
PC & Network Security

CNET – 250      Section 01    CRN: 20653

Spring 2015

David L. Sylvester, Sr., Associate Professor

http://www.amazon.com/gp/product/images/0321512944/ref=dp_image_0?ie=UTF8&n=283155&s=books
http://www.amazon.com/gp/product/images/0321512944/ref=dp_image_0?ie=UTF8&n=283155&s=books


Chapter 3

Operating System Security



Operating Systems Concepts
Operating system, abbreviated (OS) provides  the interface between 
the user’s of a computer and the computer’s hardware.  It manages:

– The way applications access the resources

• Disk drives

• CPU

• Main memory

• Input devices

• Output devices and

• Network interfaces

Operating systems allow users and the applications to interact with 
the hardware of the computer.



Operating systems:

– Allow application developers to write programs in high level 
languages

– Allow applications to run by users in a simple and consistent 
way

– Handle complex tasks related to security problems

• Multi-users with different levels of access on the same 
computer

• Protect against malicious activity

– Allows multiple programs to run at the same time (multitasking)

• OS must manage the programs so that one program will not 
interfere with another

– Shared resources among programs

– Share the same file system

Thus, an OS must have measures in place so that applications cannot 
maliciously or mistakenly damage resources needed by other 
applications.



The Kernel and  Input/Output
The kernel is the core component of the operating system.  It handles 
the management of low-level hardware resources, including memory, 
processors, and input/output (I/O) devices. (keyboard, mouse, video 
display)  Operating systems define tasks associated with the kernel in 
terms of layers, where the CPU, memory and I/O devices being on the 
bottom.

User Applications

Non-essential OS
Applications

The OS Kernel

CPU, Memory,
Input/Output

Userland

Operating System

Hardware

Layers of a computer system.



Input/Output Devices

The input/output devices of a computer include devices such as:
– Keyboard

– Mouse

– Video display

– Network cards

– Scanner

– WiFi interface

– Video camera

– USB port

Each of these devices is configured by a device driver, which 
encapsulates the details of how interaction with that device should be 
done.

The application programmer interface (API), allows programs to 
interact with I/O devices at a fairly high level, while the operating 
system performs the low level interactions that make the device 
work.



System Calls

Since user applications do not communicate directly with low-level 
hardware components, but instead delegate these tasks to the kernel, 
there must be a mechanism by which user applications can request 
the kernel to perform action on their behalf.  In fact, there are several 
such mechanisms, but one of the most common techniques is known 
as the system calls or syscalls for short.

System calls are usually contained in a collection of programs (a 
library), that allows applications to use a predefined series of 
application programmer interfaces that define the functions for 
communicating with the kernel.

System Calls

File I/O Running application programs

Open, close, read, write Exec (execute)



Many systems implement system calls as software interrupts, which 
are requests made by the application for the processor to stop the 
current flow of execution and switch to a special handler for the 
interrupt.  This process of switching to kernel mode as a result of an 
interrupt is commonly referred to as a trap.

System calls essentially create a bridge by which processes can safely 
facilitate communication between user and kernel space.  Since 
moving into kernel space involves direct interaction with hardware, 
an operating system limits the ways  and  means that applications 
interact with its kernel, so as to provide both security and 
correctness.



Processes
The kernel defines the notion of a process, which is an instance of a 
program that is currently executing.  The actual contents of all 
programs are initially stored in persistent storage, such as a hard 
drive, but in order to actually be executed, the program must be 
loaded into random-access memory (RAM) and uniquely identified as 
a process.  The use of RAM allows multiple copies of the same 
program to run by having multiple processes initialized with the same 
program code.

Ex:  We could be running four different instances of a word 
processing program at the same time, each in a different 
window.



The kernel manages all running processes, giving each a fair share of 
the computer’s CPU(s) so that the computer can execute the 
instructions for all currently running applications.  This time slicing 
process is what makes multitasking possible.  The operating system 
gives each running process a tiny slice of time to do some work, and 
then it moves on to the next process.  Because each time slice is so 
small and the context switching between running processes happen 
so fast, all the active processes appear to be running at the same time 
to us humans.

Users and the Process Tree

Most modern computers are designed to allow multiple users, each 
with potentially different privileges, to access the same computer and 
initiate processes.  When a user creates a new process, to run some 
program, the kernel sees this as an existing process asking to create a 
new process.  Thus, processes are created by a mechanism called 
forking, where a new process is created (forked) by an existing 
process.  The existing process in this action is known as the parent 
process and the one that is being forked is known as the child 
process.



On most systems, the new child process inherits the permission of its 
parent, unless the parent deliberately forks a new child process with 
lower permission than itself.  Due to the forking mechanism for 
process creation, processes are organized in a rooted tree, known as 
the process tree.

Each process running on a given computer is identified by a unique 
non-negative integer, called the process ID (PID).

Process Privileges

To grant appropriate privileges to processes, an operating system 
associates information about the one whose behalf the process is 
being executed with each process.  Unix-based systems have an ID 
system where each process has a user ID (UID), which identifies the 
user associated with this process, as well as a group ID (GID), which 
identifies a group of users for this process.



The UID is a number between 0 and 32,767, in hexadecimal notation, 
that uniquely identifies each user.  Typically, UID 0 is reserved for the 
root or administrator account.  The GID is a number with the same 
range that identifies a group the user belongs to.  Each group has a 
unique identifier, and an administrator can add users to groups to 
give them varying levels of access.  These identifiers are used to 
determine what resources each process is able to access.  Also, 
processes automatically inherit the permissions of their parent 
processes.

In addition to the UID and GID, processes in Unix-based systems also 
have an effective user ID (EUID).  In most cases, the EUID is the same 
as the UID – the id of the user executing the process.  However, 
certain designated process are run with their EUID set to the ID of the 
application’s owner.



Inner-Process Communication

In order to manage shared resources, it is often necessary for 
processes to communicate with each other.  Thus, operating systems 
usually include mechanisms to facilitate inter-process communication 
(IPC).

One simple technique processes can use to communicate is to pass 
messages by reading and writing files.  Files are readily accessible to 
multiple processes as a part of a big shared resource – filesystem – so 
communicating this way is simple.  File handling typically involves 
reading from or writing to an external hard drive, which is often more 
slower than using RAM.

Another solution that allows for processes to communicate with each 
other is to have them share the same region of physical memory.  
Processes can use this mechanism to communicate with each other 
by passing messages via RAM memory.  As long as the kernel 
manages the shared and private memory space appropriately.



Two additional solutions for process communication are known as 
pipes and sockets.  Both of these mechanisms act as tunnels from one 
process to another.  Communication using these mechanisms involves 
the sending and receiving processes to share the pipe or socket as an 
in-memory object.  This sharing allows for fast messages, which are 
produced at one end of the pipe and consumed at the other, while 
actually being in RAM memory the entire time.  Piles act as a conduit 
(a channel through which something is conveyed), allowing two 
processes to communicate.

Signals

Unix-based systems incorporates signals, which are essentially 
notifications sent from one process to another.  When a process 
receives a signal from another process, the operating system 
interrupts the current flow of execution of that process, and checks 
whether that process has an appropriate signal handler (a routine 
designed or trigger when a particular signal is received).



If a signal handler exists, then the routine is executed; if the process 
does not handle this particular  signal, then it takes a default action.  
Terminating a nonresponsive process on a Unix system is typically 
performed via signals.

Remote Procedure Calls

Windows supports signals in its low-level libraries, but does not make 
use of them in practice.  Instead of using signals, Windows rely on 
remote procedure calls (RPC), which allow a process to call a 
subroutine from another process’s program.  To terminate a process, 
Windows make use of a kernel-level API (application programmer 
interface), named TerminateProcess(), which can be called by any 
process, and will only execute if the calling process has permission to 
kill the specified target.



Daemons and Services

Computers today run dozens of processes that run without any user 
intervention.  In Linux, these background processes known as 
daemons, and  are essentially indistinguishable from any other 
process.  The are typically started by the init process and operate with 
varying levels of permissions.  Because they are forked before the 
user is authenticated, they are able to run with higher permissions 
that any user, and survive the end of login session.  Common 
examples of daemons are  processes that control web servers, remote 
logins, and print servers.

In Windows, these processes are referred to as services.  Unlike 
daemons, services are easily distinguishable from other processes, 
and are differentiated in monitoring software such as the Task 
Manager.



The Filesystem
Another key component of an operating system is the filesystem, 
which is an abstraction of how the external, nonvolatile memory of 
the computer is organized.  Operating systems typically organize files 
hierarchically into  folders, also called directories.

Each folder may contain files and/or subfolders.  A drive, consists of a 
collection of nested folders that form a tree.  The topmost folder is 
the root of this tree and is also called the root folder.



File Access Control

One of the main concerns of operating system security is how to 
determine which users can access which resources:  who can read 
files, write date, and execute programs.  In most cases, this concept is 
encapsulated in the notation of file permissions, whose specific 
implementation depends on the operating system. Namely, each 
resource on disk, including both data files and programs, has a set of 
permissions associated with it.

File Permissions

File permissions are checked by the operating system to determine if 
a file is readable, writeable, or executable by a user or group of users.  
This permission data is typically stored in the metadata of the file, 
along with attributes such as the type of file.  When a process 
attempts to access a file, the operating system checks the identity of 
the process and determines whether or not access should be granted, 
based on the permission of the file.



Unix-like operating systems have a mechanism for file permission 
known as file permission matrix that is a representation of who is 
allowed to do what  to the file, and contains permissions for three 
classes, each of which features a combination  of bits.

1. Owner – responds to the UID for some user

2. Group – determines permission for users in the same group

3. Other – determine permission for users who are neither the 
owner of the file nor in the same group

Ex:    d r w x r w x r w x 

owner
(user)

group otherfolder



Unix File Permissions

The read, write and execute bits are implemented in binary, but it is 
common to express them in decimal notation.

• The execute bit has weight 1

• The write bit has weight 2

• The read bit has weight 4

Thus, each combination of the 3 bits yields a unique number between 
0 and 7.

Ex:   3 denotes that both the execute and write bits are set, 
while 7 denotes that read, right and execute are all set.

0  1  1 1  1  1

- w  x r  w  x

Ex:   chmod 644 yields:   - r w - r - - r - -

Binary representation
of permission

Binary representation
of permission

Equals 3 Equals 7



Folders also have permissions.  Having read permissions for a folder 
allows a user to list that folder’s contents, and having write 
permissions for a folder allows a user to create new files in that 
folder.  Unix-base systems employ a path-based approach for file 
access control.  The operating system keeps track of the user’s current 
working directory.  Access to a file or directory is requested by 
providing a path to it, which starts either at the root directory, 
denoted with “/”, or at the current working directory.  In order to get 
access, the user must have execute permissions for all the directories 
in the path.  Namely, the path is traversed one directory at the time, 
beginning with the start directory, and for each such directory, the 
execute permission is checked.



Memory Management
Another service that an operating system provides is memory 
management.  This is the organization and allocation of the memory 
in a computer.  When a process executes, it is allocated a region in 
memory known as its address space.   The address space stores the 
program code, data, and storage that a process needs during  its 
execution.  In Unix memory models the address space is organized 
into five segments

Stack

Dynamic

BSS

Data

Text

Text - actual machine code for program

Data - static program variables of source code 

BSS (block started by symbol) – contains static variables
that are uninitialized (or initialize to zero)

Heap (dynamic segment) – stores data generated during
the execution of a process (i.e. objects created
dynamically in an object-oriented program)

Stack – houses a stack data structure that grows
downward and is used for keeping track of the
call structure of subroutines (method, function
and their arguments)



Each of the five memory segments has its own set of access permissions 
(readable, writable, executable), and these permissions are enforced by the 
operating system.  The text region is usually read-only, because it is 
generally not desirable to allow the alteration of a program’s code during its 
execution.  All other regions are writable, because their contents may be 
altered during a program’s execution.

An essential rule of operating systems security is that processes are not 
allowed to access the address space of other processes, unless they have 
explicitly requested to share some of that address space with each other.  If 
this rule were not enforced, then processes could alter the execution and 
data of other processes, unless some sort of process-base access control 
system were put in place.  Enforcing address space boundaries avoids many 
serious security problems by protecting processes from changes by other 
process. 

Unix operating systems divide the address space into two broad regions: 
user space, to run applications, and kernel space, for operating system 
functionality.



Contiguous Address Space

Each process’s address space is a contiguous (sequential), block of 
memory.  Arrays are indexed as contiguous memory blocks, so if a 
program uses a large array, it needs an address space for its data that 
is contiguous.

int numbers[7] = {1, 2, 4, 8};

Even the text portion of the address space, which is used for the 
computer code itself, should be contiguous, to allow for a program to 
include instructions such as “jump forward 10 instructions,” which is a 
natural type of instruction in machine code.  Giving each executing 
process a continuous slab of real memory would be highly inefficient 
and in some cases, impossible. 

This definition initializes only the first four 
elements of a seven-element array

1 2 4 8 0 0 0

Uninitialized Elements
will be set to zero

numbers
[0]

numbers
[1]

numbers
[2]

numbers
[3]

numbers
[4]

numbers
[5]

numbers
[6]



Virtual Memory

Even if all the processes had address spaces that could fit in memory, 
there would still be problems.  Idle processes in such a scenario 
would still retain their respective chunks of memory, so  if enough 
processes were running, memory would be needlessly scare.

To solve these problems, most computer architectures incorporate a 
system of virtual memory, where each process receives a virtual 
address space, and each virtual address is mapped to an address in 
real memory by the virtual memory system.

When a virtual address is accessed, a hardware component known as 
the memory management unit looks up the real address that is 
mapped to and facilitates access.  Processes are allowed to act as if 
there memory is contiguous, when in reality it may be fragmented 
and spread across RAM.



Program Sees:
Actual Memory

Another 
Program

M
ap

p
in

g 
V

ir
tu

al
 A

d
d

re
ss

e
s 

to
 

R
ea

l A
d

d
re

ss
e

s



Using RAM to allow the memory to act as if their memory is 
contiguous allows for several simplifications, such as supporting 
applications that index into large arrays as contiguous chunks of 
memory.

Also,  virtual memory allows for the total size of the address space of 
executing processes to be larger than the actual size of main memory 
of the computer.  This extension of memory is allowed because the 
virtual memory system can use a portion of the external drive to 
“park” blocks of memory whey they are not being used by executing 
processes.  This is a great benefit, since it allows for a computer to 
execute a set of processes that could not be multitasked if they all 
had to keep their entire address spaces in main memory at all time.



Page Faults

Operating systems use the hard drives to store blocks of memory that 
are not currently needed, in order to have most memory accesses 
being in main memory, not the hard drive.  If a block of the address 
space is not accessed for an extended period of time, it may be paged 
out and written to disk.  When a process attempts to access a virtual 
address that resides on a paged out block, it triggers a page fault.

When a page fault occurs, another portion of the virtual memory 
system  known as the paging supervisor finds the desired memory 
block on the hard drive, reads it back into RAM, updates the mapping 
between the physical and virtual addresses, and possibly pages out a 
different unused memory block. (This mechanism allows the 
operating system to manage scenarios where the total memory 
required by running processes is greater than the amount of RAM 
available.)



Virtual Machines
Virtual machine technology is a rapidly emerging field that allows an 
operating system to run without direct contact with its underlying 
hardware.  (Ex: These systems may allow for substantial electrical 
power savings, by combining the activities of several computer 
system into one, with the one simulating the operating systems of the 
others.  The way this simulation is done is that an operating system is 
run inside a virtual machine (VM), software that creates a simulated 
environment the operating system can interact with.  

The software layer that provides this environment is known as a 
hypervisor or virtual machine monitor (VMM).  The operating system 
running inside the VM is known as the guest, and the native operating 
system is known as the host.



Implementing Virtual Machines

There are two main implementations of VMs.  

1. Emulation

2. Virtualization

Emulation.  The host operating system simulates virtual interfaces 
that the guest operating system interacts with.  Communication 
through these interfaces are translated on the host system and 
eventually passed to the hardware.  The benefit of emulation is that it 
allows more hardware flexibility.  

Advantage: can emulate a virtual environment that can support one 
process on a machine running an entirely different processor.

Disadvantage:  It can typically have decreased performance due to 
the conversion process associated with the communication between 
the virtual and real hardware.



Advantages of Virtualization

1. Hardware Efficiency – host multiple operating systems on the 
same machine, ensuring an efficient allocation of hardware 
resources.

2. Portability – VMs provide portability; the ability to run a 
program on multiple different machines.

3. Security – functions as a strict sandbox that protects the rest of 
the machine in the event that the guest operating system is 
compromised.

4. Management Convenience – the ability to take snapshots of 
the entire virtual machine state. (If a host becomes infected, it 
can be reverted back to the an earlier state from a previous 
snapshot.)



Process Security
To protect a computer while it is running, it is essential to monitor 
and protect the processes that are running on that computer.

Inductive Trust from Start to Finish

The trust that we place on the processes running on a computer is an 
inductive belief based on the integrity of the processes that are 
loaded when the computer is turned on, and that this state is 
maintained, even if the computer is shut down or put into a 
hibernation state.

The Boot Sequence

The process of loading an operating system into memory, from a 
powered-off state is known as booting, originally called 
bootstrapping.  Typically, all the operating system code is stored in 
persistent storage (Hard Drive).  



When a computer is turned on, it first executes code stored in a 
firmware component known as the BIOS (basic input/output system).  
The BIOS loads into memory the second-stage boot loader, which 
handles loading the rest of the operating system into memory and 
then passes control of execution to the operating system.

Secondary Loader

Operating System

BIOS

CPU

A malicious user could potentially seize execution of a 
computer at several points in the boot process.  To 
prevent an attacker from initiating the first stages of 
booting, many computers feature a BIOS password that 
does not allow a second-stage boot loader to be executed 
without proper authentication.



The Boot Device Hierarchy

Most second-stage boot loaders allow the user to specify which 
device should be used to load the rest of the operating system.  This 
option defaults to booting from the hard drive, or in the event of a 
new installation, from external media such as a DVD drive.  In doing 
this, one should make sure that the operating system  is always 
booted form trusted media.

There is a customizable hierarchy that determines the order of 
precedence of booting devices:  the first available device in the list is 
used for booting.  This flexibility is important for installation and 
troubleshooting purposes, but this can allow an attacker with  
physical access to boot  another operating system from an external 
media, bypassing the security mechanisms built into the operating 
system intended to be run on the computer.  To prevent these attacks, 
many computers utilize second-stage boot loaders that feature 
password protections that only allow authorized users to boot from 
external storage.



Hibernation

Modern machines have the ability to go into a powered-off state 
known as hibernation.  When a system goes into hibernation, the 
operating system stores the entire contents of the machine’s memory 
into a hibernation file on the hard drive so that the state of the 
computer can be quickly be restored when the system is powered 
back on.  Without additional security precautions, hibernation 
exposes a machine to potentially invasive forensic investigation.

Since the entire contents of memory are stored into the hibernation 
file, any passwords or sensitive information that were stored in 
memory at the time of hibernation are preserved.  A live CD attack 
can be performed to gain access to the hibernation file at root of the 
“C” drive, named hiberfil.sys.  Researchers have found ways to 
reverse the compression algorithm to extract a viewable snapshot of 
RAM at the time of hibernation.



The Hibernation Attack

1. User closes a laptop computer, putting it 
into hibernation.

2. Attacker copies the hiberfile.sys file to 
discover any unencrypted passwords 
that were stored in memory when the 
computer was put into hibernation.

Attacks that modify the hiberfil.sys file have also been 
demonstrated, so that the execution of programs on the machine is 
altered when the machine is powered on.  (NOTE: Windows does 
not delete the hibernation file after resuming execution.  To defend 
against these attacks, hard disk encryption should be use to protect 
hibernation files, and swap files.



Monitoring, Management, and Logging
One of the most important aspects of operating system security is 
situational awareness. 

1. Keeping track of what processes are running

2. What other machines have interacted with the system via the 
internet

3. If the operating system has experienced an unexpected or 
suspicious behavior 

Implementing the steps above can allow for the gathering of 
important clues not only for troubleshooting ordinary problems, but 
also for determining the cause of a security breach.

Event Logging

Windows incorporates three sources of logs,   “System” , 
“Application,” and “Security.”



1. System log - can only be written to by the operating system.

2. Application log – may be written to by ordinary applications.

3. Security log – can only be written to by a special windows service known as 
the Security Authority Subsystem Service.

Unix and Linux-based files have a different logging mechanism.  
Typically, log files are stored in /var/log, or some similar location.  The 
files are saved as simple text files.

Example:

auth.log – contains records of user authentication

kern.log – keeps track of unexpected kernel behavior

Typically, writing these log files can only be done by a special syslog
daemon.

Windows log files may allow easier handling when using Microsoft’s 
event logging tools.



Process Monitoring

When using Windows, you can identify and terminate an application 
using up a lot of CPU cycles or memory, you would use the task 
manager.  In Linux, you could use the ps, top, pstree, and kill
commands.



Memory and Filesystem Security
The contents of a computer are encapsulated in its memory and 
filesystem.  Thus, protection of a computer’s content has to start with 
the protection of its memory and its filesystem.

Password-Based Authentication

A standard authentication mechanism use by most operating systems 
is for users to log in by entering a username and password.  If the 
entered password matches the stored password associated with the 
entered username, then the system accepts this authentication and 
logs the users into the system.

Instead of storing the passwords as clear text, operating system 
typically keep cryptographic one-way hashes of the passwords in a 
password file or database.  Using the one-way property of 
cryptographic hash functions, an attacker who gets hold of the 
password file cannot efficiently derive from it the actual password 
and has to resort to a guessing attack.



Password Authentication in Windows and Unix-based systems

In Microsoft Windows systems, password hashes are stored in a file 
called the Security Accounts Manager (SAM) file, which is not 
accessible to regular users while the operating system is running.  
Older versions of Windows stored hashed passwords in this file using 
an algorithm bases on data encryption standards known as LAN 
Manager hash or LM hash.  But, this hashing method has weaknesses.

1. The algorithm pads a user’s password to 14 characters

2. Converts all lower case letters to uppercase, and

3. Uses each of the 7-byte halves to generate a data encryption standard key.

Because each half of the user’s password is treated separately, the 
task of performing a dictionary attack on an LM hash is made easier, 
since each half has a maximum of seven characters.  In addition, 
converting all letter to uppercase significantly reduces the search 
space.  Also, the LM hash algorithm does not include a salt, which is a 
cryptographic technique.



Unix-bases systems feature a similar password mechanism, and stores 
authentication information at /etc/passwd, possibly in conjunction 
with /etc/shadow.  Most Unix variants use salt and are not as 
restricted in the choice of hash algorithm, which allow administrators 
to chose their preference.

Access Control Entries and Lists (File Permission)

An access control entry (ACE) for a given file or folder consists of 
three parts:

1. Principal – either a user or a group of users.

2. Type – allow or deny.

3. Permission – the action of a file or folder.  (read, write, execute)

An access control list (ACL) is an ordered list of ACEs.



There are a number of specific implementation details that must be 
considered when designing an operating permission scheme. For 
example:

1. How do permissions interact with the file organization of the 
system?

2. If a file resides in a folder, does it inherit the permissions of its 
parent or override them with its own permissions?

3. What happens if a user has permission to write to a file but not to 
the directory  that the files resides in?

4. How read, write and execute permissions affect folder?

5. If not folders aren’t specifically granted or denied, are they implied 
by default.



Linux Permissions

As stated earlier, Linux features file permission matrices, which 
determine the privileges various users have.  All permissions that are 
not specifically granted are implicitly denied, so there is no need to 
explicitly deny permission.  Owner of files are given the power to 
change the permissions on those files – this is known as discretionary 
access control (DAC).

Windows Permissions

Windows uses an ACL, access control list, model that allows users to 
create sets of rules for each user or group.  These rules either allow or 
deny various permissions for the corresponding principal.  If there is 
no applicable allow rule, access is denied by default.  The basic 
permissions are known as standard permissions, which for files 
consist of modify, read and execute, read, write, and full control, 
which grants all permissions.



File Descriptors

In order for processes to work with files, they need a shorthand way 
to refer to those files, other than always going to the filesystem and 
specifying a path to the file.  In order to efficiently read and write files 
stored on disk, modern operating systems rely on  a mechanism 
known as file descriptors.  File descriptors are essentially index values 
stored in a table, known as the file descriptor table.  When a program 
needs to access a file, a call is made to the open system call, which 
results in the kernel creating a new entry in the file descriptor table 
which maps to the file’s location on the disk.  This new file descriptor 
is returned to the program, which can now issue read or write 
commands using that file descriptor. When receiving a read or write 
system call, the kernel looks up the file descriptor in the table and 
performs the read or write at the appropriate location on the disk.  
When finished, the program should issue the close system call to 
remove the open file description.



File Descriptor Leaks

A common programming error that can lead to serious security 
problems is known as a file description leak.  A bit of additional 
background is required to understand this type of vulnerability.  First, 
it is important to note that when a process creates a child process 
(using a fork command), that child process inherits copies of all of the 
file descriptors that are open in the parent.  The operating system 
only checks whether a process has permissions to read or write to a 
file at the moment of creating a file descriptor entry; checks 
performed at the time of actually reading or writing to a file only 
confirm that the requested action is allowed according to the 
permissions of the file descriptor was opened with.  

Vulnerability problems can arise when a file is open with higher 
permissions and is not closed, for some reason, and the file descriptor 
is accessed by a process with lower permissions.


