders public key can convert its message. This may seem
pointless, but that is exactly the point for a digital signature. (Only the sender could
have done such a decryption, because no one else knows the secret key.) So if the
sender intends to prove that he is the author of message M, he computes his
personal decryption as follows: S = DSB

(M).

The decryption S serves as a digital signature for message M. The sender sends
signature S to the receiver along with message M. Receiver can now recover M by
encrypting signature S with sender’s public key. M = EPB

(S).

Digital Signatures

Man-in-the-Middle Attacks

The simple use of a cryptosystem consists of just transmitting the ciphertext, which
assures confidentiality, but does not guarantee the authenticity and integrity of the
message if an adversary intercept and modify the ciphertext. Suppose a message is
sent (ciphertext C), corresponding to message M. The adversary modifies C into an
altered ciphertext (C’) to be received. When the receiver decrypts C’, he obtains a
message M’ that is different from M. Thus, the receiver is led to believe that he
was sent M’ instead of M. (The same holds true for digital signatures.)

Simple Attacks on Cryptosystems

Note that in the previous two attacks of man-in-the-middle, the
adversary can arbitrarily alter the transmitted ciphertext or signature.
However, the adversary cannot choose, or even figure out, what
would be the resulting plaintext since he does not have the ability to
decrypt. Thus, the two examples are effective only if any arbitrary
sequence of bits is a possible message.

Brute-Force Decryption Attack

Now, suppose instead that valid messages are English text of up to t characters.
With the standard 8-bit ASCII encoding, a message is a binary string of length n=8t.
However, valid messages constitute a very small subset of all the possible n-bit
strings.

Natural-language plaintexts are a very small fraction of the set of possible
plaintexts. This fraction tends to zero as the plaintext length grows. Thus, for a
given key, it is hard for an adversary to guess a ciphertext that corresponds to a
valid message. If the plaintext is an arbitrary binary string, an attack cannot
succeed, as there is no way for the attacker to distinguish a valid message. (If the

plaintext is known to be text in a natural language, the adversary hopes that the small subset of the
decryption result will be a meaningful text for the language.)

To reduce the size of the a sent message, the cryptographic hash functions are
often used. These functions are checksums on messages that have some additional
useful properties. The most important being that the function be one-way, which
means that it is easy to compute but hard to invert.

Example. Given a message, M, it should be relatively easy to compute the hash
value, h(M). But given only a value y, it should be difficult to compute a message M
such that y = h(M). SHA-256 hash functions are believed to be one-way functions,
and result in values that are only 256 bits long.

Applications to Digital Signatures and File System Integrity

By using a cryptographic hash function to hash a message, time and space needed
to perform a digital signature can be reduced. Ex: Given the message M, the
message is hashed, producing the hashed message h(M), then sign the hashed
value, (digest of M). S = ESB

(h(M))

To verify signature S on a message M, the receiver computes h(M), which is easy,
and then checks that - DpB

(S) = h(M)
(Signing a cryptographic digest of the message not only is more efficient than signing the message
itself, but it also defends against the man-in-the-middle attach.)

Cryptographic Hash Functions

Message Authentication Codes

A cryptographic hash function h, can be used in conjunction with a secret key
shared by two parties to provide integrity protection to messages exchanged over
an insecure channel. Example: Suppose two individuals share a secret key K.
When the sender want to send a message M to a receiver, he computes the hash
value of the key K concatenated with message M: A = h(K||M).

The value A, is called a message authentication code (MAC). Then the sender
would send the pair (M,A). Since the communication is insecure, we denote with
(M’,A’), the received pair. Since the receiver knows secret key K, he computes the
authentication code for the receive message M himself. A’’ = h(K||M).

If this computed MAC (A’’) is equal to the received MAC (A’), then the receiver is
assured that M’ is the message sent by the sender.

In order for computer security solutions to be effective, they have to
be implemented correctly and used correctly. Thus, when computer
security solutions are being developed, designers should keep both
the programmer and users in mind.

Password

One of the most common means of authenticating people in
computer systems is through the use of usernames and passwords.

Password Characteristics
• Easy to remember

– English like words, pet names, birthdays, anniversaries and last name

• Hard to guess
– Random sequences of characters

– Include lower and uppercase letters

– Numbers and symbols

– Changed periodically

Implementation and Usability Issues

Directory Attack

The problem with the typical easy-to-remember password is that it
belongs to a small set of possibilities. Attackers know all these
passwords and have built directories of them.

Ex: The English language

• Less than 50,000 common words

• 1,000 common human first names

• 10,000 common last names

• Only 36,525 birthdays and anniversary for almost
every living human on earth, who is 100 years
old or younger.

Armed with a dictionary of common passwords, one can perform an
attack that is called a dictionary attack, which can break the
computer’s protection in a few minutes.

Secure Password

Secure passwords take advantage of the full potential of a large
alphabet, thus slowing down dictionary attacks.

Example: If a system administrator insists on each password
being an arbitrary string of at least eight printable characters that can
be typed on a typical American keyboard, then the number of
potential passwords is at least 948 = 6,095,689,385,410,816 (at least 6
quadrillion). Even if a computer could test one password every
nanosecond it would take on average, at least 3 million seconds to
brake one such password (equivalent to one month of nonstop
attempts).

There are several tricks for memorizing a complex password. Note:
writing it down is not one of them. One way may be to memorize a
silly or memorable sentence and then take every first letter of each
word, capitalizing some, and then folding in some special characters.

Secure Password Examples

The sentence:

“Mark took Lisa to Disneyland on March 15,”

Could generate the password:

MtLtDoM1t5,

An even better password would be:

MtL+DoM15,

Which could last a user a lifetime.

The three B’s of Espionage – burglary, bribery, and blackmail – apply
equally well to computer security. Add to these three techniques
good old fashion trickery and we come up with one of the most
powerful attacks against computer security solutions– social
engineering, which refers to techniques involving the use of human
insiders to circumvent computer security solutions.

Pretexting

Pretexting involves, a person attempting to attain login information
from a helpdesk, etc., through false pretense. Ex: Contacting a
helpdesk pretending to be someone else, claiming that you have
forgotten your password and the helpdesk assigns and tell the user
the password.

Emailing the password to the registered email account can help to
secure the password.

Social Engineering

Baiting

This attack involves using some kind of “gift” as a bait to get someone
to install malicious software. Ex: An attacker could leave a few USB
drives in the parking lot of a company with an otherwise secure
computer system, even marking some with the names of popular
software programs and games. The hope is that some unsuspecting
employee will pick up the USB drive on his lunch break, bring it into
the company, insert it into an otherwise secure computer, and
unwillingly install malicious software.

Quid Pro Quo (Something for Something)

A person may pose as a helpdesk agent who was referred by a
coworker. The agent may offer to do legitimate work on the user’s
computer. Then, the agent ask the user for their password. The user
being appreciative of the work already done on the computer, may
feel appreciative of the work and feel free to give the agent the
password. If this happens, the user becomes a victim of the quick-
pro-quo attack.

Buffer Overflow Attack
A buffer overflow attack injects code written by a malicious user into a running
application by exploiting the common programming error of not checking whether
an input string read by the application is larger than the variable into which it is
stored (the buffer). Thus a larger input provided by the attacker can overwrite the
data and code of the application, which may result in the application performing
malicious actions specified by the attacker.

Vulnerabilities from Programming
Errors

