

LOCATION OF VIDEONOTES IN THE TEXT

Chapter 1 Designing a Program with Pseudocode, p. 19
Designing the Account Balance Program, p. 24
Predicting the Output of Problem 30, p. 24
Solving the Candy Bar Sales Problem, p. 25

Chapter 2 Using cout to Display Output, p. 32
Assignment Statements, p. 59
Arithmetic Operators, p. 61
Solving the Restaurant Bill Problem, p. 72

Chapter 3 Using cin to Read Input, p. 75
Evaluating Mathematical Expressions, p. 81
Combined Assignment Operators, p. 102
Solving the Stadium Seating Problem, p. 151

Chapter 4 Using an if Statement, p. 162
Using an if/else Statement, p. 172
Using an if/else if Statement, p. 175
Solving the Time Calculator Problem, p. 236

Chapter 5 The while Loop, p. 249
The for Loop, p. 263
Nested Loops, p. 277
Solving the Ocean Levels Problem, p. 299

Chapter 6 Defining and Calling Functions, p. 306
Using Function Arguments, p. 316
Value-Returning Functions, p. 326
Solving the Markup Problem, p. 380

Chapter 7 Creating a Class, p. 391
Creating and Using Class Objects, p. 393
Creating and Using Structures, p. 436
Solving the Car Class Problem, p. 480

Chapter 8 Accessing Array Elements, p. 487
Passing an Array to a Function, p. 517
Two-Dimensional Arrays, p. 526
Solving the Chips and Salsa Problem, p. 567

Chapter 9 Performing a Binary Search, p. 580
Sorting a Set of Data, p. 587
Solving the Lottery Winners Problem, p. 616

(continued on next page)

 LOCATION OF VIDEONOTES IN THE TEXT

Chapter 10 Pointer Variables, p. 621
Dynamically Allocating an Array, p. 645
Solving the Days in Current Month Problem, p. 676

Chapter 11 Operator Overloading, p. 704
Aggregation and Composition, p. 734
Overriding Base Class Functions, p. 755
Solving the Number of Days Worked Problem, p. 768

Chapter 12 Converting Strings to Numbers, p. 788
Writing a C-String Handling Function, p. 800
Solving the Backward String Problem, p. 823

Chapter 13 Passing File Stream Objects to Functions, p. 845
Rewinding a File, p. 858
Solving the File Encryption Filter Problem, p. 897

Chapter 14 Recursive Binary Search, p. 913
QuickSort, p. 915
Solving the Recursive Multiplication Problem, p. 933

Chapter 15 Polymorphism, p. 941
Composition Versus Inheritance, p. 952
Solving the Sequence Sum Problem, p. 970

Chapter 16 Throwing and Handling Exceptions, p. 975
Writing a Function Template, p. 986
Iterators, p. 1004
Solving the Arithmetic Exceptions Problem, p. 1020

Chapter 17 Adding an Element to a Linked List, p. 1031
Removing an Element from a Linked List, p. 1038
Solving the Member Insertion by Position Problem, p. 1069

Chapter 18 Storing Objects in an STL Stack, p. 1083
Storing Objects in an STL Queue, p. 1097
Solving the File Reverser Problem, p. 1109

Chapter 19 Inserting an Element into a Binary Tree, p. 1118
Removing an Element from a Binary Tree, p. 1122
Solving the Tree Size Problem, p. 1138

(continued)

Starting Out withSeventh
Edition

C++
Early Objects

Tony Gaddis
Judy Walters

Godfrey Muganda

Addison-Wesley
Boston Columbus Indianapolis New York San Francisco Upper Saddle River

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editor-in-Chief: Michael Hirsch
Editorial Assistant: Stephanie Sellinger
Director of Marketing: Margaret Whaples
Marketing Coordinator: Kathryn Ferranti
Managing Editor: Jeffrey Holcomb
Production Project Manager: Heather McNally
Senior Manufacturing Buyer: Carol Melville
Media Manufacturing Buyer: Ginny Michaud
Art Director: Linda Knowles
Cover and Interior Designer: Joyce Cosentino Wells
Cover Art: © 2010 Dmitriy Ustyujanin/iStockphoto
Media Project Manager: Katelyn Boller
Full-Service Project Management: Peggy Kellar, Aptara®, Inc.
Composition: Aptara®, Inc.
Copyeditor: Evelyn Perricone

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook
appear on appropriate page within text.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other
countries. Screen shots and icons reprinted with permission from the Microsoft Corporation. This book is not
sponsored or endorsed by or affiliated with the Microsoft Corporation.

The programs and applications presented in this book have been included for their instructional value. They
have been tested with care, but are not guaranteed for any particular purpose. The publisher does not offer any
warranties or representations, nor does it accept any liabilities with respect to the programs or applications.

Copyright © 2011, 2008, 2006, 2005. Pearson Education, Inc., publishing as Addison-Wesley, 501 Boylston
Street, Suite 900, Boston, Massachusetts 02116. All rights reserved. Manufactured in the United States of
America. This publication is protected by Copyright, and permission should be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material
from this work, please submit a written request to Pearson Education, Inc., Permissions Department, 501
Boylston Street, Suite 900, Boston, Massachusetts 02116.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Gaddis, Tony.
 Starting out with C++ : early objects / Tony Gaddis, Judy Walters, Godfrey Muganda.—Seventh ed.
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-0-13-607774-9 (alk. paper)
 1. C++ (Computer program language) I. Walters, Judy. II. Muganda, Godfrey. III. Title.
 QA76.73.C153G33 2010
 005.13'3—dc22 2010004498

10 9 8 7 6 5 4 3 2 1—EB—14 13 12 11 10

ISBN 10: 0-13-607774-9
ISBN 13: 978-0-13-607774-9

www.pearsonhighered.com

v

Contents at a Glance

Preface xv

CHAPTER 1 Introduction to Computers and Programming 1

CHAPTER 2 Introduction to C++ 27

CHAPTER 3 Expressions and Interactivity 75

CHAPTER 4 Making Decisions 157

CHAPTER 5 Looping 243

CHAPTER 6 Functions 305

CHAPTER 7 Introduction to Classes and Objects 387

CHAPTER 8 Arrays 485

CHAPTER 9 Searching, Sorting, and Algorithm Analysis 577

CHAPTER 10 Pointers 619

CHAPTER 11 More About Classes and Object-Oriented Programming 677

CHAPTER 12 More About Characters, Strings, and the string Class 771

CHAPTER 13 Advanced File and I/O Operations 829

CHAPTER 14 Recursion 901

CHAPTER 15 Polymorphism and Virtual Functions 935

CHAPTER 16 Exceptions, Templates, and the Standard Template Library (STL) 973

CHAPTER 17 Linked Lists 1023

CHAPTER 18 Stacks and Queues 1071

CHAPTER 19 Binary Trees 1111

Appendix A: The ASCII Character Set 1141

Appendix B: Operator Precedence and Associativity 1145

Index 1147

vi Contents at a Glance

Student CD The following appendices are on the accompanying Student CD.

Appendix C: A Brief Introduction to Object-Oriented Programming

Appendix D: Using UML in Class Design

Appendix E: Namespaces

Appendix F: Passing Command Line Arguments

Appendix G: Header File and Library Function Reference

Appendix H: Binary Numbers and Bitwise Operations

Appendix I: C++ Casts and Run-Time Type Identification

Appendix J: Multi-Source File Programs

Appendix K: Multiple and Virtual Inheritance

Appendix L: Introduction to the MinGW C++ Compiler and
 the wxDev-C++ IDE

Appendix M: Introduction to Microsoft Visual C++ 2008 Express Edition

Appendix N: .NET and Managed C++

Appendix O: Introduction to Flowcharting

Appendix P: Answers to Checkpoints

Appendix Q: Answers to Odd-Numbered Review Questions

vii

Contents

Preface xv

CHAPTER 1 Introduction to Computers and Programming 1

1.1 Why Program? 1
1.2 Computer Systems: Hardware and Software 2
1.3 Programs and Programming Languages 6
1.4 What Is a Program Made of? 12
1.5 Input, Processing, and Output 16
1.6 The Programming Process 17
1.7 Tying It All Together: Hi! It’s Me 22

CHAPTER 2 Introduction to C++ 27

2.1 The Parts of a C++ Program 27
2.2 The cout Object 31
2.3 The #include Directive 35
2.4 Standard and Prestandard C++ 37
2.5 Variables, Constants, and the Assignment Statement 37
2.6 Identifiers 41
2.7 Integer Data Types 43
2.8 The char Data Type 48
2.9 The C++ string Class 52
2.10 Floating-Point Data Types 54
2.11 The bool Data Type 57
2.12 Determining the Size of a Data Type 58
2.13 More on Variable Assignments and Initialization 59
2.14 Scope 60
2.15 Arithmetic Operators 61
2.16 Comments 64
2.17 Focus on Software Engineering: Programming Style 65
2.18 Tying It All Together: Smile! 67

viii Contents

CHAPTER 3 Expressions and Interactivity 75

3.1 The cin Object 75
3.2 Mathematical Expressions 81
3.3 Implicit Type Conversion 89
3.4 Explicit Type Conversion 90
3.5 Overflow and Underflow 94
3.6 Named Constants 97
3.7 Multiple and Combined Assignment 101
3.8 Formatting Output 105
3.9 Working with Characters and String Objects 115
3.10 Using C-Strings 120
3.11 More Mathematical Library Functions 126
3.12 Introduction to Files 130
3.13 Focus on Debugging: Hand Tracing a Program 138
3.14 Green Fields Landscaping Case Study—Part 1 140
3.15 Tying It All Together: Word Game 142

CHAPTER 4 Making Decisions 157

4.1 Relational Operators 157
4.2 The if Statement 162
4.3 The if/else Statement 172
4.4 The if/else if Statement 175
4.5 Menu-Driven Programs 181
4.6 Nested if Statements 183
4.7 Logical Operators 187
4.8 Validating User Input 196
4.9 More About Variable Definitions and Scope 197
4.10 Comparing Characters and Strings 202
4.11 The Conditional Operator 206
4.12 The switch Statement 210
4.13 Enumerated Data Types 219
4.14 Testing for File Open Errors 222
4.15 Focus on Testing and Debugging: Validating Output Results 223
4.16 Green Fields Landscaping Case Study—Part 2 225
4.17 Tying It All Together: Fortune Teller 229

CHAPTER 5 Looping 243

5.1 The Increment and Decrement Operators 243
5.2 Introduction to Loops: The while Loop 249
5.3 Using the while Loop for Input Validation 253
5.4 Counters 256
5.5 The do-while Loop 258
5.6 The for Loop 263
5.7 Keeping a Running Total 269
5.8 Sentinels 271
5.9 Using a Loop to Read Data from a File 273
5.10 Focus on Software Engineering: Deciding Which Loop to Use 276
5.11 Nested Loops 277
5.12 Breaking Out of a Loop 279
5.13 The continue Statement 281

Contents ix

5.14 Focus on Testing and Debugging: Creating Good Test Data 284
5.15 Central Mountain Credit Union Case Study 287
5.16 Tying It All Together: What a Colorful World 291

CHAPTER 6 Functions 305

6.1 Modular Programming 305
6.2 Defining and Calling Functions 306
6.3 Function Prototypes 314
6.4 Sending Data into a Function 316
6.5 Passing Data by Value 321
6.6 The return Statement 325
6.7 Returning a Value from a Function 326
6.8 Returning a Boolean Value 332
6.9 Using Functions in a Menu-Driven Program 334
6.10 Local and Global Variables 337
6.11 Static Local Variables 344
6.12 Default Arguments 347
6.13 Using Reference Variables as Parameters 350
6.14 Overloading Functions 359
6.15 The exit() Function 363
6.16 Stubs and Drivers 366
6.17 Little Lotto Case Study 368
6.18 Tying It All Together: Glowing Jack-o-lantern 373

CHAPTER 7 Introduction to Classes and Objects 387

7.1 Abstract Data Types 387
7.2 Object-Oriented Programming 389
7.3 Introduction to Classes 391
7.4 Introduction to Objects 393
7.5 Defining Member Functions 395
7.6 Constructors 402
7.7 Destructors 407
7.8 Private Member Functions 410
7.9 Passing Objects to Functions 413
7.10 Object Composition 420
7.11 Focus on Software Engineering: Separating Class Specification,

Implementation, and Client Code 424
7.12 Input Validation Objects 431
7.13 Structures 435
7.14 Home Software Company OOP Case Study 449
7.15 Introduction to Object-Oriented Analysis and Design 455
7.16 Screen Control 464
7.17 Tying It All Together: Yoyo Animation 469

CHAPTER 8 Arrays 485

8.1 Arrays Hold Multiple Values 485
8.2 Accessing Array Elements 487
8.3 Inputting and Displaying Array Contents 489
8.4 Array Initialization 496
8.5 Processing Array Contents 502

x Contents

8.6 Using Parallel Arrays 513
8.7 The typedef Statement 516
8.8 Arrays as Function Arguments 517
8.9 Two-Dimensional Arrays 526
8.10 Arrays with Three or More Dimensions 534
8.11 Vectors 537
8.12 Arrays of Class Objects 549
8.13 National Commerce Bank Case Study 559
8.14 Tying It All Together: Rock, Paper, Scissors 561

CHAPTER 9 Searching, Sorting, and Algorithm Analysis 577

9.1 Introduction to Search Algorithms 577
9.2 Searching an Array of Objects 584
9.3 Introduction to Sorting Algorithms 587
9.4 Sorting an Array of Objects 596
9.5 Sorting and Searching Vectors 599
9.6 Introduction to Analysis of Algorithms 601
9.7 Case Studies 609
9.8 Tying It All Together: Secret Messages 610

CHAPTER 10 Pointers 619

10.1 Pointers and the Address Operator 619
10.2 Pointer Variables 621
10.3 The Relationship Between Arrays and Pointers 625
10.4 Pointer Arithmetic 629
10.5 Initializing Pointers 630
10.6 Comparing Pointers 632
10.7 Pointers as Function Parameters 635
10.8 Pointers to Constants and Constant Pointers 639
10.9 Focus on Software Engineering: Dynamic Memory Allocation 643
10.10 Focus on Software Engineering: Returning Pointers from Functions 648
10.11 Pointers to Class Objects and Structures 652
10.12 Focus on Software Engineering: Selecting Members of Objects 659
10.13 United Cause Relief Agency Case Study 661
10.14 Tying It All Together: Pardon Me, Do You Have the Time? 669

CHAPTER 11 More About Classes and Object-Oriented Programming 677

11.1 The this Pointer and Constant Member Functions 677
11.2 Static Members 681
11.3 Friends of Classes 689
11.4 Memberwise Assignment 694
11.5 Copy Constructors 695
11.6 Operator Overloading 704
11.7 Type Conversion Operators 728
11.8 Convert Constructors 731
11.9 Aggregation and Composition 734
11.10 Inheritance 740
11.11 Protected Members and Class Access 745

Contents xi

11.12 Constructors, Destructors, and Inheritance 750
11.13 Overriding Base Class Functions 755
11.14 Tying It All Together: Putting Data on the World Wide Web 757

CHAPTER 12 More About Characters, Strings, and the string Class 771

12.1 C-Strings 771
12.2 Library Functions for Working with C-Strings 776
12.3 Conversions Between Numbers and Strings 787
12.4 Character Testing 793
12.5 Character Case Conversion 797
12.6 Writing Your Own C-String Handling Functions 800
12.7 More About the C++ string Class 805
12.8 Creating Your Own String Class 810
12.9 Advanced Software Enterprises Case Study 817
12.10 Tying It All Together: Program Execution Environments 819

CHAPTER 13 Advanced File and I/O Operations 829

13.1 Files 829
13.2 Output Formatting 838
13.3 Passing File Stream Objects to Functions 845
13.4 More Detailed Error Testing 847
13.5 Member Functions for Reading and Writing Files 849
13.6 Binary Files 862
13.7 Creating Records with Structures 866
13.8 Random-Access Files 871
13.9 Opening a File for Both Input and Output 878
13.10 Online Friendship Connections Case Study 883
13.11 Tying It All Together: File Merging and Color-Coded HTML 888

CHAPTER 14 Recursion 901

14.1 Introduction to Recursion 901
14.2 The Recursive Factorial Function 908
14.3 The Recursive gcd Function 910
14.4 Solving Recursively Defined Problems 911
14.5 A Recursive Binary Search Function 913
14.6 Focus on Problem Solving and Program Design: The QuickSort Algorithm 915
14.7 The Towers of Hanoi 919
14.8 Focus on Problem Solving: Exhaustive and Enumeration Algorithms 922
14.9 Focus on Software Engineering: Recursion Versus Iteration 926
14.10 Tying It All Together: Infix and Prefix Expressions 927

CHAPTER 15 Polymorphism and Virtual Functions 935

15.1 Type Compatibility in Inheritance Hierarchies 935
15.2 Polymorphism and Virtual Member Functions 941
15.3 Abstract Base Classes and Pure Virtual Functions 946
15.4 Focus on Object-Oriented Programming: Composition Versus Inheritance 952
15.5 Secure Encryption Systems, Inc., Case Study 957
15.6 Tying It All Together: Let’s Move It 961

xii Contents

CHAPTER 16 Exceptions, Templates, and the Standard Template Library (STL) 973

16.1 Exceptions 973
16.2 Function Templates 985
16.3 Class Templates 993
16.4 Class Templates and Inheritance 999
16.5 Introduction to the Standard Template Library 1002
16.6 Tying It All Together: Word Transformers Game 1015

CHAPTER 17 Linked Lists 1023

17.1 Introduction to the Linked List ADT 1023
17.2 Linked List Operations 1029
17.3 A Linked List Template 1041
17.4 Recursive Linked List Operations 1045
17.5 Variations of the Linked List 1054
17.6 The STL list Container 1054
17.7 Reliable Software Systems, Inc., Case Study 1056
17.8 Tying It All Together: More on Graphics and Animation 1060

CHAPTER 18 Stacks and Queues 1071

18.1 Introduction to the Stack ADT 1071
18.2 Dynamic Stacks 1079
18.3 The STL Stack Container 1082
18.4 Introduction to the Queue ADT 1084
18.5 Dynamic Queues 1092
18.6 The STL deque and queue Containers 1096
18.7 Focus on Problem Solving and Program Design: Eliminating Recursion 1098
18.8 Tying It All Together: Converting Postfix Expressions to Infix 1103

CHAPTER 19 Binary Trees 1111

19.1 Definition and Applications of Binary Trees 1111
19.2 Binary Search Tree Operations 1115
19.3 Template Considerations for Binary Search Trees 1131
19.4 Tying It All Together: Genealogy Trees 1131

Appendix A: The ASCII Character Set 1141

Appendix B: Operator Precedence and Associativity 1145

Index 1147

Contents xiii

Student CD The following appendices are on the accompanying Student CD.

Appendix C: A Brief Introduction to Object-Oriented Programming

Appendix D: Using UML in Class Design

Appendix E: Namespaces

Appendix F: Passing Command Line Arguments

Appendix G: Header File and Library Function Reference

Appendix H: Binary Numbers and Bitwise Operations

Appendix I: C++ Casts and Run-Time Type Identification

Appendix J: Multi-Source File Programs

Appendix K: Multiple and Virtual Inheritance

Appendix L: Introduction to the MinGW C++ Compiler and
 the wxDev-C++ IDE

Appendix M: Introduction to Microsoft Visual C++ 2008 Express Edition

Appendix N: .NET and Managed C++

Appendix O: Introduction to Flowcharting

Appendix P: Answers to Checkpoints

Appendix Q: Answers to Odd-Numbered Review Questions

This page intentionally left blank

xv

Preface

Welcome to Starting Out with C++: Early Objects, 7th Edition. This book is intended for use
in a two-term or three-term C++ programming sequence, or an accelerated one-term course.
Students new to programming, as well those with prior course work in other languages, will
find this text beneficial. The fundamentals of programming are covered for the novice, while
the details, pitfalls, and nuances of the C++ language are explored in-depth for both the
beginner and more experienced student. The book is written with clear, easy-to-understand
language and it covers all the necessary topics for an introductory programming course. This
text is rich in example programs that are concise, practical, and real world oriented, ensuring
that the student not only learns how to implement the features and constructs of C++, but
why and when to use them.

What’s New in the Seventh Edition
This book’s pedagogy, organization, and clear writing style remain the same as in the
previous edition. However, many improvements have been made to make it even more
student-friendly and to keep it state of the art for introductory programming using the
C++ programming language.

• Updated Material
Material has been updated throughout the book to reflect changes in technology,
operating systems, and software development environments, as well as to improve
clarity and incorporate best practices in object-oriented programming.

• New Material
New material has been added on a number of topics including embedding operating
system calls in program code, using object composition and aggregation, and creating
text-based graphics.

• Completely Revised Chapter 7
Chapter 7, Introduction to Classes and Objects, has been reorganized and almost
entirely rewritten to start right in with classes and objects, instead of introducing
structures first.

xvi Preface

• Greater Focus on Object-Oriented Programming
Many examples throughout the text have been rewritten to incorporate appropriate
use of classes and objects.

• Reusability
Material has been added illustrating how to create general classes that can be appro-
priately reused in multiple applications.

• Improved Diagrams
Many diagrams have been improved and new diagrams added to better illustrate
important concepts.

• Online VideoNotes
An extensive set of online videos have been developed to accompany this text.
Throughout the book, VideoNotes icons alert the student to videos covering specific
topics they are studying. Additionally, one Programming Challenge at the end of each
chapter now has an accompanying video explaining how to develop the problem’s
solution. The videos are available at http://www.pearsonhighered.com/gaddis/

• New Tying It All Together Sections
A new Tying It All Together section has been added at the end of every chapter that
shows the student how to do something clever and fun with the material covered in
that chapter.

• New Programming Challenges
New Programming Challenges have been added to every chapter, including a number
of Challenges that ask students to develop object-oriented solutions and to create
solutions that reuse, modify, and build on previously written code.

• New Compiler and IDE Bundled with the Book
The MinGW C++ Compiler and wxDev-C++ Software Development Environment
now come bundled, for free, with the book.

• New Appendices
An Appendix has been added on using the MinGW C++ Compiler and wxDev-C++
IDE that accompany the book. Additional new appendices cover the Microsoft
Visual C++ 2008 Express Edition IDE and Multiple and Virtual Inheritance.

Organization of the Text
This text teaches C++ in a step-by-step fashion. Each chapter covers a major set of topics
and builds knowledge as the student progresses through the book. Although the chapters
can be easily taught in their existing sequence, flexibility is provided. The following
dependency diagram (Figure P-1) suggests possible sequences of instruction.

Chapter 1 covers fundamental hardware, software, and programming concepts. The
instructor may choose to skip this chapter if the class has already mastered those topics.
Chapters 2 through 6 cover basic C++ syntax, data types, expressions, selection structures,
repetition structures, and functions. Each of these chapters builds on the previous chapter
and should be covered in the order presented.

http://www.pearsonhighered.com/gaddis/

Preface xvii

Chapter 7 introduces object-oriented programming. It can be covered any time after Chapter 6,
but before Chapter 11. Instructors who prefer to introduce arrays before classes can cover
Chapter 8 before Chapter 7. In this case it is only necessary to postpone section 8.12
(Arrays of Class Objects) until Chapter 7 has been covered.

As Figure P-1 illustrates, in the second half of the book Chapters 11, 12, 13, and 14 can
be covered in any order. Chapters 11, 15, and 16, however, should be done in sequence.
Instructors who wish to introduce data structures at an earlier point in the course, with-
out having first covered advanced C++ and OOP features, can cover Chapter 17 (Linked
Lists), followed by Chapters 18 and 19 (Stacks & Queues and Binary Trees), any time
after Chapter 14 (Recursion). In this case it is necessary to simply omit the sections in
Chapters 17–19 that deal with templates and the Standard Template Library.

Figure P-1

Chapter 1
Introduction

Chapters 2–6
Basic

Language
Elements

Chapter 10
Pointers

Chapter 7
OOP Introduction

Chapter 8
Arrays

Chapter 11
More OOP

Chapter 12
Advanced

Strings

Chapter 13
Advanced Files

and I/O

Chapter 14
Recursion

Chapter 17
Linked Lists

Chapter 15
Adv. OOP

Chapter 16
Exceptions,
Templates,
and STL

Chapter 18
Stacks and

Queues

Chapter 19
Binary Trees

Chapter 9
Searching, Sorting,

and Algorithm Analysis

xviii Preface

Brief Overview of Each Chapter

Chapter 1: Introduction to Computers and Programming

This chapter provides an introduction to the field of computer science and covers the
fundamentals of hardware, software, operating systems, programming, problem solving,
and software engineering. The components of programs, such as key words, variables,
operators, and punctuation are covered. The tools of the trade, such as hierarchy charts
and pseudocode, are also presented. The new Tying It All Together section shows stu-
dents how to use the cout statement to create a personalized output message. Two new
Programming Challenges help students see how the same basic input, processing, and
output structure can be used to create multiple programs.

Chapter 2: Introduction to C++

This chapter gets the student started in C++ by introducing the basic parts of a C++ program,
data types, variable definitions, assignment statements, constants, comments, program output,
and simple arithmetic operations. The C++ string class is presented and string objects are used
from this point on in the book as the primary method of handling strings. Programming style
conventions are introduced and good programming style is modeled here, as it is throughout
the text. An optional section explains the difference between ANSI standard and prestandard
C++ programs. The new Tying It All Together section lets the student play with simple text-
based graphics.

Chapter 3: Expressions and Interactivity

In this chapter the student learns to write programs that input and handle numeric, character,
and string data. The use of arithmetic operators and the creation of mathematical expressions
are covered, with emphasis on operator precedence. Debugging is introduced, with a section
on hand tracing a program. Sections are also included on using random numbers, on reading
and writing sequential files, on simple output formatting, on data type conversion and type
casting, and on using library functions that work with numbers. For those who wish to
cover them, there is also a section on C-strings. The new Tying It All Together section
shows students how to create a simple interactive word game.

Chapter 4: Making Decisions

Here the student learns about relational expressions and how to control the flow of a
program with the if, if/else, and if/else if statements. Logical operators, the
conditional operator, and the switch statement are also covered. Applications of these
constructs, such as menu-driven programs, are illustrated. This chapter also continues
the theme of debugging with a section on validating output results. The new Tying It
All Together section uses random numbers and branching statements to create a for-
tune telling game.

Chapter 5: Looping

This chapter covers C++’s repetitive control mechanisms. The while loop, do-while loop,
and for loop are taught, along with a variety of methods to control them. These include
using counters, user input, end sentinels, and end-of-file testing. Applications utilizing
loops, such as keeping a running total and performing data validation, are covered. The
emphasis on testing and debugging continues, with a section on creating good test data.
The new Tying It All Together section introduces students to Windows commands to cre-
ate colorful output and uses a loop to create a multi-colored display.

Preface xix

Chapter 6: Functions

In this chapter the student learns how and why to modularize programs, using both void and
value-returning functions. Parameter passing is covered, with emphasis on when arguments
should be passed by value versus when they need to be passed by reference. Scope of variables
is covered and sections are provided on local versus global variables and on static local
variables. Overloaded functions are also introduced and demonstrated. The new Tying It All
Together section includes a modular, menu-driven program that emphasizes the versatility of
functions, illustrating how their behavior can be controlled by the arguments sent to them.

Chapter 7: Introduction to Classes and Objects

In this chapter the text begins to focus on the object-oriented paradigm. Students learn
how to define classes and to create and use objects. Careful attention is paid to illustrating
which functions belong in a class versus which functions belong in a client program that
uses the class. Good object-oriented practices are discussed and modeled, such as protecting
member data through carefully constructed accessor and mutator functions and hiding class
implementation details from client programs. Once students are comfortable working with
classes and objects, the chapter provides a brief introduction to the topic of object-oriented
analysis and design. The chapter also introduces structures and uses them in this chapter’s
Tying It All Together section, where students learn to use screen control techniques to create
an animation that simulates the motion of a yoyo.

Chapter 8: Arrays

In this chapter the student learns to create and work with single and multidimensional
arrays. Many examples of array processing are provided, including functions to compute
the sum, average, highest and lowest values in an array. Students also learn to create tables
using two-dimensional arrays, and to analyze the array data by row or by column. Pro-
gramming techniques using parallel arrays are also demonstrated, and the student is shown
how to use a data file as an input source to populate an array. STL vectors are introduced
and compared to arrays. Sections on arrays of objects and structures are located at the end
of the chapter, so they can be covered now or saved for later if the instructor wishes to
cover this chapter before Chapter 7. The new Tying It All Together section uses arrays to
create a game of Rock, Paper, Scissors between a human player and the computer.

Chapter 9: Searching, Sorting, and Algorithm Analysis

Here the student learns the basics of searching for information stored in arrays and of sorting
arrays, including arrays of objects. The chapter covers the Linear Search, Binary Search,
Bubble Sort, and Selection Sort algorithms, and has an optional section on sorting and
searching STL vectors. A brief introduction to algorithm analysis is included and students
are shown how to determine which of two algorithms is more efficient. The new Tying It
All Together section uses both a table lookup and a searching algorithm to encode and
decode secret messages.

Chapter 10: Pointers

This chapter explains how to use pointers. The topics include pointer arithmetic, initializa-
tion of pointers, comparison of pointers, pointers and arrays, pointers and functions,
dynamic memory allocation, and more. The new Tying It All Together section demonstrates
the use of pointers to access library data structures and functions that return calendar and
wall clock time.

xx Preface

Chapter 11: More about Classes and Object-Oriented Programming

This chapter continues the study of classes and object-oriented programming. It covers
object aggregation and composition, as well as inheritance, and illustrates the difference
between is-a and has-a relations. Constant member functions, static members, friends,
memberwise assignment, copy constructors, object type conversion operators, convert con-
structors, and a newly rewritten section on operator overloading are also included. The
new Tying It All Together section brings together the concepts of inheritance and convert
constructors to build a program that formats the contents of an array to form an HTML
table for display on a Web site.

Chapter 12: More about Characters, Strings, and the string Class

This chapter covers standard library functions for working with characters and C-strings,
covering topics such as passing C-strings to functions and using the C++ sstream classes to
convert between numeric and string forms of numbers. Additional material about the C++
string class and its member functions and operators is presented and a new, improved
program illustrates how to write your own string class. The new Tying It All Together
section shows students how to access string-based program environments to obtain information
about the computer and the network on which the program is running.

Chapter 13: Advanced File and I/O Operations

This chapter covers sequential access, random access, text, and binary files. Various modes
for opening files are discussed, as well as the many methods for reading and writing file
contents. Advanced output formatting is also covered. The new Tying It All Together pro-
gram applies many of the techniques covered in the chapter to merge two text files into an
HTML document for display on the Web, with different colors used to illustrate which file
each piece of data came from.

Chapter 14: Recursion

In this chapter recursion is defined and demonstrated. A visual trace of recursive calls is
provided, and recursive applications are discussed. Many recursive algorithms are pre-
sented, including recursive functions for computing factorials, finding a greatest common
denominator (GCD), performing a binary search, sorting QuickSort, and solving the
famous Towers of Hanoi problem. For students who need more challenge, there is a section
on exhaustive and enumeration algorithms. The new Tying It All Together section uses
recursion to evaluate prefix expressions.

Chapter 15: Polymorphism and Virtual Functions

The study of classes and object-oriented programming continues in this chapter with the
introduction of more advanced concepts such as polymorphism and virtual functions.
Information is also presented on abstract base classes, pure virtual functions, type com-
patibility within an inheritance hierarchy, and virtual inheritance. The material on multiple
inheritance previously in the chapter has been rewritten and moved to an appendix. The
new Tying It All Together section illustrates the use of inheritance and polymorphism to
display and animate graphical images.

Preface xxi

Chapter 16: Exceptions, Templates, and the Standard Template Library (STL)

Here the student learns to develop enhanced error trapping techniques using exceptions.
Discussion then turns to function and class templates as a method for writing generic code.
Finally, the student is introduced to the containers, iterators, and algorithms offered by the
Standard Template Library (STL). The new Tying It All Together section uses various con-
tainers in the Standard Template Library to create an educational children’s game.

Chapter 17: Linked Lists

This chapter introduces concepts and techniques needed to work with lists. A linked list
ADT is developed and the student is taught to code operations such as creating a linked
list, appending a node, traversing the list, searching for a node, inserting a node, deleting a
node, and destroying a list. A linked list class template is also demonstrated. The new
Tying It All Together section brings together many of the most important concepts of OOP
by using objects, inheritance, and polymorphism to animate a collection of images.

Chapter 18: Stacks and Queues

In this chapter the student learns to create and use static and dynamic stacks and queues.
The operations of stacks and queues are defined, and templates for each ADT are demon-
strated. The static array-based stack uses exception-handling to handle stack overflow and
underflow, providing a realistic and natural example of defining, throwing, and catching
exceptions. The new Tying It All Together section discusses strategies for evaluating postfix
expressions and for converting them to infix.

Chapter 19: Binary Trees

This chapter covers the binary tree ADT and demonstrates many binary tree operations. The
student learns to traverse a tree, insert an element, delete an element, replace an element, test
for an element, and destroy a tree. The new Tying It All Together section introduces a tree
structure versatile enough to create genealogy trees.

Appendices

Appendix A: The ASCII Character Set A list of the ASCII and extended ASCII charac-
ters and their codes.

Appendix B: Operator Precedence and Associativity A list of the C++ operators with
their precedence and associativity.

The following appendices are on the accompanying student CD

Appendix C: A Brief Introduction to Object-Oriented Programming An introduction to
the concepts and terminology of object-oriented programming.

Appendix D: Using UML in Class Design A brief introduction to the Unified Modeling
Language (UML) class diagrams with examples of their use.

Appendix E: Namespaces An explanation of namespaces and their purpose, with exam-
ples provided on how to define a namespace and access its members.

xxii Preface

Appendix F: Passing Command Line Arguments An introduction to writing C++
programs that accept command-line arguments. This appendix will be useful to students
working in a command-line environment, such as UNIX or Linux.

Appendix G: Header File and Library Function Reference A reference for the C++
library functions and header files used in the book.

Appendix H: Binary Numbers and Bitwise Operations A guide to the binary number
system and the C++ bitwise operators, as well as a tutorial on the internal storage of
integers.

Appendix I: C++ Casts and Run-Time Type Identification An introduction to the
different ways of doing type casting in C++ and to run-time type identification.

Appendix J: Multi-Source File Programs A tutorial on how to create, compile, and
link programs with multiple source files. Includes the use of function header files, class
specification files, and class implementation files.

Appendix K: Multiple and Virtual Inheritance A self-contained discussion of the
C++ concepts of multiple and virtual inheritance for anyone already familiar with single
inheritance.

Appendix L: Introduction to the MinGW C++ Compiler and the wxDev-C++ IDE A
tutorial on how to start a wxDev-C++ project, compile and run a program, save source
files, and more.

Appendix M: Introduction to Microsoft Visual C++ 2008 Express Edition A tutorial
on how to start a project using Microsoft Visual C++ 2008, compile and run a program,
save source files, and more.

Appendix N: .NET and Managed C++ A short introduction to Microsoft .NET and
managed C++.

Appendix O: Introduction to Flowcharting A tutorial that introduces flowcharting
and its symbols. Includes handling sequence, selection, case, repetition, and calls to other
modules. Sample flowcharts for several of the book’s example programs are presented.

Appendix P: Answers to Checkpoints A tool students can use to assess their under-
standing by comparing their answers to the Checkpoint exercises found throughout the
book. The answers to all Checkpoint exercises are included.

Appendix Q: Answers to Odd-Numbered Review Questions Another tool students can
use to gauge their understanding and progress.

Preface xxiii

Features of the Text
Concept Statements Each major section of the text starts with a concept statement. This

statement summarizes the key idea of the section.

Example Programs The text has over 350 complete example programs, each designed to
highlight the topic currently being studied. In most cases, these are
practical, real-world examples. Source code for these programs is
provided so that students can run the programs themselves.

Program Output After each example program there is a sample of its screen output.
This immediately shows the student how the program should
function.

Tying It All Together This special section, found at the end of every chapter, shows the
student how to do something clever and fun with the material
covered in that chapter.

VideoNotes A series of online videos, developed specifically for this book, are
available for viewing at http://www.pearsonhighered.com/
gaddis/. VideoNotes icons appear throughout the text, alerting the
student to videos about specific topics.

Checkpoints Checkpoints are questions placed throughout each chapter as a self-
test study aid. Answers for all Checkpoint questions are provided on
the student CD so students can check how well they have learned a
new topic.

Notes Notes appear at appropriate places throughout the text. They are
short explanations of interesting or often misunderstood points
relevant to the topic at hand.

Warnings Warnings caution the student about certain C++ features, programming
techniques, or practices that can lead to malfunctioning programs or
lost data.

Case Studies Case studies that simulate real-world applications appear in many
chapters throughout the text, with complete code provided for each
one. Additional case studies are provided on the student CD. These
case studies are designed to highlight the major topics of the chapter
in which they appear.

Review Questions Each chapter presents a thorough and diverse set of review questions,
and Exercises such as fill-in-the-blank and short answer, that check the student’s

mastery of the basic material presented in the chapter. These are
followed by exercises requiring problem solving and analysis, such
as the Algorithm Workbench, Predict the Output, and Find the Errors
sections. Each chapter ends with a Soft Skills exercise that focuses on
communication and group process skills. Answers to the odd num-
bered review questions and review exercises are provided on the
student CD.

Programming Challenges Each chapter offers a pool of programming exercises designed to
solidify the student’s knowledge of the topics currently being
studied. In most cases the assignments present real-world problems
to be solved. When applicable, these exercises include input valida-
tion rules.

http://www.pearsonhighered.com/gaddis/
http://www.pearsonhighered.com/gaddis/

xxiv Preface

Group Projects There are several group programming projects throughout the text,
intended to be constructed by a team of students. One student
might build the program’s user interface, while another student
writes the mathematical code, and another designs and implements
a class the program uses. This process is similar to the way many
professional programs are written and encourages team work
within the classroom.

C++ Quick For easy access, a quick reference guide to the C++ language is printed
Reference Guide on the inside front and back covers.

Supplements

Student CD

This CD includes:

• MinGW C++ Compiler
• wxDev-C++ IDE
• Answers to all Checkpoint questions (Appendix P)
• Answers to all odd-numbered Review Questions and Exercises (Appendix Q)
• Complete source code for every program included in the book
• Additional case studies, complete with source code
• Serendipity Booksellers ongoing software development project
• A full set of appendices (including several tutorials) that accompany the book

If a CD did not come with your book or you can’t locate your CD, you can access most of
these items at http://www.pearsonhighered.com/cssupport

Other CDs Upon Request Professors should contact their campus Pearson Education/
Addison-Wesley representative for the specific ISBN to order this book packaged with
Microsoft Visual C++.

MyCodeMate—Your Own T.A. Just a Click Away

Addison-Wesley’s MyCodeMate is a book-specific Web resource that provides tutorial help
and evaluation of student programs. Example programs throughout the book and selected
Programming Challenges from every chapter have been integrated into MyCodeMate.
Using this tool, a student is able to write and compile programs from any computer with
Internet access and receive guidance and feedback on how to proceed and on how to
address compiler error messages. Instructors can track each student’s progress on Program-
ming Challenges from the text or can develop projects of their own. A complimentary
subscription to MyCodeMate is offered when the access code is ordered in a package with
a new copy of this text. Subscriptions can also be purchased online. For more information
visit www.mycodemate.com, or contact your campus Pearson Education/Addison-Wesley
representative.

Instructor Resources

The following supplements are available to qualified instructors only.

• Answers to all Review Questions in the text
• Solutions for all Programming Challenges in the text
• PowerPoint presentation slides for every chapter

http://www.pearsonhighered.com/cssupport
www.mycodemate.com

Preface xxv

• A computerized test bank
• A collection of lab materials
• Source code files

Visit the Pearson Education Instructor Resource Center (http://www.pearsonhighered.com/
irc) or send an email to computing@aw.com for information on how to access them.

Textbook Web Site

A Web site for the Starting Out with C++ series of books is located at the following URL:

http://www.pearsonhighered.com/gaddis/

Get This Book the Way You Want It!
This book is part of the Pearson Custom Computer Science Library. Use our online PubSe-
lect system to select just the chapters you need from this, and other, Pearson Education
CS textbooks. You can edit the sequence to exactly match your course organization and
teaching approach. Visit www.pearsoncustom.com/cs for details.

Which Gaddis C++ Book Is Right for You?
The Starting Out with C++ Series includes three books, one of which is sure to fit your
course:

• Starting Out with C++: Control Structures through Objects;
• Starting Out with C++: Early Objects;
• Starting Out with C++: Brief Version.

The following chart will help you determine which book is right for your course.

� FROM CONTROL STRUCTURES
THROUGH OBJECTS

� BRIEF VERSION

� EARLY OBJECTS

LATE INTRODUCTION OF OBJECTS
Classes are introduced in Chapter 13 of the standard
text and Chapter 11 of the brief text, after control
structures, functions, arrays, and pointers.
Advanced OOP topics, such as inheritance and
polymorphism, are covered in the following two
chapters.

EARLIER INTRODUCTION OF OBJECTS
Classes are introduced in Chapter 7, after control
structures and functions, but before arrays and
pointers. Their use is then integrated into the
remainder of the text. Advanced OOP topics, such
as inheritance and polymorphism, are covered in
Chapters 11 and 15.

USE OF C-STRINGS
Null-terminated C-strings are used throughout, with
the C++ string class covered briefly.

USE OF string OBJECTS
Standard library string class objects are used
throughout, with C-strings covered briefly.

INTRODUCTION OF DATA STRUCTURES
AND RECURSION
Linked lists, stacks and queues, and binary trees are
introduced in the final chapters of the standard text.
Recursion is covered after stacks and queues, but
before binary trees. These topics are not covered in
the brief text, though it does have appendices
dealing with linked lists and recursion.

INTRODUCTION OF DATA STRUCTURES
AND RECURSION
Linked lists, stacks and queues, and binary trees are
introduced in the final chapters of the text, after the
chapter on recursion.

http://www.pearsonhighered.com/irc
http://www.pearsonhighered.com/irc
http://www.pearsonhighered.com/gaddis/
www.pearsoncustom.com/cs

xxvi Preface

Acknowledgments
There have been many helping hands in the development and publication of this text. We
would like to thank the following faculty reviewers for their helpful suggestions and
expertise.

Reviewers of the Seventh Edition or Its Previous Versions

Ahmad Abuhejleh
University of Wisconsin, River Falls

David Akins
El Camino College

Steve Allan
Utah State University

Ijaz A. Awan
Savannah State University

John Bierbauer
North Central College

Don Biggerstaff
Fayetteville Technical Community College

Paul Bladek
Spokane Falls Community College

Chuck Boehm
Dean Foods, Inc.

Bill Brown
Pikes Peak Community College

Richard Cacace
Pensacola Junior College

Randy Campbell
Morningside College

Stephen P. Carl
Wright State University

Wayne Caruolo
Red Rocks Community College

Thomas Cheatham
Middle Tennessee State University

James Chegwidden
Tarrant County College

John Cigas
Rockhurst University

John Cross
Indiana University of Pennsylvania

Joseph DeLibero
Arizona State University

Dennis Fairclough
Utah Valley State College

Larry Farrer
Guilford Technical Community College

Richard Flint
North Central College

Sheila Foster
California State University Long Beach

David E. Fox
American River College

Cindy Fry
Baylor University

Peter Gacs
Boston University

Cristi Gale
Sterling College

James Gifford
University of Wisconsin, Stevens Point

Leon Gleiberman
Touro College

Simon Gray
Ashland University—Ohio

Margaret E. Guertin
Tufts University

Jamshid Haghighi
Guilford Technical Community College

Ranette H. Halverson
Midwestern State University,
Wichita Falls, TX

Dennis Heckman
Portland Community College

Ric Heishman
Northern Virginia Community College

Patricia Hines
Brookdale Community College

Mike Holland
Northern Virginia Community College

Lister Wayne Horn
Pensacola Junior College

Richard Hull
Lenoir-Rhyne College

Norman Jacobson
University of California, Irvine

Eric Jiang
San Diego State University

Preface xxvii

David Kaeli
Northeastern University

Chris Kardaras
North Central College

Eugene Katzen
Montgomery College—Rockville

Willard Keeling
Blue Ridge Community College

A. J. Krygeris
Houston Community College

Ray Larson
Inver Hills Community College

Stephen Leach
Florida State University

Parkay Louie
Houston Community College

Zhu-qu Lu
University of Maine, Presque Isle

Tucjer Maney
George Mason University

Bill Martin
Central Piedmont Community College

Debbie Mathews
J. Sargeant Reynolds

Ron McCarty
Penn State Erie, The Behrend College

Robert McDonald
East Stroudsburg University

James McGuffee
Austin Community College

M. Dee Medley
Augusta State University

Cathi Chambley-Miller
Aiken Technical College

Sandeep Mitra
SUNY Brockport

Frank Paiano
Southwestern Community College

Theresa Park
Texas State Technical College

Mark Parker
Shoreline Community College

Robert Plantz
Sonoma State University

Tino Posillico
SUNY Farmingdale

M. Padmaja Rao
Francis Marion University

Timothy Reeves
San Juan College

Ronald Robison
Arkansas Tech University

Caroline St. Clair
North Central College

Dolly Samson
Weber State University

Kate Sanders
Rhode Island College

Lalchand Shimpi
Saint Augustine’s College

Sung Shin
South Dakota State University

Garth Sorenson
Snow College

Daniel Spiegel
Kutztown University

Ray Springston
University of Texas at Arlington

Kirk Stephens
Southwestern Community College

Cherie Stevens
South Florida Community College

Hong Sung
University of Central Oklahoma

Mark Swanson
Red Wing Technical College

Martha Tillman
College of San Mateo

Delores Tull
Itawamba Community College

Rober Tureman
Paul D. Camp Community College

Jane Turk
LaSalle University

Sylvia Unwin
Bellevue Community College

Stewart Venit
California State University, Los Angeles

Doug White
University of Northern Colorado

Chris Wild
Old Dominion University

Catherine Wyman
DeVry Institute of Technology, Phoenix

Sherali Zeadally
University of the District of Columbia

xxviii Preface

The authors would like to thank their students at Haywood Community College and
North Central College for inspiring them to write student-friendly books. They would also
like to thank their families for their tremendous support throughout this project, as well as
North Central College for providing Prof. Walters and Muganda with the sabbatical term
during which they worked on this book. An especially big thanks goes to our terrific edito-
rial, production, and marketing team at Addison-Wesley. In particular we want to thank
our editor Michael Hirsch and our production project manager Heather McNally, who
have been instrumental in guiding the production of this book. We also want to thank our
project manager, Peggy Kellar, who helped everything run smoothly, and our meticulous
and knowledgable copyeditor, Evelyn Perricone, who dedicated many hours to making this
book the best book it could be. You are great people to work with!

About the Authors
Tony Gaddis is the principal author of the Starting Out With . . . series of textbooks. He is
a highly acclaimed instructor with twenty years of experience teaching computer science
courses at Haywood Community College. Tony was previously selected as the North Carolina
Community College “Teacher of the Year” and has received the Teaching Excellence
award from the National Institute for Staff and Organizational Development. The Starting
Out With . . . series includes introductory books covering C++, Java™, Microsoft® Visual
Basic®, Microsoft® C#, and Alice, all published by Addison-Wesley.

Judy Walters is an Associate Professor of Computer Science at North Central College in
Naperville, Illinois. In addition to her many computer science courses, she also teaches two
film-related courses she developed for the college’s interdisciplinary freshman seminar pro-
gram. She recently returned from her second semester teaching in Costa Rica, where she
hopes to retire some day.

Godfrey Muganda is an Associate Professor of Computer Science at North Central College.
He teaches a wide variety of courses at both the undergraduate and graduate levels, including
courses in Algorithms, Computer Organization, Web Applications, and Web Services. His
primary research interests are in the area of Fuzzy Sets and Systems.

1

C
H

A
P

T
E

R

1 Introduction to Computers
and Programming

1.1 Why Program?

CONCEPT: Computers can do many different jobs because they are programmable.

Every profession has tools that make its job easier to do. Carpenters use hammers, saws,
and measuring tapes. Mechanics use wrenches, screwdrivers, and ratchets. Electronics
technicians use probes, scopes, and meters. Some tools are unique and can be categorized
as belonging to a single profession. For example, surgeons have certain tools that are
designed specifically for surgical operations. Those tools probably aren’t used by anyone
other than surgeons. There are some tools, however, that are used in several professions.
Screwdrivers, for instance, are used by mechanics, carpenters, and many others.

The computer is a tool that is used by so many professions, it cannot be easily categorized.
It can perform so many different jobs that it is perhaps the most versatile tool ever made.
For the accountant, computers balance books, analyze profits and losses, and prepare tax
reports. For the factory worker, computers control manufacturing machines and track pro-
duction. For the mechanic, computers analyze the various systems in an automobile and
pinpoint hard-to-find problems.

What makes the computer so useful? Quite simply, the computer can do such a wide variety of
tasks because it can be programmed. It is a machine specifically designed to follow instructions.

TOPICS

1.1 Why Program?
1.2 Computer Systems: Hardware and

Software
1.3 Programs and Programming Languages

1.4 What Is a Program Made of?
1.5 Input, Processing, and Output
1.6 The Programming Process
1.7 Tying It All Together: Hi! It’s Me

2 Chapter 1 Introduction to Computers and Programming

Because of the computer’s programmability, it doesn’t belong to any single profession.
Computers are designed to do whatever job their programs, or software, tell them to do.

Computer programmers do a very important job. They create software that transforms
computers into the specialized tools of many trades. Without programmers, the users of
computers would have no software, and without software, computers would not be able to
do anything.

Computer programming is both an art and a science. It is an art because every aspect of a
program should be designed with care and judgment. Listed below are a few of the things
that must be designed for any real-world computer program:

• The logical flow of the instructions
• The mathematical procedures
• The appearance of the screens
• The way information is presented to the user
• The program’s “user-friendliness”
• Manuals and other forms of written documentation

There is also a scientific, or engineering side to programming. Because programs rarely
work right the first time they are written, a lot of experimentation, correction, and rede-
signing is required. This demands patience and persistence of the programmer. Writing
software demands discipline as well. Programmers must learn special languages like C++
because computers do not understand English or other human languages. Languages such
as C++ have strict rules that must be carefully followed.

Both the artistic and scientific nature of programming makes writing computer software
like designing a car. Both cars and programs should be functional, efficient, powerful, easy
to use, and pleasing to look at.

1.2 Computer Systems: Hardware and Software

CONCEPT: All computer systems consist of similar hardware devices and software
components. This section provides an overview of standard computer
hardware and software organization.

Hardware
Hardware refers to the physical components that a computer is made of. A computer, as
we generally think of it, is not an individual device, but a system of devices. Like the instru-
ments in a symphony orchestra, each device plays its own part. A typical computer system
consists of the following major components:

1. The central processing unit (CPU)
2. Main memory (random-access memory, or RAM)
3. Secondary storage devices
4. Input devices
5. Output devices

Computer Systems: Hardware and Software 3

The organization of a computer system is depicted in Figure 1-1.

The CPU

At the heart of a computer is its central processing unit, or CPU. The CPU’s job is to fetch
instructions, follow the instructions, and produce some result. Internally, the central processing
unit consists of two parts: the control unit and the arithmetic and logic unit (ALU). The control
unit coordinates all of the computer’s operations. It is responsible for determining where to get
the next instruction and regulating the other major components of the computer with control
signals. The arithmetic and logic unit, as its name suggests, is designed to perform mathemati-
cal operations. The organization of the CPU is shown in Figure 1-2.

Figure 1-1

Figure 1-2

Input
Devices

Output
Devices

Secondary
Storage Devices

Central Processing
Unit

Main Memory
(RAM)

Central processing unit
(CPU)

Instruction
input

Arithmetic and
logic unit

(ALU)

Control unit

Result
output

4 Chapter 1 Introduction to Computers and Programming

A program is a sequence of instructions stored in the computer’s memory. When a com-
puter is running a program, the CPU is engaged in a process known formally as the fetch/
decode/execute cycle. The steps in the fetch/decode/execute cycle are as follows:

Fetch The CPU’s control unit fetches, from main memory, the next instruction in the
sequence of program instructions.

Decode The instruction is encoded in the form of a number. The control unit decodes
the instruction and generates an electronic signal.

Execute The signal is routed to the appropriate component of the computer (such as
the ALU, a disk drive, or some other device). The signal causes the component
to perform an operation.

These steps are repeated as long as there are instructions to perform.

Main Memory

Commonly known as random-access memory, or RAM, the computer’s main memory is a
device that holds information. Specifically, RAM holds the sequences of instructions in the
programs that are running and the data those programs are using.

Memory is divided into sections, or cells, that each hold an equal amount of data. Each cell
typically contains eight “switches” that may be either on or off. A switch that is in the on
position usually represents the number 1, while a switch in the off position usually represents
the number 0. The computer stores data by setting the switches in a memory cell to a pattern
that represents a piece of information. Each of these switches is known as a bit, which stands
for binary digit. Each cell, which is a collection of eight bits, is known as a byte.

Bytes are grouped together to make words. On most computers a word contains four
bytes. Each word is assigned a unique number known as an address. The addresses are
ordered from lowest to highest. A word is identified by its address in much the same way a
post office box is identified by an address. Figure 1-3 shows a group of memory words
with their addresses. In the illustration, sample data is stored in memory. The number 149
is stored in the word with the address 16, and the number 72 is stored at address 23.

RAM is usually a volatile type of memory, used only for temporary storage. When the
computer is turned off, the contents of RAM are erased.

Secondary Storage

Secondary storage is a type of memory that can hold data for long periods of time—even
when there is no power to the computer. Frequently used programs are stored in second-
ary memory and loaded into main memory as needed. Important information, such as

Figure 1-3

0

10

20

1

11

21

2

12

22

3

13

23

4

14

24

5

15

25

6

16

26

7

17

27

8

18

28

9

19

29

149

72

Computer Systems: Hardware and Software 5

word processing documents, payroll data, and inventory figures, is saved to secondary
storage as well.

The most common type of secondary storage device is the disk drive. A disk drive stores data
by magnetically encoding it onto a circular disk. Most computers have a disk drive mounted
inside their case. External disk drives, which connect to one of the computer’s communica-
tion ports, are also available. External disk drives can be used to create backup copies of
important data or to move data to another computer.

In addition to external disk drives, many types of devices have been created for copying data
and for moving it to other computers. For many years floppy disk drives were popular. A
floppy disk drive records data onto a small, flexible (“floppy”) disk, which can be removed
from the drive. The use of floppy disk drives has declined dramatically in recent years, in
favor of superior devices such as USB flash drives. USB flash drives are small devices that
plug into the computer’s USB (universal serial bus) port and appear to the system as a disk
drive. These drives, which use flash memory to store data, are inexpensive, reliable, and
small enough to be carried in your pocket.

Optical devices such as the CD (compact disc) and the DVD (digital versatile disc) are also
popular for data storage. Data is not recorded magnetically on an optical disc, but rather is
encoded as a series of pits on the disc surface. CD and DVD drives use a laser to detect the
pits and thus read the encoded data. Optical discs hold large amounts of data, and because
recordable CD and DVD drives are now commonplace, they are good media for creating
backup copies of data.

Input Devices

Input is any information the computer collects from the outside world. The device that col-
lects the information and sends it to the computer is called an input device. Common input
devices are the keyboard, mouse, scanner, digital camera, and microphone. Disk drives,
CD/DVD drives, and USB flash drives can also be considered input devices because pro-
grams and information are retrieved from them and loaded into the computer’s memory.

Output Devices

Output is any information the computer sends to the outside world. It might be a sales report,
a list of names, or a graphic image. The information is sent to an output device, which formats
and presents it. Common output devices are computer screens, printers, and speakers. Output
sent to a computer screen is sometimes called soft copy, while output sent to a printer is called
hard copy. Disk drives, USB flash drives, and CD/DVD recorders can also be considered out-
put devices because the CPU sends information to them so it can be saved.

Software
As previously mentioned, software refers to the programs that run on a computer. There
are two general categories of software: operating systems and application software. An
operating system is a set of programs that manages the computer’s hardware devices and
controls their processes. Operating systems fall into one of the following categories.

Single tasking A single tasking operating system is capable of running only one pro-
gram at a time. The computer devotes all its hardware resources and
CPU time to each program as it executes. MS-DOS is an example of a
single tasking operating system.

6 Chapter 1 Introduction to Computers and Programming

Multitasking A multitasking operating system is capable of running multiple pro-
grams at once. Through a technique called time sharing, the system
divides the allocation of hardware resources and the attention of the
CPU among all the executing programs. UNIX, Windows XP, and Win-
dows Vista are multitasking operating systems.

In addition, operating systems fall into one of the following categories, which describe the
number of users they can accommodate.

Single user This type of system allows only one user to operate the computer at a
time. MS-DOS and older versions of Windows are single user operating
systems.

Multiuser Multiuser systems allow several users to run programs and operate the
computer at once. Most variations of the UNIX operating system are
multiuser systems.

Application software refers to programs that make the computer useful to the user. These
programs solve specific problems or perform general operations that satisfy the needs of
the user. Word processing, spreadsheet, and database programs are all examples of applica-
tion software.

Checkpoint

1.1 Why is the computer used by so many different people, in so many different
professions?

1.2 List the five major hardware components of a computer system.

1.3 Internally, the CPU consists of what two units?

1.4 Describe the steps in the fetch/decode/execute cycle.

1.5 What is a memory address?

1.6 Explain why computers have both main memory and secondary storage.

1.7 What are the two general categories of software?

1.8 What is the difference between a single tasking system and a multitasking system?

1.9 What is the difference between a single user system and a multiuser system?

1.3 Programs and Programming Languages

CONCEPT: A program is a set of instructions a computer follows in order to perform
a task. A programming language is a special language used to write
computer programs.

What Is a Program?
Computers are designed to follow instructions. A computer program is a set of instructions
that tells the computer how to solve a problem or perform a task. For example, suppose we
want the computer to calculate someone’s gross pay. Here is a list of things the computer
might do:

1. Display a message on the screen asking “How many hours did you work?”

Programs and Programming Languages 7

2. Wait for the user to enter the number of hours worked. Once the user enters a num-
ber, store it in memory.

3. Display a message on the screen asking “How much do you get paid per hour?”
4. Wait for the user to enter an hourly pay rate. Once the user enters a number, store it

in memory.
5. Multiply the number of hours by the amount paid per hour, and store the result in

memory.
6. Display a message on the screen that tells the amount of money earned. The message

must include the result of the calculation performed in step 5.

Collectively, these instructions are called an algorithm. An algorithm is a set of well-
defined steps for performing a task or solving a problem. Notice these steps are sequen-
tially ordered. Step 1 should be performed before step 2, and so forth. It is important that
these instructions be performed in their proper sequence.

Although a person might easily understand the instructions in the pay-calculating algorithm,
it is not ready to be executed on a computer. A computer’s CPU can only process instructions
that are written in machine language. A machine language program consists of a sequence of
binary numbers (numbers consisting of only 1s and 0s) which the CPU interprets as com-
mands. Here is an example of what a machine language instruction might look like:

1011010000000101

As you can imagine, the process of encoding an algorithm in machine language is very
tedious and difficult. In addition, each different type of CPU has its own machine language.
If you wrote a machine language program for computer A and then wanted to run it on a
computer B that has a different type of CPU, you would have to rewrite the program in
computer B’s machine language.

Programming languages, which use words instead of numbers, were invented to ease the
task of programming. A program can be written in a programming language such as
C++, which is much easier to understand than machine language. Programmers save
their programs in text files, and then use special software to convert their programs to
machine language.

Program 1-1 shows how the pay-calculating algorithm might be written in C++.

NOTE: The line numbers shown in Program 1-1 are not part of the program. This
book shows line numbers in all program listings to help point out specific parts of the
program.

Program 1-1

1 // This program calculates the user's pay.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 double hours, rate, pay;
8

(program continues)

8 Chapter 1 Introduction to Computers and Programming

The “Program Output with Example Input Shown in Bold” shows what the program will dis-
play on the screen when it is running. In the example, the user enters 10 for the number of
hours worked and 15 for the hourly pay. The program displays the earnings, which are $150.

Programming Languages
In a broad sense, there are two categories of programming languages: low-level and high-
level. A low-level language is close to the level of the computer, which means it resembles
the numeric machine language of the computer more than the natural language of humans.
The easiest languages for people to learn are high-level languages. They are called “high-
level” because they are closer to the level of human-readability than computer-readability.
Figure 1-4 illustrates the concept of language levels.

9 // Get the number of hours worked.
10 cout << "How many hours did you work? ";
11 cin >> hours;
12
13 // Get the hourly pay rate.
14 cout << "How much do you get paid per hour? ";
15 cin >> rate;
16
17 // Calculate the pay.
18 pay = hours * rate;
19
20 // Display the pay.
21 cout << "You have earned $" << pay << endl;
22 return 0;
23 }

Program Output with Example Input Shown in Bold
How many hours did you work? 10 [Enter]
How much do you get paid per hour? 15 [Enter]
You have earned $150

Figure 1-4

Program 1-1 (continued)

10100010 11101011

Low level (machine language)
cout << "How many hours ";
cout << "did you work? ";
cin >> hours;

cout << "How much do you ";
cout << "get paid per hour? ";
cin >> rate;

High level (close to human language)

Programs and Programming Languages 9

Many high-level languages have been created. Table 1-1 lists a few of the well-known ones.

C++ is a widely used language because, in addition to the high-level features necessary
for writing applications such as payroll systems and inventory programs, it also has
many low-level features. C++ is based on the C language, which was invented for pur-
poses such as writing operating systems and compilers. Because C++ evolved from C, it
carries all of C’s low-level capabilities with it.

C++ is also popular because of its portability. This means that a C++ program can be written
on one type of computer and then run on many other types of systems. This usually requires

Table 1-1 Well-Known High-Level Programming Languages

Language Description

BASIC Beginners All-purpose Symbolic Instruction Code. A general programming
language originally designed to be simple enough for beginners to learn.

C A structured, general-purpose language developed at Bell Laboratories. C offers
both high-level and low-level features.

C++ Based on the C language, C++ offers object-oriented features not found in C. Also
invented at Bell Laboratories.

C# Pronounced “C sharp.” A language invented by Microsoft for developing
applications based on the Microsoft .NET platform.

COBOL Common Business-Oriented Language. A language designed for business
applications.

FORTRAN Formula Translator. A language designed for programming complex
mathematical algorithms.

Java An object-oriented language invented at Sun Microsystems. Java may be used to
develop programs that run over the Internet in a Web browser.

JavaScript A language used to write small programs that run in Web pages. Despite its name,
JavaScript is not related to Java.

Pascal A structured, general-purpose language designed primarily for teaching
programming.

Python A general purpose language created in the early 1990s. It has become popular for
both business and academic applications.

Ruby A general purpose language created in the 1990s. It is becoming increasingly
popular for programs that run on Web servers.

Visual Basic A Microsoft programming language and software development environment that
allows programmers to quickly create Windows-based applications.

10 Chapter 1 Introduction to Computers and Programming

that the program is recompiled on each type of system, but the program itself may need little or
no change.

Source Code, Object Code, and Executable Code
When a C++ program is written, it must be typed into the computer and saved to a file. A
text editor, which is similar to a word processing program, is used for this task. The state-
ments written by the programmer are called source code, and the file they are saved in is
called the source file.

After the source code is saved to a file, the process of translating it to machine language
can begin. During the first phase of this process, a program called the preprocessor reads
the source code. The preprocessor searches for special lines that begin with the # symbol.
These lines contain commands, or directives, that cause the preprocessor to amend
or process the source code in some way. During the next phase the compiler steps through
the preprocessed source code, translating each source code instruction into the appropriate
machine language instruction. This process will uncover any syntax errors that may be in
the program. Syntax errors are illegal uses of key words, operators, punctuation, and other
language elements. If the program is free of syntax errors, the compiler stores the trans-
lated machine language instructions, which are called object code, in an object file.

Although an object file contains machine language instructions, it is not a complete pro-
gram. Here is why. C++ is conveniently equipped with a library of prewritten code for
performing common operations or sometimes-difficult tasks. For example, the library
contains hardware-specific code for displaying messages on the screen and reading input
from the keyboard. It also provides routines for mathematical functions, such as calcu-
lating the square root of a number. This collection of code, called the run-time library, is
extensive. Programs almost always use some part of it. When the compiler generates an
object file, however, it does not include machine code for any run-time library routines
the programmer might have used. During the last phase of the translation process,
another program called the linker combines the object file with the necessary library rou-
tines. Once the linker has finished with this step, an executable file is created. The exe-
cutable file contains machine language instructions, or executable code, and is ready to
run on the computer.

Figure 1-5 illustrates the process of translating a C++ source file into an executable file.
The entire process of invoking the preprocessor, compiler, and linker can be initiated with a
single action. For example, on a Linux system, the following command causes the C++
program named hello.cpp to be preprocessed, compiled, and linked. The executable code
is stored in a file named hello.

g++ -o hello hello.cpp

NOTE: Programs written for specific graphical environments often require significant
changes when moved to a different type of system. Examples of such graphical
environments are Windows, the X-Window System, and the Mac OS X operating system.

Programs and Programming Languages 11

Appendix M on the student CD explains how compiling works in Microsoft Visual C++.

Many development systems, particularly those on personal computers, have integrated
development environments (IDEs). These environments consist of a text editor, compiler,
debugger, and other utilities integrated into a package with a single set of menus. Prepro-
cessing, compiling, linking, and even executing a program is done with a single click of a
button, or by selecting a single item from a menu. Figure 1-6 shows a screen from the
Microsoft Visual C++ IDE.

Figure 1-5

Source code
hello.cpp

Preprocessor

Modified
source code

Compiler

Object code
hello.obj

Executable code
hello.exe

Linker

Source code is entered
with a text editor by
the programmer.

// hello.cpp

#include <iostream>

using namespace std;

int main()

{

 cout << "Hello World\n";

 return 0;

}

12 Chapter 1 Introduction to Computers and Programming

Checkpoint

1.10 What is an algorithm?

1.11 Why were computer programming languages invented?

1.12 What is the difference between a high-level language and a low-level language?

1.13 What does portability mean?

1.14 Explain the operations carried out by the preprocessor, compiler, and linker.

1.15 Explain what is stored in a source file, an object file, and an executable file.

1.16 What is an integrated development environment?

1.4 What Is a Program Made of?

CONCEPT: There are certain elements that are common to all programming
languages.

Language Elements
All programming languages have a few things in common. Table 1-2 lists the common ele-
ments found in almost every language.

Figure 1-6

What Is a Program Made of? 13

Let’s look at some specific parts of Program 1-1 (the pay-calculating program) to see examples
of each element listed in the table above. For convenience, Program 1-1 is listed again.

Key Words (reserved words)

Three of C++’s key words appear on lines 3 and 5: using, namespace, and int. The word
double, which appears on line 7, is also a C++ key word. These words, which are always
written in lowercase, each have a special meaning in C++ and can only be used for their
intended purposes. As you will see, the programmer is allowed to make up his or her own

Table 1-2 Programming Language Elements

Language Element Description

Key Words Words that have a special meaning. Key words may only be used for their
intended purpose. Key words are also known as reserved words.

Programmer-Defined
Identifiers

Words or names defined by the programmer. They are symbolic names
that refer to variables or programming routines.

Operators Operators perform operations on one or more operands. An operand is
usually a piece of data, like a number.

Punctuation Punctuation characters that mark the beginning or ending of a statement,
or separate items in a list.

Syntax Rules that must be followed when constructing a program. Syntax dictates
how key words and operators may be used, and where punctuation
symbols must appear.

Program 1-1

1 // This program calculates the user's pay.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 double hours, rate, pay;
8
9 // Get the number of hours worked.
10 cout << "How many hours did you work? ";
11 cin >> hours;
12
13 // Get the hourly pay rate.
14 cout << "How much do you get paid per hour? ";
15 cin >> rate;
16
17 // Calculate the pay.
18 pay = hours * rate;
19
20 // Display the pay.
21 cout << "You have earned $" << pay << endl;
22 return 0;
23 }

14 Chapter 1 Introduction to Computers and Programming

names for certain things in a program. Key words, however, are reserved and cannot be
used for anything other than their designated purposes. Part of learning a programming
language is learning what the key words are, what they mean, and how to use them.

Programmer-Defined Identifiers

The words hours, rate, and pay that appear in the program on lines 7, 11, 15, 18, and 21
are programmer-defined identifiers. They are not part of the C++ language but rather are
names made up by the programmer. In this particular program, these are the names of
variables. As you will learn later in this chapter, variables are the names of memory loca-
tions that may hold data.

Operators

On line 18 the following statement appears:

pay = hours * rate;

The = and * symbols are both operators. They perform operations on pieces of data,
known as operands. The * operator multiplies its two operands, which in this example
are the variables hours and rate. The = symbol is called the assignment operator. It
takes the value of the expression on the right and stores it in the variable whose name
appears on the left. In this example, the = operator stores in the pay variable the result of
the hours variable multiplied by the rate variable. In other words, the statement says,
“Make the pay variable equal to hours times rate” or “pay is assigned the value of
hours times rate.”

Punctuation

Notice that many lines end with a semicolon. A semicolon in C++ is similar to a period in
English. It marks the end of a complete sentence (or statement, as it is called in program-
ming). Semicolons do not appear at the end of every line in a C++ program, however.
There are rules that govern where semicolons are required and where they are not. Part of
learning C++ is learning where to place semicolons and other punctuation symbols.

Lines and Statements
Often, the contents of a program are thought of in terms of lines and statements. A line
is just that—a single line as it appears in the body of a program. Program 1-1 is shown
with each of its lines numbered. Most of the lines contain something meaningful; how-
ever some of the lines are empty. The blank lines are only there to make the program
more readable.

A statement is a complete instruction that causes the computer to perform some action.
Here is the statement that appears in line 10 of Program 1-1:

cout << "How many hours did you work? ";

NOTE: The #include <iostream> statement in line 2 is a preprocessor directive.

NOTE: In C++, key words are written in all lowercase.

What Is a Program Made of? 15

It causes the computer to display the message “How many hours did you work?” on the
screen. Statements can be a combination of key words, operators, and programmer-defined
symbols. Statements usually occupy only one line in a program, but sometimes they are
spread out over more than one line.

Variables
A variable is a named storage location in the computer’s memory for holding a piece of data.
The data stored in variables may change while the program is running (hence the name
“variable”). Notice that in Program 1-1 the words hours, rate, and pay appear in several
places. All three of these are the names of variables. The hours variable is used to store the
number of hours the user worked. The rate variable stores the user’s hourly pay rate. The
pay variable holds the result of hours multiplied by rate, which is the user’s gross pay.

Variables are symbolic names that represent locations in the computer’s random-access
memory (RAM). When information is stored in a variable, it is actually stored in RAM.
Assume a program has a variable named length. Figure 1-7 illustrates the way the vari-
able name represents a memory location.

In Figure 1-7 the variable length is holding the value 72. The number 72 is actually stored
in RAM at address 23, but the name length symbolically represents this storage location.
You can think of a variable as a box that holds information. In Figure 1-7, the number 72 is
stored in the box named length. Only one item may be stored in the box at any given time.
If the program stores another value in the box, it will take the place of the number 72.

Variable Definitions
In programming, there are two general types of data: numbers, such as 3, and characters,
such as the letter ‘A’. Numbers are used to perform mathematical operations and charac-
ters are used to print information on the screen or on paper.

NOTE: Notice the variables in Program 1-1 have names that reflect their purpose. In
fact, it would be easy to guess what the variables were used for just by reading their
names. This is discussed further in Chapter 2.

Figure 1-7

0

10

20

1

11

21

2

12

22

3

13

23

4

14

24

5

15

25

6

16

26

7

17

27

8

18

28

9

19

29
72

length

16 Chapter 1 Introduction to Computers and Programming

Numeric data can be categorized even further. For instance, the following are all whole
numbers, or integers:

5
7
-129
32154

The following are real, or floating-point, numbers:

3.14159
6.7
1.0002

When creating a variable in a C++ program, you must know what type of data the pro-
gram will be storing in it. Look at line 7 of Program 1-1:

double hours, rate, pay;

The word double in the statement indicates that the variables hours, rate, and pay will be
used to hold double precision floating-point numbers. This statement is called a variable defini-
tion. In C++, all variables must be defined before they can be used because the variable definition
is what causes the variables to be created in memory. If you review the listing of Program 1-1,
you will see that the variable definitions come before any other statements using those variables.

1.5 Input, Processing, and Output

CONCEPT: The three primary activities of a program are input, processing,
and output.

Computer programs typically perform a three-step process of gathering input, performing
some process on the information gathered, and then producing output. Input is information
a program collects from the outside world. It can be sent to the program by the user, who is
entering data at the keyboard or using the mouse. It can also be read from disk files or hard-
ware devices connected to the computer. Program 1-1 allows the user to enter two items of
information: the number of hours worked and the hourly pay rate. Lines 11 and 15 use the
cin (pronounced “see in”) object to perform these input operations:

cin >> hours;
cin >> rate;

Once information is gathered from the outside world, a program usually processes it in
some manner. In Program 1-1, the hours worked and hourly pay rate are multiplied in
line 18 to produce the value assigned to the variable pay:

pay = hours * rate;

Output is information that a program sends to the outside world. It can be words or graphics
displayed on a screen, a report sent to the printer, data stored in a file, or information sent to
any device connected to the computer.

The Programming Process 17

Lines 10, 14, and 21 in Program 1-1 all use the cout (pronounced “see out”) object to dis-
play messages on the computer’s screen.

cout << "How many hours did you work? ";
cout << "How much do you get paid per hour? ";
cout << "You have earned $" << pay << endl;

You will learn more about objects later in the book and about the cin and cout objects in
Chapters 2 and 3.

Checkpoint

1.17 Describe the difference between a key word and a programmer-defined symbol.

1.18 Describe the difference between operators and punctuation symbols.

1.19 Describe the difference between a program line and a statement.

1.20 Why are variables called “variable”?

1.21 What happens to a variable’s current contents when a new value is stored there?

1.22 What must take place in a program before a variable is used?

1.23 What are the three primary activities of a program?

1.6 The Programming Process

CONCEPT: The programming process consists of several steps, which include design,
creation, testing, and debugging activities.

Designing and Creating a Program
Now that you have been introduced to what a program is, it’s time to consider the process
of creating a program. Quite often, when inexperienced students are given programming
assignments, they have trouble getting started because they don’t know what to do first. If
you find yourself in this dilemma, the steps listed in Figure 1-8 may help. These are the
steps recommended for the process of writing a program.

Figure 1-8

 1. Define what the program is to do.

 2. Visualize the program running on the computer.

 3. Use design tools to create a model of the program.

 4. Check the model for logical errors.

 5. Write the program source code.

 6. Compile the source code.

 7. Correct any errors found during compilation.

 8. Link the program to create an executable file.

 9. Run the program using test data for input.

 10. Correct any errors found while running the program.
Repeat steps 4 through 10 as many times as necessary.

 11. Validate the results of the program.

18 Chapter 1 Introduction to Computers and Programming

The steps listed in Figure 1-8 emphasize the importance of planning. Just as there are good
ways and bad ways to paint a house, there are good ways and bad ways to create a pro-
gram. A good program always begins with planning.

With the pay-calculating program as our example, let’s look at each of the steps in more detail.

1. Define what the program is to do.
This step requires that you clearly identify the purpose of the program, the information
that is to be input, the processing that is to take place, and the desired output. Here are the
requirements for the example program:

Purpose To calculate the user’s gross pay.

Input Number of hours worked, hourly pay rate.

Processing Multiply number of hours worked by hourly pay rate. The result is the
user’s gross pay.

Output Display a message indicating the user’s gross pay.

2. Visualize the program running on the computer.
Before you create a program on the computer, you should first create it in your mind.
Step 2 is the visualization of the program. Try to imagine what the computer screen looks
like while the program is running. If it helps, draw pictures of the screen, with sample
input and output, at various points in the program. For instance, here is the screen pro-
duced by the pay-calculating program:

In this step, you must put yourself in the shoes of the user. What messages should the pro-
gram display? What questions should it ask? By addressing these issues, you will have
already determined most of the program’s output.

3. Use design tools to create a model of the program.
While planning a program, the programmer uses one or more design tools to create a
model of the program. Three common design tools are hierarchy charts, flowcharts, and
pseudocode. A hierarchy chart is a diagram that graphically depicts the structure of a pro-
gram. It has boxes that represent each step in the program. The boxes are connected in a
way that illustrates their relationship to one another. Figure 1-9 shows a hierarchy chart
for the pay-calculating program.

A hierarchy chart begins with the overall task, and then refines it into smaller subtasks.
Each of the subtasks is then refined into even smaller sets of subtasks, until each is small
enough to be easily performed. For instance, in Figure 1-9, the overall task “Calculate
Gross Pay” is listed in the top-level box. That task is broken into three subtasks. The first
subtask, “Get Payroll Data from User,” is broken further into two subtasks. This process
of “divide and conquer” is known as top-down design.

 How many hours did you work? 10
 How much do you get paid per hour? 15
 You earned $ 150

The Programming Process 19

A flowchart is a diagram that shows the logical flow of a program. It is a useful tool for
planning each operation a program must perform, and the order in which the operations
are to occur. For more information see Appendix O, Introduction to Flowcharting.

Pseudocode is a cross between human language and a programming language. Although
the computer can’t understand pseudocode, programmers often find it helpful to write an
algorithm using it. This is because pseudocode is similar to natural language, yet close
enough to programming language that it can be easily converted later into program source
code. By writing the algorithm in pseudocode first, the programmer can focus on just the
logical steps the program must perform, without having to worry yet about syntax or
about details such as how output will be displayed.

Pseudocode can be written at a high level or at a detailed level. Many programmers use
both forms. High level pseudocode simply lists the steps a program must perform. Here is
high level pseudocode for the pay-calculating program.

Get payroll data
Calculate gross pay
Display gross pay

High level pseudocode can be expanded to produce detailed pseudocode. Here is the
detailed pseudocode for the same program. Notice that it even names variables and tells
what mathematical operations to perform.

Ask the user to input the number of hours worked
Input hours
Ask the user to input the hourly pay rate
Input rate
Set pay equal to hours times rate
Display pay

Figure 1-9

Calculate
gross pay

Display
pay

Get payroll data
from user

Set pay to
hours worked
times pay rate

Read number of
hours worked

Read hourly
pay rate

Designing a
Program with
Pseudocode

20 Chapter 1 Introduction to Computers and Programming

4. Check the model for logical errors.
Logical errors, also called logic errors, are mistakes that cause a program to produce errone-
ous results. Examples of logical errors would be using the wrong variable’s value in a compu-
tation or performing order-dependent actions in the wrong order. Once a model of the
program has been created, it should be checked for logical errors. The programmer should
trace through the charts or pseudocode, checking the logic of each step. If an error is found,
the model can be corrected before the actual program source code is written. In general, the
earlier an error is detected in the programming process, the easier it is to correct.

5. Write the program source code.
Once a model of the program (hierarchy chart, flowchart, or pseudocode) has been cre-
ated, checked, and corrected, the programmer is ready to write the source code, using an
actual computer programming language, such as C++. Many programmers write the code
directly on the computer, typing it into a text editor. Some programmers, however, prefer
to write the program on paper first, then enter it into the computer. Once the program has
been entered, the source code is saved to a file.

6. Compile the source code.
Next the saved source code is ready to be compiled. The compiler will translate the source
code to machine language.

7. Correct any errors found during compilation.
If the compiler reports any errors, they must be corrected and the code recompiled. This
step is repeated until the program is free of compile-time errors.

8. Link the program to create an executable file.
Once the source code compiles with no errors, it can be linked with the libraries specified
by the program #include statements to create an executable file. If an error occurs during
the linking process, it is likely that the program has failed to include a needed library file.
The needed file must be included and the program relinked.

9. Run the program using test data for input.
Once an executable file is generated, the program is ready to be tested for run-time and logic
errors. A run-time error occurs when the running program asks the computer to do something
that is impossible, such as divide by zero. Normally a run-time error causes the program to
abort. If the program runs, but fails to produce correct results, it likely contains one or more
logic errors. To help identify such errors, it is important that the program be executed with
carefully selected sample data that allows the correct output to be predicted.

10. Correct any errors found while running the program.
When run-time or logic errors occur in a program, they must be corrected. You must iden-
tify the step where the error occurred and determine the cause.

Desk-checking is a process that can help locate these types of errors. The term desk-checking
means the programmer starts reading the program, or a portion of the program, and steps
through each statement. A sheet of paper is often used in this process to jot down the current
contents of all variables and sketch what the screen looks like after each output operation.

The Programming Process 21

When a variable’s contents change, or information is displayed on the screen, this is noted. By
stepping through each statement in this manner, many errors can be located and corrected.

If the error is a result of incorrect logic (such as an improperly stated math formula), you
must correct the statement or statements involved in the logic. If the error is due to an
incomplete understanding of the program requirements, then you must restate the
program’s purpose and modify all affected charts, pseudocode, and source code. The pro-
gram must then be saved, recompiled, relinked, and retested. This means steps 4 though 10
must be repeated until the program reliably produces satisfactory results.

11. Validate the results of the program.
When you believe you have corrected all errors, enter test data to verify that the program
solves the original problem.

What Is Software Engineering?
The field of software engineering encompasses the complete process of crafting computer
software. It includes designing, writing, testing, debugging, documenting, modifying, and
maintaining complex software development projects. Like traditional engineers, software
engineers use a number of tools in their craft. Here are a few examples:

• Program specifications
• Charts and diagrams of screen output
• Hierarchy charts
• Pseudocode
• Examples of expected input and desired output
• Special software designed for testing programs

Most commercial software applications are very large. In many instances one or more
teams of programmers, not a single individual, develop them. It is important that the
program requirements be thoroughly analyzed and divided into subtasks that are handled
by individual teams or individuals within a team.

In step 3 of the programming process, you were introduced to the hierarchy chart as a tool
for top-down design. When the subtasks identified in a top-down design are long or
complex, they can be developed as modules, or separate components, of a program. If
the program is very large or complex, a team of software engineers can be assigned to
work on the individual modules. As the project develops, the modules are coordinated to
become a single software application.

Checkpoint

1.24 What four items should you identify when defining what a program is to do?

1.25 What does it mean to “visualize a program running”? What is the value of
doing this?

1.26 What is a hierarchy chart?

1.27 What is pseudocode?

1.28 What is the difference between high level pseudocode and detailed pseudocode?

1.29 Describe what a compiler does with a program’s source code.

22 Chapter 1 Introduction to Computers and Programming

1.30 What is a logic error?

1.31 What is a run-time error?

1.32 Describe the process of desk-checking.

1.7 Tying It All Together: Hi! It’s Me

Most programs, as you have learned, have three primary activities: input, processing, and
output. But it is possible to write a program that has only output. Program 1-2, shown
below, displays the message:

Hi! It's me.
I'm learning to program!

Program 1-2 can be found in the Chapter 1 folder on the student CD that came with your
textbook. Open the program in whatever C++ development environment your class is
using. Then compile it and run it. Your instructor will show you how to do this.

Once you have run it, change the word me on line 7 to your name to personalize the
message. Then recompile and rerun the program.

In the next chapter you will learn what the \' and \n do.

Review Questions and Exercises

Fill-in-the-Blank and Short Answer

1. Computers can do many different jobs because they can be __________.

2. The job of the __________ is to fetch instructions, carry out the operations com-
manded by the instructions, and produce some outcome or resultant information.

3. Internally, the CPU consists of the __________ and the __________.

4. A(n) __________ is an example of a secondary storage device.

Program 1-2

1 //This program prints a message with your name in it.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 cout << "Hi! It\'s me.\n";
8 cout << "I\'m learning to program!\n";
9 return 0;
10 }

Review Questions and Exercises 23

5. The two general categories of software are __________ and __________.

6. A program is a set of __________.

7. Since computers can’t be programmed in natural human language, algorithms must be
written in a(n) __________ language.

8. __________ is the only language computers really process.

9. __________ languages are close to the level of humans in terms of readability.

10. __________ languages are close to the level of the computer.

11. A program’s ability to run on several different types of computer systems is called
__________.

12. Words that have special meaning in a programming language are called __________
words.

13. Words or names defined by the programmer are called __________.

14. __________ are characters or symbols that perform operations on one or more
operands.

15. __________ characters or symbols mark the beginning or ending of programming
statements, or separate items in a list.

16. The rules that must be followed when constructing a program are called __________.

17. A(n) __________ is a named storage location.

18. A variable must be __________ before it can be used in a program.

19. The three primary activities of a program are __________, __________, and
__________.

20. __________ is information a program gathers from the outside world.

21. __________ is information a program sends to the outside world.

22. A(n) __________ is a diagram that graphically illustrates the structure of a program.

23. Both main memory and secondary storage are types of memory. Describe the differ-
ence between the two.

24. What is the difference between operating system software and application software?

25. What is the difference between a syntax error and a logical error?

Algorithm Workbench

26. Available Credit

Design a hierarchy chart for a program that calculates a customer’s available credit.
The program should carry out the following steps:

1. Display the message “Enter the customer’s maximum credit.”

2. Wait for the user to enter the customer’s maximum credit.

3. Display the message “Enter the amount of credit used by the customer.”

4. Wait for the user to enter the customer’s credit used.

5. Subtract the used credit from the maximum credit to get the customer’s available
credit.

6. Display a message that shows the customer’s available credit.

24 Chapter 1 Introduction to Computers and Programming

27. Account Balance

Write high-level and detailed psuedocode for a program that calculates the current
balance in a bank account. The program must ask the user for

• The starting balance
• The total dollar amount of deposits made
• The total dollar amount of withdrawals made

Once the program calculates the current balance, it should be displayed on the screen.

28. Sales Tax

Write high-level and detailed psuedocode for a program that calculates the total of a
retail sale. The program should ask the user for

• The retail price of the item being purchased
• The sales tax rate

Once these items have been entered, the program should calculate and display

• The sales tax for the purchase
• The total of the sale

Predict the Output

Questions 29–32 are programs expressed as English statements. What would each display
on the screen if they were actual programs?

29. The variable sum starts with the value 0.
Add 10 to sum.
Add 15 to sum.
Add 20 to sum.
Display the value of sum on the screen.

30. The variable x starts with the value 0.
The variable y starts with the value 5.
Add 1 to x.
Add 1 to y.
Add x and y, and store the result in y.
Display the value in y on the screen.

31. The variable j starts with the value 10.
The variable k starts with the value 2.
The variable l starts with the value 4.
Store the value of j times k in j.
Store the value of k times l in l.
Add j and l, and store the result in k.
Display the value in k on the screen.

Designing the
Account
Balance
Program

Predicting the
Output of
Problem 30

Review Questions and Exercises 25

32. The variable a starts with the value 1.
The variable b starts with the value 10.
The variable c starts with the value 100.
The variable x starts with the value 0.
Store the value of c times 3 in x.
Add the value of b times 6 to the value already in x.
Add the value of a times 5 to the value already in x.
Display the value in x on the screen.

Find the Error

33. The following pseudocode algorithm has an error. It is supposed to use values input
for a rectangular room’s length and width to calculate and display its area. Find the
error.

area = width × length.
Display "What is the room's width?".
Input width.
Display "What is the room's length?".
Input length.
Display area.

Soft Skills

Before a programmer can design a program he or she must have some basic knowledge
about the domain, or area, the program will deal with and must understand exactly what it
is that the client wants the program to do. Otherwise the final program may not work cor-
rectly or may not meet the client’s needs.

34. Suppose one of your friends, who paints the insides of houses, has asked you to
develop a program that determines and displays how much paint is needed to paint a
room if the length and width of the room is input. What information are you lacking
that you need to write this program? Write at least three questions that you would
need to ask your friend before starting the project.

Programming Challenges

1. Candy Bar Sales

Using Program 1-1 as an example, write a program that calculates how much a student
organization earns during its fund raising candy sale. The program should prompt the user
to enter the number of candy bars sold and the amount the organization earns for each bar
sold. It should then calculate and display the total amount earned.

2. Baseball Costs

Using Program 1-1 as an example, write a program that calculates how much a little league
baseball team spent last year to purchase new baseballs. The program should prompt the
user to enter the number of baseballs purchased and the cost of each baseball. It should
then calculate and display the total amount spent to purchase the baseballs.

Solving the
Candy Bar Sales
Problem

This page intentionally left blank

27

C
H

A
P

T
E

R

2 Introduction to C++

2.1 The Parts of a C++ Program

CONCEPT: C++ programs have parts and components that serve specific purposes.

Every C++ program has an anatomy. Unlike human anatomy, the parts of C++ programs
are not always in the same place. Nevertheless, the parts are there and your first step in
learning C++ is to learn what they are. We will begin by looking at Program 2-1.

TOPICS

2.1 The Parts of a C++ Program
2.2 The cout Object
2.3 The #include Directive
2.4 Standard and Prestandard C++
2.5 Variables, Constants, and the

Assignment Statement
2.6 Identifiers
2.7 Integer Data Types
2.8 The char Data Type
2.9 The C++ string Class
2.10 Floating-Point Data Types

2.11 The bool Data Type
2.12 Determining the Size of a Data Type
2.13 More on Variable Assignments and

Initialization
2.14 Scope
2.15 Arithmetic Operators
2.16 Comments
2.17 Focus on Software Engineering:

Programming Style
2.18 Tying It All Together: Smile!

28 Chapter 2 Introduction to C++

Let’s examine the program line by line. Here’s the first line:

// A simple C++ program

The // marks the beginning of a comment. The compiler ignores everything from the
double-slash to the end of the line. That means you can type anything you want on that
line and the compiler will never complain! Although comments are not required, they are
very important to programmers. Most programs are much more complicated than the
example in Program 2-1, and comments help explain what’s going on.

Line 2 looks like this:

#include <iostream>

This line must be included in a C++ program in order to get input from the keyboard or
print output to the screen. Since the cout statement (on line 7) will print output to the
computer screen, we need to include this line. When a line begins with a # it indicates it
is a preprocessor directive. The preprocessor reads your program before it is compiled
and only executes those lines beginning with a # symbol. Think of the preprocessor as a
program that “sets up” your source code for the compiler.

The #include directive causes the preprocessor to include the contents of another file in
the program. The word inside the brackets, iostream, is the name of the file that is to be
included. The iostream file contains code that allows a C++ program to display output on
the screen and read input from the keyboard. Because this program uses cout to display
screen output, the iostream file must be included. Its contents are included in the program
at the point the #include statement appears. The iostream file is called a header file, so it
should be included at the head, or top, of the program.

Line 3 reads

using namespace std;

Programs usually contain various types of items with unique names. In this chapter you
will learn to create variables. In Chapter 6 you will learn to create functions. In Chapter
7 you will learn to create objects. Variables, functions, and objects are examples of

Program 2-1

1 // A simple C++ program
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 cout << "Programming is great fun!";
8 return 0;
9 }

The output of the program is shown below. This is what appears on the screen when the program runs.

Program Output
Programming is great fun!

The Parts of a C++ Program 29

program entities that must have names. C++ uses namespaces to organize the names of
program entities. The statement using namespace std; declares that the program will
be accessing entities whose names are part of the namespace called std. (Yes, even
namespaces have names.) The program needs access to the std namespace because
every name created by the iostream file is part of that namespace. In order for a pro-
gram to use the entities in iostream, it must have access to the std namespace. More
information on namespaces can be found in Appendix E.

Line 5 reads

int main()

This marks the beginning of a function. A function can be thought of as a group of one or
more programming statements that has a name. The name of this function is main, and the
set of parentheses that follows the name indicates that it is a function. The word int
stands for “integer.” It indicates that the function sends an integer value back to the oper-
ating system when it is finished executing.

Although most C++ programs have more than one function, every C++ program must
have a function called main. It is the starting point of the program. If you’re ever read-
ing someone else’s program and want to find where it starts, just look for the function
called main.

Line 6 contains a single, solitary character:

{

This is called a left-brace, or an opening brace, and it is associated with the beginning of
the function main. All the statements that make up a function are enclosed in a set of
braces. If you look at the third line down from the opening brace you’ll see the closing
brace. Everything between the two braces is the contents of the function main.

After the opening brace you see the following statement in line 7:

cout << "Programming is great fun!";

To put it simply, this line displays a message on the screen. You will read more about cout
and the << operator later in this chapter. The message “Programming is great fun!” is
printed without the quotation marks. In programming terms, the group of characters
inside the quotation marks is called a string literal, a string constant, or simply a string.

NOTE: C++ is a case-sensitive language. That means it regards uppercase letters as
being entirely different characters than their lowercase counterparts. In C++, the name
of the function main must be written in all lowercase letters. C++ doesn’t see “main” the
same as “Main” or “MAIN.”

WARNING! Make sure you have a closing brace for every opening brace in
your program.

30 Chapter 2 Introduction to C++

Notice that line 7 ends with a semicolon. Just as a period marks the end of a sentence, a semi-
colon is required to mark the end of a complete statement in C++. But many C++ lines do not
end with semicolons. Some of these include comments, preprocessor directives, and the
beginning of functions. Here are some examples of when to use, and not use, semicolons.

// Semicolon examples // This is a comment
include <iostream> // This is a preprocessor directive
int main() // This begins a function
cout << "Hello"; // This is a complete statement

As you spend more time working with C++ you will get a feel for where you should
and should not use semicolons. For now don’t worry about it. Just concentrate on
learning the parts of a program.

Line 8 reads

return 0;

This sends the integer value 0 back to the operating system upon the program’s comple-
tion. The value 0 usually indicates that a program executed successfully.

The last line of the program, line 9, contains the closing brace:

}

This brace marks the end of the main function. Because main is the only function in this
program, it also marks the end of the program.

In the sample program you encountered several sets of special characters. Table 2-1 provides
a short summary of how they were used.

NOTE: This is the only line in the program that causes anything to be printed on the
screen. The other lines, like #include <iostream> and int main(), are necessary for
the framework of your program, but they do not cause any screen output. Remember, a
program is a set of instructions for the computer. If something is to be displayed on the
screen, you must use a programming statement for that purpose.

Table 2-1 Special Characters

Character Name Description

// Double slash Marks the beginning of a comment.

Pound sign Marks the beginning of a preprocessor directive.

< > Opening and closing
brackets

Encloses a filename when used with the #include
directive.

() Opening and closing
parentheses

Used in naming a function, as in int main().

{ } Opening and closing
braces

Encloses a group of statements, such as the contents of a
function.

" " Opening and closing
quotation marks

Encloses a string of characters, such as a message that is to
be printed on the screen.

; Semicolon Marks the end of a complete programming statement.

The cout Object 31

Checkpoint

2.1 The following C++ program will not compile because the lines have been mixed up.

int main()
}
// A crazy mixed up program
#include <iostream>
return 0;
cout << "In 1492 Columbus sailed the ocean blue.";
{
using namespace std;

When the lines are properly arranged the program should display the following on
the screen:

In 1492 Columbus sailed the ocean blue.

Rearrange the lines in the correct order. Test the program by entering it on the
computer, compiling it, and running it.

2.2 On paper, write a program that will display your name on the screen. Use
Program 2-1 as your guide. Place a comment with today’s date at the top of the
program. Test your program by entering, compiling, and running it.

2.2 The cout Object

CONCEPT: cout is used to display information on the computer’s screen.

In this section you will learn to write programs that produce output on the screen. The
simplest type of screen output that a program can display is console output, which is
merely plain text. The word console is an old computer term. It comes from the days when
a computer operator interacted with the system by typing on a terminal. The terminal,
which consisted of a simple screen and keyboard, was known as the console.

On modern computers, running graphical operating systems such as Windows or Mac OS X,
console output is usually displayed in a window such as the one shown in Figure 2-1. C++
provides an object named cout that is used to produce console output. (You can think of
the word cout as meaning console output.)

Figure 2-1 A Console Window

32 Chapter 2 Introduction to C++

cout is classified as a stream object, which means it works with streams of data. To print a
message on the screen, you send a stream of characters to cout. Let’s look at line 7 from
Progam 2-1:

cout << "Programming is great fun!";

The << operator is used to send the string “Programming is great fun!” to cout. When the <<
symbol is used this way, it is called the stream-insertion operator. The item immediately to
the right of the operator is sent to cout and then displayed on the screen.

Program 2-2 shows another way to write the same program.

As you can see, the stream-insertion operator can be used to send more than one item to
cout. The output of this program is identical to Program 2-1. Program 2-3 shows yet
another way to accomplish the same thing.

NOTE: The stream insertion operator is always written as two less-than signs with no
space between them. Because you are using it to send a stream of data to the cout object,
you can think of the stream insertion operator as an arrow that must point toward cout,
as shown here.

cout << "Hello";
cout ← "Hello";

Program 2-2

1 // A simple C++ program
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 cout << "Programming is " << "great fun!";
8 return 0;
9 }

Program Output
Programming is great fun!

Program 2-3

1 // A simple C++ program
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 cout << "Programming is ";
8 cout << "great fun!";
9 return 0;
10 }

Program Output
Programming is great fun!

Using cout to
Display Output

The cout Object 33

An important concept to understand about Program 2-3 is that although the output is broken
into two programming statements, this program will still display the message on a single line.
Unless you specify otherwise, the information you send to cout is displayed in a continuous
stream. Sometimes this can produce less-than-desirable results. Program 2-4 illustrates this.

The layout of the actual output looks nothing like the arrangement of the strings in
the source code. First, notice there is no space displayed between the words “sellers” and
“during,” or between “June:” and “Computer.” cout displays messages exactly as they are
sent. If spaces are to be displayed, they must appear in the strings.

Second, even though the output is broken into five lines in the source code, it comes out as
one long line of output. Because the output is too long to fit on one line of the screen, it
wraps around to a second line when displayed. The reason the output comes out as one
long line is that cout does not start a new line unless told to do so. There are two ways to
instruct cout to start a new line. The first is to send cout a stream manipulator called
endl (pronounced “end-line” or “end-L”). Program 2-5 does this.

Program 2-4

1 // An unruly printing program
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 cout << "The following items were top sellers";
8 cout << "during the month of June:";
9 cout << "Computer games";
10 cout << "Coffee";
11 cout << "Aspirin";
12 return 0;
13 }

Program Output
The following items were top sellersduring the month of June:Computer
gamesCoffeeAspirin

Program 2-5

1 // A well-adjusted printing program
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 cout << "The following items were top sellers" << endl;
8 cout << "during the month of June:" << endl;
9 cout << "Computer games" << endl;
10 cout << "Coffee" << endl;
11 cout << "Aspirin" << endl;
12 return 0;
13 }

(program continues)

34 Chapter 2 Introduction to C++

Every time cout encounters an endl stream manipulator it advances the output to the
beginning of the next line for subsequent printing. The manipulator can be inserted any-
where in the stream of characters sent to cout, outside the double quotes. Notice that an
endl is also used at the end of the last line of output.

Another way to cause subsequent output to begin on a new line is to insert a \n in the
string that is being output. Program 2-6 does this.

\n is an example of an escape sequence. Escape sequences are written as a backslash char-
acter (\) followed by one or more control characters and are used to control the way out-
put is displayed. There are many escape sequences in C++. The newline escape sequence
(\n) is just one of them.

When cout encounters \n in a string, it doesn’t print it on the screen but interprets it as a
special command to advance the output cursor to the next line. You have probably noticed
inserting the escape sequence requires less typing than inserting endl. That’s why some
programmers prefer it.

Escape sequences give you the ability to exercise greater control over the way information
is output by your program. Table 2-2 lists a few of them.

Program Output
The following items were top sellers
during the month of June:
Computer games
Coffee
Aspirin

NOTE: The last character in endl is the lowercase letter L, not the number one.

Program 2-6

1 // Another well-adjusted printing program
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 cout << "The following items were top sellers\n";
8 cout << "during the month of June:\n";
9 cout << "Computer games\nCoffee";
10 cout << "\nAspirin\n";
11 return 0;
12 }

Program Output
The following items were top sellers
during the month of June:
Computer games
Coffee
Aspirin

Program 2-5 (continued)

The #include Directive 35

A common mistake made by beginning C++ students is to use a forward slash (/) instead of
a back slash (\) when trying to write an escape sequence. This will not work. For example,
look at the following line of code.

cout << "Four score/nAnd seven/nYears ago./n"; // Error!

Because the programmer accidentally wrote /n instead of \n, cout will simply display the
/n characters on the screen, rather than starting a new line of output. This code will create
the following output:

Four score/nAnd seven/nYears ago./n

Another common mistake is to forget to put the \n inside quotation marks. For example,
the following code will not compile.

cout << "Good" << \n; // Error!
cout << "Morning" << \n; // This code will not compile.

We can correct the code by placing the \n sequences inside the string literals, as shown here:

cout << "Good\n"; // This will work.
cout << "Morning\n";

To summarize, do not confuse the backslash (\) with the forward slash (/). An escape
sequence must start with a backslash, be placed inside quotation marks, and have no
spaces between the backslash and the control character.

2.3 The #include Directive

CONCEPT: The #include directive causes the contents of another file to be inserted
into the program.

Now is a good time to expand our discussion of the #include directive. The following line
has appeared near the top of every example program.

#include <iostream>

Table 2-2 Common Escape Sequences

Escape
Sequence Name Description

\n Newline Causes the cursor to go to the next line for subsequent printing.

\t Horizontal tab Causes the cursor to skip over to the next tab stop.

\a Alarm Causes the computer to beep.

\b Backspace Causes the cursor to back up, or move left one position.

\r Return Causes the cursor to go to the beginning of the current line, not the
next line.

\\ Backslash Causes a backslash to be printed.

\' Single quote Causes a single quotation mark to be printed.

\" Double quote Causes a double quotation mark to be printed.

36 Chapter 2 Introduction to C++

The header file iostream must be included in any program that uses the cout object. This
is because cout is not part of the “core” of the C++ language. Specifically, it is part of the
input-output stream library. The header file, iostream, contains information describing
iostream objects. Without it, the compiler will not know how to properly compile a pro-
gram that uses cout.

Preprocessor directives are not C++ statements. They are commands to the preprocessor,
which runs prior to the compiler (hence the name “preprocessor”). The preprocessor’s job
is to set programs up in a way that makes life easier for the programmer.

For example, any program that uses the cout object must contain the extensive setup
information found in the iostream file. The programmer could type all this information
into the program, but it would be too time consuming. An alternative would be to use an
editor to “cut and paste” the information into the program, but that would still be ineffi-
cient. The solution is to let the preprocessor insert the contents of iostream automatically.

An #include directive must always contain the name of a file. The preprocessor inserts the
entire contents of the file into the program at the point it encounters the #include direc-
tive. The compiler doesn’t actually see the #include directive. Instead it sees the code that
was inserted by the preprocessor, just as if the programmer had typed it there.

The code contained in header files is C++ code. Typically it describes complex objects like
cout. Later you will learn to create your own header files.

Checkpoint

2.3 The following cout statement contains errors.

cout << "red /n" << "blue \ n" << "yellow" \n << "green";

Correct it so that it will display a list of colors, with one item per line.

2.4 What output will the following lines of code display on the screen?

cout << "The works of Wolfgang\ninclude the following";
cout << "\nThe Turkish March" << endl;
cout << "and Symphony No. 40 ";
cout << "in G minor." << endl;

2.5 On paper, write a program that will display your name on the first line, your street
address on the second line, your city, state, and ZIP code on the third line, and your
telephone number on the fourth line. Test your program by entering, compiling, and
running it.

WARNING! Do not use semicolons at the end of preprocessor directives. Because
preprocessor directives are not C++ statements, they do not require them. In fact, in
many cases an error will result if a preprocessor directive is terminated with a
semicolon.

37

2.4 Standard and Prestandard C++

CONCEPT: C++ programs written before the language became standardized may
appear slightly different from programs written today.

C++ is now a standardized programming language, but it hasn’t always been. The language
has evolved over the years and, as a result, there is a “newer style” and an “older style” of
writing C++ code. The newer style is the way programs are written with standard C++,
while the older style is the way programs were typically written using prestandard C++.
Although the differences between the older and newer styles are subtle, it is important that
you recognize them. When you go to work as a computer science professional, it is likely
that you will see programs written in the older style.

Older Style Header Files
In older style C++, all header files end with the “.h” extension. For example, in a prestandard
C++ program the statement that includes the iostream header file is written as

#include <iostream.h>

Absence of using namespace std;
Another difference between the newer and older styles is that older style programs typically do
not use the using namespace std; statement. In fact, some older compilers do not support
namespaces at all and will produce an error message if a program has that statement.

An Older Style Program
To illustrate these differences, look at the following program. It is a modification of
Program 2-1, written in the older style.

// A simple C++ program
#include <iostream.h>

void main(void)
{

cout << "Programming is great fun!";
}

Some standard C++ compilers do not support programs written in the older style, and
prestandard compilers normally do not support programs written in the newer style.

2.5 Variables, Constants, and the Assignment
Statement

CONCEPT: Variables represent storage locations in the computer’s memory.
Constants are data items whose values cannot change while the program
is running.

The concept of a variable in computer programming is somewhat different from the concept
of a variable in mathematics. In programming, as you learned in Chapter 1, a variable is a

Variables, Constants, and the Assignment Statement

38 Chapter 2 Introduction to C++

named storage location for holding data. Variables allow you to store and work with data in
the computer’s memory. They provide an “interface” to RAM. Part of the job of program-
ming is to determine how many variables a program will need and what type of information
each will hold. Program 2-7 is an example of a C++ program with a variable.

Let’s look more closely at this program. Start by looking at line 7.

int number;

This is called a variable definition. It tells the compiler the variable’s name and the type of data
it will hold. Notice that the data type is written first, followed by the name of the variable. This
variable’s name is number. The word int stands for integer, so number may only be used to
hold integer numbers. Later in this chapter you will learn all the types of data that C++ allows.

Now look at line 9.

number = 5;

This is called an assignment statement and the = sign is called the assignment operator. This
operator copies the value on its right (5) into the variable named on its left (number).
This line does not print anything on the computer’s screen. It runs silently behind the
scenes, storing a value in RAM. After this line executes, number will be set to 5.

Program 2-7

1 // This program has a variable.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int number;
8
9 number = 5;
10 cout << "The value of number is " << "number" << endl;
11 cout << "The value of number is " << number << endl;
12
13 number = 7;
14 cout << "Now the value of number is " << number << endl;
15
16 return 0;
17 }

Program Output
The value of number is number
The value of number is 5
Now the value of number is 7

NOTE: You must have a definition for every variable you use in a program. In C++, a
variable definition can appear at any point in the program as long as it occurs before
the variable is ever used. Later in this chapter, and throughout the book, you will
learn the best places to define variables. Notice that variable definitions end with a
semicolon.

Variables, Constants, and the Assignment Statement 39

Now look at lines 10 and 11. Notice that in line 10 the word number has double quotation
marks around it and in line 11, it does not.

cout << "The value of number is " << "number" << endl;
cout << "The value of number is " << number << endl;

Now compare these two lines with the output they produce. In the first cout statement,
the string constant "number" is inserted into the output stream, so the output produced is

The value of number is number

In the second cout statement, because there are no quotation marks around it, it is the
variable name number that is inserted into the output stream, causing its value to print.

The value of number is 5

Recall from Chapter 1 that variables are called variables because their values can change.
The assignment statement on line 13 replaces the previous value stored in number with a 7.

number = 7;

Therefore the final cout statement on line 14

cout << "Now the value of number is " << number << endl;

causes the following output to print.

Now the value of number is 7

Sometimes a Number Isn’t a Number
As shown in Program 2-7, placing quotation marks around a variable name made it a
string constant, or string literal. When string literals are sent to cout, they are printed
exactly as they appear inside the quotation marks. You’ve probably noticed by now that
the endl stream manipulator is written with no quotation marks around it. If we were
to put the following line in a program, it would print out the word endl, rather than cause
subsequent output to begin on a new line.

cout << "endl"; // Wrong!

In fact, placing double quotation marks around anything that is not intended to be a string
literal will create an error of some type. For example, in Program 2-7 the number 5 was
assigned to the variable number. It would have been incorrect to write the assignment
this way:

number = "5"; // Wrong!

In this line, 5 is no longer an integer, but a string literal. Because number was defined to be
an integer variable, you can only store integers in it. The integer 5 and the string literal “5”
are not the same thing.

NOTE: The item on the left hand side of an assignment statement must be a variable. It
would be incorrect to say 5 = number;

40 Chapter 2 Introduction to C++

The fact that numbers can be represented as strings frequently confuses people who are
new to programming. Just remember that strings are intended for humans to read. They
are to be printed on computer screens or paper. Numbers, however, are intended primarily
for mathematical operations. You cannot perform math on strings, and you cannot display
numbers on the screen without first converting them to strings. (Fortunately, cout handles
the conversion automatically when you send a number to it.)

Constants
Unlike a variable, a constant is a data item whose value cannot change during the program’s
execution. Program 2-8 contains integer constants, string constants (i.e., string literals), and
a variable.

Of course, the variable is apples. Table 2-3 lists the constants found in the program.

What are constants used for? As you can see from Program 2-8, they are commonly used
to store known values in variables and to display messages on the screen.

Program 2-8

1 // This program has constants and a variable.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int apples;
8
9 apples = 20;
10 cout << "On Sunday we sold " << apples << " bushels of apples. \n";
11
12 apples = 15;
13 cout << "On Monday we sold " << apples << " bushels of apples. \n";
14 return 0;
15 }

Program Output
On Sunday we sold 20 bushels of apples.
On Monday we sold 15 bushels of apples.

Table 2-3 Program 2-8 Constants

Integer Constants String Literals

20 "On Sunday we sold"

15 "On Monday we sold"

0 "bushels of apples. \n"

Identifiers 41

Checkpoint

2.6 Which of the following are legal C++ assignment statements?

a. a = 7;
b. 7 = a;
c. 7 = 7;

2.7 List all the variables and constants that appear below.

int main()
{

int little;
int big;
little = 2;
big = 2000;
cout << "The little number is " << little << endl;
cout << "The big number is " << big << endl;
return 0;

}

2.8 When the above program is run, what will display on the screen?

2.9 What will the following program display on the screen?

#include <iostream>
using namespace std;

int main()
{

int number;

number = 712;
cout << "The value is " << "number" << endl;
return 0;

}

2.6 Identifiers

CONCEPT: A variable name should indicate what the variable is used for.

An identifier is a programmer-defined name that represents some element of a program.
Variable names are examples of identifiers. You may choose your own variable names in
C++, as long as you do not use any of the C++ key words. The key words make up the
“core” of the language and have specific purposes. Table 2-4 shows a complete list of the
C++ key words. Note that they are all lowercase.

42 Chapter 2 Introduction to C++

You should always choose names for your variables that give an indication of what the
variables are used for. You may be tempted to give variables names like this:

int x;

However, the rather nondescript name, x, gives no clue as to the variable’s purpose. Here is
a better example.

int itemsOrdered;

The name itemsOrdered gives anyone reading the program an idea of the variable’s use. This
way of coding helps produce self-documenting programs, which means you can get an under-
standing of what the program is doing just by reading its code. Because real-world programs
usually have thousands of lines, it is important that they be as self-documenting as possible.

You probably have noticed the mixture of uppercase and lowercase letters in the variable
name itemsOrdered. Although all of C++’s key words must be written in lowercase, you
may use uppercase letters in variable names.

The reason the O in itemsOrdered is capitalized is to improve readability. Normally
“items ordered” is two words. However, you cannot have spaces in a variable name, so the
two words must be combined into one. When “items” and “ordered” are stuck together
you get a variable definition like this:

int itemsordered;

Capitalization of the first letter of the second word and any succeeding words makes variable
names like itemsOrdered easier to read and is the convention we use for naming variables
in this book. However, this style of coding is not required. You are free to use all lowercase
letters, all uppercase letters, or any combination of both. In fact, some programmers use the
underscore character to separate words in a variable name, as in the following.

int items_ordered;

Legal Identifiers
Regardless of which style you adopt, be consistent and make your variable names as sensi-
ble as possible. Here are some specific rules that must be followed with all C++ identifiers.

• The first character must be one of the letters a through z, A through Z, or an under-
score character (_).

Table 2-4 C++ Key Words

and continue goto public try
and_eq default if register typedef
asm delete inline reinterpret_cast typeid
auto do int return typename
bitand double long short union
bitor dynamic_cast mutable signed unsigned
bool else namespace sizeof using
break enum new static virtual
case explicit not static_cast void
catch export not_eq struct volatile
char extern operator switch wchar_t
class false or template while
compl float or_eq this xor
const for private throw xor_eq
const_cast friend protected true

Integer Data Types 43

• After the first character you may use the letters a through z or A through Z, the digits
0 through 9, or underscores.

• Uppercase and lowercase characters are distinct. This means ItemsOrdered is not
the same as itemsordered.

Table 2-5 lists variable names and indicates whether each is legal or illegal in C++.

2.7 Integer Data Types

CONCEPT: There are many different types of data. Variables are classified according
to their data type, which determines the kind of information that may be
stored in them. Integer variables can only hold whole numbers.

Computer programs collect pieces of data from the real world and manipulate them in var-
ious ways. There are many different types of data. In the realm of numeric information, for
example, there are whole numbers and fractional numbers. There are negative numbers
and positive numbers. And there are numbers so large, and others so small, that they don’t
even have a name. Then there is textual information. Names and addresses, for instance,
are stored as groups of characters. When you write a program you must determine what
types of information it will be likely to encounter.

If you are writing a program to calculate the number of miles to a distant star, you’ll
need variables that can hold very large numbers. If you are designing software to record
microscopic dimensions, you’ll need to store very small and precise numbers. Addition-
ally, if you are writing a program that must perform thousands of intensive calculations,
you’ll want data stored in variables that can be processed quickly. The data type of a
variable determines all of these factors.

Although C++ offers many data types, in the very broadest sense there are only two:
numeric and character. Numeric data types are broken into two additional categories:
integer and floating-point, as shown in Figure 2-2.

Table 2-5 Some C++ Variable Names

Variable Name Legal or Illegal

dayOfWeek Legal.

3dGraph Illegal. Variable names cannot begin with a digit.

_employee_num Legal.

June1997 Legal.

Mixture#3 Illegal. Variable names may only use letters, digits, and underscores.

Figure 2-2 Basic C++ Data Types

C�� Data Types

numeric character

integer floating-point

44 Chapter 2 Introduction to C++

Integers are whole numbers like −2, 19, and 24. Floating-point numbers have a decimal
point like −2.35, 19.0, and 0.024. Additionally, the integer and floating-point data types
are broken into even more classifications.

Your primary considerations for selecting the best data type for a numeric variable are
the following:

• whether the variable needs to hold integers or floating-point values,
• the largest and smallest numbers that the variable needs to be able to store,
• whether the variable needs to hold signed (both positive and negative) or only

unsigned (just zero and positive) numbers, and
• the number of decimal places of precision needed for values stored in the variable.

Let’s begin by looking at integer data types. C++ has six different data types for storing
integers. On most computers each of these has either two or four bytes of memory. The
number of bytes a data type can hold is called its size. Typically, the larger the size a
data type is, the greater the range of values it can hold.

Recall from Chapter 1 that a byte is made up of 8 bits. So a data type that stores data in
two bytes of memory can hold 16 bits of information. This means it can store 216 bit patterns,
which is 65,536 different combinations of zeros and ones. A data type that uses 4 bytes of
memory has 32 bits, so it can hold 232 different bit patterns, which is 4,294,967,296
different combinations. What these different combinations are used for depends on the
data type. For example, the unsigned short data type, which is for storing non-negative
integers such as ages or weights, uses its 16 bits to represent the values 0 through +65,535.
The short data type, on the other hand, stores both positive and negative numbers, so it
uses its 16 bits to represent the values from −32,768 to +32,767. Figure 2-3 shows how
numbers are stored in an unsigned short variable.

Table 2-6 shows all six C++ integer data types with their typical sizes and ranges.
Depending on your operating system, the sizes and ranges may be different.

Figure 2-3 Unsigned Short Data Type Storage

Example value = binary 25

Smallest value that can be stored = binary 0

Largest value that can be stored = binary 65,535

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Integer Data Types 45

Here are some examples of integer variable definitions. Notice that an unsigned int vari-
able can also be defined using only the word unsigned, as shown below.

short count;
unsigned short age;
int speed;
unsigned int days; // These two definitions
unsigned days; // are equivalent.
long deficit;
unsigned long insects;

Notice also that in Table 2-6 the int and long data types have the same sizes and ranges,
and the unsigned int data type has the same size and range as the unsigned long data
type. This is not always true because the size of integers is dependent on the type of system
you are using. Here are the only guarantees:

• Integers are at least as big as short integers.
• Long integers are at least as big as integers.
• Unsigned short integers are the same size as short integers.
• Unsigned integers are the same size as integers.
• Unsigned long integers are the same size as long integers.

Later in this chapter you will learn to use the sizeof operator to determine how large all
the data types are on your computer.

Program 2-9 uses integer, unsigned integer, and long integer variables.

Table 2-6 Integer Data Types, Sizes, and Ranges

Data Type Size Range

short 2 bytes –32,768 to +32,767

unsigned short 2 bytes 0 to +65,535

int 4 bytes –2,147,483,648 to +2,147,483,647

unsigned int 4 bytes 0 to 4,294,967,295

long 4 bytes –2,147,483,648 to +2,147,483,647

unsigned long 4 bytes 0 to 4,294,967,295

Program 2-9

1 // This program has variables of several of the integer types.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int checking;
8 unsigned int miles;
9 long days;
10

(program continues)

46 Chapter 2 Introduction to C++

In most programs you will need more than one variable of any given data type. If a pro-
gram uses two integers, length and width, they can be defined separately, like this:

int length;
int width;

It is also possible to combine both variable definitions in a single statement:

int length, width;

Many instructors, however, prefer that each variable be placed on its own line:

int length,
width;

Whether you place multiple variables on the same line or each variable on its own line,
when you define several variables of the same type in a single statement, simply separate
their names with commas. A semicolon is used at the end of the entire definition.
Program 2-10 illustrates this. This program also shows how it is possible to give an initial
value to a variable at the time it is defined.

11 checking = -20;
12 miles = 4276;
13 days = 190000;
14
15 cout << "We have made a long journey of " << miles << " miles.";
16 cout << "\nOur checking account balance is " << checking;
17 cout << "\nAbout " << days << " days ago Columbus ";
18 cout << "stood on this spot.\n";
19 return 0;
20 }

Program Output
We have made a long journey of 4276 miles.
Our checking account balance is -20
About 190000 days ago Columbus stood on this spot.

Program 2-10

1 // This program defines three variables in the same statement.
2 // They are given initial values at the time they are defined.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int floors = 15,
9 rooms = 300,
10 suites = 30;
11
12 cout << "The Grande Hotel has " << floors << " floors\n";
13 cout << "with " << rooms << " rooms and " << suites;
14 cout << " suites.\n";
15 return 0;
16 }

(program continues)

Program 2-9 (continued)

Integer Data Types 47

Integer and Long Integer Constants
Look at the following statement from Program 2-10:

int floors = 15,
 rooms = 300,
 suites = 30;

This statement contains three integer constants. In C++, integer constants are normally
stored in memory just as an int.

One of the pleasing characteristics of the C++ language is that it allows you to control almost
every aspect of your program. If you need to change the way something is stored in memory,
the tools are provided to do that. For example, what if you are in a situation where you have
an integer constant, but you need it to be stored in memory as a long integer? (Rest assured,
this is a situation that does arise.) C++ allows you to force an integer constant to be stored as
a long integer by placing the letter L at the end of the number. Here is an example:

32L

On a computer that uses 2-byte integers and 4-byte long integers, this constant will use 4
bytes. This is called a long integer constant.

Hexadecimal and Octal Constants (enrichment)
Programmers commonly express values in numbering systems other than decimal (or base
10). Hexadecimal (base 16) and octal (base 8) are popular because they make certain pro-
gramming tasks more convenient than decimal numbers do.

By default, C++ assumes that all integer constants are expressed in decimal. You express
hexadecimal numbers by placing 0x in front of them. (This is zero-x, not oh-x.) Here is
how the hexadecimal number F4 would be expressed in C++:

0xF4

Octal numbers must be preceded by a 0 (zero, not oh). For example, the octal 31 would
be written

031

Program Output
The Grande Hotel has 15 floors
with 300 rooms and 30 suites.

NOTE: Although C++ allows you to use either an uppercase or lowercase L, the
lowercase l looks too much like the number 1, so you should always use the uppercase L.

NOTE: You will not be writing programs for some time that require this type of
manipulation. However, good programmers develop the skills for reading other people’s
source code. You may find yourself reading programs that use items like long integer,
hexadecimal, or octal constants.

Program 2-10 (continued)

48 Chapter 2 Introduction to C++

Checkpoint

2.10 Which of the following are illegal C++ variable names, and why?

x
99bottles
july97
theSalesFigureForFiscalYear98
r&d
grade_report

2.11 Is the variable name Sales the same as sales? Why or why not?

2.12 Refer to the data types listed in Table 2-6 for these questions.
A) If a variable needs to hold numbers in the range 32 to 6,000, what data type

would be best?
B) If a variable needs to hold numbers in the range –40,000 to +40,000, what data

type would be best?
C) Which of the following constants use more memory, 20 or 20L?

2.13 Which integer data types can only hold non-negative values?

2.14 How would you consolidate the following variable definition and assignment state-
ment into a single statement?

int apples;
apples = 20;

2.8 The char Data Type

CONCEPT: A variable of the char data type holds only a single character.

You might be wondering why there isn’t a 1-byte integer data type. Actually there is. It is
called the char data type, which gets its name from the word “character.” A variable defined
as a char can hold a single character, but strictly speaking, it is an integer data type.

The reason an integer data type is used to store characters is because characters are internally
represented by numbers. Each printable character, as well as many nonprintable characters,
are assigned a unique number. The most commonly used method for encoding characters is
ASCII, which stands for the American Standard Code for Information Interchange. (There
are other codes, such as EBCDIC, which is used by many IBM mainframes.)

When a character is stored in memory, it is actually the numeric code that is stored. When
the computer is instructed to print the value on the screen, it displays the character that
corresponds with the numeric code.

You may want to refer to Appendix A, which shows the ASCII character set. Notice that
the number 65 is the code for A, 66 is the code for B, and so on. Program 2-11 demon-
strates that when you work with characters, you are actually working with numbers.

NOTE: On some systems the char data type is larger than 1 byte.

The char Data Type 49

Figure 2-4 illustrates that when you think of characters, such as A, B, and C, being stored
in memory, it is really the numbers 65, 66, and 67 that are stored.

Character and String Constants
Although Program 2-11 nicely illustrates the way characters are represented by numbers, it
isn’t necessary to work with the ASCII codes themselves. Program 2-12 is another version
that works the same way.

Program 2-11

1 // This program demonstrates the close relationship between
2 // characters and integers.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 char letter;
9
10 letter = 65;
11 cout << letter << endl;
12
13 letter = 66;
14 cout << letter << endl;
15 return 0;
16 }

Program Output
A
B

Figure 2-4

Program 2-12

1 // This program uses character constants.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 char letter;

(program continues)

'A'

65

'B'

66

'C'

67

is stored in memory as

50 Chapter 2 Introduction to C++

Program 2-12 assigns character constants to the variable letter. Anytime a program
works with a character, it internally works with the code used to represent that character,
so this program is still assigning the values 65 and 66 to letter.

Character constants can only hold a single character. To store a series of characters in a
constant we need a string constant. In the following example, 'H' is a character constant
and "Hello" is a string constant. Notice that a character constant is enclosed in single
quotation marks whereas a string constant is enclosed in double quotation marks.

cout << 'H' << endl;
cout << "Hello" << endl;

Strings, which allow a series of characters to be stored in consecutive memory locations,
can be virtually any length. This means that there must be some way for the program to
know how long the string is. In C++ this is done by appending an extra byte to the end of
string constants. In this last byte, the number 0 is stored. It is called the null terminator or
null character and marks the end of the string.

Don’t confuse the null terminator with the character '0'. If you look at Appendix A you
will see that the character '0' has ASCII code 48, whereas the null terminator has ASCII
code 0. If you want to print the character 0 on the screen, you use ASCII code 48. If you
want to mark the end of a string, you use ASCII code 0.

Let’s look at an example of how a string constant is stored in memory. Figure 2-5 depicts
the way the string "Sebastian" would be stored.

First, notice the quotation marks are not stored with the string. They are simply a way of
marking the beginning and end of the string in your source code. Second, notice the very last
byte of the string. It contains the null terminator, which is represented by the \0 character.
The addition of this last byte means that although the string "Sebastian" is 9 characters
long, it occupies 10 bytes of memory.

8
9 letter = 'A';
10 cout << letter << endl;
11
12 letter = 'B';
13 cout << letter << endl;
14 return 0;
15 }

Program Output
A
B

Figure 2-5

Program 2-12 (continued)

S

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

e b a s t i a n \0

The char Data Type 51

The null terminator is another example of something that sits quietly in the background. It
doesn’t print on the screen when you display a string, but nevertheless, it is there silently
doing its job.

Now let’s compare the way a string and a char are stored. Suppose you have the constants 'A'
and "A" in a program. Figure 2-6 depicts their internal storage.

As you can see, 'A' is a 1-byte element and "A" is a 2-byte element. Since characters are
really stored as ASCII codes, Figure 2-7 shows what is actually being stored in memory.

Because a char variable can only hold a single character, it can be assigned the character 'A',
but not the string "A".

char letterOne = 'A'; // This will work.
char letterTwo = "A"; // This will NOT work!

You have learned that some strings look like a single character but really aren’t. It is also
possible to have a character that looks like a string. A good example is the newline charac-
ter, \n. Although it is represented by two characters, a slash and an n, it is internally repre-
sented as one character. In fact, all escape sequences, internally, are just 1 byte.

Program 2-13 shows the use of \n as a character constant, enclosed in single quotation
marks. If you refer to the ASCII chart in Appendix A, you will see that ASCII code 10 is
the linefeed character. This is the code C++ uses for the newline character.

NOTE: C++ automatically places the null terminator at the end of string constants.

Figure 2-6

Figure 2-7

Program 2-13

1 // This program uses character constants.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 char letter;

(program continues)

A \0

A'A' is stored as

"A" is stored as

65 0

65'A' is stored as

"A" is stored as

52 Chapter 2 Introduction to C++

Let’s review some important points regarding characters and strings:

• Printable characters are internally represented by numeric codes. Most computers use
ASCII codes for this purpose.

• Characters normally occupy a single byte of memory.
• Strings are consecutive sequences of characters that occupy consecutive bytes of

memory.
• String constants have a null terminator at the end. This marks the end of the string.
• Character constants are enclosed in single quotation marks.
• String constants are enclosed in double quotation marks.
• Escape sequences such as '\n' are stored internally as a single character.

2.9 The C++ string Class

CONCEPT: Standard C++ provides a special data type for storing and working with
strings.

Because a char variable can store only one character in its memory location, another data
type is needed for a variable able to hold an entire string. While C++ does not have a built-
in data type able to do this, Standard C++ provides something called the string class that
allows the programmer to create a string type variable.

Using the string Class
The first step in using the string class is to #include the string header file. This is
accomplished with the following preprocessor directive:

#include <string>

The next step is to define a string type variable, called a string object. Defining a string
object is similar to defining a variable of a primitive type. For example, the following state-
ment defines a string object named movieTitle.

string movieTitle;

8
9 letter = 'A';
10 cout << letter << '\n';
11
12 letter = 'B';
13 cout << letter << '\n';
14 return 0;
15 }

Program Output
A
B

Program 2-13 (continued)

The C++ string Class 53

You can assign a string literal to movieTitle with the assignment operator:

movieTitle = "Wheels of Fury";

The contents of movieTitle can be displayed on the screen with cout, as shown in the
next statement:

cout << "My favorite movie is " << movieTitle << endl;

Program 2-14 is a complete program that demonstrates the preceding statements.

As you can see, working with string objects is similar to working with variables of other types.
Throughout this text we will continue to discuss string class features and capabilities.

Checkpoint

2.15 What are the ASCII codes for the following characters? (Refer to Appendix A)

C
F
W

2.16 Which of the following is a character constant?

'B'
"B"

2.17 Assuming the char data type uses 1 byte of memory, how many bytes do each of
the following constants use?

'Q'
"Q"
"Sales"
'\n'

2.18 What is wrong with the following program statement?

char letter = "Z";

Program 2-14

1 // This program demonstrates the string class.
2 #include <iostream>
3 #include <string> // Required for the string class.
4 using namespace std;
5
6 int main()
7 {
8 string movieTitle;
9
10 movieTitle = "Wheels of Fury";
11 cout << "My favorite movie is " << movieTitle << endl;
12 return 0;
13 }

Program Output
My favorite movie is Wheels of Fury

54 Chapter 2 Introduction to C++

2.19 What header file must you include in order to use string objects?

2.20 Write a program that stores your name, address, and phone number in three separate
string objects. Display the contents of the string objects on the screen.

2.10 Floating-Point Data Types

CONCEPT: Floating-point data types are used to define variables that can hold real
numbers.

Whole numbers are not adequate for many jobs. If you are writing a program that works
with dollar amounts or precise measurements, you need a data type that allows fractional
values. In programming terms, these are called floating-point numbers.

Internally, floating-point numbers are stored in a manner similar to scientific notation.
Take the number 47,281.97. In scientific notation this number is 4.728197 × 104. (104 is
equal to 10,000, and 4.728197 × 10,000 is 47,281.97.) The first part of the number,
4.728197, is called the mantissa. The mantissa is multiplied by a power of 10.

Computers typically use E notation to represent floating-point values. In E notation, the
number 47,281.97 would be 4.728197E4. The part of the number before the E is the man-
tissa, and the part after the E is the power of 10. When a floating-point number is stored in
memory, it is stored as the mantissa and the power of 10.

Table 2-7 shows other numbers represented in scientific and E notation.

In C++ there are three data types that can represent floating-point numbers. They are

float
double
long double

The float data type is considered single precision. The double data type is usually twice
as big as float, so it is considered double precision. As you’ve probably guessed, the long
double is intended to be larger than the double. The exact sizes of these data types is
dependent on the computer you are using. The only guarantees are

• A double is at least as big as a float.
• A long double is at least as big as a double.

Table 2-8 shows the sizes and ranges of floating-point data types usually found on PCs.

Table 2-7 Floating-Point Representations

Decimal Notation Scientific Notation E Notation

247.91 2.4791 × 102 2.4791E2

0.00072 7.2 × 10–4 7.2E–4

2,900,000 2.9 × 106 2.9E6

Floating-Point Data Types 55

You will notice there are no unsigned floating-point data types. On all machines, variables
of the float, double, and long double data type can store both positive and negative
numbers. Program 2-15 uses floating-point data types.

Floating-Point Constants
Floating-point constants may be expressed in a variety of ways. As shown in Program
2-15, E notation is one method. When you are writing numbers that are extremely large or
extremely small, this will probably be the easiest way. E notation numbers may be
expressed with an uppercase E or a lowercase e. Notice in the source code the constants
were written as 1.496E8 and 1.989E30, but the program printed them as 1.496e+008 and
1.989e+030. The uppercase E and lowercase e are equivalent. The plus sign in front of the
exponent is also optional.

You can also express floating-point constants in decimal notation. The constant 1.496E8
could have been written as

149600000.0

Table 2-8 Floating-Point Data Types on PCs

Data Type Key Word Size Range
Significant
Digits

Single precision float 4 bytes Numbers between ±3.4E-38 and
±3.4E38

7

Double precision double 8 bytes Numbers between ±1.7E-308 and
±1.7E308

16

Long double precision long double 8 bytes* Numbers between ±1.7E-308 and
±1.7E308

16

*Some compilers use more than 8 bytes for long doubles. These allow greater ranges.

Program 2-15

1 // This program uses two floating-point data types, float and double.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 float distance = 1.496E8; // in kilometers
8 double mass = 1.989E30; // in kilograms
9
10 cout << "The Sun is " << distance << " kilometers away.\n";
11 cout << "The Sun\'s mass is " << mass << " kilograms.\n";
12 return 0;
13 }

Program Output
The Sun is 1.496e+008 kilometers away.
The Sun's mass is 1.989e+030 kilograms.

56 Chapter 2 Introduction to C++

Obviously the E notation is more convenient for lengthy numbers; but for numbers like
47.39, decimal notation is preferable to 4.739E1.

All of the following floating-point constants are equivalent:

1.496E8
1.496e8
1.496E+8
1.496e+8
149600000.0

Floating-point constants are normally stored in memory as doubles. Just in case you need
to force a constant to be stored as a float, you can append the letter F or f to the end of
it. For example, the following constants would be stored as float numbers:

1.2F
45.907f

If you want to force a value to be stored as a long double, append an L to it, as
shown here:

1034.56L

The compiler won’t confuse this with a long integer because of the decimal point. A lower-
case letter l can also be used to define a floating-point constant to be a long double, but
an uppercase L is preferable, as the lowercase letter l is easily confused with the digit 1.

Assigning Floating-Point Values to Integer Variables
When a floating-point value is assigned to an integer variable, the fractional part of the
value (the part after the decimal point) is discarded. This occurs because an integer variable
cannot hold any value containing decimals. For example, look at the following code.

int number;
number = 7.8; // Assigns 7 to number

This code attempts to assign the floating-point value 7.8 to the integer variable number.
Because this is not possible, the value 7 is assigned to number, and the fractional part is
discarded. When part of a value is discarded in this manner, the value is said to be
truncated.

NOTE: Because floating-point constants are normally stored in memory as doubles,
some compilers issue a warning message when you assign a floating-point constant to a
float variable. For example, assuming num is a float, the following statement might
cause the compiler to generate a warning message:

num = 14.725;

You can suppress the error message by appending the f suffix to the floating-point
constant, as shown here:

num = 14.725f;

The bool Data Type 57

Assigning a floating-point variable to an integer variable has the same effect. For example,
look at the following code.

int intVar;
double doubleVar = 7.8;
intVar = doubleVar; // Assigns 7 to intVar
 // doubleVar remains 7.8

2.11 The bool Data Type

CONCEPT: Boolean variables are set to either true or false.

Expressions that have a true or false value are called Boolean expressions, named in
honor of English mathematician George Boole (1815–1864).

The bool data type allows you to create variables that hold true or false values.
Program 2-16 demonstrates the definition and use of a bool variable. Although it appears
that it is storing the words true and false, it is actually an integer variable that stores 0 for
false and 1 for true, as you can see from the program output.

WARNING! Floating-point variables can hold a much larger range of values than
integer variables can. If a floating-point value is stored in an integer variable, and the
whole part of the value (the part before the decimal point) is too large for the integer
variable, an invalid value will be stored in the integer variable.

Program 2-16

1 // This program uses Boolean variables.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 bool boolValue;
8
9 boolValue = true;
10 cout << boolValue << endl;
11
12 boolValue = false;
13 cout << boolValue << endl;
14 return 0;
15 }

Program Output
1
0

58 Chapter 2 Introduction to C++

2.12 Determining the Size of a Data Type

CONCEPT: The sizeof operator may be used to determine the size of a data type on
any system.

Chapter 1 discussed the portability of the C++ language. As you have seen in this chapter,
one of the problems of portability is the lack of common sizes of data types on all
machines. If you are not sure what the sizes of data types are on your computer, C++ pro-
vides a way to find out.

A special operator called sizeof will report the number of bytes of memory used by any
data type or variable. Program 2-17 illustrates its use. The first line that uses the operator
is line 9.

cout << "The size of an integer is " << sizeof(int);

The name of the data type or variable is placed inside the parentheses that follow the oper-
ator. The operator “returns” the number of bytes used by that item. This operator can be
used anywhere you can use an unsigned integer, including in mathematical operations.

Checkpoint

2.21 How would the following number in scientific notation be represented in E notation?

6.31 × 1017

Program 2-17

1 // This program displays the size of various data types.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 long double apple;
8
9 cout << "The size of an integer is " << sizeof(int);
10 cout << " bytes.\n";
11 cout << "The size of a long integer is " << sizeof(long);
12 cout << " bytes.\n";
13 cout << "An apple can be eaten in " << sizeof(apple);
14 cout << " bytes!\n";
15 return 0;
16 }

Program Output
The size of an integer is 4 bytes.
The size of a long integer is 4 bytes.
An apple can be eaten in 8 bytes!

More on Variable Assignments and Initialization 59

2.22 What will the following code display?

int number;
number = 3.625:
cout << number;

2.23 Write a program that defines an integer variable named age and a double variable
named weight. Store your age and weight, as constants, in the variables. The pro-
gram should display these values on the screen in a manner similar to the following:

Program Output
My age is 26 and my weight is 168.5 pounds.

(Feel free to lie to the computer about your age and weight. It will never know!)

2.13 More on Variable Assignments and Initialization

CONCEPT: An assignment operation assigns, or copies, a value into a variable. When
a value is assigned to a variable as part of the variable’s definition, it is
called an initialization.

As you have already seen in several examples, a value is stored in a variable with an
assignment statement. For example, the following statement copies the value 12 into the
variable unitsSold.

unitsSold = 12;

The = symbol, as you recall, is called the assignment operator. Operators perform opera-
tions on data. The data that operators work with are called operands. The assignment
operator has two operands. In the previous statement, the operands are unitsSold and 12.

It is important to remember that in an assignment statement, C++ requires the name of the
variable receiving the assignment to appear on the left side of the operator. The following
statement is incorrect.

12 = unitsSold; // Incorrect!

In C++ terminology, the operand on the left side of the = symbol must be an lvalue. An
lvalue is something that identifies a place in memory whose contents may be changed, so a
new value can be stored there. Most of the time the lvalue will be a variable name. It is
called an lvalue because it is a value that may appear on the left-hand side of an assignment
operator.

The operand on the right side of the = symbol must be an rvalue. An rvalue is any expres-
sion that has a value. This could be a single number, like 12, or the result of a calculation,
such as 4 + 8. The assignment statement evaluates the expression on the right-hand side to
get the value of the rvalue and then puts it in the memory location identified by the lvalue.
Both of the following statements assign the value 12 to the unitsSold variable.

unitsSold = 12;
unitsSold = 4 + 8;

You have also seen that it is possible to assign values to variables when they are defined.
This is called initialization. When multiple variables are defined in the same statement, it is

Assignment
Statements

60 Chapter 2 Introduction to C++

possible to initialize some of them without having to initialize all of them. Program 2-18
illustrates this.

2.14 Scope

CONCEPT: A variable’s scope is the part of the program that has access to the variable.

Every variable has a scope. The scope of a variable is the part of the program where it may
be used. The rules that define a variable’s scope are complex, and we will just introduce the
concept here. Later in the book we will cover this topic in more depth.

The first rule of scope is that a variable cannot be used in any part of the program before it
is defined. Program 2-19 illustrates this.

Program 2-18

1 // This program shows variable initialization.
2 #include <iostream>
3 #include <string>
4 using namespace std;
5
6 int main()
7 {
8 string month = "February"; // month is initialized to "February"
9 int year, // year is not initialized
10 days = 28; // days is initialized to 28
11
12 year = 2007; // Now year is assigned a value
13
14 cout << "In " << year << " " << month
15 << " had " << days << " days.\n";
16
17 return 0;
18 }

Program Output
In 2007 February had 28 days.

Program 2-19

1 // This program can't find its variable.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 cout << value; // ERROR! value has not been defined yet!
8
9 int value = 100;
10 return 0;
11 }

Arithmetic Operators 61

The program will not work because line 7 attempts to send the contents of the variable value
to cout before the variable is defined. The compiler reads a program from top to bottom. If it
encounters a statement that uses a variable before the variable is defined, an error will result.
To correct the program, the variable definition must be put before any statement that uses it.

2.15 Arithmetic Operators

CONCEPT: There are many operators for manipulating numeric values and
performing arithmetic operations.

C++ provides many operators for manipulating data. Generally, there are three types of
operators: unary, binary, and ternary. These terms reflect the number of operands an oper-
ator requires.

Unary operators only require a single operand. For example, consider the following
expression: −5

Of course, we understand this represents the value negative five. The constant 5 is preceded
by the minus sign. The minus sign, when used this way, is called the negation operator.
Since it only requires one operand, it is a unary operator.

Binary operators work with two operands. Ternary operators, as you may have guessed, require
three operands. C++ only has one ternary operator, which will be discussed in Chapter 4.

Arithmetic operations occur frequently in programming. Table 2-9 shows the common
arithmetic operators in C++. All are binary operators.

Here is an example of how each of these operators works.

The addition operator returns the sum of its two operands.

total = 4 + 8; // total is assigned the value 12

The subtraction operator returns the value of its right operand subtracted from its left
operand.

candyBars = 8 - 3; // candyBars is assigned the value 5

The multiplication operator returns the product of its two operands.

points = 3 * 7 // points is assigned the value 21

Table 2-9 Fundamental Arithmetic Operators

Operator Meaning Example

 + Addition total = cost + tax;

 – Subtraction cost = total - tax;

 * Multiplication tax = cost * rate;

 / Division salePrice = original / 2;

 % Modulus remainder = value % 3;

Arithmetic
Operators

62 Chapter 2 Introduction to C++

The division operator works differently depending on whether its operands are integer or
floating-point numbers. When both numbers are integers, the division operator performs
integer division. This means that the result is always an integer. If there is any remainder, it
is discarded.

fullBoxes = 26 / 8; // fullBoxes is assigned the value 3

The variable fullBoxes is assigned the value 3 because 8 goes into 26 three whole times
with a remainder of 2. The remainder is discarded.

If you want the division operator to perform regular division, you must make sure at least
one of the operands is a floating-point number.

boxes = 26.0 / 8; // boxes is assigned the value 3.25

The modulus operator computes the remainder of doing an integer divide.

leftOver = 26 % 8; // leftOver is assigned the value 2

Figure 2-8 illustrates the use of the integer divide and modulus operations.

In Chapter 3 you will learn how to use these operators in more complex mathematical for-
mulas. For now we will concentrate on their basic usage. For example, suppose we need to
write a program that calculates and displays an employee’s total wages for the week. The
regular hours for the work week are 40, and any hours worked over 40 are considered
overtime. The employee earns $18.25 per hour for regular hours and $27.38 per hour for
overtime hours. The employee has worked 50 hours this week. The following pseudocode
algorithm shows the program’s logic.

Regular wages = base pay rate × regular hours
Overtime wages = overtime pay rate × overtime hours
Total wages = regular wages + overtime wages
Display the total wages

Program 2-20 shows the C++ code for the program.

Figure 2-8 Integer Divide and Modulus Operations

Program 2-20

1 // This program calculates hourly wages, including overtime.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 double basePayRate = 18.25, // Base pay rate
8 overtimePayRate = 27.38, // Overtime pay rate
9 regularHours = 40.0, // Regular hours worked}

(program continues)

26

3 R 2
26 % 8
26 / 8

8

Arithmetic Operators 63

Notice that the output displays the wages as $1003.8, with just one digit after the decimal
point. In Chapter 3 you will learn to format output so you can control how it displays.

Checkpoint

2.24 Is the following assignment statement valid or invalid? If it is invalid, why?

72 = amount;

2.25 What is wrong with the following program? How would you correct it?

#include <iostream>
using namespace std;
int main()
{

critter = 62.7;
double critter;
cout << critter << endl;
return 0;

}

2.26 What will be assigned to x in each of the following statements?

x = 8 + 3;
x = 8 - 3;
x = 8 * 3;
x = 8 % 3;

2.27 Is the following an example of integer division or floating-point division? What
value will be stored in portion?

portion = 16 / 3;

10 overtimeHours = 10, // Overtime hours worked
11 regularWages, // Computed regular wages
12 overtimeWages, // Computed overtime wages
13 totalWages; // Computed total wages
14
15 // Calculate regular wages
16 regularWages = basePayRate * regularHours;
17
18 // Calculate overtime wages
19 overtimeWages = overtimePayRate * overtimeHours;
20
21 // Calculate total wages
22 totalWages = regularWages + overtimeWages;
23
24 // Display total wages
25 cout << "Wages for this week are $" << totalWages << endl;
26 return 0;
27 }

Program Output
Wages for this week are $1003.8

Program 2-20 (continued)

64 Chapter 2 Introduction to C++

2.16 Comments

CONCEPT: Comments are notes of explanation that document lines or sections of a
program.

It may surprise you that one of the most important parts of a program has absolutely no
impact on the way it runs. We are speaking, of course, of the comments. Comments are
part of the program, but the compiler ignores them. They are intended for people who may
be reading the source code.

Some programmers resist putting more than just a few comments in their source code.
After all, it may seem like enough work to type the parts of the program that actually do
something. It is crucial, however, that you develop the habit of thoroughly annotating your
code with descriptive comments. It might take extra time now, but it will almost certainly
save time in the future.

Imagine writing a program of medium complexity with about 8,000 to 10,000 lines of
C++ code. Once you have written the code and satisfactorily debugged it, you happily
put it away and move on to the next project. Ten months later you are asked to make a
modification to the program (or worse, track down and fix an elusive bug). You pull
out the massive pile of paper that contains your source code and stare at thousands of
statements only to discover they now make no sense at all. You find variables with
names like z2, and you can’t remember what they are for. If only you had left some
notes to yourself explaining all the program’s nuances and oddities. But it’s too late
now. All that’s left to do is decide what will take less time: figuring out the old program
or completely rewriting it!

This scenario might sound extreme, but it’s one you don’t want to happen to you. Real-
world programs are big and complex. Thoroughly documented programs will make your life
easier, not to mention the work of other programmers who may have to read your code in
the future. In addition to telling what the program does and describing the purpose of vari-
ables, comments can also be used to explain complex procedures in your code and to provide
information such as who wrote the program and when it was written or last modified.

Single Line Comments
You have already seen one way to place comments in a C++ program. As was illustrated in
Program 2-20, you simply place two forward slashes (//) where you want the comment to
begin. The compiler ignores everything from that point to the end of the line.

Multi-Line Comments
The second type of comment in C++ is the multi-line comment. Multi-line comments start
with /* (a forward slash followed by an asterisk) and end with */ (an asterisk followed by
a forward slash). Everything between these markers is ignored. Program 2-21 illustrates
the use of both a multi-line comment and single line comments. The multi-line comment
starts on line 1 with the /* symbol, and ends on line 6 with the */ symbol.

65

Notice that unlike a comment started with //, a multi-line comment can span several lines.
This makes it more convenient to write large blocks of comments because you do not have
to mark every line. On the other hand, the multi-line comment is inconvenient for writing
single line comments because you must type both a beginning and ending comment symbol.

When using multi-line comments:

• Be careful not to reverse the beginning symbol with the ending symbol.
• Be sure not to forget the ending symbol.

Both of these mistakes can be difficult to track down, and will prevent the program from
compiling correctly.

2.17 Focus on Software Engineering: Programming Style

CONCEPT: Programming style refers to the way a programmer uses identifiers,
spaces, tabs, blank lines, and punctuation characters to visually arrange a
program’s source code. These are some, but not all, of the elements of
programming style.

In Chapter 1 you learned that syntax rules govern the way a language may be used. The
syntax rules of C++ dictate how and where to place key words, semicolons, commas,
braces, and other components of the language. The compiler’s job is to check for syntax
errors and, if there are none, to generate object code.

When the compiler reads a program it processes it as one long stream of characters. The
compiler is not influenced by whether each statement is on a separate line, or whether spaces

Program 2-21

1 /*
2 PROGRAM: PAYROLL.CPP
3 Written by Herbert Dorfmann
4 This program calculates company payroll
5 Last modified: 8/20/2006
6 */
7 #include <iostream>
8 using namespace std;
9
10 int main()
11 {
12 int employeeID; // Employee ID number
13 double payRate; // Employees hourly pay rate
14 double hours; // Hours employee worked this week

 (The remainder of this program is left out.)

NOTE: Many programmers use a combination of single line comments and multi-line
comments, as illustrated in the previous sample program. Convenience usually dictates
which style to use.

Focus on Software Engineering: Programming Style

66 Chapter 2 Introduction to C++

separate operators from operands. Humans, on the other hand, find it difficult to read pro-
grams that aren’t written in a visually pleasing manner. Consider Program 2-22 for example.

Although the program is syntactically correct (it doesn’t violate any rules of C++), it is
difficult to read. The same program is shown in Program 2-23, written in a more reasonable
style.

Programming style refers to the way source code is visually arranged. Ideally, it is a consis-
tent method of putting spaces and indentions in a program so visual cues are created.
These cues quickly tell a programmer important information about a program.

For example, notice in Program 2-23 that the opening and closing braces of the main func-
tion align and inside the braces each line is indented. It is a common C++ style to indent all
the lines inside a set of braces. You will also notice the blank line between the variable def-
initions and the cout statements. This is intended to visually separate the definitions from
the executable statements.

Program 2-22

1 #include <iostream>
2 using namespace std;int main(){double shares=220.0;double
3 avgPrice=14.67;cout
4 <<"There were "<<shares<<" shares sold at $"<<avgPrice<<
5 " per share.\n";return 0;}

Program Output
There were 220 shares sold at $14.67 per share.

Program 2-23

1 // This program is visually arranged to make it readable.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 double shares = 220.0;
8 double avgPrice = 14.67;
9
10 cout << "There were " << shares << " shares sold at $";
11 cout << avgPrice << " per share.\n";
12 return 0;
13 }

Program Output
There were 220 shares sold at $14.67 per share.

NOTE: Although you are free to develop your own style, you should adhere to
common programming practices. By doing so, you will write programs that visually
make sense to other programmers and that minimize the likelihood of errors.

67

Another aspect of programming style is how to handle statements that are too long to fit
on one line. Because C++ is a free-flowing language, it is usually possible to spread a state-
ment over several lines. For example, here is a cout statement that uses four lines:

cout << "The fahrenheit temperature is "
 << fahrenheit
 << " and the celsius temperature is "
 << celsius << endl;

This statement works just as if it were typed on one line. You have already seen variable
definitions treated similarly:

int fahrenheit,
 celsius,
 kelvin;

Other issues related to programming style will be presented throughout the book.

2.18 Tying It All Together: Smile!

With just the little bit of C++ covered so far, you can print pictures using cout statements.
Here is the code to make a simple smiley face. Try it!

Now try revising Program 2-24 to make faces like these.

Program 2-24

1 // This program prints a simple smiley face.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 cout << "\n\n";
8 cout << " ^ ^ \n";
9 cout << " * \n";
10 cout << " ___/ \n";
11 return 0;
12 }

*
\ /

^ ^

o
()

o o

:
\UUU/

^ ^
v v

Tying It All Together: Smile!

68 Chapter 2 Introduction to C++

Review Questions and Exercises

Fill-in-the-Blank and Short Answer

1. Every complete statement ends with a __________.

2. To use cout statements you must include the __________ file in your program.

3. Every C++ program must have a function named __________.

4. Preprocessor directives begin with a __________.

5. A group of statements, such as the body of a function, must be enclosed in
__________.

6. 72, 'A', and "Hello World" are all examples of __________.

7. 978.65 × 1012 would be written in E notation as __________.

8. The character constant 'A' requires __________ byte(s) of memory, whereas the
string constant "A" requires __________ byte(s).

9. Which of the following are not valid assignment statements?

A) total = 9;
B) 72 = amount;
C) yourAge = myAge;

10. If the variable letter has been defined as a char variable, which of the following are
not valid assignment statements?

A) letter = w;
B) letter = 'w';
C) letter = "w";

11. Which of the following are not valid cout statements?

A) cout << "Hello" << endl;
B) cout << "Hello" << \n;
C) cout << Hello;

12. Which of the following are not valid cout statements?

A) cout << "Hello world";
B) cout << Hello world;
C) cout << "Hello" << " world";

13. Assume x = 4, y = 7, and z = 2. What value will be stored in integer variable
result by each of the following statements?

A) result = x + y;
B) result = y * 2;
C) result = y / z;

14. Assume x = 2.5, y = 7.0, and z = 3. What value will be stored in integer variable
result by each of the following statements?

A) result = x + y;
B) result = y * 2;
C) result = y / z;

Review Questions and Exercises 69

15. Write a C++ statement that defines the double variables temp, weight, and height
all in the same statement.

16. Write a C++ statement that defines the int variables months, days, and years all in
the same statement, with months initialized to 2 and years initialized to 3.

17. Write assignment statements that perform the following operations with int variable
i, double variables d1 and d2, and char variable c.

A) Add 2 to d1 and store the result in d2.
B) Multiply d2 time 4 and store the result in d1.
C) Store the character 'K' in c.
D) Store the ASCII code for the character 'K' in i.
E) Subtract 1 from i and store the result back in i.

18. Write assignment statements that perform the following operations with int variable
i, double variables d1 and d2, and char variable c.

A) Subtract 8.5 from d2 and store the result in d1.
B) Divide d1 by 3.14 and store the result in d2.
C) Store the ASCII code for the character 'F' in c.
D) Add 1 to i and store the new value back in i.
E) Add d1 to the current value of d2 and store the result back in d2 as its new value.

19. Modify the following program segment so it prints two blank lines between each line
of text.

cout << "Two mandolins like creatures in the";
cout << "dark";
cout << "Creating the agony of ecstasy.";
cout << " - George Barker";

20. Rewrite the follow statement to use the newline escape character, instead of an endl,
each time subsequent output is to be displayed on a new line.

cout << "L" << endl
 << "E" << endl
 << "A" << endl
 << "F" << endl;

Algorithm Workbench

21. Create detailed pseudocode for a program that calculates how many days are left
until Christmas, when given as an input how many weeks are left until Christmas.
Use variables named weeks and days.

22. Create detailed pseudocode for a program that determines how many full 12-egg
cartons of eggs a farmer can pack when given as an input the number of eggs he has
collected on a given day. Use variables named eggs and cartons.

23. Create detailed pseudocode for a program that determines distance traveled when
given inputs of speed and time. Use variables named speed, time, and distance.

24. Create detailed pseudocode for a program that determines miles per gallon a vehicle
gets when given inputs of miles traveled and gallons of gas used. Use variables named
miles, gallons, and milesPerGallon.

70 Chapter 2 Introduction to C++

Predict the Output

25. What will the following programs print on the screen?

A) #include <iostream>
using namespace std;
int main()
{

int freeze = 32, boil = 212;
freeze = 0;
boil = 100;
cout << freeze << endl << boil << endl;
return 0;

}

B) #include <iostream>
using namespace std;
int main()
{

int x = 0, y = 2;
x = y * 4;
cout << x << endl << y << endl;
return 0;

}

C) #include <iostream>
using namespace std;
int main()
{

cout << "I am the incredible";
cout << "computing\nmachine";
cout << "\nand I will\namaze\n";
cout << "you.\n";
return 0;

}

26. A) #include <iostream>
using namespace std;

int main()
{

cout << "Be careful!\n";
cout << "This might/n be a trick ";
cout << "question.\n";
return 0;

}

B) #include <iostream>
using namespace std;

int main()
{

int a, x = 23;

a = x % 2;
cout << x << endl << a << endl;

 return 0;
}

Review Questions and Exercises 71

Find the Error

27. There are a number of syntax errors in the following program. Locate as many as you
can.

/ What's wrong with this program? /
#include iostream
using namespace std;

int main();
}

int a, b, c\\ Three integers
a = 3
b = 4
c = a + b
Cout < "The value of c is %d" < C;
return 0;

{

Soft Skills

Programmers need good communication skills as well as good analytical and problem-
solving skills. Good communication can minimize misunderstandings that easily arise
when expectations of different individuals involved in a project are not clearly enough
articulated before the project begins. A detailed set of project specifications can clarify the
scope of a project, what interaction will occur between the user and the program, and
exactly what the program will and will not do.

28. Pair up with another student in the class. One of you is the client and the other is the
software developer. Briefly discuss a simple program the client wants that the pro-
grammer will create. Here are some possible ideas.

• the paint problem described in the Chapter 1 Soft Skills exercise
• a program that can halve the quantities of ingredients for a recipe
• a program that determines how long it will take to drive from point A to point B

Once you have decided on a program, you should independently, with no further commu-
nication, each write down detailed specifications. The client writes down exactly what he
wants the program to do and the developer writes down her understanding of exactly what
the program will do. When you are done, compare what you have written. Rarely will the
two agree.

Now discuss the discrepancies and see if you can come to a clear understanding of exactly
what the program must do. Together create a program specification sufficiently detailed
that both of you believe it leaves no room for misunderstanding.

72 Chapter 2 Introduction to C++

Programming Challenges

1. Sum of Two Numbers
Write a program that stores the integers 62 and 99 in variables, and stores the sum of these
two in a variable named total. Display the total on the screen.

2. Sales Prediction
The East Coast sales division of a company generates 62 percent of total sales. Based on
that percentage, write a program that will predict how much the East Coast division will
generate if the company has $4.6 million in sales this year. Display the result on the screen.

3. Sales Tax
Write a program that computes the total sales tax on a $52 purchase. Assume the state
sales tax is 4 percent and the county sales tax is 2 percent. Display the purchase price, state
tax, county tax, and total tax amounts on the screen.

4. Restaurant Bill
Write a program that computes the tax and tip on a restaurant bill for a patron with a
$44.50 meal charge. The tax should be 6.75 percent of the meal cost. The tip should be 15
percent of the total after adding the tax. Display the meal cost, tax amount, tip amount,
and total bill on the screen.

5. Cyborg Data Type Sizes
You have been given a job as a programmer on a Cyborg supercomputer. In order to
accomplish some calculations, you need to know how many bytes the following data types
use: char, int, float, and double. You do not have any manuals, so you can’t look up
this information. Write a C++ program that will determine the amount of memory used by
these types and display the information on the screen.

6. Miles per Gallon
A car holds 16 gallons of gasoline and can travel 350 miles before refueling. Write a pro-
gram that calculates the number of miles per gallon the car gets. Display the result on the
screen.

7. Distance per Tank of Gas
A car with a 20 gallon gas tank averages 21.5 miles per gallon when driven in town and
26.8 miles per gallon when driven on the highway. Write a program that calculates and
displays the distance the car can travel on one tank of gas when driven in town and when
driven on the highway.

8. Land Calculation
In the United States, land is often measured in square feet. In many other countries it is
measured in square meters. One acre of land is equivalent to 43,560 square feet. A square
meter is equivalent to 10.7639 square feet. Write a program that computes and displays
the number of square feet and the number of square meters in acre of land.

Hint: Because a square meter is larger than a square foot, there will be fewer square meters
in acre than there are square feet.

1
4

1
4

Solving the
Restaurant
Bill Problem

Review Questions and Exercises 73

9. Circuit Board Price
An electronics company sells circuit boards at a 40 percent profit. Write a program that
calculates the selling price of a circuit board that costs them $12.67 to produce. Display
the result on the screen.

10. Personal Information
Write a program that displays the following information, each on a separate line:

Your name
Your address, with city, state, and zip code
Your telephone number
Your college major

Use only a single cout statement to display all of this information.

11. Triangle Pattern
Write a program that displays the following pattern on the screen:

*

12. Diamond Pattern
Write a program that displays the following pattern on the screen:

*

*

13. Pay Period Gross Pay
A particular employee earns $32,500 annually. Write a program that determines and dis-
plays what the amount of his gross pay will be for each pay period if he is paid twice a
month (24 pay checks per year) and if he is paid bi-weekly (26 checks per year).

14. Basketball Player Height
The star player of a high school basketball team is 73 inches tall. Write a program to com-
pute and display the height in feet / inches form.

Hint: Try using the modulus and integer divide operations.

15. Stock Loss
Kathryn bought 600 shares of stock at a price of $21.77 per share. A year later she sold
them for just $16.44 per share. Write a program that calculates and displays the following:

• The total amount paid for the stock.
• The total amount received from selling the stock.
• The total amount of money she lost.

74 Chapter 2 Introduction to C++

16. Energy Drink Consumption
A soft drink company recently surveyed 12,467 of its customers and found that approxi-
mately 14 percent of those surveyed purchase one or more energy drinks per week.
Of those customers who purchase energy drinks, approximately 64 percent of them prefer
citrus flavored energy drinks. Write a program that displays the following:

• The approximate number of customers in the survey who purchase one or more
energy drinks per week.

• The approximate number of customers in the survey who prefer citrus flavored
energy drinks.

17. Past Ocean Levels
The Earth’s ocean levels have risen an average of 1.8 millimeters per year over the past cen-
tury. Write a program that computes and displays the number of centimeters and number
of inches the oceans rose during this time. One millimeter is equivalent to 0.1 centimeters.
One centimeter is equivalent to 0.3937 inches.

18. Future Ocean Levels
During the past decade ocean levels have been rising faster than in the past, an average of
approximately 3.1 millimeters per year. Write a program that computes how much ocean
levels are expected to rise during the next 20 years if they continue rising at this rate.
Display the answer in both centimeters and inches.

75

C
H

A
P

T
E

R

3 Expressions and
Interactivity

3.1 The cin Object

CONCEPT: cin can be used to read data typed at the keyboard.

So far you have written programs with built-in information. You have initialized the
variables with the necessary starting values without letting the user enter his or her own
data. These types of programs are limited to performing their task with only a single set
of starting information. If you decide to change the initial value of any variable, the
program must be modified and recompiled.

In reality, most programs ask for values that will be assigned to variables. This means the
program does not have to be modified if the user wants to run it several times with differ-
ent sets of information. For example, a program that calculates the area of a circle might
ask the user to enter the circle’s radius. When the circle area has been computed and
printed, the program could be run again and a different radius could be entered.

Just as C++ provides the cout object to produce console output, it provides an object
named cin that is used to read console input. (You can think of the word cin as meaning
console input.) Program 3-1 shows cin being used to read values input by the user.

TOPICS

3.1 The cin Object
3.2 Mathematical Expressions
3.3 Implicit Type Conversion
3.4 Explicit Type Conversion
3.5 Overflow and Underflow
3.6 Named Constants
3.7 Multiple and Combined Assignment
3.8 Formatting Output
3.9 Working with Characters and

String Objects

3.10 Using C-Strings
3.11 More Mathematical Library Functions
3.12 Introduction to Files
3.13 Focus on Debugging: Hand Tracing

a Program
3.14 Green Fields Landscaping Case

Study—Part 1
3.15 Tying It All Together: Word Game

Using cin to
Read Input

76 Chapter 3 Expressions and Interactivity

Instead of calculating the area of one rectangle, this program can be used to compute the
area of any rectangle. The values that are stored in the length and width variables are
entered by the user when the program is running. Look at lines 12 and 13.

cout << "What is the length of the rectangle? ";
cin >> length;

In line 12 cout is used to display the question “What is the length of the rectangle?” This is
called a prompt. It lets the user know that an input is expected and prompts them as to what
must be entered. When cin will be used to get input from the user, it should always be pre-
ceded by a prompt.

Line 13 uses cin to read a value from the keyboard. The >> symbol is the stream extrac-
tion operator. It gets characters from the stream object on its left and stores them in the
variable whose name appears on its right. In this example line, the characters read in by
cin are taken from the cin object and stored in the length variable.

Gathering input from the user is normally a two-step process:

1. Use cout to display a prompt on the screen.
2. Use cin to read a value from the keyboard.

The prompt should ask the user a question, or tell the user to enter a specific value. For
example, the code we just examined from Program 3-1 displays the following prompt:

What is the length of the rectangle?

Program 3-1

1 // This program calculates and displays the area of a rectangle.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int length, width, area;
8
9 cout << "This program calculates the area of a rectangle.\n";
10
11 // Have the user input the rectangle's length and width
12 cout << "What is the length of the rectangle? ";
13 cin >> length;
14 cout << "What is the width of the rectangle? ";
15 cin >> width;
16
17 // Compute and display the area
18 area = length * width;
19 cout << "The area of the rectangle is " << area << endl;
20 return 0;
21 }

Program Output with Example Input Shown in Bold
This program calculates the area of a rectangle.
What is the length of the rectangle? 10[Enter]
What is the width of the rectangle? 20[Enter]
The area of the rectangle is 200.

The cin Object 77

This tells the user to enter the rectangle’s length. After the prompt displays, the program
uses cin to read a value from the keyboard and store it in the length variable.

Notice that the << and >> operators appear to point in the direction that data is flowing.
It may help to think of them as arrows. In a statement that uses cout, the << operator
always points toward cout, as shown here. This indicates that data is flowing from a vari-
able or a literal to the cout object.

cout << "What is the length of the rectangle? ";
cout ← "What is the length of the rectangle? ";

In a statement that uses cin, the >> operator always points toward the variable receiving
the value. This indicates that data is flowing from the cin object to a variable.

cin >> length;
cin → length;

The cin object causes a program to wait until data is typed at the keyboard and the
[Enter] key is pressed. No other lines will be executed until cin gets its input.

When the user enters characters from the keyboard, they are temporarily placed in an
area of memory called the input buffer, or keyboard buffer. cin automatically converts
this data to the data type of the variable it is to be stored in. If the user types 10, it is read
as the characters ‘1’ and ‘0’, but cin is smart enough to know this will have to be con-
verted to the int value 10 before it is stored in length. If the user enters a floating-point
number like 10.7, however, there is a problem. cin knows such a value cannot be stored in
an integer variable, so it stops reading when it gets to the decimal point, leaving the deci-
mal point and the rest of the digits in the input buffer. This can cause a problem when the
next value is read in. Program 3-2 illustrates this problem.

Program 3-2

1 // This program illustrates what can happen when a
2 // floating-point number is entered for an integer variable.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int intNumber;
9 double floatNumber;
10
11 cout << "Input a number. ";
12 cin >> intNumber;
13 cout << "Input a second number.\n";
14 cin >> floatNumber;
15 cout << "You entered: " << intNumber
16 << " and " << floatNumber << endl;
17
18 return 0;
19 }

(program continues)

78 Chapter 3 Expressions and Interactivity

Let’s look more closely at what occurred in Program 3-2. When prompted for the first
number, the user entered 12.3 from the keyboard. However, because cin was reading a
value into intNumber, an integer variable, it stopped reading when it got to the decimal
point and a 12 was stored in intNumber. When the second cin statement needed a value to
read into floatNumber, it found that it already had a value in the input buffer, the .3 left
over from the user’s first input. Instead of waiting for the user to enter a second number,
the .3 was read in and stored in floatNumber.

Later you will learn how to prevent something like this from happening, but for now this
illustrates the need to provide the user with clear prompts. If the user had been specifically
prompted to enter an integer for the first number, there would have been less chance of a
problem occurring.

Entering Multiple Values
You can use cin to input multiple values at once. Look at Program 3-3, which is a modi-
fied version of Program 3-1.

Program Output with Example Input Shown in Bold
Input a number. 12.3[Enter]
Input a second number.
You entered: 12 and 0.3

NOTE: You must include the iostream file in any program that uses cin.

Program 3-3

1 // This program calculates and displays the area of a rectangle.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int length, width, area;
8
9 cout << "This program calculates the area of a rectangle.\n";
10
11 // Have the user input the rectangle's length and width
12 cout << "Enter the length and width of the rectangle ";
13 cout << "separated by a space.\n";
14 cin >> length >> width;
15
16 // Compute and display the area
17 area = length * width;
18 cout << "The area of the rectangle is " << area << endl;
19 return 0;
20 }

(program continues)

Program 3-2 (continued)

The cin Object 79

Line 14 waits for the user to enter two values. The first is assigned to length and the sec-
ond to width.

cin >> length >> width;

In the example output, the user entered 10 and 20, so 10 is stored in length and 20 is
stored in width.

Notice the user separates the numbers by spaces as they are entered. This is how cin
knows where each number begins and ends. It doesn’t matter how many spaces are entered
between the individual numbers. For example, the user could have entered

10 20

cin will also read multiple values of different data types. This is shown in Program 3-4.

Program Output with Example Input Shown in Bold
This program calculates the area of a rectangle.
Enter the length and width of the rectangle separated by a space.
10 20[Enter]
The area of the rectangle is 200

NOTE: The [Enter] key is pressed after the last number is entered.

Program 3-4

1 // This program demonstrates how cin can read multiple values
2 // of different data types.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int whole;
9 double fractional;
10 char letter;
11
12 cout << "Enter an integer, a double, and a character: ";
13 cin >> whole >> fractional >> letter;
14
15 cout << "whole: " << whole << endl;
16 cout << "fractional: " << fractional << endl;
17 cout << "letter: " << letter << endl;
18 return 0;
19 }

Program Output with Example Input Shown in Bold
Enter an integer, a double, and a character: 4 5.7 b[Enter]
whole: 4
fractional: 5.7
letter: b

Program 3-3 (continued)

80 Chapter 3 Expressions and Interactivity

As you can see in the example output, the values are stored in the order entered in their
respective variables.

But what if the user had entered the values in the wrong order, as shown in the following
sample run?

Program 3-4 Output with Different Example Input Shown in Bold
Enter an integer, a double, and a character: 5.7 4 b[Enter]
whole: 5
fractional: 0.7
letter: 4

Because the data was not entered in the specified order, there is a complete mix-up of what
value is stored for each variable. The cin statement on line 13 reads 5 for int variable
whole, .7 for double variable fractional, and 4 for char variable letter. The charac-
ter b is left in the input buffer. For a program to function correctly it is important that the
user enter data values in the order the program expects to receive them and that a floating-
point number not be entered when an integer is expected.

Checkpoint

3.1 What header file must be included in programs using cin?

3.2 What is the >> symbol called?

3.3 Where does cin read its input from?

3.4 True or False: cin requires the user to press the [Enter] key after entering data.

3.5 Assume value is an integer variable. If the user enters 3.14 in response to the fol-
lowing programming statement, what will be stored in value?

cin >> value;

3.6 A program has the following variable definitions.

long miles;
int feet;
double inches;

Write a single cin statement that reads a value into each of these variables.

3.7 The following program will run, but the user will have difficulty understanding
what to do. How would you improve the program?

// This program multiplies two numbers and displays the result.
#include <iostream>
using namespace std;

int main()
{

double first, second, product;
cin >> first >> second;
product = first * second;
cout << product;
return 0;

}

Mathematical Expressions 81

3.8 Complete the following program skeleton so it asks for the user’s weight (in
pounds) and displays the equivalent weight in kilograms.

#include <iostream>
using namespace std;

int main()
{

double pounds, kilograms;

// Write a prompt to tell the user to enter his or her weight
// in pounds.
// Write code here that reads in the user's weight in pounds.
// The following line does the conversion.

kilograms = pounds / 2.2;

// Write code here that displays the user's weight in kilograms.

return 0;
}

3.2 Mathematical Expressions

CONCEPT: C++ allows you to construct complex mathematical expressions using
multiple operators and grouping symbols.

In Chapter 2 you were introduced to the basic mathematical operators, which are used to
build mathematical expressions. An expression is a programming statement that has a
value. Usually, an expression consists of an operator and its operands. Look at the follow-
ing statement:

sum = 21 + 3;

Since 21 � 3 has a value, it is an expression. Its value, 24, is stored in the variable sum.
Expressions do not have to be in the form of mathematical operations. In the following
statement, 3 is an expression.

number = 3;

Here are some programming statements where the variable result is being assigned the
value of an expression. They are called assignment statements.

result = x;
result = 4;
result = 15 / 3;
result = 22 * number;
result = sizeof(int);
result = a + b + c;

In each of these statements, a number, variable name, or mathematical expression appears
on the right side of the = symbol. A value is obtained from each of these and stored in the

Evaluating
Mathematical
Expressions

82 Chapter 3 Expressions and Interactivity

variable result. These are all examples of a variable being assigned the value of an
expression.

Although some instructors prefer that you not perform mathematical operations within a
cout statement, it is possible to do so. Program 3-5 illustrates how to do this.

The cout object can display the value of any legal expression in C++. In Program 3-5 the
value of the expression numerator / denominator is displayed.

Operator Precedence
It is possible to build mathematical expressions with several operators. The following
statement assigns the sum of 17, x, 21, and y to the variable answer.

answer = 17 + x + 21 + y;

Program 3-5

1 // This program displays the decimal value of a fraction.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 double numerator, denominator;
8
9 cout << "This program shows the decimal value of a fraction.\n";
10
11 // Have the user enter the numerator and denominator
12 cout << "Enter the numerator: ";
13 cin >> numerator;
14 cout << "Enter the denominator: ";
15 cin >> denominator;
16
17 // Compute and display the decimal value
18 cout << "The decimal value is "<< (numerator / denominator) << endl;
19 return 0;
20 }

Program Output with Example Input Shown in Bold
This program shows the decimal value of a fraction.
Enter the numerator: 3[Enter]
Enter the denominator: 16[Enter]
The decimal value is 0.1875

NOTE: The Program 3-5 example input shows the user entering 3 and 16. Because
these values are assigned to double variables, they are stored as 3.0 and 16.0.

NOTE: When sending an expression that includes an operator to cout, it is always a
good idea to put parentheses around the expression. Some operators will yield
unexpected results otherwise.

Mathematical Expressions 83

Some expressions are not that straightforward, however. Consider the following statement:

outcome = 12 + 6 / 3;

What value will be stored in outcome? It could be assigned either 6 or 14, depending on
whether the addition operation or the division operation takes place first. The answer is 14
because the division operator has higher precedence than the addition operator. This is
exactly the same as the operator precedence found in algebra.

Mathematical expressions are evaluated from left to right. However, when there are two
operators and one has higher precedence than the other, it is done first. Multiplication and
division have higher precedence than addition and subtraction, so the example statement
works like this:

A) 6 is divided by 3, yielding a result of 2

B) 12 is added to 2, yielding a result of 14

It could be diagrammed in the following way:

12 + 6 / 3

12 + 2

 14

Table 3-1 shows the precedence of the arithmetic operators. The operators at the top of the
table have higher precedence than the ones below it.

The multiplication, division, and modulus operators have the same precedence. This is also
true of the addition and subtraction operators. Table 3-2 shows some expressions with
their values.

Table 3-1 Precedence of Arithmetic Operators (Highest to Lowest)

() Expressions within parentheses are evaluated first

- unary Negation of a value, e.g., -6

* / % binary Multiplication, division, and modulus
+ - binary Addition and subtraction

Table 3-2 Some Expressions

Expression Value

5 + 2 * 4 13

10 / 2 - 3 2

8 + 12 * 2 - 4 28

4 + 17 % 2 - 1 4

6 - 3 * 2 + 7 - 1 6

↑

↑

84 Chapter 3 Expressions and Interactivity

Associativity
Associativity is the order in which an operator works with its operands. Associativity is
either left to right or right to left. The associativity of the division operator is left to right,
so it divides the operand on its left by the operand on its right. Table 3-3 shows the arith-
metic operators and their associativity.

Grouping with Parentheses
Parts of a mathematical expression may be grouped with parentheses to force some opera-
tions to be performed before others. In the following statement, the sum of a plus b is
divided by 4.

average = (a + b) / 4;

Without the parentheses b would be divided by 4 before adding a to the result. Table 3-4
shows more expressions and their values.

Converting Algebraic Expressions to Programming
Statements
In algebra it is not always necessary to use an operator for multiplication. C++, however,
requires an operator for any mathematical operation. Table 3-5 shows some algebraic
expressions that perform multiplication and the equivalent C++ expressions.

Table 3-3 Associativity of Arithmetic Operators

Operator Associativity

(unary negation) - Right to left

* / % Left to right

+ - Left to right

Table 3-4 More Arithmetic Expressions

Expression Value

(5 + 2) * 4 28

10 / (5 - 3) 5

8 + 12 * (6 - 2) 56

(4 + 17) % 2 - 1 0

(6 - 3) * (2 + 7) / 3 9

Table 3-5 Algebraic and C++ Multiplication Expressions

Algebraic Expression Operation C++ Equivalent

6B 6 times B 6 * B

(3)(12) 3 times 12 3 * 12

4xy 4 times x times y 4 * x * y

Mathematical Expressions 85

When converting some algebraic expressions to C++, you may have to insert parentheses
that do not appear in the algebraic expression. For example, look at the following
expression:

To convert this to a C++ statement, a + b will have to be enclosed in parentheses:

x = (a + b) / c;

Table 3-6 shows more algebraic expressions and their C++ equivalents.

No Exponents Please!
Unlike many programming languages, C++ does not have an exponent operator. Raising a
number to a power requires the use of a library function. The C++ library isn’t a place where
you check out books, but a collection of specialized functions. Think of a library function as
a “routine” that performs a specific operation. One of the library functions is called pow, and
its purpose is to raise a number to a power. Here is an example of how it’s used:

area = pow(4.0, 2);

This statement contains a call to the pow function. The numbers inside the parentheses are
arguments. Arguments are information being sent to the function. The pow function always
raises the first argument to the power of the second argument. In this example, 4.0 is raised
to the power of 2. The result is returned from the function and used in the statement where
the function call appears. The pow function expects floating-point arguments. On some
C++ compilers integer arguments will also work, but since many compilers require that at
least the first argument be a double, that is the convention we use in this book. The value
returned from the function is always a double number. In this case, 16.0 is returned from
pow and assigned to the variable area. This is illustrated in Figure 3-1.

Table 3-6 Algebraic and C++ Expressions

Algebraic Expression C++ Expression

y = x / 2 * 3;

z = 3 * b * c + 4;

a = (3 * x + 2) / (4 * a - 1)

Figure 3-1

x a b�
c

--------------�

y 3x
2
---�

z 3bc 4��

a 3x 2�
4a 1�
------------------�

area = pow(4.0, 2);
 16.0

arguments

return value

86 Chapter 3 Expressions and Interactivity

The statement area = pow(4.0, 2) is equivalent to the following algebraic statement:

area = 42

Here is another example of a statement using the pow function. It assigns 3 times 63 to x:

x = 3 * pow(6.0, 3);

And the following statement displays the value of 5 raised to the power of 4:

cout << pow(5.0, 4);

It might be helpful to think of pow as a “black box” that accepts two numbers and then
sends a third number out. The number that comes out has the value of the first number
raised to the power of the second number, as illustrated in Figure 3-2.

There are some guidelines that should be followed when the pow function is used. First, the
program must include the cmath header file. Second, at least the first of the two arguments
you pass to the function, if not both, should be a double. Third, because the pow function
returns a double value, any variable that value is assigned to should also be a double. For
example, in the following statement the variable area should be defined as a double:

area = pow(4.0, 2);

Program 3-6 solves a simple algebraic problem. It asks the user to enter the radius of a cir-
cle and then calculates the area of the circle. The formula is

which is expressed in the program as

area = 3.14159 * pow(radius, 2);

Figure 3-2

Program 3-6

1 // This program calculates the area of a circle. The formula for the
2 // area of a circle is PI times the radius squared. PI is 3.14159.
3 #include <iostream>
4 #include <cmath> // Needed for the pow function
5 using namespace std;
6
7 int main()
8 {
9 double area, radius;
10
11 cout << "This program calculates the area of a circle.\n";
12

(program continues)

pow function
Argument 1 x

Argument 2 y
xy

Area �r2�

Mathematical Expressions 87

Checkpoint

3.9 In each of the following cases, tell which operator has higher precedence or whether
they have the same precedence.

A) + and *
B) * and /
C) / and %

3.10 Complete the following table by writing the value of each expression in the Value
column.

Expression Value
———————————–––––——————————

6 + 3 * 5
12 / 2 - 4
9 + 14 * 2 - 6
5 + 19 % 3 - 1
(6 + 2) * 3
14 / (11 - 4)
9 + 12 * (8 - 3)
(6 + 17) % 2 - 1
(9 - 3) * (6 + 9) / 3

13 // Get the radius
14 cout << "What is the radius of the circle? ";
15 cin >> radius;
16
17 // Compute and display the area
18 area = 3.14159 * pow(radius, 2);
19 cout << "The area is " << area << endl;
20 return 0;
21 }

Program Output with Example Input Shown in Bold
This program calculates the area of a circle.
What is the radius of the circle? 10[Enter]
The area is 314.159

NOTE: Program 3-6 is presented as a demonstration of the pow function. In reality,
there is no reason to use this function in such a simple operation. Line 18 could just as
easily be written

area = 3.14159 * radius * radius;

The pow function is useful, however, in operations that involve larger exponents.

Program 3-6 (continued)

88 Chapter 3 Expressions and Interactivity

3.11 Write C++ expressions for the following algebraic expressions:

3.12 Study the following program and complete the table.

#include <iostream>
#include <cmath>

int main()
{

double value1, value2, value3;
cout << "Enter a number: ";
cin >> value1;
value2 = 2 * pow(value1, 2);
value3 = 3 + value2 / 2 - 1;
cout << value3;
return 0;

}

The program will display what number
If the user enters… (stored in value3)?

———

2
5
4.3
6

3.13 Complete the following program skeleton so it displays the volume of a cylindrical
fuel tank. The formula for the volume of a cylinder is

Volume = πr2h

where
π is 3.14159
r is the radius of the tank
h is the height of the tank

#include <iostream>
#include <cmath>

int main()
{

double volume, radius, height;
cout << "This program will tell you the volume of\n";
cout << "a cylinder-shaped fuel tank.\n";
cout << "How tall is the tank? ";
cin >> height;
cout << "What is the radius of the tank? ";
cin >> radius;

// You must complete the program.
return 0;

}

y 6x� a 2b 4c�� y x3�

g x 2�

z2
--------------� y x2

z2
-----�

Implicit Type Conversion 89

3.3 Implicit Type Conversion

CONCEPT: When an operator’s operands are of different data types, C++ will
automatically convert them to the same data type. This can affect the
results of mathematical expressions.

If a floating-point value is assigned to an int variable, what value will the variable receive?
If an int is multiplied by a float, what data type will the result be? What if a double is
divided by an unsigned int? Is there any way of predicting what will happen in these
instances? The answer is yes. C++ follows a set of rules when performing mathematical
operations on variables of different data types. It’s helpful to understand these rules to pre-
vent subtle errors from creeping into your programs.

Just like officers in the military, data types are ranked. One data type outranks another if it
can hold a larger number. For example, a float outranks an int and a double outranks a
float. Table 3-7 lists the data types in order of their rank, from highest to lowest.

One exception to the ranking in Table 3-7 is when an int and a long are the same size. In
that case, an unsigned int outranks long because it can hold a higher value.

When C++ is working with an operator, it strives to convert the operands to the same type.
This implicit, or automatic, conversion is known as type coercion. When a value is
converted to a higher data type, it is said to be promoted. To demote a value means to
convert it to a lower data type. Let’s look at the specific rules that govern the evaluation of
mathematical expressions.

Rule 1: char, short, and unsigned short are automatically promoted to int.

Anytime these data types are used in a mathematical expression, they are automatically
promoted to an int.*

Table 3-7 Data Type Ranking

long double
double
float
unsigned long
long
unsigned int
int
unsigned short
short
char

* The only exception to this rule is when an unsigned short holds a value larger than can be held by an int.
This can happen on systems where a short is the same size as an int. In this case, the unsigned short is
promoted to unsigned int.

90 Chapter 3 Expressions and Interactivity

Rule 2: When an operator works with two values of different data types, the lower-ranking
value is promoted to the type of the higher-ranking value.

In the following expression, assume that years is an int and interestRate is a double:

years * interestRate

Before the multiplication takes place, the value in years will be promoted to a double.

Rule 3: When the final value of an expression is assigned to a variable, it will be converted
to the data type of that variable.

This means that if the variable receiving the value is of a lower data type than the value
it is receiving, the value will be demoted to the type of the variable. If the variable’s data
type does not have enough storage space to hold the value, part of the value will be lost,
and the variable could receive an inaccurate result. As mentioned in Chapter 2, if the
variable receiving the value is an integer and the value being assigned to it is a floating-
point number, the value will be truncated before being stored in the variable. This means
everything after the decimal point will be discarded:

int x;
double y = 3.75;
x = y; // x is assigned 3
 // y remains 3.75

If the variable receiving the value has a higher data type than the value being assigned to it,
there is no problem.

In the following statement, assume that area is a long int, while length and width are
both int:

area = length * width;

Because length and width are both an int, they will not be converted to any other data
type. The result of the multiplication, however, will be converted to long so it can be
stored in area.

3.4 Explicit Type Conversion

CONCEPT: Type casting allows you to explicitly perform data type conversion.

A type cast expression lets you manually promote or demote a value. The general format
of a type cast expression is

static_cast<DataType>(Value)

where Value is a variable or literal value that you wish to convert and DataType is the
data type you wish to convert it to. Here is an example of code that uses a type cast
expression:

double number = 3.7;
int val;
val = static_cast<int>(number);

Explicit Type Conversion 91

This code defines two variables: number, a double, and val, an int. The type cast expres-
sion in the third statement returns a copy of the value in number, converted to an int.
When a double or float is converted to an int the fractional part is truncated, so this
statement stores 3 in val. The value of number, 3.7, is not changed.

Type cast expressions are useful in situations where C++ will not perform the desired
conversion automatically. Program 3-7 shows an example where a type cast expression is
used to prevent integer division from taking place. The statement that uses the type cast
expression is

booksPerMonth = static_cast<double>(books) / months;

The variable books is an integer, but a copy of its value is converted to a double before
it is used in the division operation. Without the type cast expression in line 18, integer
division would have been performed, resulting in an incorrect answer.

Program 3-7

1 // This program uses a type cast to avoid an integer division.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int books,
8 months;
9 double booksPerMonth;
10
11 // Get user inputs
12 cout << "How many books do you plan to read? ";
13 cin >> books;
14 cout << "How many months will it take you to read them? ";
15 cin >> months;
16
17 // Compute and display books read per month
18 booksPerMonth = static_cast<double>(books) / months;
19 cout << "That is " << booksPerMonth << " books per month.\n";
20 return 0;
21 }

Program Output with Example Input Shown in Bold
How many books do you plan to read? 30[Enter]
How many months will it take you to read them? 7[Enter]
That is 4.28571 books per month.

92 Chapter 3 Expressions and Interactivity

Program 3-8 shows another use of a type cast.

Let’s take a closer look at this program. In line 7 the int variable number is initialized with
the value 65. In line 10, number is sent to cout, causing 65 to be displayed. In line 14, a
type cast expression is used to convert the value in number to the char data type before
sending it to cout. Recall from Chapter 2 that characters are stored in memory as integer
ASCII codes. Because the number 65 is the ASCII code for the letter ‘A’, the statement on
line 14 causes the letter ‘A’ to be displayed.

WARNING! In Program 3-7, the following statement would still have resulted in
integer division:

booksPerMonth = static_cast<double>(books / months);

The result of the expression books / months is 4. When 4 is converted to a double, it
is 4.0. To prevent the integer division from taking place, one of the operands should be
converted to a double prior to the division operation. This forces C++ to automatically
convert the value of the other operand to a double.

Program 3-8

1 // This program prints a character from its ASCII code.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int number = 65;
8
9 // Display the value of the number variable
10 cout << number << endl;
11
12 // Use a type cast to display the value of number
13 // converted to the char data type
14 cout << static_cast<char>(number) << endl;
15 return 0;
16 }

Program Output
65
A

NOTE: C++ provides several different type cast expressions. A static_cast is the
most commonly used type cast expression, so it is the one we will primarily use in this
book. Additional information on type casts is contained in Appendix I, which can be
found on the CD accompanying your textbook.

Explicit Type Conversion 93

C-style and Prestandard C++ Type Cast Expressions
C++ also supports two older methods of creating type cast expressions: the C-style form
and the prestandard C++ form. The C-style cast places the data type to be converted to,
enclosed in parentheses, in front of the operand whose value is to be converted. Here are
three examples.

cout << (int) 2.6; // Displays integer 2

intVal = (int)number; // Assigns intVal the value of
// number, converted to an int

booksPerMonth = // Converts a copy of the value
 (double)books / months; // stored in books to a double

// before performing the division
// operation

Because the typecast operator appears in parentheses preceding the operand, this form of
type cast notation is called prefix notation.

The prestandard C++ form of the type cast expression also places the data type to be con-
verted to before the operand whose value is to be converted, but it places the parentheses
around the operand, rather than around the data type. Here are the same three examples
as they would be written using the prestandard C++ form of type casting.

cout << int(2.6);
intVal = int(number);
booksPerMonth = double(books) / months;

This type cast notation is called functional notation.

The static_cast expression is recommended by the ANSI standard for this type of data
type conversion and is now considered preferable to either the C-style or the prestandard
C++ form of type casting. However, you will probably see code in the workplace that uses
these older styles. Program 3-9 illustrates how Program 3-7 would be written using a pre-
standard C++ type cast.

Program 3-9

1 // This program illustrates the prestandard C++ form of type casting.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int books,
8 months;
9 double booksPerMonth;
10
11 // Get user inputs
12 cout << "How many books do you plan to read? ";
13 cin >> books;
14 cout << "How many months will it take you to read them? ";
15 cin >> months;
16

(program continues)

94 Chapter 3 Expressions and Interactivity

The output is identical to that produced by Program 3-7.

3.5 Overflow and Underflow

CONCEPT: When a value cannot fit in the number of bits provided by a variable’s
data type, overflow or underflow occurs.

Just as a bucket will overflow if you try to put more water in it than it can hold, a variable
will experience a similar problem if you try to store a value in it that requires more bits
than it has available. Let’s look at an example. Suppose a short int that uses 2 bytes of
memory has the following value stored in it.

This is the binary representation of 32,767, the largest value that will fit in this data type.
Without going into the details of how negative numbers are stored, it is helpful to under-
stand that for integer data types that store both positive and negative numbers, a number
with a 0 in the high order (i.e., leftmost) bit is interpreted as a positive number and a
number with a 1 in the high order bit is interpreted as a negative number. If 1 is added to
the value stored above, the variable will now be holding the following bit pattern.

But this is not 32,768. It is interpreted as a negative number instead, which was not
what was intended. A binary 1 has “flowed” into the high bit position. This is called
overflow.

Likewise, when an integer variable is holding the value at the far end of its data type’s negative
range and 1 is subtracted from it, the 1 in its high order bit will become a 0 and the resulting
number will be interpreted as a positive number. This is another example of overflow.

In addition to overflow, floating-point values can also experience underflow. This occurs
when a value is too close to zero, so small that more digits of precision are needed to
express it than can be stored in the variable holding it. Program 3-10 illustrates both over-
flow and underflow.

17 // Compute and display books read per month
18 booksPerMonth = double(books) / months;
19 cout << "That is " << booksPerMonth << " books per month.\n";
20 return 0;
21 }

Program 3-9 (continued)

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Overflow and Underflow 95

Although some systems display an error message when an overflow or underflow occurs,
most do not. The variable simply holds an incorrect value now and the program keeps run-
ning. Therefore, it is important to select a data type for each variable that has enough bits
to hold the values you will store in it.

Checkpoint

3.14 Assume the following variable definitions:

int a = 5, b = 12;
double x = 3.4, z = 9.1;

What are the values of the following expressions?

A) b / a

B) x * a

C) static_cast<double>(b / a)

Program 3-10

1 // This program demonstrates overflow and underflow.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 // Set intVar to the maximum value a short int can hold
8 short intVar = 32767;
9
10 // Set floatVar to a number too small to fit in a float
11 float floatVar = 3.0E-47;
12
13 // Display intVar
14 cout << "Original value of intVar " << intVar << endl;
15
16 // Add 1 to intVar to make it overflow
17 intVar = intVar + 1;
18 cout << "intVar after overflow " << intVar << endl;
19
20 // Subtract 1 from intVar to make it overflow again
21 intVar = intVar - 1;
22 cout << "intVar after 2nd overflow " << intVar << endl;
23
24 // Display floatVar
25 cout << "Value of very tiny floatVar " << floatVar;
26 return 0}
27 }

Program Output
Original value of intVar 32767
intVar after overflow -32768
intVar after 2nd overflow 32767
Value of very tiny floatVar 0

96 Chapter 3 Expressions and Interactivity

D) static_cast<double>(b) / a

E) b / static_cast<double>(a)

F) static_cast<double>(b) / static_cast<double>(a)

G) b / static_cast<int>(x)

H) static_cast<int>(x) * static_cast<int>(z)

I) static_cast<int>(x * z)

J) static_cast<double>(static_cast<int>(x) * static_cast<int>(z))

3.15 What will the following program display if a capital B is entered when the cin
statement asks the user to input a letter?

#include <iostream>
using namespace std;

int main()
{

char letter;

cout << "The ASCII values of uppercase letters are "
<< static_cast<int>('A') << " - "
<< static_cast<int>('Z') << endl;

cout << "The ASCII values of lowercase letters are "
<< static_cast<int>('a') << " - "
<< static_cast<int>('z') << endl << endl;

cout << "Enter a letter and I will tell you its ASCII code: ";
cin >> letter;
cout << "The ASCII code for " << letter << " is "

<< static_cast<int>(letter) << endl;

return 0;
}

3.16 What will the following program display?

#include <iostream>
using namespace std;

int main()
{

int integer1 = 19,
integer2 = 2;

double doubleVal;

doubleVal = integer1 / integer2;
cout << doubleVal << endl;
doubleVal = static_cast<double>(integer1) / integer2;
cout << doubleVal << endl;
doubleVal = static_cast<double>(integer1 / integer2);
cout << doubleVal << endl;
return 0;

}

Named Constants 97

3.6 Named Constants

CONCEPT: Constants may be given names that symbolically represent them in a
program.

In Chapter 2 you learned about numbers and strings being expressed as constants. For
example, the following statement contains the numeric constant 0.129:

newAmount = balance * 0.129;

Let’s assume this statement appears in a banking program that calculates data pertain-
ing to loans. In such a program, two potential problems arise. First, it is not clear to
anyone other than the original programmer what 0.129 is. It appears to be an interest
rate, but in some situations there are fees associated with loan payments. How can the
purpose of this statement be determined without painstakingly checking the rest of the
program?

The second problem occurs if this number is used in other calculations throughout the pro-
gram and must be changed periodically. Assuming the number is an interest rate, what if
the rate changes from 12.9 percent to 13.2 percent? The programmer will have to search
through the source code for every occurrence of the number.

Both of these problems can be addressed by using named constants. A named constant,
also called a constant variable, is like a variable, but its content is read-only and cannot be
changed while the program is running. Here is a definition of a named constant:

const double INTEREST_RATE = 0.129;

It looks just like a regular variable definition except that the word const appears before
the data type name. The key word const is a qualifier that tells the compiler to make the
variable read-only. This ensures that its value will remain constant throughout the pro-
gram’s execution. If any statement in the program attempts to change its value, an error
results when the program is compiled. A named constant can have any legal C++ identifier
name, but many programmers use all uppercase letters in the name, as we have done here,
to distinguish it from a regular variable.

When a named constant is defined it must be initialized with a value. It cannot be defined
and then later assigned a value with an assignment statement.

const double INTEREST_RATE; // illegal
INTEREST_RATE = 0.129; // illegal

An added advantage of using named constants is that they make programs more self-
documenting. If the named constant INTEREST_RATE has been correctly defined, the pro-
gram statement

newAmount = balance * 0.129;

can be changed to read

newAmount = balance * INTEREST_RATE;

98 Chapter 3 Expressions and Interactivity

A new programmer can read the second statement and better understand what is
happening. It is evident that balance is being multiplied by the interest rate. Another
advantage to this approach is that widespread changes can easily be made to the program.
No matter how many places the interest rate is used in the program, if the rate changes the
programmer only has to change one line of code—the statement that defines and initializes
the named constant. The following line of code, for example, would be used to set a new
interest rate of 13.2 percent.

const double INTEREST_RATE = 0.132;

All that has to be done then is to recompile the program and every statement that uses
INTEREST_RATE will use the new value.

It is also useful to define named constants for common values that are difficult to remem-
ber. For example, Program 3-6 calculated the area of a circle. The number 3.14159 is used
for pi in the formula. This value could easily be defined as a named constant, as shown in
line 9 of Program 3-11.

The #define Directive
The older C-style method of creating named constants is with the #define preprocessor
directive. Although it is preferable to use the const modifier, there are programs with the
#define directive still in use. In addition, the #define directive has other uses, so it is
important to understand. Program 3-12 shows how the preprocessor can be used to create
a named constant.

Program 3-11

1 // This program calculates the area of a circle. The formula for the
2 // area of a circle is PI times the radius squared. PI is 3.14159.
3 #include <iostream>
4 #include <cmath> // Needed for the pow function
5 using namespace std;
6
7 int main()
8 {
9 const double PI = 3.14159; // PI is a named constant
10 double area, radius;
11
12 cout << "This program calculates the area of a circle.\n";
13
14 // Get the radius
15 cout << "What is the radius of the circle? ";
16 cin >> radius;
17
18 // Compute and display the area
19 area = PI * pow(radius, 2);
20 cout << "The area is " << area << endl;
21 return 0;
22 }

Named Constants 99

Remember, the preprocessor scans your program before it is compiled. It looks for direc-
tives, which are lines that begin with the # symbol. Preprocessor directives cause your
source code to be modified prior to being compiled. Line 7 of Program 3-12 uses the
following #define directive:

#define PI 3.14159

The word PI is a named constant and 3.14159 is its value. Anytime PI is used in the
program, it will be replaced by the value 3.14159. The code on line 20 that reads

area = PI * pow(radius, 2);

will be sent to the compiler as

area = 3.14159 * pow(radius, 2);

If there had been a line that read

cout << PI << endl;

it would be compiled as

cout << 3.14159 << endl;

It is important to realize the difference between constant variables created with the key
word const and constants created with the #define directive. Constant variables are
defined like regular variables. They have a data type and a specific storage location in
memory. They are like regular variables in every way except that you cannot change their

Program 3-12

1 // This program calculates the area of a circle. The formula for the
2 // area of a circle is PI times the radius squared. PI is 3.14159.
3 #include <iostream>
4 #include <cmath> // Needed for the pow function
5 using namespace std;
6
7 #define PI 3.14159 // PI is "defined" to be 3.14159
8
9 int main()
10 {
11 double area, radius;
12
13 cout << "This program calculates the area of a circle.\n";
14
15 // Get the radius
16 cout << "What is the radius of the circle? ";
17 cin >> radius;
18
19 // Compute and display the area
20 area = PI * pow(radius, 2);
21 cout << "The area is " << area << endl;
22 return 0;
23 }

100 Chapter 3 Expressions and Interactivity

value while the program is running. Constants created with the #define directive,
however, are not variables at all, but text substitutions. Each occurrence of the named
constant in your source code is removed and the value of the constant is written in its
place when it is sent to the compiler.

Be careful not to put a semicolon at the end of a #define directive. If you used a semicolon
it would actually become part of the value of the constant. If the #define directive in
line 7 of Program 3-12 had read like this,

#define PI 3.14159;

the mathematical statement

area = PI * pow(radius, 2);

would have been modified to read

area = 3.14159; * pow(radius, 2);

Because of the semicolon, the preprocessor would have created a syntax error in the state-
ment and the compiler would have given an error message when trying to process this
statement.

Checkpoint

3.17 Write statements using the const qualifier to create named constants for the follow-
ing literal values:

Constant Value Description
——————————————————————————————————

2.71828 Euler’s number (known in mathematics as e)
5.256E5 Number of minutes in a year
32.2 The gravitational acceleration constant (in feet per second2)
9.8 The gravitational acceleration constant (in meters per second2)
1609 Number of meters in a mile

3.18 Write #define directives for the literal values listed in question 3.17.

3.19 Assuming the user enters 6 in response to the question, what will the following pro-
gram display on the screen?

#include <iostream>
using namespace std;

#define GREETING1 "This program calculates the number "
#define GREETING2 "of candy pieces sold."
#define QUESTION "How many jars of candy have you sold? "
#define RESULTS "The number of pieces sold: "
#define YOUR_COMMISSION "Candy pieces you get for commission: "
#define COMMISSION_RATE .20

NOTE: #define directives are intended for the preprocessor and C++ statements are
intended for the compiler. The preprocessor does not look for semicolons to terminate
directives.

Multiple and Combined Assignment 101

int main()
{

const int PIECES_PER_JAR = 1860;
int jars, pieces;
double commission;

cout << GREETING1;
cout << GREETING2 << endl;
cout << QUESTION;
cin >> jars;

pieces = jars * PIECES_PER_JAR;
cout << RESULTS << pieces << endl;
commission = pieces * COMMISSION_RATE;
cout << YOUR_COMMISSION << commission << endl;
return 0;

}

3.20 Complete the following program skeleton so it properly converts a speed entered in
miles per hour to feet per second. One mile per hour is 1.467 feet per second.

#include <iostream>
using namespace std;

int main()
{

// Define a named constant called CONVERSION
// with the value 1.467.
double milesPerHour, feetPerSecond;

cout << "This program converts miles per hour to\n";
cout << "feet per second.\n";
cout << "Enter a speed in MPH: ";
cin >> milesPerHour;
// Insert a mathematical statement here to
// calculate feet per second and assign the result
// to the feetPerSecond variable.
cout << "That is " << feetPerSecond << " feet per second.\n";
return 0;

}

3.7 Multiple and Combined Assignment

CONCEPT: Multiple assignment means to assign the same value to several variables
with one statement.

C++ allows you to assign a value to multiple variables at once. If a program has several
variables, such as a, b, c, and d, and each variable needs to be assigned a value, such as 12,
the following statement may be constructed:

a = b = c = d = 12;

The value 12 will be assigned to each variable listed in the statement. This works because
the assignment operations are carried out from right to left. First 12 is assigned to d. Then

102 Chapter 3 Expressions and Interactivity

d’s value, now a 12, is assigned to c. Then c’s value is assigned to b, and finally b’s value is
assigned to a.

Program 3-13 uses the following multiple assignment statement to store a value entered by
the user into two different variables:

store1 = store2 = begInv;

Combined Assignment Operators
Quite often programs have assignment statements of the following form:

number = number + 1;

The expression on the right side of the assignment operator gives the value of number
plus 1. The result is then assigned to number, replacing the value that was previously stored
there. Effectively, this statement adds 1 to number. In a similar fashion, the following state-
ment subtracts 5 from number.

number = number – 5;

If you have never seen this type of statement before, it might cause some initial confu-
sion because the same variable name appears on both sides of the assignment operator.
Table 3-8 shows other examples of statements written this way.

Because these types of operations are so common in programming, C++ offers a special
set of operators designed specifically for these jobs. Table 3-9 shows the combined
assignment operators, also known as compound operators or arithmetic assignment
operators.

Table 3-8 Assignment Statements that Change a Variable’s Value (Assume x = 6)

Statement What It Does
Value of x
After the Statement

x = x + 4; Adds 4 to x 10

x = x - 3; Subtracts 3 from x 3

x = x * 10; Multiplies x by 10 60

x = x / 2; Divides x by 2 3

x = x % 4 Makes x the remainder of x / 4 2

Table 3-9 Combined Assignment Operators

Operator Example Usage Equivalent To

+= x += 5; x = x + 5;

-= y -= 2; y = y - 2;

*= z *= 10; z = z * 10;

/= a /= b; a = a / b;

%= c %= 3; c = c % 3;

Combined
Assignment
Operators

Multiple and Combined Assignment 103

As you can see, the combined assignment operators do not require the programmer to type
the variable name twice. Also, they give a clear indication of what is happening in the
statement. Program 3-13 uses combined assignment operators.

Program 3-13

1 // This program tracks the inventory of two widget stores.
2 // It illustrates the use of multiple and combined assignment.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int begInv, // Beginning inventory for both stores
9 sold, // Number of widgets sold
10 store1, // Store 1's inventory
11 store2; // Store 2's inventory
12
13 // Get the beginning inventory for the two stores
14 cout << "One week ago, 2 new widget stores opened\n";
15 cout << "at the same time with the same beginning\n";
16 cout << "inventory. What was the beginning inventory? ";
17 cin >> begInv;
18
19 // Set each store's inventory
20 store1 = store2 = begInv;
21
22 // Get the number of widgets sold at each store
23 cout << "How many widgets has store 1 sold? ";
24 cin >> sold;
25 store1 -= sold; // Adjust store 1's inventory
26
27 cout << "How many widgets has store 2 sold? ";
28 cin >> sold;
29 store2 -= sold; // Adjust store 2's inventory
30
31 // Display each store's current inventory
32 cout << "\nThe current inventory of each store:\n";
33 cout << "Store 1: " << store1 << endl;
34 cout << "Store 2: " << store2 << endl;
35 return 0;
36 }

Program Output with Example Input Shown in Bold
One week ago, 2 new widget stores opened
at the same time with the same beginning
inventory. What was the beginning inventory? 100[Enter]
How many widgets has store 1 sold? 25[Enter]
How many widgets has store 2 sold? 15[Enter]

The current inventory of each store:
Store 1: 75
Store 2: 85

104 Chapter 3 Expressions and Interactivity

More elaborate statements may be expressed with the combined assignment operators.
Here is an example:

result *= a + 5;

In this statement, result is multiplied by the sum of a + 5. Notice that the precedence of
the combined assignment operators is lower than that of the regular arithmetic operators.
The above statement is equivalent to

result = result * (a + 5);

which is different from

result = result * a + 5;

Table 3-10 shows additional examples using combined assignment operators.

Checkpoint

3.21 Write a multiple assignment statement that assigns 0 to the variables total,
subtotal, tax, and shipping.

3.22 Write statements using combined assignment operators to perform the following:
A) Add 6 to x.
B) Subtract 4 from amount.
C) Multiply y by 4.
D) Divide total by 27.
E) Store in x the remainder of x divided by 7.
F) Add y * 5 to x.
G) Subtract discount times 4 from total.
H) Multiply increase by salesRep times 5.
I) Divide profit by shares minus 1000.

3.23 What will the following program display?

#include <iostream>
using namespace std;

int main()
{

int unus, duo, tres;

unus = duo = tres = 5;
unus += 4;

Table 3-10 Examples Using Combined Assignment Operators and Arithmetic Operators

Example Usage Equivalent To

x += b + 5; x = x + (b + 5);

y -= a * 2; y = y - (a * 2);

z *= 10 - c; z = z * (10 - c);

a /= b + c; a = a / (b + c);

c %= d - 3; c = c % (d - 3);

Formatting Output 105

duo *= 2;
tres -= 4;
unus /= 3;
duo += tres;
cout << unus << endl;
cout << duo << endl;
cout << tres << endl;
return 0;

}

3.8 Formatting Output

CONCEPT: cout provides ways to format data as it is being displayed. This affects
the way data appears on the screen.

The same data can be printed or displayed in several different ways. For example, all of the
following numbers have the same value, although they look different:

720
720.0
720.00000000
7.2e+2
+720.0

The way a value is printed is called its formatting. The cout object has a standard way of
formatting variables of each data type. Sometimes, however, you need more control over
the way data is displayed. Consider Program 3-14, for example, which displays three rows
of numbers with spaces between each one.

Program 3-14

1 // This program displays three rows of numbers.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int num1 = 2897, num2 = 5, num3 = 837,
8 num4 = 34, num5 = 7, num6 = 1623,
9 num7 = 390, num8 = 3456, num9 = 12;
10
11 // Display the first row of numbers
12 cout << num1 << " " << num2 << " " << num3 << endl;
13
14 // Display the second row of numbers
15 cout << num4 << " " << num5 << " " << num6 << endl;
16
17 // Display the third row of numbers
18 cout << num7 << " " << num8 << " " << num9 << endl;
19
20 return 0;
21 }

(program continues)

106 Chapter 3 Expressions and Interactivity

Unfortunately, the numbers do not line up in columns. This is because some of the num-
bers, such as 5 and 7, occupy one position on the screen, while others occupy two or three
positions. cout uses just the number of spaces needed to print each number.

To remedy this, cout offers a way of specifying the minimum number of spaces to use for
each number. A stream manipulator, setw, can be used to establish print fields of a speci-
fied width. Here is an example of how it is used:

value = 23;
cout << setw(5) << value;

The number inside the parentheses after the word setw specifies the field width for the
value immediately following it. The field width is the minimum number of character posi-
tions, or spaces, on the screen to print the value in. In our example, the number 23 will be
displayed in a field of five spaces.

To further clarify how this works, look at the following statements:

value = 23;
cout << "(" << setw(5) << value << ")";

This will produce the following output:

(23)

Because the number did not use the entire field, cout filled the extra three positions with
blank spaces. Because the number appears on the right side of the field with blank spaces
“padding” it in front, it is said to be right-justified.

Program 3-15 shows how the numbers in Program 3-14 can be printed in columns that line
up perfectly by using setw. In addition, because we used a setw(6), and the largest num-
ber has four digits, the numbers will be separated without having to print a string constant
containing blanks between the numbers.

Program Output
2897 5 837
34 7 1623
390 3456 12

Program 3-15

1 // This program uses setw to display three rows of numbers so they align.
2 #include <iostream>
3 #include <iomanip> // Header file needed to use setw
4 using namespace std;
5
6 int main()
7 {
8 int num1 = 2897, num2 = 5, num3 = 837,
9 num4 = 34, num5 = 7, num6 = 1623,
10 num7 = 390, num8 = 3456, num9 = 12;

(program continues)

Program 3-14 (continued)

Formatting Output 107

Notice that a setw manipulator is used with each value. This is because setw only estab-
lishes a field width for the value immediately following it. After that value is printed, cout
goes back to its default method of printing.

You might wonder what will happen if the number is too large to fit in the field, as in the
following statement:

value = 18397;
cout << setw(2) << value;

In cases like this, cout will print the entire number. setw only specifies the minimum num-
ber of positions in the print field. Any number larger than the minimum will cause cout to
override the setw value.

You may specify the field width of any type of data. Program 3-16 shows setw being used
with an integer, a floating-point number, and a string.

11
12 // Display the first row of numbers
13 cout << setw(6) << num1 << setw(6) << num2 << setw(6) << num3 << endl;
14
15 // Display the second row of numbers
16 cout << setw(6) << num4 << setw(6) << num5 << setw(6) << num6 << endl;
17
18 // Display the third row of numbers
19 cout << setw(6) << num7 << setw(6) << num8 << setw(6) << num9 << endl;
20
21 return 0;
22 }

Program Output
 2897 5 837
 34 7 1623
 390 3456 12

NOTE: A new header file, iomanip, is included on line 3 of Program 3-15. It must be
used in any program that uses setw.

Program 3-16

1 // This program demonstrates the setw manipulator
2 // being used with variables of various data types.
3 #include <iostream>
4 #include <iomanip>
5 #include <string>
6 using namespace std;
7

(program continues)

Program 3-15 (continued)

108 Chapter 3 Expressions and Interactivity

Program 3-16 illustrates the following points:

• The field width of a floating-point number includes a position for the decimal point.
• The field width of a string includes all characters in the string, including spaces.
• The values printed in the field are right-justified by default. This means they are

aligned with the right side of the print field, and any blanks that must be used to pad
it are inserted in front of the value.

The setprecision Manipulator
Floating-point values may be rounded to a number of significant digits, or precision, which
is the total number of digits that appear before and after the decimal point. You can con-
trol the number of significant digits with which floating-point values are displayed by using
the setprecision manipulator. Program 3-17 shows the results of a division operation
displayed with different numbers of significant digits.

8 int main()
9 {
10 int intValue = 3928;
11 double doubleValue = 91.5;
12 string stringObjectValue = "Jill Q. Jones";
13
14 cout << "(" << setw(5) << intValue << ")" << endl;
15 cout << "(" << setw(8) << doubleValue << ")" << endl;
16 cout << "(" << setw(16) << stringObjectValue << ")" << endl;
17 return 0;
18 }

Program Output
(3928)
(91.5)
(Jill Q. Jones)

Program 3-17

1 // This program demonstrates how the setprecision manipulator
2 // affects the way a floating-point value is displayed.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {
9 double, number1 = 132.364, number2 = 26.91;
10 double quotient = number1 / number2;
11
12 cout << quotient << endl;
13 cout << setprecision(5) << quotient << endl;

(program continues)

Program 3-16 (continued)

Formatting Output 109

The first value in Program 3-17 is displayed in line 12 without the setprecision manipu-
lator. (By default, the system displays floating-point values with six significant digits.) The
subsequent cout statements print the same value, but rounded to five, four, three, two, and
one significant digits. Notice that, unlike setw, setprecision does not count the decimal
point. When we used setprecision(5), for example, the output contained five significant
digits, which required six positions to print 4.9188.

If the value of a number is expressed in fewer digits of precision than specified by
setprecision, the manipulator will have no effect. In the following statements, the
value of dollars only has four digits of precision, so the number printed by both
cout statements is 24.51.

double dollars = 24.51;
cout << dollars << endl; // displays 24.51
cout << setprecision(5) << dollars << endl; // displays 24.51

Table 3-11 shows how setprecision affects the way various values are displayed. Notice
that when fewer digits are to be displayed than the number holds, setprecision rounds,
rather than truncates, the number. Notice also that trailing zeros are omitted. Therefore,
for example, 21.40 displays as 21.4 even though setprecision(5) is specified.

14 cout << setprecision(4) << quotient << endl;
15 cout << setprecision(3) << quotient << endl;
16 cout << setprecision(2) << quotient << endl;
17 cout << setprecision(1) << quotient << endl;
18 return 0;
19 }

Program Output
4.91877
4.9188
4.919
4.92
4.9
5

NOTE: With prestandard compilers, your output may be different from that shown in
Program 3-17.

Table 3-11 The setprecision Manipulator

Number Manipulator Value Displayed

28.92786 setprecision(3) 28.9

21.40 setprecision(5) 21.4

109.50 setprecision(4) 109.5

34.78596 setprecision(2) 35

Program 3-17 (continued)

110 Chapter 3 Expressions and Interactivity

Unlike field width, the precision setting remains in effect until it is changed to some other
value. As with all formatting manipulators, you must include the header file iomanip to
use setprecision.

Program 3-18 shows how the setw and setprecision manipulators may be combined to
control the way floating-point numbers are displayed.

Program 3-18

1 // This program asks for sales figures for three days.
2 // The total sales are calculated and displayed in a table.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {
9 double day1, day2, day3, total;
10
11 // Get the sales for each day
12 cout << "Enter the sales for day 1: ";
13 cin >> day1;
14 cout << "Enter the sales for day 2: ";
15 cin >> day2;
16 cout << "Enter the sales for day 3: ";
17 cin >> day3;
18
19 // Calculate total sales
20 total = day1 + day2 + day3;
21
22 // Display the sales figures
23 cout << "\nSales Figures\n";
24 cout << "-------------\n";
25 cout << setprecision(5);
26 cout << "Day 1: " << setw(8) << day1 << endl;
27 cout << "Day 2: " << setw(8) << day2 << endl;
28 cout << "Day 3: " << setw(8) << day3 << endl;
29 cout << "Total: " << setw(8) << total << endl;
30 return 0;
31 }

Program Output with Example Input Shown in Bold
Enter the sales for day 1: 321.57[Enter]
Enter the sales for day 2: 269.60[Enter]
Enter the sales for day 3: 307.00[Enter]

Sales Figures

Day 1: 321.57
Day 2: 269.6
Day 3: 307
Total: 898.17

Formatting Output 111

The output created by Program 3-18, as we directed, allows a maximum of five significant
digits to be displayed and is printed right justified in a field width of eight characters. How-
ever, the result is clearly not what is desired. In just a moment, we’ll look at another
manipulator that provides additional control over the format of the output.

The fixed Manipulator
If a number is too large to print using the number of digits specified with setprecision,
many systems print it in scientific notation. For example, here is the output of Program 3-18
with larger numbers being input.

Enter the sales for day 1: 145678.99[Enter]
Enter the sales for day 2: 205614.85[Enter]
Enter the sales for day 3: 198645.22[Enter]

Sales Figures

Day 1: 1.4568e+005
Day 2: 2.0561e+005
Day 3: 1.9865e+005
Total: 5.4994e+005

To prevent this, you can use another stream manipulator, fixed, which indicates that
floating-point output should be printed in fixed-point, or decimal, notation.

cout << fixed;

What is perhaps most important about the fixed manipulator, however, is that when the
setprecision manipulator is used in conjunction with fixed, it behaves in a new way. It
specifies the number of digits to be displayed after the decimal point of a floating-point
number, rather than the total number of digits to be displayed. This is usually what we
want. For example, if we rewrite line 25 of Program 3-18 as

cout << fixed << setprecision(2);

and rerun the program using the same sample data, we get the following results:

Enter the sales for day 1: 321.57[Enter]
Enter the sales for day 2: 269.60[Enter]
Enter the sales for day 3: 307.00[Enter]

Sales Figures

Day 1: 321.57
Day 2: 269.60
Day 3: 307.00
Total: 898.17

By using fixed and setprecision together, we get the desired output. Notice in this case,
however, we set the precision to 2, the number of decimal places we wish to see, not to 5.

The showpoint Manipulator
Another useful manipulator is showpoint, which indicates that a decimal point should
be printed for a floating-point number, even if the value being displayed has no decimal

112 Chapter 3 Expressions and Interactivity

digits. Program 3-19 illustrates the use of fixed, showpoint, and setprecision. As with
setprecision, the fixed and showpoint manipulators remain in effect until the pro-
grammer explicitly changes them.

When amount is printed the first time, in line 11, the showpoint and setprecision
manipulators have not yet been set. Therefore, since the value being displayed requires no
decimal digits, only 125 is displayed. When amount is printed the second time, in line 14,
the showpoint manipulator has been set, so a decimal point followed by zeroes is dis-
played. However, since the setprecision manipulator has not yet been set, we have no
control over how many zeroes are to be printed, and 125.000 is displayed. Finally, when
amount is printed the third time, in line 17, the fixed and setprecision manipulators
have both been set, specifying that exactly two decimal digits are to be printed, so
125.00 is displayed.

Actually, when the fixed and setprecision manipulators are both used, it is not neces-
sary to use the showpoint manipulator. For example,

cout << fixed << setprecision(2);

will automatically display a decimal point before the two decimal digits. However, many
programmers prefer to use it anyway as shown here:

cout << fixed << showpoint << setprecision(2);

The left and right Manipulators
Normally, as you have seen, output is right-justified. This means if the field it prints in is
larger than the value being displayed, it is printed on the far right of the field, with leading

Program 3-19

1 // This program illustrates how the fixed, showpoint, and
2 // setprecision manipulators operate when used together.
3 #include <iostream>
4 #include <iomanip> // Needed to use stream manipulators
5 using namespace std;
6
7 int main()
8 {
9 double amount = 125.0;
10
11 cout << setw(6) << amount << endl;
12
13 cout << showpoint;
14 cout << setw(6) << amount << endl;
15
16 cout << fixed << showpoint << setprecision(2);
17 cout << setw(6) << amount << endl;
18 return 0;
19 }

Program Output
 125
125.000
125.00

Formatting Output 113

blanks. There are times when you may wish to force a value to print on the left side of its
field, padded by blanks on the right. To do this you can use the left manipulator. It
remains in effect until you use a right manipulator to set it back. These manipulators can
be used with any type of value, even a string. Program 3-20 illustrates the left and right
manipulators. It also illustrates that the fixed, showpoint, and setprecision manipula-
tors have no effect on integers, only on floating-point numbers.

Chapter 13 introduces additional stream manipulators and output formatting methods.
However, the six manipulators we have covered in this chapter are normally sufficient to
produce the output you desire. Table 3-12 summarizes these six manipulators.

Program 3-20

1 // This program illustrates the use of the left and right manipulators.
2 #include <iostream>
3 #include <iomanip> // Needed to use stream manipulators
4 #include <string>
5 using namespace std;
6
7 int main()
8 {
9 string month1 = "January",
10 month2 = "February",
11 month3 = "March";
12
13 int days1 = 31,
14 days2 = 28,
15 days3 = 31;
16
17 double high1 = 22.6,
18 high2 = 37.4,
19 high3 = 53.9;
20
21 cout << fixed << showpoint << setprecision(1);
22 cout << "Month Days High\n";
23
24 cout << left << setw(12) << month1
25 << right << setw(4) << days1 << setw(9) << high1 << endl;
26 cout << left << setw(12) << month2
27 << right << setw(4) << days2 << setw(9) << high2 << endl;
28 cout << left << setw(12) << month3
29 << right << setw(4) << days3 << setw(9) << high3 << endl;
30
31 return 0;
32 }

Program Output
Month Days High
January 31 22.6
February 28 37.4
March 31 53.9

114 Chapter 3 Expressions and Interactivity

Checkpoint

3.24 Write cout statements with stream manipulators that perform the following:

A) Display the number 34.789 in a field of nine spaces with two decimal places of
precision.

B) Display the number 7.0 in a field of five spaces with three decimal places of pre-
cision. The decimal point and any trailing zeroes should be displayed.

C) Display the number 5.789e+12 in fixed-point notation.
D) Display the number 67 left-justified in a field of seven spaces.

3.25 The following program skeleton asks for an angle in degrees and converts it to radians.
The formatting of the final output is left to you.

#include <iostream>
#include <iomanip>
using namespace std;

int main()
{

const double PI = 3.14159;
double degrees, radians;

cout << "Enter an angle in degrees and I will convert it\n";
cout << "to radians for you: ";
cin >> degrees;
radians = degrees * PI / 180;

// Display the value in radians left-justified, in fixed-point
// notation, with four decimal places of precision, in a field
// seven spaces wide.
return 0;

}

Table 3-12 Output Stream Manipulators

Stream Manipulator Description

setw(n) Sets the display field width to size n.

fixed Displays floating-point numbers in fixed (i.e., decimal) form.

showpoint Displays the decimal point and trailing zeroes for floating-point
numbers even if there is no fractional part.

setprecision(n) If the fixed manipulator is not set, n indicates the total number of
significant digits to display. If the fixed manipulator is set, n indicates
the number of decimal digits to display.

left Causes subsequent output to be left-justified.

right Causes subsequent output to be right-justified.

Working with Characters and String Objects 115

3.9 Working with Characters and String Objects

CONCEPT: Special functions exist for working with characters and string objects.

In Chapter 2 you were introduced to characters and to string objects. A char variable can
hold only one character, whereas a variable defined as a string can hold a whole set of
characters. The following variable definitions and initializations illustrate this.

char letter1 = 'A',
 letter2 = 'B';
string name1 = "Mark Twain",
 name2 = "Samuel Clemens";

As with numeric data types, characters and strings can be assigned values.

letter2 = letter1; // Now letter2's value is 'A'
name2 = name1; // Now name2's value is "Mark Twain"

They can also be displayed with the cout statement. The following line of code outputs a
character variable, a string constant, and a string object.

cout << letter1 << ". " << name1 << endl;

The output produced is

A. Mark Twain

Inputting characters and strings, however, is a little trickier than reading in numeric values.

Inputting a String
Although it is possible to use cin with the >> operator to input strings, it can cause prob-
lems you need to be aware of. When cin reads data it passes over and ignores any leading
whitespace characters (spaces, tabs, or line breaks). However, once it comes to the first
nonblank character and starts reading, it stops reading when it gets to the next whitespace
character. If we use the following statement

cin >> name1;

we can input “Mark”, or even “ Mark”, but not “Mark Twain” because cin cannot input
strings that contain embedded spaces.

Program 3-21 illustrates this problem.

Program 3-21

1 // This program illustrates a problem that can occur if
2 // cin is used to read character data into a string object.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6

(program continues)

116 Chapter 3 Expressions and Interactivity

Notice that the user was never given the opportunity to enter the city. In the first input
statement, when cin came to the space between John and Doe, it stopped reading, storing
just John as the value of name. In the second input statement, cin used the leftover charac-
ters it found in the keyboard buffer and stored Doe as the value of city.

To solve this problem, C++ provides a special function called getline. This function will
read in an entire line, including leading and embedded spaces, and store it in a string object.
The getline function looks like the following, where cin is the input stream we are reading
from and inputLine is the name of the string variable receiving the input string.

getline(cin, inputLine);

Program 3-22 illustrates using the getline function.

7 int main()
8 {
9 string name;
10 string city;
11
12 cout << "Please enter your name: ";
13 cin >> name;
14 cout << "Enter the city you live in: ";
15 cin >> city;
16
17 cout << "Hello, " << name << endl;
18 cout << "You live in " << city << endl;
19 return 0;
20 }

Program Output with Example Input Shown in Bold
Please enter your name. John Doe[Enter]
Enter the city you live in: Hello, John
You live in Doe

Program 3-22

1 // This program illustrates using the getline function
2 // to read character data into a string object.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 int main()
8 {
9 string name;
10 string city;
11
12 cout << "Please enter your name: ";
13 getline(cin, name);
14 cout << "Enter the city you live in: ";
15 getline(cin, city);

(program continues)

Program 3-21 (continued)

Working with Characters and String Objects 117

Inputting a Character
Sometimes you want to read only a single character of input. For example, some programs
display a menu of items for the user to choose from. Often the selections will be denoted
by the letters A, B, C, and so forth. The user chooses an item from the menu by typing a
character. The simplest way to read a single character is with cin and the >> operator, as
illustrated in Program 3-23.

Using cin.get
As with string input, however, there are times when using cin >> to read a character does
not do what we want. For example, because it passes over all leading whitespace, it is
impossible to input just a blank or [Enter] with cin >>. The program will not continue past
the cin statement until some character other than the spacebar, the tab key, or the [Enter]
key has been pressed. (Once such a character is entered, the [Enter] key must still be pressed
before the program can continue to the next statement.) Thus, programs that ask the user
to "Press the enter key to continue." cannot use the >> operator to read only the
pressing of the [Enter] key.

16
17 cout << "Hello, " << name << endl;
18 cout << "You live in " << city << endl;
19 return 0;
20 }

Program Output with Example Input Shown in Bold
Please enter your name. John Doe[Enter]
Enter the city you live in: Chicago[Enter]
Hello, John Doe
You live in Chicago

Program 3-23

1 // This program reads a single character into a char variable.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 char ch;
8
9 cout << "Type a character and press Enter: ";
10 cin >> ch;
11 cout << "You entered " << ch << endl;
12 return 0;
13 }

Program Output with Example Input Shown in Bold
Type a character and press Enter: A[Enter]
You entered A

Program 3-22 (continued)

118 Chapter 3 Expressions and Interactivity

In those situations, a cin function called get becomes useful. The get function reads a
single character, including any whitespace character. If the program needs to store the
character being read, the get function can be called in either of the following ways. In
both cases, ch is the name of the variable that the character is being read into.

cin.get(ch);
ch = cin.get();

If the program is using the get function simply to hold the screen until the [Enter] key is
pressed and does not need to store the character, the function can also be called like this:

cin.get();

Program 3-24 illustrates all three ways to use the get function.

Mixing cin >> and cin.get
Mixing cin >> with cin.get can cause an annoying and hard-to-find problem. For exam-
ple, look at the following code segment. The lines are numbered for reference.

1 char ch; // Define a character variable
2 int number; // Define an integer variable
3 cout << "Enter a number: ";
4 cin >> number; // Read an integer
3 cout << "Enter a character: ";
6 ch = cin.get(); // Read a character
7 cout << "Thank You!\n";

Program 3-24

1 // This program demonstrates three ways
2 // to use cin.get() to pause a program.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 char ch;
9
10 cout << "This program has paused. Press Enter to continue.";
11 cin.get(ch);
12 cout << "It has paused a second time. Please press Enter again.";
13 ch = cin.get();
14 cout << "It has paused a third time. Please press Enter again.";
15 cin.get();
16 cout << "Thank you!";
17 return 0;
18 }

Program Output with Example Input Shown in Bold
This program has paused. Press Enter to continue.[Enter]
It has paused a second time. Please press Enter again.[Enter]
It has paused a third time. Please press Enter again.[Enter]
Thank you!

Working with Characters and String Objects 119

These statements allow the user to enter a number, but not a character. It will appear that
the cin.get statement on line 6 has been skipped.

This happens because both cin >> and cin.get read the user’s keystrokes from the key-
board buffer. After entering a number in response to the first prompt, the user presses the
[Enter] key. Pressing this key causes a newline character ('\n') to be stored in the keyboard
buffer. For example, suppose the user enters 100 and presses [Enter]. The input will be
stored in the keyboard buffer as shown in Figure 3-3.

When the cin >> statement reads data from the keyboard buffer, it stops reading at the new-
line character. In our example, 100 is read in and stored in the number variable. The newline
character is left in the keyboard buffer. However, cin.get always reads the next character in
the buffer, no matter what it is, without skipping over whitespace. It only waits for the user
to input a value if the keyboard buffer is empty. When cin.get finds the newline character
in the buffer, it uses it and does not wait for the user to input another value. You can remedy
this situation by using the cin.ignore function, described in the following section.

Using cin.ignore
To solve this problem, the cin.ignore function can be used. This function tells the cin
object to skip characters in the keyboard buffer. Here is its general form:

cin.ignore(n, c);

The arguments shown in the parentheses are optional. If they are used, n is an integer and
c is a character. They tell cin to skip n number of characters, or until the character c is
encountered. For example, the following statement causes cin to skip the next 20 charac-
ters or until a newline is encountered, whichever comes first:

cin.ignore(20,'\n');

If no arguments are used, cin will only skip the very next character. Here’s an example:

cin.ignore();

The statements that mix cin >> and cin.get can be repaired by inserting a cin.ignore
statement after the cin >> statement:

cout << "Enter a number: ";
cin >> number;
cin.ignore(); // Skip the newline character
cout << "Enter a character: ";
cin.get(ch);
cout << "Thank You!" << endl;

Figure 3-3

1 0 0 \n

Keyboard buffer

cin begins
reading here

120 Chapter 3 Expressions and Interactivity

Useful String Functions and Operators
The C++ string class provides a number of functions, called member functions, for work-
ing with strings. One that is particularly useful is the length function, which tells you how
many characters there are in a string. Here is an example of how to use it.

string state = "New Jersey";
int size = state.length();

The size variable now holds the value 10. Notice that a blank space is a character and is
counted just like any other character. On the other hand, notice that the ‘\0’ null character
you learned about in Chapter 2 that marks the end of a string constant, is not counted.

The string class also has special operators for working with strings. One of them is the +
operator.

You have already encountered the + operator to add two numeric quantities. Because strings
cannot be added, when this operator is used with string operands it concatenates them, or joins
them together. Assume we have the following definitions and initializations in a program.

string greeting1 = "Hello ",
 greeting2;
string name1 = "World";
string name2 = "People";

The following statements illustrate how string concatenation works.

greeting2 = greeting1 + name1; // greeting2 now holds "Hello World"
greeting1 = greeting1 + name2; // greeting1 now holds "Hello People"

Notice that the string stored in greeting1 has a blank as its last character. If the blank
were not there, greeting2 would have been assigned the string "HelloWorld".

The last statement could also have been written using the += combined assignment operator.

greeting1 += name2;

You will learn about other useful string class functions and operators in Chapter 12.

3.10 Using C-Strings

CONCEPT: C-strings provide another way to store and work with strings.

In C, and in C++ prior to the introduction of the string class, strings were stored as a set of
individual characters. A group of contiguous 1-byte memory cells was set up to hold them, with
each cell holding just one character of the string. A group of memory cells like this is called an
array. You will learn more about arrays in Chapter 8, but for now all you need to know is how
to set one up and use it to hold and work with the characters that make up a string.

Because this was the way to create a string variable in C, a string defined in this manner is
called a C-string. Here is a statement that defines word to be an array of characters that will
hold a C-string and initializes it to "Hello".

char word[10] = "Hello";

Notice that the way we define word is similar to the way we define any other variable. The
data type is specified first and then the variable name is given. The only difference is the [10]
that follows the name of the variable. This is called a size declarator. It tells how many mem-
ory cells to set up to hold the characters in the C-string.

Using C-Strings 121

As with string constants, the null character is automatically appended to the end of a
C-string to mark its end. Figure 3-4 shows what the contents of the word variable would
look like in memory.

Because one space must be reserved for the null terminator, word can only hold a string of
up to nine characters.

Like string objects, C-strings can have their contents input using cin, and they can have
their contents displayed using cout. This is illustrated in Program 3-25. Because name
is defined in line 8 to have 12 memory cells, it can store a name of up to 11 characters. No
special header file is needed to use C-strings.

Except for inputting and displaying them with cin >> and cout <<, almost everything
else about using string objects and C-strings is different. This is because the string class
includes functions and operators that save the programmer having to worry about many of
the details of working with strings. When using C-strings, however, it is the responsibility
of the programmer to handle these things.

Because C-strings are harder to work with than string objects, you might be wondering
why you are learning about them. There are two reasons. First, you are apt to encounter
older programs that use them, so you need to understand them. Second, even though
strings can now be declared as string objects in most cases, there are still times when only
C-strings will work. You will be introduced to some of these cases later in the book.

Figure 3-4

Program 3-25

1 // This program uses cin >> to read a word into a C-string.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 const int SIZE = 12;
8 char name[SIZE]; // name is a set of 12 memory cells
9
10 cout << "Please enter your first name." << endl;
11 cin >> name;
12 cout << "Hello, " << name << endl;
13 return 0;
14 }

Program Output with Example Input Shown in Bold
Please enter your first name.
Sebastian[Enter]
Hello, Sebastian

H

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

e l l o \0

122 Chapter 3 Expressions and Interactivity

Assigning a Value to a C-String
The first way in which using a C-string differs from using a string object is that, except for
initializing it at the time of its definition, it cannot be assigned a value using the assignment
operator. In Program 3-25 we could not, for example, replace the cin statement with the
following line of code.

name = "Sebastian"; // Wrong!

Instead, to assign a value to a C-string, we must use a function called strcpy (pronounced
string copy) to copy the contents of one string into another. In the following line of code
Cstring is the name of the variable receiving the value, and value is either a string con-
stant or the name of another C-string variable.

strcpy(Cstring, value);

Program 3-26 shows how the strcpy function works.

Keeping Track of a How Much a C-String Can Hold
Another crucial way in which using a C-string differs from using a string object
involves the memory allocated for it. With a string object, you do not have to worry
about there being too little memory to hold a string you wish to place in it. If the
storage space allocated to the string object is too small, the string class functions
will make sure more memory is allocated to it. With C-strings this is not the case. The
number of memory cells set aside to hold a C-string remains whatever size you origi-
nally set it to in the definition statement. It is the job of the programmer to ensure that
the number of characters placed in it does not exceed the storage space. If the pro-
grammer uses cin to read a value into a C-string and the user types in more characters

Program 3-26

1 // This program uses the strcpy function to copy one C-string to another.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 const int SIZE = 12;
8 char name1[SIZE],
9 name2[SIZE];
10
11 strcpy(name1, "Sebastian");
12 cout << "name1 now holds the string " << name1 << endl;
13
14 strcpy(name2, name1);
15 cout << "name2 now also holds the string " << name2 << endl;
16
17 return 0;
18 }

Program Output
name1 now holds the string Sebastian
name2 now also holds the string Sebastian

Using C-Strings 123

than it can hold, cin will store all the characters anyway. The ones that don’t fit will
spill over into the following memory cells, overwriting whatever was previously stored
there. This type of error, known as a buffer overrun, can lead to serious problems.

One way to prevent this from happening is to use the setw stream manipulator. This
manipulator, which we used earlier in this chapter to format output, can also be used to
control the number of characters that cin >> inputs on its next read, as illustrated here:

char word[5];
cin >> setw(5) >> word;

Another way to do the same thing is by using the cin width function.

char word[5];
cin.width(5);
cin >> word;

In both cases the field width specified is 5 and cin will read, at most, one character less
than this, leaving room for the null character at the end. Program 3-27 illustrates the use of
the setw manipulator with cin, while Program 3-28 uses its width function. Both pro-
grams produce the same output.

Program 3-27

1 // This program uses setw with the cin object.
2 #include <iostream>
3 #include <iomanip>
4 using namespace std;
5
6 int main()
7 {
8 const int SIZE = 5;
9 char word[SIZE];
10
11 cout << "Enter a word: ";
12 cin >> setw(SIZE) >> word;
13 cout << "You entered " << word << endl;
14
15 return 0;
16 }

Program 3-28

1 // This program uses cin's width function.
2 #include <iostream>
3 #include <iomanip>
4 using namespace std;
5
6 int main()
7 {
8 const int SIZE = 5;
9 char word[SIZE];

(program continues)

124 Chapter 3 Expressions and Interactivity

In Program 3-28, cin only reads and stores four characters into word. If the field width had
not been specified, cin would have written the entire word “Eureka” into memory, overflow-
ing the space set up to hold word. Figure 3-5 illustrates the way memory would have been
affected by this. The shaded area is the 5 bytes of memory allocated to hold the C-string.

There are three important points to remember about the way cin handles field widths:

• The field width only pertains to the very next item entered by the user.
• To leave space for the '\0' character, the maximum number of characters read and

stored will be one less than the size specified.
• If cin comes to a whitespace character before reading the specified number of char-

acters, it will stop reading.

Reading a Line of Input
Still another way in which using C-strings differs from using string objects is that you must use a
different set of functions when working with them. To read a line of input, for example, you
must use cin.getline rather than getline. These two names look a lot alike, but they are two
different functions and are not interchangeable. Like getline, cin.getline allows you to read
in a string containing spaces. It will continue reading until it has read the maximum specified
number of characters, or until the [Enter] key is pressed. Here is an example of how it is used:

cin.getline(sentence, 20);

10
11 cout << "Enter a word: ";
12 cin.width(SIZE);
13 cin >> word;
14 cout << "You entered " << word << endl;
15
16 return 0;
17 }

Program Output for Programs 3-27 and 3-28 with Example Input Shown in Bold
Enter a word: Eureka[Enter]
You entered Eure

Figure 3-5

Program 3-28 (continued)

E u r e k a \0

The 5 bytes allocated
to hold the word array

Next item in memory,
overwritten with ‘a’
and null character

Using C-Strings 125

The getline function takes two arguments separated by a comma. The first argument is the
name of the array that the string is to be stored in. In the statement above, the name of the
array is sentence. The second argument is the size of the array. cin will read up to
one character less than this number, leaving room for the null terminator. This elimi-
nates the need for using the setw manipulator or the width function. The statement
above will read up to 19 characters. The null terminator will automatically be placed in
the array, after the last character. Program 3-29 shows the getline function being used to
read a sentence of up to 80 characters.

Later chapters cover more on C-strings and how they differ from string objects.

Checkpoint

3.26 Will the following string constant fit in the space allocated for name? Why or why not?

char name[4] = "John";

3.27 If a program contains the definition string name; indicate whether each of the
following lettered program statements is legal or illegal.

A) cin >> name;
B) cin.getline(name, 20);
C) cout << name;
D) name = "John";

3.28 If a program contains the definition char name[20]; indicate whether each of the
following lettered program statements is legal or illegal.

A) cin >> name;
B) cin.getline(name, 20);
C) cout << name;
D) name = "John";

Program 3-29

1 // This program demonstrates cin's getline function
2 // to read a line of text into a C-string.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 const int SIZE = 81;
9 char sentence[SIZE];
10
11 cout << "Enter a sentence: ";
12 cin.getline(sentence, SIZE);
13 cout << "You entered " << sentence << endl;
14 return 0;
15 }

Program Output with Example Input Shown in Bold
Enter a sentence: To be, or not to be, that is the question.[Enter]
You entered To be, or not to be, that is the question.

126 Chapter 3 Expressions and Interactivity

3.11 More Mathematical Library Functions

CONCEPT: The C++ run-time library provides several functions for performing
complex mathematical operations.

Earlier in this chapter you learned to use the pow function to raise a number to a power. The
C++ library has numerous other functions that perform specialized mathematical operations.
These functions are useful in scientific and special purpose programs. Table 3-13 shows sev-
eral of these, each of which requires the cmath header file.

With the exception of the abs and round functions, all of the functions listed in Table 3-13
take one or more double arguments and return a double value. However, most C++ compilers

Table 3-13 Selected Mathematical Library Functions

Function Example Description

abs y = abs(x); Returns the absolute value of the argument. The argument and
the return value are integers.

cos y = cos(x); Returns the cosine of the argument. The argument should be an
angle expressed in radians. The return type and the argument
are doubles.

exp y = exp(x); Computes the exponential function of the argument, which is x.
The return type and the argument are doubles.

fmod y = fmod(x, z); Returns, as a double, the remainder of the first argument divided
by the second argument. Works like the modulus operator, but the
arguments are doubles. (The modulus operator only works with
integers.) Take care not to pass zero as the second argument.
Doing so would cause division by zero.

log y = log(x); Returns the natural logarithm of the argument. The return type
and the argument are doubles.

log10 y = log10(x); Returns the base-10 logarithm of the argument. The return type
and the argument are doubles.

round y = round(x); Returns the argument rounded to the nearest whole number. The
return value is an integer.

sin y = sin(x); Returns the sine of the argument. The argument should be an
angle expressed in radians. The return type and the argument
are doubles.

sqrt y = sqrt(x); Returns the square root of the argument. The return type and
argument are doubles. The argument must be zero or greater.

tan y = tan(x); Returns the tangent of the argument. The argument should be
an angle expressed in radians. The return type and the argument
are doubles.

More Mathematical Library Functions 127

allow them to be called with int arguments as well. So, for example, both of the following will
work to print the square root of 30.

cout << sqrt(30.0); // Displays 5.47723
cout << sqrt(30); // Displays 5.47723

Program 3-30 shows the sqrt function being used to find the hypotenuse of a right tri-
angle. The program uses the following formula, taken from the Pythagorean theorem:

In the formula, c is the length of the hypotenuse, and a and b are the lengths of the other
sides of the triangle.

The following statement, taken from line 18 of Program 3-30, calculates the square root of
the sum of the squares of the triangle’s two sides:

c = sqrt(pow(a, 2.0) + pow(b, 2.0));

Notice that the following mathematical expression is used as the sqrt function’s argument:

pow(a, 2.0) + pow(b, 2.0)

Program 3-30

1 // This program inputs the lengths of the two sides of a right
2 // triangle, then calculates and displays the length of the hypotenuse.
3 #include <iostream>
4 #include <cmath> // Needed to use the sqrt function
5 using namespace std;
6
7 int main()
8 {
9 double a, b, c;
10
11 // Get the length of the two sides
12 cout << "Enter the length of side a: ";
13 cin >> a;
14 cout << "Enter the length of side b: ";
15 cin >> b;
16
17 // Compute and display the length of the hypotenuse
18 c = sqrt(pow(a, 2.0) + pow(b, 2.0));
19
20 cout << "The length of the hypotenuse is ";
21 cout << c << endl;
22 return 0;
23 }

Program Output with Example Input Shown in Bold
Enter the length of side a: 5.0[Enter]
Enter the length of side b: 12.0[Enter]
The length of the hypotenuse is 13

c a2 b2
��

128 Chapter 3 Expressions and Interactivity

This expression calls the pow function twice: once to calculate the square of a and again to
calculate the square of b. These two squares are then added together, and the sum is sent to
the sqrt function.

Random Numbers
Some programs need to use randomly generated numbers. The C++ library has a function
called rand() for this purpose. To use the rand() function, you must include the cstdlib
header file in your program. The number returned by the function is an int. Here is an
example of how it is used.

randomNum = rand();

However, the numbers returned by the function are really pseudorandom. This means they
have the appearance and properties of random numbers, but in reality are not random.
They are actually generated with an algorithm. The algorithm needs a starting value, called
a seed, to generate the numbers. If it is not given one, it will produce the same stream of
numbers each time it is run. Program 3-31 illustrates this.

Program 3-32 illustrates what happens when random numbers are generated after giving
the generator a seed to start with. In C++ this is done by calling the srand() function and
passing it a positive integer. The srand() function should be called only once for the
whole program.

Notice in line 10 of the program that the variable created to hold the seed is unsigned. As
you may recall, this data type holds only non-negative integers. This is the data type the
srand function expects to receive when it is called and it guarantees that no negative num-
bers will be sent to srand.

Program 3-31

1 // This program demonstrates what happens in C++ if you
2 // try to generate random numbers without setting a "seed".
3 #include <iostream>
4 #include <cstdlib>
5 using namespace std;
6
7 int main ()
8 {
9 int num1, num2, num3; // These hold the 3 random numbers
10
11 // Now generate and print three random numbers
12 num1 = rand();
13 num2 = rand();
14 num3 = rand();
15 cout << num1 << " " << num2 << " " << num3 << endl;
16 return 0;
17 }

Program Output from Run 1 Program Output from Run 2
41 18467 6334 41 18467 6334

More Mathematical Library Functions 129

As you can see from the Program 3-32 output, when the program is run with a different
seed, a different stream of random numbers is generated. However, if we run the program
a third time using 19 or 171 as the seed again, we will get exactly the same numbers we did
the first time.

Notice that on line 14 of Program 3-32 cin is used to get a value from the user for the ran-
dom number generator seed. Another common practice for getting a seed value is to call
the time function, which is part of the standard library. This function returns the number
of seconds that have elapsed since midnight, January 1, 1970. To use the time function in
a program you must include the ctime header file, and you must pass 0 as an argument to
the function when you call it. The following code segment illustrates how to “seed” the
random number generator with a value obtained this way.

seed = time(0);
srand(seed);

Program 3-32

1 // This program demonstrates random numbers, providing
2 // a "seed" for the random number generator.
3 #include <iostream>
4 #include <cstdlib>
5 using namespace std;
6
7 int main()
8 {
9 int num1, num2, num3; // These hold the 3 random numbers
10 unsigned seed; // Random generator seed
11
12 // Get a "seed" value from the user
13 cout << "Enter a seed value: ";
14 cin >> seed;
15
16 // Set the random generator seed before calling rand()
17 srand(seed);
18
19 // Now generate and print three random numbers
20 num1 = rand();
21 num2 = rand();
22 num3 = rand();
23 cout << num1 << " " << num2 << " " << num3 << endl;
24 return 0;
25 }

Program Output with Example Input Shown in Bold
Run 1: Run 2:
Enter a seed value: 19[Enter] Enter a seed value: 171[Enter]
100 15331 209 597 10689 28587

NOTE: The stream of random numbers generated on your computer system may be
different.

130 Chapter 3 Expressions and Interactivity

If you wish to limit the range of the random number to an integer between 1 and
maxRange, use the following formula.

randomNum = 1 + rand() % maxRange;

For example, if you wish to generate a random number in the range of 1 through 6 to rep-
resent the roll of a dice, you would use

dice = 1 + rand() % 6;

Checkpoint

3.29 Assume the variables angle1 and angle2 hold angles stored in radians. Write a
statement that adds the sine of angle1 to the cosine of angle2 and stores the result
in the variable x.

3.30 To find the cube root (the third root) of a number, raise it to the power of 1⁄3.
To find the fourth root of a number, raise it to the power of 1⁄4. Write a state-
ment that will find the fifth root of the variable x and store the result in the
variable y.

3.31 The cosecant of the angle a is

Write a statement that calculates the cosecant of the angle stored in the variable a
and stores it in the variable y.

3.12 Introduction to Files

CONCEPT: Program input can be read from a file and program output can be written
to a file.

The programs you have written so far require you to re-enter data each time the program
runs. This is because the data stored in RAM disappears once the program stops running
or the computer is shut down. If a program is to retain data between the times it runs, it
must have a way of saving it. Data is saved in a file, which is usually stored on a
computer’s disk. Once the data is saved by writing it into a file, it will remain there after
the program stops running. The data can then be retrieved and used at a later time.

There are five steps that must be taken when a file is used by a program:

1. Include the header file needed to perform file input/output.
2. Define a file stream object.

NOTE: The mod operation gives us the remainder of an integer divide. When the
integer returned by rand() is divided by 6, the remainder will be a number
between 0 and 5. Because we want a number between 1 and 6, we simply add 1 to
the result.

1
asin

Introduction to Files 131

3. Open the file.
4. Use the file.
5. Close the file.

Step 1: Include the header file needed to perform
file input/output.
Just as cin and cout require the iostream file to be included in the program, C++ file access
requires another header file. The file fstream contains all the definitions necessary for file
operations. It is included with the following statement:

#include <fstream>

Step 2: Define a file stream object.
The next step in setting up a program to perform file I/O is to define one or more file
stream objects. They are called stream objects because a file can be thought of as a stream
of data. File stream objects work very much like cin and cout objects. A stream of data
can be sent to cout, which causes values to be displayed on the screen. A stream of data
can be read from the keyboard by cin and stored in variables. Likewise, streams of data
can be sent to a file stream object, which writes the data to a file. Data that is read from a
file flows from a file stream object into other variables.

The fstream header file contains definitions for the data types ofstream, ifstream, and
fstream. Before a C++ program can work with a file, it must define an object of one of
these data types. The object will be associated with an actual file stored on some secondary
storage medium, and the operations that may be performed on that file depend on which
of these three data types you pick for the file stream object. Table 3-14 lists and describes
file stream data types.

Table 3-14 File Stream Data Types

File Stream
Data Type Description

ofstream Output file stream. This data type can be used to open output files and write
data to them. If the file does not yet exist, the open operation will automatically
create it. If the file already exists, the open operation will destroy it and create a
new, empty file of the same name in its place. With the ofstream data type,
data may only be copied from variables to the file, but not vice versa.

ifstream Input file stream. This data type can be used to open existing input files and
read data from them into memory. With the ifstream data type, data may only
be copied from the file into variables, not but vice versa.

fstream File stream. This data type can be used to open files, write data to them, and
read data from them. With the fstream data type, data may be copied from
variables into a file, or from a file into variables.

NOTE: In this section we only discuss the ofstream and ifstream types. The
fstream type is covered in Chapter 13.

132 Chapter 3 Expressions and Interactivity

Here are example statements that define ofstream and ifstream objects:

ofstream outputFile;
ifstream inputFile;

These two file stream objects, outputFile and inputFile, could have been named using
any legal C++ identifier names. However, as is good programming practice, they were
given descriptive names that clarify their use. The outputFile object is of the ofstream
type, so data can be written to any file associated with it. The inputFile object is of the
ifstream type, so data can be read from any file it is associated with.

Step 3: Open the file.
Before data can be written to or read from a file, the file must be opened. Outside of the
C++ program, a file is identified by its name. Inside a C++ program, however, a file is iden-
tified by a stream object. The object and the file name are linked when the file is opened.

Files can be opened through the open function that exists for file stream objects. Assume
inputFile is an ifstream object, defined as

ifstream inputFile;

The following statement uses inputFile to open a file named customer.dat:

inputFile.open("customer.dat"); // Open an input file

The argument to the open function in this statement is the name of the file. This links the file
customer.dat with the stream object inputFile. Until inputFile is associated with
another file, any operations performed with it will be carried out on the file customer.dat.

It is also possible to define a file stream object and open a file all in one statement. Here is
an example:

ifstream inputFile("customer.dat");

In our example open statement, the customer.dat file was specified as a simple file name,
with no path given. When no path is given, the program will look for the file in a default
directory. If the program is being executed from the command line, the default directory is
the current directory. If the program is being executed from within an integrated develop-
ment environment (IDE), the default directory depends on the particular compiler you are
using. Further information on default directories can be found in Appendices L and M on
wxDev-C++ and Microsoft Visual C++, and your instructor can provide you with specific
information for your particular system. If the file you want to open is not in the default
directory, you will need to specify its location as well as its name.

For example, on a Windows system the following statement opens file C:\data\inventory.dat
and associates it with outputFile.

outputFile.open("C:\\data\\invetory.dat");

Notice the use of the double back slashes in the file’s path. This is because, as mentioned
earlier, two back slashes are needed to represent one backslash in a string.

Introduction to Files 133

Step 4: Use the file.
Now that the file is open and can be accessed through a file stream object, you are ready to
use it. When a program is actively working with data, the data is located in random-access
memory, usually in variables. When data is written into a file, it is copied from variables
into the file. This is illustrated in Figure 3-6.

When data is read from a file, it is copied from the file into variables. Figure 3-7
illustrates this.

Writing information to a file

You already know how to use the stream insertion operator (<<) with the cout object to
write information to the screen. It can also be used with file stream objects to write
information to a file. Assuming outputFile is a file stream object, the following statement
demonstrates using the << operator to write a string to a file:

outputFile << "I love C++ programming";

As you can see, the statement looks like a cout statement, except the file stream object
name replaces cout. Here is a statement that writes both a string and the contents of a
variable to a file:

outputFile << "Price: " << Price;

NOTE: Some systems cannot handle file names that contain spaces. In this case, the
entire pathname should be enclosed in an additional set of quotation marks. For example,
if the file above had been named Truck Inventory, it could be opened like this:

outputFile.open("\"C:\\data\\Truck Inventory.dat\"");

Figure 3-6

Figure 3-7

Writing data to a file

Variables

Data is copied from variables into the file.

10

10

25

25

40

X

Y

Z

40

Reading data from a file

Variables

Data is copied from the file into variables.

10

10

25

25

40

X

Y

Z

40

134 Chapter 3 Expressions and Interactivity

This statement writes the stream of information to outputFile exactly as cout would
write it to the screen.

Program 3-33 demonstrates opening a file, writing information to it, and closing it.

Output files have two common uses. The first is to hold computer program output. When a
program writes output to a file, rather than to the computer screen, it can be saved for later
viewing and printing. This is often done with reports that would not easily fit on one
screen or that must be printed more than once. The second common use of output files is
to hold data generated by one program that will later be read in by another program.
Because these are simple text files, they can be viewed and printed with any text editor.

Reading information from a file

The >> operator not only reads user input from the cin object, but it can also be used to
read data from a file. Assuming inFile is a file stream object, the following statement
shows the >> operator reading data from the file into the variable name:

inFile >> name;

Program 3-33

1 // This program uses the << operator to write information to a file.
2 #include <iostream>
3 #include <fstream> // Needed to use files
4 using namespace std;
5
6 int main()
7 {
8 ofstream outputFile;
9 outputFile.open("demofile.txt");
10
11 cout << "Now writing information to the file.\n";
12 // Write 3 great names to the file
13 outputFile << "Bach\n";
14 outputFile << "Beethoven\n";
15 outputFile << "Mozart\n";
16
17 // Close the file
18 outputFile.close();
19 cout << "Done.\n";
20 return 0;
21 }

Program Screen Output
Now writing information to the file.
Done.

Output to File demofile.txt
Bach
Beethoven
Mozart

Introduction to Files 135

In Program 3-33, the file demofile.txt was created and the following list of names was stored
there.

Bach
Beethoven
Mozart

Program 3-34 demonstrates the use of the >> operator to read the names from the file and
store them in a variable.

Data is read from files in a sequential manner. When a file is first opened, the file stream object’s
read position is at the first byte of the file. The first read operation extracts data starting at the
first byte. As data is read, the file stream object’s read position advances through the file.

When the >> operator extracts data from a file, it expects to read pieces of data that are
separated by whitespace characters (spaces, tabs, or newlines). In Program 3-34, the fol-
lowing statement reads a string from the file:

inFile >> name;

Program 3-34

1 // This program uses the >> operator to read information from a file.
2 #include <iostream>
3 #include <fstream> // Needed to use files
4 #include <string>
5 using namespace std;
6
7 int main()
8 {
9 ifstream inFile;
10 string name;
11
12 inFile.open("demofile.txt");
13 cout << "Reading information from the file.\n\n";
14
15 inFile >> name; // Read name 1 from the file
16 cout << name << endl; // Display name 1
17
18 inFile >> name; // Read name 2 from the file
19 cout << name << endl; // Display name 2
20
21 inFile >> name; // Read name 3 from the file
22 cout << name << endl; // Display name 3
23
24 inFile.close(); // Close the file
25 cout << "\nDone.\n";
26 return 0;
27 }

Program Screen Output
Reading information from the file.

Bach
Beethoven
Mozart

Done.

136 Chapter 3 Expressions and Interactivity

The >> operator extracts a string in this case because name is a string object. Figure 3-8
shows the first five bytes in the file:

The >> operator will extract all of the characters up to the newline, so “Bach” is the first
string read from the file. After “Bach” is extracted, the file stream object will be positioned
so the following read operation would extract the string “Beethoven.” This procedure is
followed until all three strings have been read from the file.

The file of data read in by Program 3-34 was created by Program 3-33. However, this is not
the only way to create a data file. A data file can be created with any text editor (such as
Windows WordPad). This is often done when a program has a substantial amount of input.
Placing the data in a text file ahead of time and then having the program read the data from
the file saves the user having to enter the data when the program is run. Program 3-35,
which finds the area of four rectangles, illustrates reading data from a text file named
dimensions.txt, which was previously created with a text editor. Here is a sample of the
file’s contents. Each pair of numbers is the length and width of a different rectangle.

10 2
5 7
6 20
8 3

Figure 3-8

Program 3-35

1 // This program uses the >> operator to read rectangle dimensions
2 // from a file. It demonstrates that, as with cin, more than one
3 // value can be read in from a file with a single statement.
4 #include <iostream>
5 #include <fstream>
6 using namespace std;
7
8 int main()
9 {
10 ifstream inFile;
11 int length, width;
12
13 inFile.open("dimensions.txt");
14 cout << "Reading dimensions of 4 rectangles from the file.\n\n";
15
16 // Process rectangle 1
17 inFile >> length >> width;
18 cout << "Area of rectangle 1: " << (length * width) << endl;
19
20 // Process rectangle 2
21 inFile >> length >> width;
22 cout << "Area of rectangle 2: " << (length * width) << endl;

(program continues)

B a c h \n …

Introduction to Files 137

Step 5: Close the file.
The opposite of opening a file is closing it. You have probably noticed that in Programs 3-33
through 3-35 the files were closed once the program was finished using them. Although a
program’s files are automatically closed when the program shuts down, it is a good
programming practice to write statements that explicitly close them. Here are two reasons
a program should close files when it is finished using them:

• Most operating systems temporarily store information in a file buffer before it is written
to a file. A file buffer is a small holding section of memory that file-bound information is
first written to. When the buffer is filled, all the information stored there is written to the
file. This technique improves the system’s performance. Closing a file causes any
unsaved information that may still be held in a buffer to be saved to its file. This means
the information will be in the file if you need to read it later in the same program.

• Some operating systems limit the number of files that may be open at one time. When
a program keeps open files that are no longer being used, it uses more of the operat-
ing system’s resources than necessary.

Calling the file stream object’s close function closes a file. Here is an example:

outputFile.close();

Checkpoint

3.32 What header file must be included in a program to use files?

3.33 What is the difference between a file stream object with the data type ifstream and
one with the data type ofstream?

23
24 // Process rectangle 3
25 inFile >> length >> width;
26 cout << "Area of rectangle 3: " << (length * width) << endl;
27
28 // Process rectangle 4
29 inFile >> length >> width;
30 cout << "Area of rectangle 4: " << (length * width) << endl;
31
32 // Close the file
33 inFile.close();
34 cout << "Done.\n";
35
36 return 0;
37 }

Program Output with Example Input Shown in Bold
Reading dimensions of 4 rectangles from the file.

Area of rectangle 1: 20
Area of rectangle 2: 35
Area of rectangle 3: 120
Area of rectangle 4: 24
Done

Program 3-35 (continued)

138 Chapter 3 Expressions and Interactivity

(program continues)

3.34 Which program statement links a file stream object with an actual disk file?

3.35 Assuming dataFile is an ofstream object associated with a disk file named
payroll.dat, which of the following statements would write the value of the
salary variable to the file?

A) cout << salary;
B) ofstream << salary;
C) dataFile << salary;
D) payroll.dat << salary;

3.13 Focus on Debugging: Hand Tracing a Program
Hand tracing is a debugging process where you pretend that you are the computer execut-
ing a program. You step through each of the program’s statements one by one. As you look
at a statement, you record the contents that each variable will have after the statement exe-
cutes. This process is often helpful in finding mathematical mistakes and other logic errors.

To hand trace a program you construct a chart with a column for each variable. The rows
in the chart correspond to the lines in the program. For example, Program 3-36 is shown
with a hand trace chart. The program uses the following four variables: num1, num2, num3,
and avg. Notice that the hand trace chart has a column for each variable and a row for
each line of code in function main.

Program 3-36 (with hand trace chart empty)

1 // This program asks for three numbers, then displays
2 // their average. It contains a bug. Can you find it?
3 #include <iostream>
4 using namespace std;
5

6 int main()

7 { num1 num2 num3 avg

8 double num1, num2, num3, avg;

9

10 cout << "Enter the first number: ";

11 cin >> num1;

12 cout << "Enter the second number: ";

13 cin >> num2;

14 cout << "Enter the third number: ";

15 cin >> num3;

16 avg = num1 + num2 + num3 / 3;

17 cout << "The average is " << avg << endl;

18 return 0;
19 }

139

Notice that the program runs, but it displays an incorrect average. The correct average of
10, 20, and 30 is 20, not 40. To find the error we will hand trace the program.

To hand trace a program, you step through each statement, observe the operation that is
taking place, and then record the contents of the variables after the statement executes.
After the hand trace is complete, the chart will appear as follows. We have written question
marks in the chart where we do not yet know the contents of a variable.

Do you see the error? By examining the statement on line 16 that computes the average, we
find a mistake. The division operation takes place before the addition operations, so we
must rewrite that statement as

avg = (num1 + num2 + num3) / 3;

Program Output with Example Input Shown in Bold
Enter the first number: 10[Enter]
Enter the second number: 20[Enter]
Enter the third number: 30[Enter]
The average is 40

Program 3-36 (with hand trace chart filled in)

1 // This program asks for three numbers, then displays
2 // their average. It contains a bug. Can you find it?
3 #include <iostream>
4 using namespace std;
5

6 int main()

7 { num1 num2 num3 avg

8 double num1, num2, num3, avg; ? ? ? ?

9

10 cout << "Enter the first number: "; ? ? ? ?

11 cin >> num1; 10 ? ? ?

12 cout << "Enter the second number: "; 10 ? ? ?

13 cin >> num2; 10 20 ? ?

14 cout << "Enter the third number: "; 10 20 ? ?

15 cin >> num3; 10 20 30 ?

16 avg = num1 + num2 + num3 / 3; 10 20 30 40

17 cout << "The average is " << avg << endl; 10 20 30 40

18 return 0;
19 }

Program 3-36 (with hand trace chart empty)(continued)

Focus on Debugging: Hand Tracing a Program

140 Chapter 3 Expressions and Interactivity

Hand tracing is a simple process that focuses your attention on each statement in a pro-
gram. Often this helps you locate errors that are not obvious.

3.14 Green Fields Landscaping Case Study—Part 1

Problem Statement
One of the services provided by Green Fields Landscaping is the sale and delivery of
mulch, which is measured and priced by the cubic yard. You have been asked to create a
program that will determine the number of cubic yards of mulch the customer needs and
the total price.

Program Design

Program Steps

The program must carry out the following general steps (This list of steps is sometimes
called General Pseudocode):

1. Set the price for a cubic yard of mulch (currently 22.00).
2. Ask the user to input the number of square feet to be covered and the depth of the

mulch to be spread over this area.
3. Calculate the number of cubic feet of mulch needed.
4. Calculate the number of cubic yards of mulch needed.
5. Calculate the total price for the mulch.
6. Display the results.

Variables whose values will be input

double squareFeet // square feet of land to be covered
int depth // how many inches deep the mulch is to be spread

Variables whose values will be output

double cubicYards // number of cubic yards of mulch needed
double totalPrice // total price for all the cubic yards ordered

Program Constants

double PRICE_PER_CUBIC_YD // the price for 1 delivered cubic yard of mulch

Additional Variables

double cubicFeet // number of cubic feet of mulch needed

Detailed Pseudocode (including actual variable names and needed calculations)

PRICE_PER_CUBIC_YD = 22.00
Input squareFeet // with prompt
Input depth // with prompt
cubicFeet = squareFeet * (depth / 12.0)

Green Fields Landscaping Case Study—Part 1 141

cubicYards = cubicFeet / 27
totalPrice = cubicYards * PRICE_PER_CUBIC_YD
Display cubicYards, PRICE_PER_CUBIC_YD, and totalPrice

The Program
The next step, after the pseudocode has been checked for logic errors, is to expand the
pseudocode into the final program. This is shown in Program 3-37.

Program 3-37

1 // Program used by Green Fields Landscaping to determine the number of
2 // cubic yards of mulch a customer needs and its price.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 const double PRICE_PER_CUBIC_YD = 22.00;
8
9 int main()
10 {
11 double squareFeet; // square feet of land to be covered
12 int depth; // inches deep the mulch is to be spread
13 double cubicFeet, // number of cubic feet of mulch needed
14 cubicYards, // number of cubic yards of mulch needed
15 totalPrice; // total price for all the cubic yards ordered
16
17 // Get inputs
18 cout << "Number of square feet to be covered with mulch: ";
19 cin >> squareFeet;
20 cout << "Number of inches deep: ";
21 cin >> depth;
22
23 // Perform calculations
24 cubicFeet = squareFeet * (depth / 12.0);
25 cubicYards = cubicFeet / 27;
26 totalPrice = cubicYards * PRICE_PER_CUBIC_YD;
27
28 // Display outputs
29 cout << "\n Number of cubic yards needed: " << cubicYards << endl;
30 cout << fixed << showpoint << setprecision(2);
31 cout << "Price per cubic yard: $" << setw(7)
32 << PRICE_PER_CUBIC_YD << endl;
33 cout << "Total price: $" << setw(7)
34 << totalPrice << endl << endl;
35
36 return 0;
37 }

(program continues)

142 Chapter 3 Expressions and Interactivity

General Crates, Inc., Case Study
The following additional case study, which contains applications of material introduced in
Chapter 3, can be found on the student CD.

This case study develops a program that accepts the dimensions on a crate to be built and
outputs information on its volume, building cost, selling cost, and profit. The case study
illustrates the major program development steps: initial problem statement, program
design using hierarchy charts and pseudocode, development of the algorithm needed to
create the outputs, source code for the final working program, and output created by run-
ning the program with several test cases.

3.15 Tying It All Together: Word Game

With the programming knowledge you have learned so far, you can start constructing sim-
ple games. Here is one that creates a program to play a word game. It will ask the player to
enter the following:

Then it will display a story using those words.

Program Output with Example Input Shown in Bold
Number of square feet to be covered with mulch: 270[Enter]
Number of inches deep: 12[Enter]

Number of cubic yards needed: 10
Price per cubic yard: $ 22.00
Total price: $ 220.00

Program Output with Different Example Input Shown in Bold
Number of square feet to be covered with mulch: 800[Enter]
Number of inches deep: 3[Enter]

Number of cubic yards needed: 7.40741
Price per cubic yard: $ 22.00
Total price: $ 162.96

• their name (name)
• the name of a city (city)
• a fun activity (activity)
• a type of animal (animal)

• a food or product you can buy (product)
• an adjective noun (petname)
• a number between 10 and 50 (age)
• a number between 0 and 15 (kids)

Program 3-37 (continued)

143

Program 3-38

1 // This program uses strings to play a word game.
2 #include <iostream>
3 #include <string>
4 using namespace std;
5
6 int main()
7 { // Stored strings
8 string s1 = "There once was a person named ",
9 s2 = " who lived in ",
10 s3 = "\nand who loved ",
11 s4 = ". At the age of ",
12 s5 = ", ",
13 s6 = " graduated \nfrom high school and went to work in a ",
14 s7 = " factory.\n",
15 s8 = " got married and had ",
16 s9 = " children and a pet ",
17 s10= " named ",
18 s11= ".\nEvery weekend the family and ",
19 s12= " had fun ",
20 s13= " together.";
21
22 // Values input by the user
23 string name, city, activity, animal, product, petName;
24 int age, kids;
25
26 cout << "Enter the following information and I\'ll "
27 << "tell you a story.\n\n";
28 cout << "Your name: ";
29 getline(cin, name);
30
31 cout << "The name of a city: ";
32 getline(cin, city);
33
34 cout << "A physical activity (e.g. jogging, playing baseball): ";
35 getline(cin, activity);
36
37 cout << "An animal: ";
38 getline(cin, animal);
39
40 cout << "A food or product you can buy: ";
41 getline(cin, product);
42
43 cout << "An adjective noun (e.g. blue car): ";
44 getline(cin, petName);
45
46 cout << "A number between 10 and 50: ";
47 cin >> age;
48
49 cout << "A number between 0 and 15: ";
50 cin >> kids;
51

(program continues)

Tying It All Together: Word Game

144 Chapter 3 Expressions and Interactivity

Try running this program with a variety of inputs. Then try modifying it to make up new
stories.

Review Questions and Exercises

Short Answer

1. Assume a string object has been defined as follows:

string description;

A) Write a cin statement that reads in a one word description.
B) Write a statement that reads in a description that can contain multiple words

separated by blanks.

2. Write a definition statement for a character array large enough to hold any of the
following strings:

"Billy Bob's Pizza"
"Downtown Auto Supplies"
"Betty Smith School of Architecture"
"ABC Cabinet Company"

3. Assume the array name is defined as follows:

char name[25];

52 cout << endl << s1 << name << s2 << city << s3 << activity;
53 cout << s4 << age << s5 << name << s6 << product << s7;
54 cout << name << s8 << kids << s9 << animal << s10 << petName;
55 cout << s11 << petName << s12 << activity << s13 << endl;
56
57 return 0;
58 }

Sample Run with User Input Shown in Bold
Enter the following information and I'll tell you a story.

Your name: Joe[Enter]
The name of a city: Honolulu[Enter]
A physical activity (e.g. jogging, playing baseball): scuba diving[Enter]
An animal: bear[Enter]
A food or product you can buy: potato chips[Enter]
An adjective noun (e.g. blue car): dish rag[Enter]
A number between 10 and 50: 20[Enter]
A number between 0 and 15: 10[Enter]

There once was a person named Joe who lived in Honolulu
and who loved scuba diving. At the age of 20, Joe graduated
from high school and went to work in a potato chips factory.
Joe got married and had 10 children and a pet bear named dish rag.
Every weekend the family and dish rag had fun scuba diving together.

Program 3-38 (continued)

Chapter 3 Expressions and Interactivity

Review Questions and Exercises 145

A) Using a stream manipulator, write a cin statement that will read a string into
name, but will read no more characters than name can hold.

B) Using the getline function, write a cin statement that will read a string into
name but that will read no more characters than name can hold.

4. Assume the following variables are defined:

int age;
double pay;
char section;

Write a single cin statement that will read input into each of these variables.

5. What header files must be included in the following program?

int main()
{

double amount = 89.7;
cout << fixed << showpoint << setprecision(1);
cout << setw(8) << amount << endl;
return 0;

}

6. Write a definition statement for a character array named city. It should be large
enough to hold a string 30 characters in length.

7. Assume the following preprocessor directive appears in a program:

#define SIZE 12

How will the preprocessor rewrite the following lines?

A) price = SIZE * unitCost;
B) cout << setw(SIZE) << 98.7;
C) cout << SIZE;

8. Complete the following table by writing the value of each expression in the Value column.

9. Write C++ expressions for the following algebraic expressions:

A)

B)

C)

D)

E)

Expression Value

28 / 4 - 2
6 + 12 * 2 - 8
4 + 8 * 2
6 + 17 % 3 - 2
2 + 22 * (9 - 7)
(8 + 7) * 2
(16 + 7) % 2 - 1
12 / (10 - 6)
(19 - 3) * (2 + 2) / 4

a 12x�

z 5x 14y 6k� ��

y x4�

g h 12�
4k

-----------------�

c a3

b2k4
----------�

146 Chapter 3 Expressions and Interactivity

10. Assume a program has the following variable definitions

int units;
float mass;
double weight;

and the following statement:

weight = mass * units;

Which automatic data type conversions will take place?

11. Assume a program has the following variable definitions

int a, b = 2;
double c = 4.3;

and the following statement:

a = b * c;

What value will be stored in a?

12. Assume that qty and salesReps are both integers. Use a type cast expression to
rewrite the following statement so it will no longer perform integer division.

unitsEach = qty / salesReps;

13. Rewrite the following variable definition so the variable is a named constant with the
value 12.

int rate;

14. Complete the following table by writing statements with combined assignment opera-
tors in the right-hand column. The statements should be equivalent to the statements
in the left-hand column.

15. Write a multiple assignment statement that can be used instead of the following group
of assignment statements:

east = 1;
west = 1;
north = 1;
south = 1;

Statements with
Assignment Operator

Statements with
Combined Assignment Operator

x = x + 5;
total = total + subtotal;
dist = dist / rep;
ppl = ppl * period;
inv = inv - shrinkage;
num = num % 2;

Review Questions and Exercises 147

16. Replace the following statements with a single statement that initializes sum to 0 at
the time it is defined.

int sum;
sum = 0;

17. Is the following code legal? Why or why not?

const int DAYS_IN_WEEK;
DAYS_IN_WEEK = 7;

18. Write a cout statement so the variable divSales is displayed in a field of eight
spaces, in fixed-point notation, with a decimal point and two decimal digits.

19. Write a cout statement so the variable profit is displayed in a field of 12 spaces, in
fixed-point notation, with a decimal point and four decimal digits.

20. What header file must be included

A) to perform mathematical functions like sqrt?
B) to use files?
C) to use stream manipluators like setprecision?

Algorithm Workbench

21. A bowling alley is offering a prize to the bowler whose average score from bowling
three games is the lowest. Write a pseudocode algorithm for a program that inputs
three bowling scores and calculates and displays their average.

22. Pet World offers a 15% discount to senior citizens. Write a pseudocode algorithm for
a program that inputs the amount of a sale, then calculates and displays both the
amount the customer saves and the amount they must pay.

23. A retail store grants its customers a maximum amount of credit. Each customer’s
available credit is his or her maximum amount of credit minus the amount of credit
used. Write a pseudocode algorithm for a program that asks for a customer’s maxi-
mum credit and amount of credit used, then calculates and displays the customer’s
available credit.

24. Little Italy Pizza charges $12.00 for a 12-inch diameter sausage pizza and $14.00
for a 14-inch diameter sausage pizza. Write the pseudocode algorithm that calcu-
lates and displays how much each of these earns the establishment per square inch
of pizza sold. (Hint: you will need to first calculate how many square inches there
are in each pizza.)

Predict the Output

25. Trace the following programs and tell what each will display. (Some require a calculator.)

A) (Assume the user enters 38711. Use a calculator.)

#include <iostream>
using namespace std;

148 Chapter 3 Expressions and Interactivity

int main()
{

double salary, monthly;

cout << "What is your annual salary? ";
cin >> salary;
monthly = static_cast<int>(salary) / 12;
cout << "Your monthly wages are " << monthly << endl;
return 0;

}

B) #include <iostream>
using namespace std;

int main()
{

long x, y, z;
x = y = z = 4;
x += 2;
y -= 1;
z *= 3;
cout << x << " " << y << " " << z << endl;
return 0;

}

C) #include <iostream>
using namespace std;
#define WHO "Columbus"
#define DID "sailed"
#define WHAT "the ocean blue."

int main()
{

const int WHEN = 1492;
cout << "In " << WHEN << " " << WHO << " "
 << DID << " " << WHAT << endl;
return 0;

}

26. A) (Assume the user enters George Washington.)

#include <iostream>
#include <iomanip>
#include <string>
using namespace std;
int main()
{

string userInput;

cout << "What is your name? ";
cin >> userInput;
cout << "Hello " << userInput << endl;
return 0;

}

Review Questions and Exercises 149

B) (Assume the user enters George Washington.)
#include <iostream>
#include <iomanip>
#include <string>
using namespace std;

int main()
{

string userInput;

cout << "What is your name? ";
getline(cin, userInput);
cout << "Hello " << userInput << endl;
return 0;

}

C) (Assume the user enters 36720152. Use a calculator.)
#include <iostream>
#include <iomanip>
using namespace std;

int main()
{

long seconds;
double minutes, hours, days, months, years;

cout << "Enter the number of seconds that have\n";
cout << "elapsed since some time in the past and\n";
cout << "I will tell you how many minutes, hours,\n";
cout << "days, months, and years have passed: ";
cin >> seconds;
minutes = seconds / 60;
hours = minutes / 60;
days = hours / 24;
years = days / 365;
months = years * 12;

cout << fixed << showpoint << setprecision(4) << left;
cout << "Minutes: " << setw(6) << minutes << endl;
cout << "Hours: " << setw(6) << hours << endl;
cout << "Days: " << setw(6) << days << endl;
cout << "Months: " << setw(6) << months << endl;
cout << "Years: " << setw(6) << years << endl;
return 0;

}

Find the Errors

27. Each of the following programs has some errors. Locate as many as you can.

A) using namespace std;
int main()
{

double number1, number2, sum;

150 Chapter 3 Expressions and Interactivity

Cout << "Enter a number: ";
Cin << number1;
Cout << "Enter another number: ";
Cin << number2;
number1 + number2 = sum;
Cout "The sum of the two numbers is " << sum
return 0;

}

B) #include <iostream>
using namespace std;
int main()
{

int number1, number2;
double quotient;
cout << "Enter two numbers and I will divide\n";
cout << "the first by the second for you.\n";
cin >> number1, number2;
quotient = double<static_cast>(number1)/number2;
cout << quotient

}

28. A) #include <iostream>;
using namespace std;
int main()
{

const int number1, number2, product;

cout << "Enter two numbers and I will multiply\n";
cout << "them for you.\n";
cin >> number1 >> number2;
product = number1 * number2;
cout << product
return 0;

}

B) #include <iostream>;
using namespace std;
main
{

int number1, number2;

cout << "Enter two numbers and I will multiply\n"
cout << "them by 50 for you.\n"
cin >> number1 >> number2;
number1 =* 50;
number2 =* 50;
return 0;
cout << number1 << " " << number2;

}

29. A) #include <iostream>;
using namespace std;
main
{

double number, half;

Review Questions and Exercises 151

cout << "Enter a number and I will divide it\n"
cout << "in half for you.\n"
cin >> number1;
half =/ 2;

}

B) #include <iostream>;
using namespace std;
int main()
{

char name, go;

cout << "Enter your name: ";
cin.width(20);
cin.getline >> name;
cout << "Hi " << name << endl;
cout "Press the ENTER key to end this program.";
cin >> go;
return 0;

}

Soft Skills

Often programmers work in teams with other programmers to develop a piece of software.
It is important that the team members be able to communicate clearly with one another.

30. Suppose you and a fellow student have been assigned to develop together the pizza
cost program described in Problem 24. You have developed a pseudocode algorithm
for the program and emailed it to your partner, but he does not understand how it
works. Write a paragraph that you might email back clearly explaining how the
algorithm works, what steps must be done, why they must be done in a particular
order, and why the calculations you have specified in the pseudocode are the correct
ones to use. Write your answer using full English sentences with correct spelling and
grammar.

Programming Challenges

1. Miles per Gallon

Write a program that calculates a car’s gas mileage. The program should ask the user to
enter the number of gallons of gas the car can hold and the number of miles it can be
driven on a full tank. It should then calculate and display the number of miles per gallon
the car gets.

2. Stadium Seating

There are three seating categories at a stadium. For a softball game, Class A seats cost $15,
Class B seats cost $12, and Class C seats cost $9. Write a program that asks how many
tickets for each class of seats were sold, then displays the amount of income generated
from ticket sales. Format your dollar amount in a fixed-point notation with two decimal
points and make sure the decimal point is always displayed.

Solving the
Stadium
Seating
Problem

152 Chapter 3 Expressions and Interactivity

3. Housing Costs

Write a program that asks the user to enter their monthly costs for each of the following
housing related expenses:

The program should then display the total monthly cost of these expenses, and the total
annual cost of these expenses.

4. How Much Insurance?

Many financial experts advise property owners to insure their homes or buildings for at
least 80 percent of the amount it would cost to replace the structure. Write a program that
asks the user to enter the replacement cost of a building and then displays the minimum
amount of insurance that should be purchased for the property.

5. Batting Average

Write a program to find a baseball player’s batting average. The program should ask the
user to enter the number of times the player was at bat and the number of hits he got. It
should then display his batting average to 4 decimal places.

6. Test Average

Write a program that asks for five test scores. The program should calculate the average
test score and display it. The number displayed should be formatted in fixed-point nota-
tion, with one decimal point of precision.

7. Average Rainfall

Write a program that calculates the average monthly rainfall for three months. The
program should ask the user to enter the name of each month, such as June or July, and the
amount of rain (in inches) that fell that month. The program should display a message
similar to the following:

The average monthly rainfall for June, July, and August was 6.72 inches.

8. Box Office

A movie theater only keeps a percentage of the revenue earned from ticket sales. The
remainder goes to the distibutor. Write a program that calculates a theater’s gross and net
box office profit for a night. The program should ask for the name of the movie, and how
many adult and child tickets were sold. (The price of an adult ticket is $6.00 and a child’s
ticket is $3.00.) It should display a report similar to the following:

Movie Name: “Wheels of Fury”
Adult Tickets Sold: 382
Child Tickets Sold: 127
Gross Box Office Profit: $ 2673.00
Amount Paid to Distributor: – $ 2138.40
Net Box Office Profit: $ 534.60

Assume the theater keeps 20 percent of the gross box office profit.

• rent or mortgage payment
• utilities

• phones
• cable

Review Questions and Exercises 153

9. How Many Widgets?

The Yukon Widget Company manufactures widgets that weigh 9.2 pounds each. Write a
program that calculates how many widgets are stacked on a pallet, based on the total
weight of the pallet. The program should ask the user how much the pallet weighs by itself
and with the widgets stacked on it. It should then calculate and display the number of
widgets stacked on the pallet.

10. How many Calories?

A bag of cookies holds 40 cookies. The calorie information on the bag claims that there are
10 “servings” in the bag and that a serving equals 300 calories. Write a program that asks
the user to input how many cookies they actually ate and then reports how many total
calories were consumed.

11. Celsius to Fahrenheit

Write a program that converts Celsius temperatures to Fahrenheit temperatures. The
formula is

where F is the Fahrenheit temperature and C is the Celsius temperature. The program
should prompt the user to input a Celsius temperature and should display the corresponding
Farenheit temperature.

12. Currency

Write a program that will convert U.S. dollar amounts to Japanese yen and to euros,
storing the conversion factors in the constant variables YEN_PER_DOLLAR and
EUROS_PER_DOLLAR. To get the most up-to-date exchange rates, search the Internet
using the term “currency exchange rate” or “currency converter”. If you cannot find the
most recent exchange rates, use the following:

1 Dollar = .952 Yen
1 Dollar = .7175 Euros

13. Monthly Sales Tax

A retail company must file a monthly sales tax report listing the sales for the month and
the amount of sales tax collected. Write a program that asks for the month, the year, and
the total amount collected at the cash register (that is, sales plus sales tax). Assume the
state sales tax is 4 percent and the county sales tax is 2 percent.

If the total amount collected is known and the total sales tax is 6 percent, the amount of
product sales may be calculated as

where S is the product sales and T is the total income (product sales plus sales tax).

F 9
5
---C 32��

S T
1.06
----------�

154 Chapter 3 Expressions and Interactivity

The program should display a report similar to the following:

Month: March 2008

Total Collected: $ 26572.89
Sales: $ 25068.76
County Sales Tax: $ 501.38
State Sales Tax: $ 1002.75
Total Sales Tax: $ 1504.13

14. Property Tax

Madison County collects property taxes on the assessed value of property, which is 60 per-
cent of its actual value. For example, if a house is valued at $158,000 its assessed value is
$94,800. This is the amount the homeowner pays tax on. At last year’s tax rate of $2.64
for each $100 of assessed value, the annual property tax for this house would be $2502.72.
Write a program that asks the user to input the actual value of a piece of property and
the current tax rate for each $100 of assessed value. The program should then
calculate and report how much annual property tax the homeowner will be charged for
this property.

15. Senior Citizen Property Tax

Madison County provides a $5000 homeowner exemption for its senior citizens. For exam-
ple, if their house is valued at $158,000 its assessed value would be $94,800, as explained
above. However they would only pay tax on $89,800. At last year’s tax rate of $2.64 for each
$100 of assessed value, their property tax would be $2370.72. In addition to the tax break,
senior citizens are allowed to pay their property tax in 4 equal payments. The quarterly pay-
ment due on this property would be $592.68. Write a program that asks the user to input the
actual value of a piece of property and the current tax rate for each $100 of assessed value.
The program should then calculate and report how much annual property tax a senior home-
owner will be charged for this property and what their quarterly tax bill will be.

16. Math Tutor

Write a program that can be used as a math tutor for a young student. The program should
display two random numbers between 1 and 9 to be added, such as

2
+ 1

After the student has entered an answer and pressed the [Enter] key, the program should
display the correct answer so the student can see if his or her answer is correct.

17. Interest Earned

Assuming there are no deposits other than the original investment, the balance in a savings
account after one year may be calculated as

where Principal is the balance in the account, Rate is the annual interest rate, and T is the
number of times the interest is compounded during a year. (e.g., T is 4 if the interest is com-
pounded quarterly.)

Amount Principal * 1 Rate

T
---------�⎝ ⎠

⎛ ⎞
T

�

Review Questions and Exercises 155

Write a program that asks for the principal, the interest rate, and the number of times the
interest is compounded. It should display a report similar to the following:

Interest Rate: 4.25%
Times Compounded: 12
Principal: $ 1000.00
Interest: $ 43.33
Final balance: $ 1043.33

18. Monthly Payments

The monthly payment on a loan may be calculated by the following formula:

Rate is the monthly interest rate, which is the annual interest rate divided by 12. (A 12
percent annual interest would be 1 percent monthly interest.) N is the number of payments
and L is the amount of the loan. Write a program that asks for these values and displays
a report similar to the following:

Loan Amount: $ 10000.00
Monthly Interest Rate: 1%
Number of Payments: 36
Monthly Payment: $ 332.14
Amount Paid Back: $ 11957.15
Interest Paid: $ 1957.15

19. Pizza Slices

Joe’s Pizza Palace needs a program to calculate the number of slices a pizza of any size can
be divided into. The program should perform the following steps:

A) Ask the user for the diameter of the pizza in inches.
B) Calculate the number of slices that may be taken from a pizza of that size if each

slice has an area of 14.125 square inches.
C) Display a message telling the number of slices.

The number of square inches in the total pizza can be calculated with this formula:

Area = πr2

where variable r is the radius of the pizza and π is the Greek letter PI. In your program
make PI a named constant with the value 3.14. Display the number of slices as a whole
number (i.e., with no decimals).

20. How Many Pizzas?

Modify the program you wrote in Programming Challenge 19 so that it reports the number
of pizzas you need to buy for a party if each person attending is expected to eat an average
of 4 slices. The program should ask the user for the number of people who will be at the
party and for the diameter of the pizzas to be ordered. It should then calculate and display
the number of pizzas to purchase. Because it is impossible to buy a part of a pizza, the
number of required pizzas should be displayed as a whole number.

Payment
Rate * 1 Rate�()N

1 Rate�()N
1�

--- * L�

156 Chapter 3 Expressions and Interactivity

21. Angle Calculator

Write a program that asks the user for an angle, entered in radians. The program should
then display the sine, cosine, and tangent of the angle. (Use the sin, cos, and tan library
functions to determine these values.) The output should be displayed in fixed-point nota-
tion, rounded to four decimal places of precision.

22. Stock Transaction Program

Last month Joe purchased 100 shares of stock. Here are the details of the purchase:

• When Joe purchased the stock, he paid $32.87 per share.
• Joe paid his stock broker a commission that amounted to 2% of the amount he paid

for the stock.

Two months later Joe sold the stock. Here are the details of the sale:

• He sold the stock for $33.92 per share.
• He paid his stock broker another commission that amounted to 2% of the amount he

received for the stock.

Write a program that displays the following information:

• The amount of money Joe paid for the stock.
• The amount of commission Joe paid his broker when he bought the stock.
• The amount that Joe sold the stock for.
• The amount of commission Joe paid his broker when he sold the stock.
• The amount of profit or loss that Joe had after selling his stock and paying both

broker commissions.

23. Using Files—Storing and Retrieving Numbers

For this assignment you will write two programs:

Program 1 Write a program that asks the user to enter five floating-point numbers.
The program should create a file and save all five numbers to the file.

Program 2 Write a program that opens the file created by Program 1, reads the five
numbers, and displays them. The program should also calculate and
display the sum of the five numbers.

24. Using Files—Monthly Sales Tax Modification

Modify the program you wrote for Programming Challenge 13 (Monthly Sales Tax) so it
writes its output to a file instead of to the screen. After the program has finished running,
print the contents of the file to hand in.

25. Using Files—Average Rainfall Modification

Modify the program you wrote for Programming Challenge 7 (Average Rainfall) so it
reads its input from a file instead of from the keyboard. Sample data to test your program
can be found in the rainfall.dat file.

157

C
H

A
P

T
E

R

4 Making Decisions

4.1 Relational Operators

CONCEPT: Relational operators allow you to compare numeric and char values and
determine whether one is greater than, less than, equal to, or not equal to
another.

So far, the programs you have written follow this simple scheme:

• Gather input from the user.
• Perform one or more calculations.
• Display the results on the screen.

Computers are good at performing calculations, but they are also quite adept at comparing
values to determine if one is greater than, less than, or equal to, the other. These types of
operations are valuable for tasks such as examining sales figures, determining profit and
loss, checking a number to ensure it is within an acceptable range, and validating the input
given by a user.

TOPICS

4.1 Relational Operators
4.2 The if Statement
4.3 The if/else Statement
4.4 The if/else if Statement
4.5 Menu-Driven Programs
4.6 Nested if Statements
4.7 Logical Operators
4.8 Validating User Input
4.9 More About Variable Definitions

and Scope

4.10 Comparing Characters and Strings
4.11 The Conditional Operator
4.12 The switch Statement
4.13 Enumerated Data Types
4.14 Testing for File Open Errors
4.15 Focus on Testing and Debugging:

Validating Output Results
4.16 Green Fields Landscaping Case

Study—Part 2
4.17 Tying It All Together: Fortune Teller

158 Chapter 4 Making Decisions

Numeric data is compared in C++ by using relational operators. Characters can also be com-
pared with these operators, because characters are considered numeric values in C++. Each
relational operator determines whether a specific relationship exists between two values. For
example, the greater-than operator (>) determines if a value is greater than another. The equality
operator (==) determines if two values are equal. Table 4-1 lists all of C++’s relational operators.

All of the relational operators are binary. This means they use two operands. Here is an
example of an expression using the greater-than operator:

x > y

This expression is called a relational expression. It is used to determine whether x is greater
than y. The following expression determines whether x is less than y:

x < y

The Value of a Relationship
So, how are relational expressions used in a program? Remember, all expressions have a
value. Relational expressions are Boolean expressions, which means their value can only
be true or false. If x is greater than y, the expression x > y will be true, while the expression
y == x will be false.

The == operator determines whether the operand on its left is equal to the operand on its
right. If both operands have the same value, the expression is true. Assuming that a is 4,
the following expression is true:

a == 4

But the following is false:

a == 2

Table 4-1 Relational Operators

Relational
Operators Meaning

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

== Equal to

!= Not equal to

NOTE: All the relational operators are binary operators with left-to-right associativity.
Recall that associativity is the order in which an operator works with its operands.

WARNING! Notice the equality operator is two = symbols together. Don’t confuse this
operator with the assignment operator, which is one = symbol. The == operator determines
if a variable is equal to another value, but the = operator assigns the value on the operator’s
right to the variable on its left. There will be more about this later in the chapter.

Relational Operators 159

A couple of the relational operators actually test for two relationships. The >= operator
determines whether the operand on its left is greater than or equal to the operand on the
right. Assuming that a is 4, b is 6, and c is 4, both of the following expressions are true:

b >= a
a >= c

But the following is false:

a >= 5

The <= operator determines whether the operand on its left is less than or equal to the
operand on its right. Once again, assuming that a is 4, b is 6, and c is 4, both of the follow-
ing expressions are true:

a <= c
b <= 10

But the following is false:

b <= a

The last relational operator is !=, which is the not-equal operator. It determines
whether the operand on its left is not equal to the operand on its right, which is the
opposite of the == operator. As before, assuming a is 4, b is 6, and c is 4, both of the
following expressions are true:

a != b
b != c

These expressions are true because a is not equal to b and b is not equal to c. But the fol-
lowing expression is false because a is equal to c:

a != c

Table 4-2 shows other relational expressions and their true or false values.

What Is Truth?
If a relational expression can evaluate to either true or false, how are those values represented
internally in a program? How does a computer store true in memory? How does it store false?

As you saw in Program 2-16, those two abstract states are converted to numbers. This can
be confusing, especially for new programmers, because in C++ zero is considered false and
any non-zero value is considered true. The C++ keyword false is stored as 0 and the keyword
true is stored as 1. And when a relational expression is false it evaluates to 0. However,
when a relational expression is true it does not always evaluate to 1. Though it usually
does, it can actually evaluate to any non-zero value.

Table 4-2 Example Relational Expressions (Assume x is 10 and y is 7.)

Expression Value

x < y false, because x is not less than y.

x > y true, because x is greater than y.

x >= y true, because x is greater than or equal to y.

x <= y false, because x is not less than or equal to y.

y != x true, because y is not equal to x.

160 Chapter 4 Making Decisions

To illustrate this more fully, look at Program 4-1.

Let’s examine the statements containing the relational expressions a little closer:

trueValue = (x < y);
falseValue = (y == x);

These statements may seem odd because they are assigning the value of a comparison to a vari-
able. In the first statement, the variable trueValue is being assigned the result of x < y. Because
x is less than y, the expression is true, and the variable trueValue is assigned a non-zero value.
In the second statement, the expression y == x is false, so the variable falseValue is set to 0.

When writing statements such as these, most programmers enclose the relational expres-
sion in parentheses, as shown above, to make it clearer.

Parentheses are not actually required, however, because even without them the relational
operation is carried out before the assignment operation is performed. This occurs because
relational operators have a higher precedence than the assignment operator. Likewise,
arithmetic operators have a higher precedence than relational operators.

The statement

result = x < y - 8;

is equivalent to the statement

result = x < (y - 8);

In both cases, y - 8 is evaluated first. Then this value is compared to x. Notice, however,
how much clearer the second statement is. It is always a good idea to place parentheses
around an arithmetic expression when its result will be used in a relational expression.

Program 4-1

1 // This program displays the values of true and false states.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 bool trueValue, falseValue;
8 int x = 5, y = 10;
9
10 trueValue = (x < y);
11 falseValue = (y == x);
12
13 cout << "True is " << trueValue << endl;
14 cout << "False is " << falseValue << endl;
15 return 0;
16 }

Program Output
True is 1
False is 0

Relational Operators 161

Table 4-3 shows examples of other statements that include relational expressions.

Relational operators also have a precedence order among themselves. The two operators that
test for equality or lack of equality (== and !=) have the same precedence as each other. The
four other relational operators, which test relative size, have the same precedence as each
other. These four relative relational operators have a higher precedence than the two equality
relational operators. Table 4-4 shows the precedence of relational operators.

Here is an example of how this is applied. If a = 9, b = 24, and c = 0, the following
statement would cause a 1 to be printed.

cout << (c == a > b);

Because of the relative precedence of the operators in this expression, a > b would be eval-
uated first. Since 9 is not greater than 24, it would evaluate to false, or 0. Then c == 0
would be evaluated. Since c does equal 0, this would evaluate to true, or 1. So a 1 would
be inserted into the output stream and printed.

In this chapter’s remaining sections you will see how to get the most from relational expres-
sions by using them in statements that take action based on the results of the comparison.

Checkpoint

4.1 Assuming x is 5, y is 6, and z is 8, indicate whether each of the following relational
expressions is true or false:

A) x == 5
B) 7 <= (x + 2)
C) z > 4
D) (2 + x) != y
E) z != 4
F) x >= 0
G) x <= (y * 2)

Table 4-3 Statements that Include Relational Expressions
(Assume x is 10, y is 7, and z is an int or bool.)

Statement Outcome

z = x < y z is assigned 0 because x is not less than y.

cout << (x > y); Displays 1 because x is greater than y.

z = (x >= y); z is assigned 1 because x is greater than or equal to y.

cout << (x <= y); Displays 0 because x is not less than or equal to y.

z = (y != x); z is assigned 1 because y is not equal to x.

cout << (x == (y + 3)); Displays 1 because x is equal to y + 3.

Table 4-4 Precedence of Relational Operators
(Highest to Lowest)

 > >= < <=

 == !=

162 Chapter 4 Making Decisions

4.2 Indicate whether each of the following statements about relational expressions is
correct or incorrect.

A) x <= y is the same as y > x.
B) x != y is the same as y >= x.
C) x >= y is the same as y <= x.

4.3 Answer the following questions with a yes or no.

A) If it is true that x > y and it is also true that x < z, does that mean y < z
is true?

B) If it is true that x >= y and it is also true that z == x, does that mean that
z == y is true?

C) If it is true that x != y and it is also true that x != z, does that mean that
z != y is true?

4.4 What will the following program segment display?

int a = 0, b = 2, x = 4, y = 0;

cout << (a == b) << endl;
cout << (a != y) << endl;
cout << (b <= x) << endl;
cout << (y > a) << endl;

4.2 The if Statement

CONCEPT: The if statement can cause other statements to execute only under
certain conditions.

You might think of the statements in a procedural program as individual steps taken as you
are walking down a road. To reach the destination, you must start at the beginning and
take each step, one after the other, until you reach the destination. The programs you have
written so far are like a “path” of execution for the program to follow.

Figure 4-1

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

// A program to calculate the area of a rectangle

#include <iostream>
using namespace std;

int main()
{
 double length, width, area;

 cout << "Enter the length of the rectangle: ";
 cin >> length;
 cout << "Enter the width of the rectangle: ";
 cin >> width;
 area = length * width;
 cout << "The area is: " << area << endl;
 return 0;
}

Using an if
Statement

The if Statement 163

The type of code in Figure 4-1 is called a sequence structure because the statements are
executed in sequence, one after another, without branching off in another direction. Pro-
grams often need more than one path of execution, however. Many algorithms require a
program to execute some statements only under certain circumstances. This can be accom-
plished with a decision structure.

In a decision structure’s simplest form a specific action, or set of actions, is taken only
when a specific condition exists. If the condition does not exist, the actions are not per-
formed. The flowchart in Figure 4-2 shows the logic of a decision structure. The diamond
symbol represents a yes/no question or a true/false condition. If the answer to the question
is yes (or if the condition is true), the program flow follows one path which leads to the
actions being performed. If the answer to the question is no (or the condition is false), the
program flow follows another path which skips the actions.

In the flowchart, the actions “Wear a coat”, “Wear a hat”, and “Wear gloves” are performed
only when it is cold outside. If it is not cold outside, these actions are skipped. The actions
are conditionally executed because they are performed only when a certain condition (cold
outside) exists.

We perform mental tests like these every day. Here are some other examples:

If the car is low on gas, stop at a service station and get gas.
If it’s raining outside, go inside.
If you’re hungry, get something to eat.

The most common way to code a decision structure in C++ is with the if statement.
Figure 4-3 shows the general format of the if statement and a flowchart visually depicting
how it works.

Figure 4-2

Is it cold
outside?

No

Yes

Wear a coat.

Wear a hat.

Wear gloves.

164 Chapter 4 Making Decisions

Notice that the statements inside the body of the if construct are contained within a set of
curly braces. The opening brace must be located after the if condition and before the first
statement in the body. However, while following this requirement, different programmers
choose different places to locate it. The two most common placements are shown in Figure 4-3.
This book uses the form shown on the left. Your instructor will tell you what form he or
she wants you to use.

Program 4-2 illustrates the use of an if statement. The user enters three test scores and the
program calculates their average. If the average equals 100, the program congratulates the
user on earning a perfect score.

Figure 4-3

Program 4-2

1 // This program correctly averages 3 test scores.
2 #include <iostream>
3 #include <iomanip>
4 using namespace std;
5
6 int main()
7 {
8 int score1, score2, score3;
9 double average;
10
11 // Get the three test scores
12 cout << "Enter 3 test scores and I will average them: ";
13 cin >> score1 >> score2 >> score3;
14
15 // Calculate and display the average score
16 average = (score1 + score2 + score3) / 3.0;
17 cout << fixed << showpoint << setprecision(1);
18 cout << "Your average is " << average << endl;
19
20 // If the average equals 100, congratulate the user
21 if (average == 100)
22 { cout << "Congratulations! ";
23 cout << "That's a perfect score!\n";
24 }
25 return 0;
26 }

(program continues)

if (condition) {

 statement 1;
 statement 2;
 .
 .
 statement n;
}

or

if (condition)
{
 statement 1;
 statement 2;
 .
 .
 statement n;
}

condition

true

false

statement(s)

The if Statement 165

Let’s look more closely at lines 21–24 of Program 4-2, which cause the congratulatory
message to be printed.

if (average == 100)
{ cout << "Congratulations! ";

 cout << "That's a perfect score!\n";
}

There are four important things to notice. First, the word if, which begins the statement,
is a C++ key word and must be written in lowercase. Second, the condition to be tested
(average == 100) must be enclosed inside parentheses. Third, there is no semi-colon after
the test condition, even though there is a semi-colon after each action associated with the
if construct. We will explain why shortly. And finally, the block of statements to be condi-
tionally executed is surrounded by curly braces. This is required whenever two or more
actions are associated with an if statement.

If the block of statements to be conditionally executed contains only one statement, the
braces can be omitted. For example, in Program 4-2 if the two cout statements were com-
bined into one statement, they could be written as shown here.

if (average == 100)
cout << "Congratulations! That's a perfect score!\n";

However, some instructors prefer that you always place braces around a conditionally exe-
cuted block, even when it consists of only one statement.

Table 4-5 shows other examples of if statements and their outcomes.

Program Output with Example Input Shown in Bold
Enter 3 test scores and I will average them: 80 90 70[Enter]
Your average is 80.0

Program Output with Other Example Input Shown in Bold
Enter 3 test scores and I will average them: 100 100 100[Enter]
Your average is 100.0
Congratulations! That's a perfect score!

Table 4-5 Example if Statements

Statements Outcome

if (hours > 40)
{ overTime = true;

payRate *= 2;
}

Assigns true to Boolean variable overTime and doubles payRate
only when hours is greater than 40. Because there is more than one
statement in the conditionally executed block, braces {} are
required.

if (temperature > 32)
 freezing = false;

Assigns false to Boolean variable freezing only when
temperature is greater than 32. Because there is only one
statement in the conditionally executed block, braces {} are
optional.

Program 4-2 (continued)

166 Chapter 4 Making Decisions

Programming Style and the if Statement
Even though if statements usually span more than one line, they are technically one long
statement. For instance, the following if statements are identical except in style:

if (a >= 100)
cout << "The number is out of range.\n";

if (a >= 100) cout << "The number is out of range.\n";

The first of these two if statements is considered to be better style because it is easier to
read. By indenting the conditionally executed statement or block of statements you are
causing it to stand out visually. This is so you can tell at a glance what part of the program
the if statement executes. This is a standard way of writing if statements and is the
method you should use. Here are two important style rules you should adopt for writing
if statements:

• The conditionally executed statement(s) should begin on the line after the if statement.
• The conditionally executed statement(s) should be indented one “level” from the if

statement.

Three Common Errors to Watch Out For
When writing if statements, there are three common errors you must watch out for.

1. Misplaced semicolons
2. Missing braces
3. Confusing = with ==

Be Careful with Semicolons

Semicolons do not mark the end of a line, but the end of a complete C++ statement. The if
statement isn’t complete without the conditionally executed statement that comes after it. So,
you must not put a semicolon after the if (condition) portion of an if statement.

If you inadvertently put a semicolon after the if part, the compiler will assume you are
placing a null statement there. The null statement is an empty statement that does nothing.
This will prematurely terminate the if statement, which disconnects it from the block of

NOTE: In most editors, each time you press the tab key, you are indenting one level.

No semicolon goes here

Semicolons go here

if (condition)
{
 statement 1;
 statement 2;
 .
 .
 statement n;
}

The if Statement 167

statements that follows it. These statements will then always execute. For example, notice
what would have happened in Program 4-2 if the if statement had been prematurely ter-
minated with a semicolon, as shown here.

if (average == 100); // Error. The semicolon terminates
{ // the if statement prematurely.

 cout << "Congratulations! ";
 cout << "That's a perfect score!\n";

}

Output of Revised Program 4-2 with Example Input Shown in Bold
Enter 3 test scores and I will average them: 80 90 70[Enter]
Your average is 80.0
Congratulations! That's a perfect score!

Because the if statement ends when the premature semicolon is encountered, the cout
statements inside the braces are considered to be separate statements following the if,
rather than statements belonging to the if. Therefore, they always execute, regardless of
whether average equals 100 or not. This erroneous version of the program can be found
on the student CD as Program 4-2B.

Don’t Forget the Braces

If you intend to conditionally execute a block of statements, rather than just one
statement, with an if statement, don’t forget the braces. Without a set of braces,
the if statement only executes the very next statement. Any following statements are
considered to be outside the if statement and will always be executed, even when the
if condition is false. For example, notice what would have happened in the original
Program 4-2 if the braces enclosing the two cout statements to be conditionally executed
had been omitted.

if (average == 100)
 cout << "Congratulations! "; // There are no braces.
 cout << "That's a perfect score!\n"; // This is outside the if.

Output of Program 4-2 Revised a Second Time with Example Input Shown in Bold
Enter 3 test scores and I will average them: 80 90 70[Enter]
Your average is 80.0
That's a perfect score!

With no braces around the set of statement to be conditionally executed, only the first of
these statements is considered to belong to the if statement. Because the condition in our
test case (average == 100) was false, the Congratulations! message was skipped.
However the cout statement that prints That's a perfect score! was executed, as it
would be every time, regardless of whether average equals 100 or not. This erroneous
version of the program can be found on the student CD as Program 4-2C.

NOTE: Indentation and spacing are for the human reader of a program, not the
computer. Even though the cout statements following the if statement in this example
are indented, the semicolon still terminates the if statement.

168 Chapter 4 Making Decisions

Not All Operators Are “Equal”

Earlier you saw a warning not to confuse the equality operator (==) with the assignment
operator (=), as in the following statement:

if (x = 2) // Caution here!
 cout << "It is True!";

This statement does not determine whether x is equal to 2; instead it assigns x the value 2!
Furthermore, the cout statement will always be executed because the expression x = 2
evaluates to 2, which C++ considers true.

This occurs because the value of an assignment expression is the value being assigned to
the variable on the left side of the = operator. Therefore the value of the expression x = 2 is
2. Earlier you learned that C++ stores the value true as 1. But it actually considers all non-
zero values, not just 1, to be true. Thus 2 represents a true condition.

Let’s examine this more closely by looking at yet another variation of the original Program
4-2. This time notice what would have happened if the equal-to relational operator in the
if condition had been replaced by the assignment operator, as shown here.

if (average = 100) // Error. This assigns 100 to average.
{

 cout << "Congratulations! ";
 cout << "That's a perfect score!\n";

}

Output of Program 4-2 Revised a Third Time with Example Input Shown in Bold
Enter 3 test scores and I will average them: 80 90 70[Enter]
Your average is 80.0
Congratulations! That's a perfect score!

Rather than being compared to 100, average is assigned the value 100 in the if statement.
This causes the if test to evaluate to 100, which is considered true. Therefore the two cout
statements will execute every time, regardless of what test scores are entered by the user.
This erroneous version of the program can be found on the student CD as Program 4-2D.

More About Truth
Now that you’ve gotten your feet wet with relational expressions and if statements, let’s
look further at the subject of truth. You have seen that a relational expression has the value
1 when it is true and 0 when false. You have also seen that while 0 is considered false, all
values other than 0 are considered true. This means that any value, even a negative number,
represents true as long as it is not 0.

Just as in real life, truth is a complicated thing. Here is a summary of the rules you have
seen so far:

• When a relational expression is true, it has a non-zero value, which in most cases is
represented by the value 1.

• When a relational expression is false, it has the value 0.
• An expression that has the value 0 is considered false by the if statement. This

includes the bool value false, which is equivalent to 0.
• An expression that has any value other than 0 is considered true. This includes the

bool value true, which is equivalent to 1.

The if Statement 169

The fact that the if statement considers any nonzero value as true opens many possibilities.
Relational expressions are not the only conditions that may be tested. For example, the
following is a legal if statement in C++:

if (value)
cout << "It is True!";

This if statement is not testing a relational expression. It is testing the contents of a vari-
able. If the variable, value, contains any number other than 0, the message “It is True!”
will be displayed. If value is set to 0, however, the cout statement will be skipped. Here is
another example:

if (x + y)
cout << "It is True!";

In this statement the sum of x and y is tested. If the sum is 0, the expression is considered
false; otherwise it is considered true. You may also use the return value of a function call as
a conditional expression. Here is an example that uses the pow function:

if (pow(a, b))
cout << "It is True!";

This if statement uses the pow function to raise a to the power of b. If the result is any-
thing other than 0, the cout statement will be executed.

Flags
A flag is a variable that signals whether or not some condition currently exists in a program.
Because bool variables hold the values true and false, they are the perfect type of variables
to use for flags. When the flag variable is set to true, it means the condition does exist. When
the flag variable is set to false, it means that the condition does not exist, at least not yet.
Suppose we wanted to change Program 4-2 to find out if any of the scores read in equals
100, rather than finding out if the average equals 100. We could use a Boolean variable,
scored100, initialized to false.

bool scored100 = false; // No score of 100 found yet

Then, after reading in the three scores, we could test them, like this:

if (score1 == 100)
 scored100 = true;
if (score2 == 100)
 scored100 = true;
if (score3 == 100)
 scored100 = true;

Finally, we could replace the lines that test for a perfect average, with the following code.

if (scored100)
 cout << "You got 100% on at least one of the tests.\n";

Comparing Floating-Point Numbers
Testing floating-point numbers for equality can sometimes give erroneous results. Because
of a lack of precision or round-off errors, a number that should be mathematically equal to

170 Chapter 4 Making Decisions

another might not be. In Program 4-3, 6 is multiplied by 0.666667, a decimal version of 2/3.
Of course, 6 times 2/3 is 4. The program, however, disagrees.

Typically, the value in result will be a number just short of 4, like 3.999996. To prevent
errors like this, it is wise to stick with greater-than and less-than comparisons when using
floating-point numbers. For example, instead of testing if the result equals 4.0, you could
test to see if it is very close to 4.0. Program 4-4 demonstrates this technique.

Program 4-3

1 // This program demonstrates how a lack of precision in
2 // floating-point numbers can make equality comparisons unreliable.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 double result = .666667 * 6.0;
9
10 // 2/3 of 6 should be 4 and, if you print result, 4 is displayed.
11 cout << "result = " << result << endl;
12
13 // However, internally result is NOT precisely equal to 4.
14 if (result == 4.0)
15 cout << "result DOES equal 4!" << endl;
16 else
17 cout << "result DOES NOT equal 4!" << endl;
18
19 return 0;
20 }

Program Output
result = 4
result DOES NOT equal 4!

Program 4-4

1 // This program demonstrates how to safely test a floating-point number
2 // to see if it is, for all practical purposes, equal to some value.
3 #include <iostream>
4 #include <cmath>
5 using namespace std;
6
7 int main()
8 {
9 double result = .666667 * 6.0;
10
11 // 2/3 of 6 should be 4 and, if you print result, 4 is displayed.
12 cout << "result = " << result << endl;
13

(program continues)

The if Statement 171

Line 16 of the program uses the abs function introduced in Chapter 2. Recall that it returns
the absolute value of the argument. By using it, we ensure that the test condition will be true
if the difference between result and 4.0 is less than .0001, regardless of which one is larger.

Checkpoint

4.5 True or False: Both of the following if statements perform the same operation.

if (sales > 10000)
commissionRate = 0.15;

if (sales > 10000) commissionRate = 0.15;

4.6 True or false: Both of the following if statements perform the same operation.

if (calls == 20)
rate *= 0.5;

if (calls = 20)
rate *= 0.5;

4.7 Although the following code segments are syntactically correct, each contains an
error. Locate the error and indicate what is wrong.
A) hours = 12;

if (hours > 40);
cout << hours << " hours qualifies for over-time.\n";

B) interestRate = .05;
if (interestRate = .07)

cout << "This account is earning the maximum rate.\n";
C) interestRate = .05;

if (interestRate > .07)
cout << "This account earns a $10 bonus.\n";
balance += 10.0;

4.8 Write an if statement that assigns 0 to x if y is equal to 20.

4.9 Write an if statement that multiplies payRate by 1.5 if hours is greater than 40.

4.10 Write an if statement that assigns .20 to commission if sales is greater than or
equal to 10,000.00.

4.11 Write an if statement that sets fees to 50 if flag variable max is set to true.

14 // However, internally result is NOT precisely equal to 4.
15 // So test to see if it is "close" to 4.
16 if (abs(result - 4.0 < .0001))
17 cout << "result DOES equal 4!" << endl;
18 else
19 cout << "result DOES NOT equal 4!" << endl;
20
21 return 0;
22 }

Program Output
result = 4
result DOES equal 4!

Program 4-4 (continued)

172 Chapter 4 Making Decisions

4.3 The if/else Statement

CONCEPT: The if/else statement will execute one set of statements when the if
condition is true, and another set when the condition is false.

The if/else statement is an expansion of the if statement. Figure 4-4 shows the general
format of this statement and a flowchart visually depicting how it works.

As with the if statement, a condition is tested. If the condition is true, a block containing
one or more statements is executed. If the condition is false, however, a different group of
statements is executed. Program 4-5 uses the if/else statement along with the modulus
operator to determine if a number is odd or even.

Figure 4-4

Program 4-5

1 // This program uses the modulus operator to determine
2 // if a number is odd or even. If the number is evenly divisible
3 // by 2, it is an even number. A remainder indicates it is odd.
4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {
9 int number;
10
11 cout << "Enter an integer and I will tell you if it\n";
12 cout << "is odd or even. ";
13 cin >> number;
14

(program continues)

true false
condition

statement
set 2

statement
set 1

if (condition)
{
 statement set 1;
}
else
{
 statement set 2;
}

Using an
if/else
Statement

The if/else Statement 173

The else part at the end of the if statement specifies one or more statements that are to
be executed when the condition is false. When number % 2 does not equal 0, a message is
printed indicating the number is odd. Note that the program will only take one of the two
paths in the if/else statement. If you think of the statements in a computer program as
steps taken down a road, consider the if/else statement as a fork in the road. It causes
program execution to follow one of two mutually exclusive paths.

Notice the programming style used to construct the if/else statement. The word else is
at the same level of indention as if. The statements whose execution are controlled by the
if and by the else are indented one level. This makes the two paths of execution that may
be followed visually clear to anyone reading the code.

As with the if part, if you don’t use braces the else part controls a single statement. If
you wish to execute more than one statement with the else part, place these statements
inside a set of braces. Program 4-6 illustrates this. It also illustrates a way to handle a classic
programming problem: division by zero.

Division by zero is mathematically impossible to perform and it normally causes a program
to crash. This means the program will prematurely stop running, sometimes with an error
message. Program 4-6 shows a way to test the value of a divisor before the division takes
place. On line 15 the value of num2 is tested. If the user enters anything other than zero, the
lines controlled by the if are executed, allowing the division to be performed and the result
to be displayed. But if the user enters a zero for num2, the lines controlled by the else are
executed instead, causing an error message to be displayed.

15 if (number % 2 == 0)
16 cout << number << " is even.\n";
17 else
18 cout << number << " is odd.\n";
19 return 0;
20 }

Program Output with Example Input Shown in Bold
Enter an integer and I will tell you if it
is odd or even. 17[Enter]
17 is odd.

Program 4-6

1 // This program makes sure that the divisor is not
2 // equal to 0 before it performs a divide operation.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 double num1, num2, quotient;
9

(program continues)

Program 4-5 (continued)

174 Chapter 4 Making Decisions

Checkpoint

4.12 True or false: The following if/else statements cause the same output to display.

A) if (x > y)
cout << "x is the greater.\n";

else
cout << "x is not the greater.\n";

B) if (y <= x)
cout << "x is not the greater.\n";

else
cout << "x is the greater.\n";

4.13 Write an if/else statement that assigns 1 to x if y is equal to 100. Otherwise it
should assign 0 to x.

4.14 Write an if/else statement that assigns 0.10 to commission unless sales is
greater than or equal to 50,000.00, in which case it assigns 0.20 to commission.

4.15 Complete the following program skeleton so it computes the correct sales tax. If the
customer is an in-state resident, taxRate should be set to .05. If the customer is an
out-of-state resident, taxRate should be set to 0.

#include <iostream>
using namespace std;

10 // Get the two numbers
11 cout << "Enter two numbers: ";
12 cin >> num1 >> num2;
13
14 // If num2 is not zero, perform the division.
15 if (num2 != 0)
16 {
17 quotient = num1 / num2;
18 cout << "The quotient of " << num1 << " divided by "
19 << num2 << " is " << quotient << ".\n";
20 }
21 else
22 {
23 cout << "Division by zero is not possible.\n"
24 << "Please run the program again and enter "
25 << "a number other than zero.\n";
26 }
27 return 0;
28 }

Program Output with Example Input Shown in Bold
Enter two numbers: 10 0[Enter]
Division by zero is not possible.
Please run the program again and enter a number other than zero.

Program 4-6 (continued)

The if/else if Statement 175

int main()
{

double taxRate, saleAmount;
char residence;

cout << "Enter the amount of the sale: ";
cin >> saleAmount;
cout << "Enter I for in-state residence or O for out-of-\n";
cout << "state: ";
cin.get(residence);

// Write code here that assigns 0 to taxRate if char
// variable residence is set to the letter 'O' or .05 to
// taxRate if residence is set to 'I'.

saleAmount += saleAmount * taxRate;
cout << "The total is " << saleAmount;
return 0;

}

4.16 Will the if/else statement shown below function exactly the same as the two
separate if statements?

if (x < y) if (x < y)
cout << 1; cout << 1;

if (x > y) else
cout << 2; cout << 2;

4.4 The if/else if Statement

CONCEPT: The if/else if statement is a chain of if statements. They perform their
tests, one after the other, until one of them is found to be true.

We make certain mental decisions by using sets of different but related rules. For example,
we might decide the type of coat or jacket to wear by consulting the following rules:

if it is very cold, wear a heavy coat,
else, if it is chilly, wear a light jacket,
else, if it is windy, wear a windbreaker,
else, if it is hot, wear no jacket.

The purpose of these rules is to determine which type of outer garment to wear. If it is cold,
the first rule dictates that a heavy coat must be worn. All the other rules are then ignored.
If the first rule doesn’t apply, however (if it isn’t cold), then the second rule is consulted. If
that rule doesn’t apply, the third rule is consulted, and so forth.

The way these rules are connected is very important. If they were consulted individually, we
might go out of the house wearing the wrong jacket or, possibly, more than one jacket. For
instance, if it is windy, the third rule says to wear a windbreaker. What if it is both windy and
very cold? Will we wear a windbreaker? A heavy coat? Both? Because of the order that the

Using an
if/else if
Statement

176 Chapter 4 Making Decisions

rules are consulted in, the first rule will determine that a heavy coat is needed. The third rule
will not be consulted, and we will go outside wearing the most appropriate garment.

This type of decision making is also very common in programming. In C++ it can be
accomplished through the if/else if statement. Figure 4-5 shows its format and a flow-
chart visually depicting how it works.

This construction is like a chain of if/else statements. The else part of one statement is
linked to the if part of another. When put together this way, the chain of if/elses
becomes one long statement. Program 4-7 shows an example. The user is asked to enter a
numeric test score and the program displays the letter grade earned.

Figure 4-5

Program 4-7

1 // This program uses an if/else if statement to assign a
2 // letter grade (A, B, C, D, or F) to a numeric test score.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int testScore; // Holds a numeric test score
9 char grade; // Holds a letter grade
10
11 // Get the numeric score
12 cout << "Enter your numeric test score and I will\n";
13 cout << "tell you the letter grade you earned: ";
14 cin >> testScore;
15

(program continues)

if (condition 1)
{
 statement set 1;
}
else if (condition 2)
{
 statement set 2;
}
 .
 .

else if (condition n)
{
 statement set n;
}

condition
1

false

true statement
set 1

condition
2

false

true statement
set 2

condition
n

false

true statement
set n

..

The if/else if Statement 177

As with other forms of the if statement, braces are required in an if/else if whenever
there is more than one statement in a conditionally executed block. Otherwise they are
optional. Because each of the conditionally executed blocks of code in Program 4-7 con-
tains only one statement, braces were not used.

The if/else if statement has a number of notable characteristics. Let’s analyze how it
works in Program 4-7. First, the relational expression testScore < 60 is tested on line 17.

if (testScore < 60)
grade = 'F';

If testScore is less than 60, the letter ‘F’ is assigned to grade and the rest of the linked if
statements are skipped. If testScore is not less than 60, the else part takes over and
causes the next if condition to be tested on line 19.

else if (testScore < 70)
grade = 'D';

The first if statement filtered out all of the grades less than 60, so when this next if state-
ment executes, testScore will have a value of 60 or greater. If testScore is less than 70,
the letter ‘D’ is assigned to grade and the rest of the if/else if statement is ignored. This
chain of events continues until one of the conditional expressions is found true or the end
of the statement is encountered. In either case, the program resumes at the statement
immediately following the if/else if statement. This is the cout statement on line 29
that prints the grade. Figure 4-6 shows the paths that may be taken by the if/else
if statement.

16 // Determine the letter grade
17 if (testScore < 60)
18 grade = 'F';
19 else if (testScore < 70)
20 grade = 'D';
21 else if (testScore < 80)
22 grade = 'C';
23 else if (testScore < 90)
24 grade = 'B';
25 else if (testScore <= 100)
26 grade = 'A';
27
28 // Display the letter grade
29 cout << "Your grade is " << grade << ".\n";
30 return 0;
31 }

Program Output with Example Input Shown in Bold
Enter your numeric test score and I will
tell you the letter grade you earned: 88[Enter]
Your grade is B.

Program 4-7 (continued)

178 Chapter 4 Making Decisions

Each if condition in the structure depends on all the if conditions before it being false.
The statements following a particular else if are executed when the conditional expres-
sion following the else if is true and all previous conditional expressions are false. To
demonstrate how this interconnection works, let’s look at Program 4-8, which uses inde-
pendent if statements instead of an if/else if statement.

Figure 4-6

Program 4-8

1 // This program illustrates a bug that occurs when independent if/else
2 // statements are used to assign a letter grade to a numeric test score.
3 #include <iostream>
4 using namespace std;
5

(program continues)

testScore
< 60?

grade = 'F'
testScore
< 70?

grade = 'D'

YesNo

Yes

testScore
< 80?

grade = 'C'

No

Yes

testScore
< 90?

grade = 'B'

No

Yes

testScore
<= 100?

grade = 'A'

No

YesNo

The if/else if Statement 179

In Program 4-8, all the if statements execute because they are individual statements. In the
example output, testScore is assigned the value 40, yet the student receives an A. Here is
what happens. Because the student’s score is less than 60, the first if statement causes 'F'
to be assigned to grade. However, because the next if statement is not connected to the
first through an else, it executes as well. Since testScore is also less than 70, it causes
'D' to be assigned to grade, replacing the 'F' that was previously stored there. This con-
tinues until all the if statements have executed. The last one will cause 'A' to be assigned
to grade. (Most students prefer this method since 'A' is the only grade it gives out!)

Using a Trailing else
A trailing else, placed at the end of an if/else if statement, provides a default set of
actions when none of the if expressions are true. It is often used to catch errors. This fea-
ture would be helpful, for example, in Program 4-7. What happens in the current version
of that program if the user enters a test score greater than 100? The if/else if statement
handles all scores through 100, but none greater. If the user enters 104, for example, the
program does not give any letter grade because there is no code to handle a score greater

6 int main()
7 {
8 int testScore; // Holds a numeric test score
9 char grade; // Holds a letter grade
10
11 // Get the numeric score
12 cout << "Enter your test score and I will tell you\n";
13 cout << "the letter grade you earned: ";
14 cin >> testScore;
15
16 // Determine the letter grade. What grade will be assigned?
17 if (testScore < 60)
18 grade = 'F';
19 if (testScore < 70)
20 grade = 'D';
21 if (testScore < 80)
22 grade = 'C';
23 if (testScore < 90)
24 grade = 'B';
25 if (testScore <= 100)
26 grade = 'A';
27
28 // Display the letter grade
29 cout << "Your grade is " << grade << ".\n";
30 return 0;
31 }

Program Output with Example Input Shown in Bold
Enter your numeric test score and I will tell you
the letter grade you earned: 40[Enter]
Your grade is A.

Program 4-8 (continued)

180 Chapter 4 Making Decisions

than 100. Assuming that 100 is the highest score, we can fix the program by placing an
else at the end of the if/else if statement. This is shown in Program 4-9.

The trailing else catches any value that “falls through the cracks.” It provides a default
response when none of the ifs find a true condition.

Program 4-9

1 // This program uses an if/else if statement to assign a
2 // letter grade (A, B, C, D, or F) to a numeric test score.
3 // A trailing else has been added to catch test scores > 100.
4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {
9 int testScore; // Holds a numeric test score
10 char grade; // Holds a letter grade
11 bool goodScore = true; // Is the score valid?
12
13 // Get the numeric score
14 cout << "Enter your numeric test score and I will\n";
15 cout << "tell you the letter grade you earned: ";
16 cin >> testScore;
17
18 // Determine the letter grade
19 if (testScore < 60)
20 grade = 'F';
21 else if (testScore < 70)
22 grade = 'D';
23 else if (testScore < 80)
24 grade = 'C';
25 else if (testScore < 90)
26 grade = 'B';
27 else if (testScore <= 100)
28 grade = 'A';
29 else
30 goodScore = false; // The score was greater than 100
31
32 // If the score is valid, display the corresponding letter grade;
33 // otherwise, display an error message
34 if (goodScore)
35 cout << "Your grade is " << grade << endl;
36 else
37 cout << "We do not give scores higher than 100.\n";
38
39 return 0;
40 }

Program Output with Example Input Shown in Bold
Enter your numeric test score and I will
tell you the letter grade you earned: 104 [Enter]
We do not give scores higher than 100.

Menu-Driven Programs 181

4.5 Menu-Driven Programs

CONCEPT: A menu is a set of choices presented to the user. A menu-driven program
allows the user to determine the course of action by selecting it from the
menu.

A menu is a screen displaying a set of choices the user selects from. For example, a pro-
gram that keeps a mailing list might give you the following menu:

1. Add a name to the list.
2. Remove a name from the list.
3. Change a name in the list.
4. Print the list.
5. Quit the program.

The user selects one of the operations by entering its number. Entering 4, for example, causes
the mailing list to be printed, and entering 5 causes the program to end. The if/else if
structure can be used to set up such a menu. After the user enters a number, it compares the
number to the available selections and executes the statements that perform that operation.

Program 4-10 calculates the charges for membership in a health club. The club has three
membership packages to choose from: standard adult membership, child membership, and
senior citizen membership. The program presents a menu that allows the user to choose the
desired package and then calculates the cost of the membership.

Program 4-10

1 // This menu-driven program uses an if/else statement to carry
2 // out the correct set of actions based on the user's menu choice.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {
9 // Constants for membership rates
10 const double ADULT_RATE = 40.0;
11 const double CHILD_RATE = 20.0;
12 const double SENIOR_RATE = 30.0;
13
14 int choice; // Menu choice
15 int months; // Number of months
16 double charges; // Monthly charges
17
18 // Display the menu and get the user's choice
19 cout << " Health Club Membership Menu\n\n";
20 cout << "1. Standard Adult Membership\n";
21 cout << "2. Child Membership\n";
22 cout << "3. Senior Citizen Membership\n";
23 cout << "4. Quit the Program\n\n";

(program continues)

182 Chapter 4 Making Decisions

Notice that three double constants ADULT_RATE, CHILD_RATE, and SENIOR_RATE are
defined in lines 10 through 12. These constants hold the monthly membership rates for
adult, child, and senior citizen memberships. Also notice that the program lets the user
know when an invalid choice is made. If a number other than 1, 2, 3, or 4 is entered, an
error message is printed. This is known as input validation.

24 cout << "Enter your choice: ";
25 cin >> choice;
26
27 // Set the numeric output formatting
28 cout << fixed << showpoint << setprecision(2);
29
30 // Use the menu selection to execute the correct set of actions
31 if (choice == 1)
32 { cout << "\nFor how many months? ";
33 cin >> months;
34 charges = months * ADULT_RATE;
35 cout << "The total charges are $" << charges << endl;
36 }
37 else if (choice == 2)
38 { cout << "\nFor how many months? ";
39 cin >> months;
40 charges = months * CHILD_RATE;
41 cout << "The total charges are $" << charges << endl;
42 }
43 else if (choice == 3)
44 { cout << "For how many months? ";
45 cin >> months;
46 charges = months * SENIOR_RATE;
47 cout << "The total charges are $" << charges << endl;
48 }
49 else if (choice != 4)
50 { cout << "The valid choices are 1 through 4. Run the\n"
51 << "program again and select one of those.\n";
52 }
53 return 0;
54 }

Program Output with Example Input Shown in Bold
 Health Club Membership Menu

1. Standard Adult Membership
2. Child Membership
3. Senior Citizen Membership
4. Quit the Program

Enter your choice: 3[Enter]
For how many months? 6[Enter]
The total charges are $180.00

Program 4-10 (continued)

Nested if Statements 183

4.6 Nested if Statements

CONCEPT: To test more than one condition, an if statement can be nested inside
another if statement.

It is possible for one if statement or if/else statement to be placed inside another one.
This construct, called a nested if, allows you to test more than one condition to determine
which block of code should be executed. For example, consider a banking program that
determines whether a bank customer qualifies for a special, low interest rate on a loan. To
qualify, two conditions must exist:

1. The customer must be currently employed.
2. The customer must have recently graduated from college (in the past two years).

Figure 4-7 shows a flowchart for an algorithm that could be used in such a program.

If we follow the flow of execution in the flowchart, we see that first the expression
employed == 'Y' is tested. If this expression is false, there is no need to perform any
other tests. We know that the customer does not qualify for the special interest rate. If
the expression is true, however, we need to test the second condition. This is done with
a nested decision structure that tests the expression recentGrad == 'Y'. If this

Figure 4-7

employed = ‘Y’
False

False True

True

Display “You must be
employed to qualify.”

Display “You must have
graduated from college
in the past two years to

qualify.”

Display “You qualify for
the special interest

rate.”

recentGrad = ‘Y’

184 Chapter 4 Making Decisions

expression is true, then the customer qualifies for the special interest rate. If this
expression is false, the customer does not qualify. Program 4-11 shows the code that
corresponds to the logic of the flowchart. It nests one if/else statement inside
another one.

Program 4-11

1 // This program determines whether a loan applicant qualifies for
2 // a special loan interest rate. It uses nested if/else statements.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 char employed, // Currently employed? (Y or N)
9 recentGrad; // Recent college graduate? (Y or N)
10
11 // Is the applicant employed and a recent college graduate?
12 cout << "Answer the following questions\n";
13 cout << "with either Y for Yes or N for No.\n";
14
15 cout << "Are you employed? ";
16 cin >> employed;
17 cout << "Have you graduated from college in the past two years? ";
18 cin >> recentGrad;
19
20 // Determine the applicant's loan qualifications
21 if (employed == 'Y')
22 {
23 if (recentGrad == 'Y') // Employed and a recent grad
24 {
25 cout << "You qualify for the special interest rate.\n";
26 }
27 else // Employed but not a recent grad
28 {
29 cout << "You must have graduated from college in the past\n";
30 cout << "two years to qualify for the special interest rate.\n";
31 }
32 }
33 else // Not employed
34 {
35 cout << "You must be employed to qualify for the "
36 << "special interest rate. \n";
37 }
38 return 0;
39 }

(program continues)

Nested if Statements 185

Let’s take a closer look at this program. The if statement that begins on line 21 tests the
expression employed == 'Y'. If the expression is true, the inner if statement that begins
on line 23 is executed. If the expression is false, the program jumps to line 33 and executes
the statements in the outer else block instead.

When you are debugging a program with nested if/else statements, it’s important to
know which if statement each else goes with. The rule for matching each else with the
proper if is this: An else goes with the closest previous if statement that doesn’t already
have its own else. This is easier to see when the statements are properly indented. Figure 4-8
shows lines similar to lines 21 through 37 of Program 4-11. It illustrates how each else
should line up with the if it belongs to. These visual cues are important because nested if
statements can be very long and complex.

Program Output with Example Input Shown in Bold
Answer the following questions
with either Y for Yes or N for No.
Are you employed? N[Enter]
Have you graduated from college in the past two years? Y[Enter]
You must be employed to qualify for the special interest rate.

Program Output with Other Example Input Shown in Bold
Answer the following questions
with either Y for Yes or N for No.
Are you employed? Y[Enter]
Have you graduated from college in the past two years? N[Enter]
You must have graduated from college in the past
two years to qualify for the special interest rate.

Program Output with Other Example Input Shown in Bold
Answer the following questions
with either Y for Yes or N for No.
Are you employed? Y[Enter]
Have you graduated from college in the past two years? Y[Enter]
You qualify for the special interest rate.

Figure 4-8

Program 4-11 (continued)

if (employed == ‘Y’)
{
 if (recentGrad == ‘Y’) // Nested if
 {
 cout << “You qualify for the special ”;
 cout << “interest rate.\n”;
 }
 else // Not a recent grad, but employed
 {
 cout << “You must have graduated from ”;
 cout << “college in the past two\n”;
 cout << “years to qualify.\n”;
 }
}
else // Not employed
{
 cout << “You must be employed to qualify.\n”
}

This if and else
go together.

This if and else
go together.

186 Chapter 4 Making Decisions

Checkpoint

4.17 Program 4-9 asks the user for a numeric test score and displays the letter grade for
that score. Modify it so an error message is displayed if the user enters a test score
less than 0.

4.18 What will the following program segment display?

int funny = 7, serious = 15;

funny = serious % 2;
if (funny != 1)
{ funny = 0;

serious = 0;
}
else if (funny == 2)
{ funny = 10;

serious = 10;
}
else
{ funny = 1;

serious = 1;
}
cout << funny << serious << endl;

4.19 The following program is used in a bookstore to determine how many discount
coupons a customer gets. Complete the table that appears after the program.

#include <iostream>
using namespace std;
int main()
{

int numBooks, numCoupons;

cout << "How many books are being purchased? ";
cin >> numBooks;

if (numBooks < 1)
numCoupons = 0;

else if (numBooks < 3)
numCoupons = 1;

else if (numBooks < 5)
numCoupons = 2;

else
numCoupons = 3;

cout << "The number of coupons to give is " << numCoupons
 << endl;

return 0;
}

Logical Operators 187

If the customer purchases
this many books... ...This many coupons are given.
—————–––––––––––––––––––––––––––––———————————————

1
2
3
4
5
10

4.20 Write nested if statements that perform the following test: If amount1 is greater
than 10 and amount2 is less than 100, display the greater of the two.

4.7 Logical Operators

CONCEPT: Logical operators connect two or more relational expressions into one or
reverse the logic of an expression.

In the previous section you saw how a program tests two conditions with two if state-
ments. In this section you will see how to use logical operators to combine two or more
relational expressions into one. Table 4-6 lists C++’s logical operators.

The && Operator
The && operator is known as the logical AND operator. It takes two expressions as oper-
ands and creates an expression that is true only when both sub-expressions are true. Here
is an example of an if statement that uses the && operator:

if ((temperature < 20) && (minutes > 12))
cout << "The temperature is in the danger zone.";

Notice that both of the expressions being ANDed together are complete expressions that
evaluate to true or false. First temperature < 20 is evaluated to produce a true or false
result. Then minutes > 12 is evaluated to produce a true or false result. Then, finally,
these two results are ANDed together to arrive at a final result for the entire expression.

Table 4-6 Logical Operators

Operator Meaning Effect

&& AND Connects two expressions into one. Both expressions must be true
for the overall expression to be true.

|| OR Connects two expressions into one. One or both expressions must
be true for the overall expression to be true. It is only necessary for
one to be true, and it does not matter which.

! NOT Reverses the “truth” of an expression. It makes a true expression
false, and a false expression true.

188 Chapter 4 Making Decisions

The cout statement will only be executed if temperature is less than 20 AND minutes is
greater than 12. If either relational test is false, the entire expression is false and the cout
statement is not executed.

Table 4-7 shows a truth table for the && operator. The truth table lists all the possible com-
binations of values that two expressions may have, and the resulting value returned by the
&& operator connecting the two expressions. As the table shows, both sub-expressions
must be true for the && operator to return a true value.

The && operator can be used to simplify programs that otherwise would use nested if
statements. Program 4-12 is similar to Program 4-11, which determines if a bank customer
qualifies for a special interest rate. Program 4-12 uses a logical operator.

Table 4-7 Logical AND

Expression Value of the Expression

false && false false (0)

false && true false (0)

true && false false (0)

true && true true (1)

NOTE: If the sub-expression on the left side of an && operator is false, the expression
on the right side will not be checked. Because the entire expression is false if even just
one of the sub-expressions is false, it would waste CPU time to check the remaining
expression. This is called short circuit evaluation.

Program 4-12

1 // This program determines whether a loan applicant qualifies for
2 // a special loan interest rate. It uses the && logical operator.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 char employed, // Currently employed? (Y or N)
9 recentGrad; // Recent college graduate? (Y or N)
10
11 // Is the applicant employed and a recent college graduate?
12 cout << "Answer the following questions\n";
13 cout << "with either Y for Yes or N for No.\n";
14
15 cout << "Are you employed? ";
16 cin >> employed;
17 cout << "Have you graduated from college in the past two years? ";
18 cin >> recentGrad;
19

(program continues)

Logical Operators 189

Note that while this program is similar to Program 4-11, it is not the exact logical equiva-
lent. In Program 4-12 the message "You qualify for the special interest rate" is
displayed when both the expressions employed == 'Y' and recentGrad == 'Y' are true.
If either of these are false the following message displays: "You must be employed and
have graduated from college in the past two years to qualify for the special
interest rate." Program 4-11 displays different messages when the loan applicant does
not qualify.

The || Operator
The || operator is known as the logical OR operator. It takes two expressions as operands
and creates an expression that is true when either of the sub-expressions are true. Here is
an example of an if statement that uses the || operator:

if ((temperature < 20) || (temperature > 100))
 cout << "The temperature is in the danger zone.";

The cout statement will be executed if temperature is less than 20 OR temperature is
greater than 100. If either relational test is true, the entire expression is true and the cout
statement is executed.

20 // Determine the applicant's loan qualifications
21 if ((employed == 'Y') && (recentGrad == 'Y')) // Uses logical AND
22 cout << "\nYou qualify for the special interest rate.\n";
23 else
24 { cout << "\nYou must be employed and have graduated\n";
25 cout << "from college in the past two years to qualify\n";
26 cout << "for the special interest rate.\n";
27 }
28 return 0;
29 }

Program Output with Example Input Shown in Bold
Answer the following questions
with either Y for Yes or N for No.
Are you employed? Y[Enter]
Have you graduated from college in the past two years? N[Enter]

You must be employed and have graduated
from college in the past two years to qualify
for the special interest rate.

NOTE: The two things being ORed should both be logical expressions that evaluate to
true or false. It would not be correct to write the if condition as

 if (temperature < 20 || > 100).

Program 4-12 (continued)

190 Chapter 4 Making Decisions

Table 4-8 shows a truth table for the || operator.

All it takes for an OR expression to be true is for one of the sub-expressions to be true. It
doesn’t matter if the other sub-expression is false or true.

Program 4-13 performs different tests to qualify a person for a loan. This one determines if
the customer earns at least $35,000 per year or has been employed for more than five
years.

NOTE: There is no || key on the computer keyboard. Use two | symbols. This symbol
is on the backslash key. Press Shift and backslash to type it.

Table 4-8 Logical OR

Expression Value of the Expression

false || false false (0)

false || true true (1)

true || false true (1)

true || true true (1)

NOTE: The || operator also performs short circuit evaluation. If the sub-expression on
the left side of an || operator is true, the sub-expression on the right side will not be
checked. Because it is only necessary for one of the sub-expressions to be true for the whole
expression to evaluate to true, it would waste CPU time to check the remaining expression.

Program 4-13

1 // This program determines whether or not an applicant qualifies
2 // for a loan. To qualify they must make at least $35,000 a year
3 // or have been at their current job for more than 5 years.
4 // It uses the logical || operator.
5 #include <iostream>
6 using namespace std;
7
8 int main()
9 {
10 double income; // Annual income
11 int years; // Years at the current job
12
13 // Get annual income and years on the job
14 cout << "What is your annual income? ";
15 cin >> income;
16 cout << "How many years have you worked at your current job? ";
17 cin >> years;
18

(program continues)

Logical Operators 191

The message "You qualify for a loan." is displayed when either or both the expres-
sions income >= 35000 or years > 5 are true. If both of these are false, the disqualifying
message is printed.

The ! Operator
The ! operator performs a logical NOT operation. It takes an operand and reverses its
truth or falsehood. In other words, if the expression is true, the ! operator returns false,
and if the expression is false, it returns true. Here is an if statement using the ! operator:

if (!(temperature > 100))
cout << "You are below the maximum temperature.\n";

First, the expression (temperature > 100) is tested to be true or false. Then the ! opera-
tor is applied to that value. If the expression (temperature > 100) is true, the ! operator
returns false. If it is false, the ! operator returns true. In the example, it is equivalent to
asking “is the temperature not greater than 100?”

Table 4-9 shows a truth table for the ! operator.

19 // Determine if the applicant qualifies for a loan
20 if ((income >= 35000) || (years > 5)) // Uses logical OR
21 cout << "You qualify for a loan.\n";
22 else
23 { cout << "You must earn at least $35,000 or have been employed\n";
24 cout << "for more than 5 years to qualify for a loan.\n";
25 }
26 return 0;
27 }

Program Output with Example Input Shown in Bold
What is your annual income? 40000[Enter]
How many years have you worked at your current job? 2[Enter]
You qualify for a loan.

Program Output with Other Example Input Shown in Bold
What is your annual income? 20000[Enter]
How many years have you worked at your current job? 7[Enter]
You qualify for a loan.

Program Output with Other Example Input Shown in Bold
What is your annual income? 30000[Enter]
How many years have you worked at your current job? 3[Enter]
You must earn at least $35,000 or have been employed
for more than 5 years to qualify for a loan.

Table 4-9 Logical NOT

Expression Value of the Expression

!false true (1)

!true false (0)

Program 4-13 (continued)

192 Chapter 4 Making Decisions

Program 4-14 performs the same task as Program 4-13. The if statement, however, uses
the ! operator to determine if the user does not make at least $35,000 or has not been on
the job more than five years.

Boolean Variables and the ! Operator
An interesting feature of a Boolean variable is that its value can be tested just by naming it.
Suppose moreData is a Boolean variable. Then the test

if (moreData == true)

can be written simply as

if (moreData)

and the test

if (moreData == false)

can be written simply as

if (!moreData)

In fact, this second way of testing the value of a Boolean variable is preferable. This is
because the C++ constant true always has the value 1, but a condition that evaluates to

Program 4-14

1 // This program determines whether or not an applicant qualifies
2 // for a loan. To qualify they must make at least $35,000 a year
3 // or have been at their current job for more than 5 years. It uses
4 // the ! logical operator to reverse the logic of the if statement.
5 #include <iostream>
6 using namespace std;
7
8 int main()
9 {
10 double income; // Annual income
11 int years; // Years at the current job
12
13 // Get annual income and years on the job
14 cout << "What is your annual income? ";
15 cin >> income;
16 cout << "How many years have you worked at your current job? ";
17 cin >> years;
18
19 // Determine if the applicant qualifies for a loan
20 if (!((income >= 35000) || (years > 5))) // Uses logical NOT
21 {
22 cout << "You must earn at least $35,000 or have been employed\n";
23 cout << "for more than 5 years to qualify for a loan.\n";
24 }
25 else
26 cout << "You qualify for a loan.\n";
27 return 0;
28 }

Program Output 4-14 is the same as that of Program 4-13.

Logical Operators 193

true may have any non-zero value. For example, C++ has a function called isalpha(),
which tests whether or not a character is an alphabetic character. As you would expect, the
test isalpha('?') evaluates to false and the test isalpha('x') evaluates to true. How-
ever, for some alphabetic characters, this function returns a value other than 1 to represent
true. Program 4-15 illustrates this.

In line 14 when the condition isalpha('x') == true was tested, the program did not
produce the desired result. The value 2 returned by the isalpha function was compared to
the value 1, so the condition evaluated to false even though, in fact, both values being
tested represent true. The code in line 20 worked correctly because the value 2, returned by
the isalpha function, was correctly interpreted as true.

Program 4-15

1 // This program illustrates what can happen when a
2 // Boolean value is compared to the C++ constant true.
3 #include <iostream>
4 #include <cctype> // Needed to use the isalpha function
5 using namespace std;
6
7 int main()
8 {
9 cout << "Is '?' an alphabetic character? " << isalpha('?') << "\n";
10 cout << "Is 'X' an alphabetic character? " << isalpha('X') << "\n";
11 cout << "Is 'x' an alphabetic character? " << isalpha('x') << "\n\n";
12
13 cout << "Ask if(isalpha('x') == true) \n";
14 if (isalpha('x') == true)
15 cout << "The letter x IS an alphabetic character. \n\n";
16 else
17 cout << "The letter x is NOT an alphabetic character. \n\n";
18
19 cout << "Ask if(isalpha('x')) \n";
20 if (isalpha('x'))
21 cout << "The letter x IS an alphabetic character. \n";
22 else
23 cout << "The letter x is NOT an alphabetic character. \n";
24
25 return 0;
26 }

Program Output
Is '?' an alphabetic character? 0
Is 'X' an alphabetic character? 1
Is 'x' an alphabetic character? 2

Ask if(isalpha('x') == true
The letter x is NOT an alphabetic character

Ask if(isalpha('x'))
The letter x IS an alphabetic character

194 Chapter 4 Making Decisions

Precedence and Associativity of Logical Operators
Table 4-10 shows the precedence of C++’s logical operators, from highest to lowest.

The ! operator has a higher precedence than many of the C++ operators. Therefore, to
avoid an error, it is a good idea always to enclose its operand in parentheses, unless you
intend to apply it to a variable or a simple expression with no other operators. For exam-
ple, consider the following expressions:

!(x > 2)
!x > 2

The first expression applies the ! operator to the expression x > 2. It is asking “is x not
greater than 2?” The second expression, however, applies the ! operator to x only. It is ask-
ing “is the logical negation of x greater than 2?” Suppose x is set to 5. Since 5 is nonzero, it
would be considered true, so the ! operator would reverse it to false, which is 0. The >
operator would then determine if 0 is greater than 2. To avoid such an error, it is wise to
always use parentheses.

The && and || operators rank lower in precedence than relational operators, which means
that relational expressions are evaluated before their results are logically ANDed or ORed.

a > b && x < y is the same as (a > b) && (x < y)
a > b || x < y is the same as (a > b) || (x < y)

Thus you don’t normally need parentheses when mixing relational operators with && and
||. However it is a good idea to use them anyway to make your intent clearer for someone
reading the program.

Parentheses are even more strongly recommended anytime && and || operators are both
used in the same expression. This is because && has a higher precedence than ||. Without
parentheses to indicate which you want done first, && will always be done before ||, which
might not be what you intended. Assume recentGrad, employed, and goodCredit are
three Boolean variables. Then the expression

recentGrad || employed && goodCredit

is the same as

recentGrad ||(employed && goodCredit)

and not the same as

(recentGrad || employed)&& goodCredit

Checking Numeric Ranges with Logical Operators
Logical operators are effective for determining if a number is in or out of a range. When
determining if a number is inside a numeric range, it’s best to use the && operator. For
example, the following if statement checks the value in x to determine if it is in the range
of 20 through 40.

Table 4-10 Precedence of Logical Operators

!

&&

||

Logical Operators 195

if ((x >= 20) && (x <= 40))
cout << x << " is in the acceptable range.\n";

The expression in the if statement will be true only when x is both greater than or equal
to 20 AND less than or equal to 40. The value of x must be within the range of 20 through
40 for this expression to be true.

When determining if a number is outside a range, the || operator is best to use. The
following statement determines if the value of x is outside the range of 20 to 40:

if ((x < 20) || (x > 40))
cout << x << " is outside the acceptable range.\n";

It’s important not to get the logic of these logical operators confused. For example, the
following if statement would never test true:

if ((x < 20) && (x > 40))
cout << x << " is outside the acceptable range.\n";

Obviously, x can never be less than 20 and at the same time greater than 40.

Checkpoint

4.21 The following truth table shows various combinations of the values true and
false connected by a logical operator. Complete the table by indicating if the result
of such a combination is true or false.

Logical Expression Result (true or false)
——
true && false
true && true
false && false
true || false
true || true
false || false
!true
!false

4.22 If a = 2, b = 4, and c = 6, indicate whether each of the following conditions is
true or false:

A) (a == 4) || (b > 2)
B) (6 <= c) && (a > 3)
C) (1 != b) && (c != 3)
D) (a >= -1) || (a <= b)
E) !(a > 2)

4.23 If a = 2, b = 4, and c = 6, is the following expression true or false?

(b > a) || (b > c) && (c == 5)

4.24 Rewrite the following using the ! operator so that the logic remains the same.

if (activeEmployee == false)

NOTE: C++ does not allow you to check numeric ranges with expressions such as
5 < x < 20. Instead you must use a logical operator to connect two relational
expressions, as previously discussed.

196 Chapter 4 Making Decisions

4.8 Validating User Input

CONCEPT: As long as the user of a program enters bad input, the program will
produce bad output. Programs should be written to filter out bad input.

Perhaps the most famous saying of the computer world is “garbage in, garbage out.” The
integrity of a program’s output is only as good as its input, so you should try to make sure
garbage does not go into your programs. Input validation is the process of inspecting
information given to a program by the user and determining if it is valid. A good program
should give clear instructions about the kind of input that is acceptable, and not assume
the user has followed those instructions. Here are just a few examples of input validations
performed by programs:

• Numbers are checked to ensure they are within a range of possible values. For exam-
ple, there are 168 hours in a week. It is not possible for a person to be at work longer
than 168 hours in one week.

• Values are checked for their “reasonableness.” Although it might be possible for a
person to be at work for 168 hours per week, it is not probable.

• Items selected from a menu or some other set of choices are checked to ensure they
are available options.

• Variables are checked for values that might cause problems, such as division by zero.

Program 4-16 is a modification of Program 4-7, the test score program. It rejects any test
score less than 0 or greater than 100.

Program 4-16

1 // This program uses an if/else if statement to assign a
2 // letter grade (A, B, C, D, or F) to a numeric test score.
3 // It validates the user's input.
4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {
9 int testScore; // Holds a numeric test score
10 char grade; // Holds a letter grade
11
12 // Get the numeric score
13 cout << "Enter your numeric test score and I will\n";
14 cout << "tell you the letter grade you earned: ";
15 cin >> testScore;
16
17 if ((testScore < 0) || (testScore > 100)) // Input validation
18 { // testScore is invalid
19 cout << testScore << " is an invalid score.\n";
20 cout << "Run the program again and enter a value\n";
21 cout << "in the range of 0 to 100.\n";
22 }

(program continues)

More About Variable Definitions and Scope 197

In Chapter 5 you will learn an even better way to validate input data.

4.9 More About Variable Definitions and Scope

CONCEPT: The scope of a variable is limited to the block in which it is defined.

C++ allows you to create variables almost anywhere in a program. It is a common
practice to define all of a function’s variables at the top of the function. However, espe-
cially in longer programs, variables are sometimes defined near the part of the program
where they are used. This makes the purpose of the variable more evident. Program 4-17
is a modification of Program 4-13, which determines if the user qualifies for a loan.
The definitions of the variables income and years have been moved to later points in
the program.

23 else
24 { // testScore is valid so determine the letter grade
25 if (testScore < 60)
26 grade = 'F';
27 else if (testScore < 70)
28 grade = 'D';
29 else if (testScore < 80)
30 grade = 'C';
31 else if (testScore < 90)
32 grade = 'B';
33 else // If we got this far, testScore must be >= 90
34 grade = 'A';
35
36 // Display the letter grade
37 cout << "Your grade is " << grade << endl;
38 }
39 return 0;
40 }

Program Output with Example Input Shown in Bold
Enter your numeric test score and I will
tell you the letter grade you earned: -12[Enter]
-12 is an invalid score.
Run the program again and enter a value
in the range of 0 to 100.

Program Output with Other Example Input Shown in Bold
Enter your numeric test score and I will
tell you the letter grade you earned: 81[Enter]
Your grade is B

Program 4-16 (continued)

198 Chapter 4 Making Decisions

Recall from Chapter 2 that the scope of a variable is defined as the part of the program
where the variable may be used. In Program 4-17, the scope of the income variable is the
part of the program in lines 10 through 25. The scope of the years variable is the part of
the program in lines 15 through 25.

The variables income and years are defined inside function main’s braces. Variables
defined inside a set of braces are said to have local scope or block scope. They may only be
used in the part of the program between their definition and the block’s closing brace.

You may define variables inside any block. For example, look at Program 4-18. This version
of the loan program defines the variable years inside the block of the if statement.

Program 4-17

1 // This program determines whether or not an applicant qualifies
2 // for a loan. It demonstrates late variable declaration.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 // Get annual income and years on the job
9 cout << "What is your annual income? ";
10 double income; // Variable definition
11 cin >> income;
12
13 cout << "How many years have you worked at "
14 << "your current job? ";
15 int years; // Variable definition
16 cin >> years;
17
18 // Determine if the applicant qualifies for a loan
19 if ((income >= 35000) || (years > 5))
20 cout << "You qualify.\n";
21 else
22 { cout << "You must earn at least $35,000 or have\n";
23 cout << "been employed for more than 5 years.\n";
24 }
25 return 0;
26 }

Program 4-18

1 // This program determines whether or not an applicant qualifies
2 // for a loan. It demonstrates a variable defined in an inner block.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 // Get annual income
9 cout << "What is your annual income? ";

(program continues)

More About Variable Definitions and Scope 199

The scope of years is the part of the program from lines 17 through 24, from the point of
its definition to the end of the block in which it is defined. The variable is not visible before
its definition or after the closing brace of the block. This is true of any variable defined
inside a set of braces.

Variables with the Same Name
When a block is nested inside another block, a variable defined in the inner block may have
the same name as a variable defined in the outer block. As long as the variable in the inner
block is visible, however, the variable in the outer block will be hidden. This is illustrated
by Program 4-19.

Program 4-18 (continued)

10 double income;
11 cin >> income;
12
13 // If income is high enough, get years worked
14 if (income >= 35000)
15 { cout << "How many years have you worked at "
16 << "your current job? ";
17 int years; // Variable defined inside the if block
18 cin >> years;
19
20 if (years > 5)
21 cout << "You qualify.\n";
22 else
23 cout << "You must have been employed for "
24 << "more than 5 years to qualify.\n";
25 }
26 else
27 cout << "You must earn at least $35,000 to qualify.\n";
28
29 return 0;
30 }

NOTE: When a program is running and it enters the section of code that constitutes a
variable’s scope, it is said that the variable comes into scope. This simply means the
variable is now visible and the program may reference it. Likewise, when a variable
leaves scope, it may no longer be used.

Program 4-19

1 // This program uses two variables with the same name.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int number; // Define a variable named number

(program continues)

200 Chapter 4 Making Decisions

Program 4-19 has two separate variables named number. The cin and cout statements in
the inner block (belonging to the if statement) can only work with the number variable
defined in that block. As soon as the program leaves that block, the inner number goes out
of scope, revealing the outer number variable.

Checkpoint

4.25 Write an if statement that prints the message “The number is not valid” if the
variable speed is outside the range 0 through 200.

4.26 The following program skeleton asks the user for two numbers and then multiplies
them. The first should be negative and the second should be positive. Write the
input validation code for both numbers.

#include <iostream>
using namespace std;
int main()
{

int first, second, result;
cout << "Enter a negative integer: ";
cin >> first;
cout << "Now enter a positive integer: ";
cin >> second;

8
9 cout << "Enter a number greater than 0: ";
10 cin >> number;
11
12 if (number > 0)
13 { int number; // Define another variable named number
14
15 cout << "Now enter another number: ";
16 cin >> number;
17 cout << "The second number you entered was ";
18 cout << number << endl;
19 }
20 cout << "Your first number was " << number << endl;
21 return 0;
22 }

Program Output with Example Input Shown in Bold
Enter a number greater than 0: 2[Enter]
Now enter another number: 7[Enter]
The second number you entered was 7
Your first number was 2

WARNING! Although it’s perfectly acceptable to define variables inside nested
blocks, you should avoid giving them the same names as variables in the outer blocks.
It’s too easy to confuse one variable with another.

Program 4-19 (continued)

More About Variable Definitions and Scope 201

//
// Write input validation code
//
result = first * second;
cout << first << " times " << second << " is "

 << result << endl;
return 0;

}

4.27 Find and fix the errors in the following program.

#include <iostream>
using namespace std;

int main()
{

cout << "This program calculates the area of a "
<< "rectangle. Enter the length: ";

cin >> length;
cout << "enter the width: ";
cin >> width;
int length, width, area;
area = length * width;
cout << "The area is " << area << endl;
return 0;

}

4.28 What will the following program print if 40 is entered for test1 and 30 for test2?

#include <iostream>
using namespace std;

int main()
{

cout << "Enter your first test score: ";
int test1;
cin >> test1;
cout << "Enter your second test score: ";
int test2;
cin >> test2;
int sum = test1 + test2;
if (sum > 50)
{ test1 += 10;

test2 += 10;
int sum = test1 + test2;

}
cout << "test 1: " << test1 << endl;
cout << "test 2: " << test2 << endl;
cout << "sum : " << sum << endl;
return 0;

}

202 Chapter 4 Making Decisions

4.10 Comparing Characters and Strings

CONCEPT: Relational operators can also be used to compare characters and string
objects.

Earlier in this chapter you learned to use relational operators to compare numeric values.
They can also be used to compare characters and string objects.

Comparing Characters
As you learned in Chapter 3, characters are actually stored in memory as integers. On most
systems, this integer is the ASCII value of the character. For example, the letter ‘A’ is repre-
sented by the number 65, the letter ‘B’ is represented by the number 66, and so on. Table
4-11 shows the ASCII numbers that correspond to some of the commonly used characters.

Notice that every character, even the blank, has an ASCII code associated with it. Notice
also that the ASCII code of a character representing a digit, such as '1' or '2', is not the
same as the value of the digit itself. A complete table showing the ASCII values for all char-
acters can be found in Appendix A.

When two characters are compared, it is actually their ASCII values that are being compared.
'A' < 'B' because the ASCII value of 'A' (65) is less than the ASCII value of 'B' (66). Like-
wise '1' < '2' because the ASCII value of '1' (49) is less than the ASCII value of '2' (50).
However, as shown in Table 4-11, lowercase letters have higher numbers than uppercase let-
ters, so 'a' > 'Z'. Program 4-20, which is similar to Program 4-10, shows how characters
can be compared with relational operators. Notice that the menu choices are now letters.

Table 4-11 ASCII Values of Commonly Used Characters

Character ASCII Value

‘0’–‘9’ 48–57

‘A’–‘Z’ 65–90

‘a’–‘z’ 97–122

blank 32

period 46

Program 4-20

1 // This menu-driven program shows how relational operators can be
2 // used to compare characters. Character inputs are tested to make
3 // sure they are within the set of legal menu choices.
4 #include <iostream>
5 #include <iomanip>
6 using namespace std;
7

(program continues)

Comparing Characters and Strings 203

8 int main()
9 {
10 // Constants for membership rates
11 const double ADULT_RATE = 40.0;
12 const double CHILD_RATE = 20.0;
13 const double SENIOR_RATE = 30.0;
14
15 char choice; // Menu choice
16 int months; // Number of months
17 double charges; // Monthly charges
18
19 // Display the menu and get the user's choice
20 cout << " Health Club Membership Menu\n";
21 cout << "A. Standard Adult Membership\n";
22 cout << "B. Child Membership\n";
23 cout << "C. Senior Citizen Membership\n";
24 cout << "D. Quit the Program\n\n";
25 cout << "Enter your choice: ";
26 cin.get(choice);
27
28 // Set the numeric output formatting
29 cout << fixed << showpoint << setprecision(2);
30
31 if ((choice < 'A') || (choice > 'D'))
32 { cout << "The valid choices are A through D.\n";
33 cout << "Run the program again and select one of those.\n";
34 }
35 else if (choice == 'A')
36 { cout << "For how many months? ";
37 cin >> months;
38 charges = months * ADULT_RATE;
39 cout << "The total charges are $" << charges << endl;
40 }
41 else if (choice == 'B')
42 { cout << "For how many months? ";
43 cin >> months;
44 charges = months * CHILD_RATE;
45 cout << "The total charges are $" << charges << endl;
46 }
47 else if (choice == 'C')
48 { cout << "For how many months? ";
49 cin >> months;
50 charges = months * SENIOR_RATE;
51 cout << "The total charges are $" << charges << endl;
52 }
53 return 0;
54 }

(program continues)

Program 4-20 (continued)

204 Chapter 4 Making Decisions

Comparing String Objects
String objects can also be compared with relational operators. As with individual characters,
when two strings are compared, it is actually the ASCII value of the characters making up the
strings that are being compared. For example, assume the following definitions exist in a
program:

string set1 = "ABC";
string set2 = "XYZ";

The object set1 is considered less than the object set2 because the characters "ABC"
alphabetically precede (have lower ASCII values than) the characters "XYZ". So,
the following if statement will cause the message “set1 is less than set2.” to be
displayed on the screen.

if (set1 < set2)
cout << "set1 is less than set2.";

One by one, each character in the first operand is compared with the character in the corre-
sponding position in the second operand. If all the characters in both strings match, the two
strings are equal. Other relationships can be determined if two characters in corresponding
positions do not match. The first operand is less than the second operand if the first mis-
matched character in the first operand is less than its counterpart in the second operand.
Likewise, the first operand is greater than the second operand if the first mismatched charac-
ter in the first operand is greater than its counterpart in the second operand.

For example, assume a program has the following definitions:

string name1 = "Mary";
string name2 = "Mark";

The value in name1, "Mary", is greater than the value in name2, "Mark". This is because
the first three characters in name1 have the same ASCII values as the first three characters
in name2, but the 'y' in the fourth position of "Mary" has a greater ASCII value than the
'k' in the corresponding position of "Mark".

Any of the relational operators can be used to compare two string objects. Here are some
of the valid comparisons of name1 and name2.

name1 > name2 // true
name1 <= name2 // false
name1 != name2 // true

String objects can also, of course, be compared to string constants:

name1 < "Mary Jane" // true

Program Output with Example Input Shown in Bold
Health Club Membership Menu

A. Standard Adult Membership
B. Child Membership
C. Senior Citizen Membership
D. Quit the Program

Enter your choice: C[Enter]
For how many months? 6[Enter]
The total charges are $180.00

Program 4-20 (continued)

Comparing Characters and Strings 205

Program 4-21 further demonstrates how relational operators can be used with string
objects.

Program 4-21

1 // This program uses relational operators to compare a string
2 // entered by the user with valid stereo part numbers.
3 #include <iostream>
4 #include <iomanip>
5 #include <string>
6 using namespace std;
7
8 int main()
9 {
10 const double PRICE_A = 249.0,
11 PRICE_B = 299.0;
12
13 string partNum; // Holds a stereo part number
14
15 // Display available parts and get the user's selection
16 cout << "The stereo part numbers are:\n";
17 cout << "Boom Box : part number S-29A \n";
18 cout << "Shelf Model: part number S-29B \n";
19 cout << "Enter the part number of the stereo you\n";
20 cout << "wish to purchase: ";
21 cin >> partNum;
22
23 // Set the numeric output formatting
24 cout << fixed << showpoint << setprecision(2);
25
26 // Determine and display the correct price
27 if (partNum == "S-29A")
28 cout << "The price is $" << PRICE_A << endl;
29 else if (partNum == "S-29B")
30 cout << "The price is $" << PRICE_B << endl;
31 else
32 cout << partNum << " is not a valid part number.\n";
33 return 0;
34 }

Program Output with Example Input Shown in Bold
The stereo part numbers are:
Boom Box : part number S-29A
Shelf Model: part number S-29B
Enter the part number of the stereo you
wish to purchase: S-29A[Enter]
The price is $249.00

NOTE: C-strings, unlike string objects, cannot be compared with relational operators.
To compare C-strings (i.e., strings defined as arrays of characters) you must use the
strcmp function, which is introduced in Chapter 12.

206 Chapter 4 Making Decisions

Checkpoint

4.29 Indicate whether each of the following relational expressions is true or false. Refer
to the ASCII table in Appendix A if necessary.

A) 'a' < 'z'
B) 'a' == 'A'
C) '5' < '7'
D) 'a' < 'A'
E) '1' == 1
F) '1' == 49

4.30 Indicate whether each of the following relational expressions is true or false. Refer
to the ASCII table in Appendix A if necessary.

A) "Bill" == "BILL"
B) "Bill" < "BILL"
C) "Bill" < "Bob"
D) "189" > "23"
E) "189" > "Bill"
F) "Mary" < "MaryEllen"
G) "MaryEllen" < "Mary Ellen"

4.11 The Conditional Operator

CONCEPT: You can use the conditional operator to create short expressions that
work like if/else statements.

The conditional operator is powerful and unique. It provides a shorthand method of
expressing a simple if/else statement. The operator consists of the question-mark (?) and
the colon(:). Its format is

expression ? expression : expression;

Here is an example of a statement using the conditional operator:

x < 0 ? y = 10 : z = 20;

This statement is called a conditional expression and consists of three sub-expressions sep-
arated by the ? and : symbols. The expressions are x < 0, y = 10, and z = 20.

The conditional expression above performs the same operation as this if/else statement:

if (x < 0)
y = 10;

else
z = 20;

x < 0 ? y = 10 : z = 20;

The Conditional Operator 207

The part of the conditional expression that comes before the question mark is the condi-
tion to be tested. It’s like the expression in the parentheses of an if statement. If the con-
dition is true, the part of the statement between the ? and the : is executed. Otherwise,
the part after the : is executed. Figure 4-9 illustrates the roles played by the three sub-
expressions.

If it helps, you can put parentheses around the sub-expressions, as shown here:

(x < 0) ? (y = 10) : (z = 20);

Using the Value of a Conditional Expression
Remember, in C++ all expressions have a value, and this includes the conditional
expression. If the first sub-expression is true, the value of the conditional expression is
the value of the second sub-expression. Otherwise it is the value of the third sub-
expression. Here is an example of an assignment statement that uses the value of a
conditional expression:

a = (x > 100) ? 0 : 1;

The value assigned to variable a will be either 0 or 1, depending upon whether x is greater
than 100. This statement has the same logic as the following if/else statement:

if (x > 100)
 a = 0;

else
 a = 1;

Program 4-22 can be used to help a consultant calculate her charges. Her rate is $50.00 per
hour, but her minimum charge is for five hours. The conditional operator is used in a state-
ment that ensures the number of hours does not go below five.

Figure 4-9

NOTE: Because it takes three operands, the conditional operator is a ternary operator.

x < 0 ? y = 10 : z = 20;

First expression:
condition to
be tested

3rd expression:
executes if the
condition is false

2nd expression:
executes if the
condition is true

208 Chapter 4 Making Decisions

Let’s look more closely at the statement in line 15 with the conditional expression:

hours = hours < 5 ? 5 : hours;

If the value in hours is less than 5, then 5 is stored in hours. Otherwise hours is assigned
the value it already has hours will not have a value less than 5 when it is used in the next
statement, which calculates the consultant’s charges.

As you can see, the conditional operator gives you the ability to pack decision-making
power into a concise line of code. With a little imagination it can be applied to many other
programming problems. For instance, consider the following statement:

cout << "Your grade is: " << (score < 60 ? "Fail." : "Pass.");

If you were to use an if/else statement, this statement would be written as follows:

if (score < 60)
cout << "Your grade is: Fail.";

else
cout << "Your grade is: Pass.";

Program 4-22

1 // This program illustrates the conditional operator.
2 // It adjusts hours to 5 if fewer than 5 hours were worked.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {
9 const double PAY_RATE = 50.0;
10 double hours, charges;
11
12 cout << "How many hours were worked? ";
13 cin >> hours;
14
15 hours = (hours < 5) ? 5 : hours; // Conditional operator
16 charges = PAY_RATE * hours;
17
18 cout << fixed << showpoint << setprecision(2);
19 cout << "The charges are $" << charges << endl;
20 return 0;
21 }

Program Output with Example Input Shown in Bold
How many hours were worked? 10[Enter]
The charges are $500.00

Program Output with Other Example Input Shown in Bold
How many hours were worked? 2[Enter]
The charges are $250.00

The Conditional Operator 209

Checkpoint

4.31 Rewrite the following if/else statements as conditional expressions.

A) if (x > y)
 z = 1;
else
 z = 20;

B) if (temp > 45)
 population = base * 10;

else
 population = base * 2;

C) if (hours > 40)
 wages *= 1.5;

else
 wages *= 1;

D) if (result >= 0)
 cout << "The result is positive\n";

else
 cout << "The result is negative.\n";

4.32 Rewrite the following conditional expressions as if/else statements.

A) j = k > 90 ? 57 : 12;
B) factor = x >= 10 ? y * 22 : y * 35;
C) total += count == 1 ? sales : count * sales;
D) cout << ((num % 2) == 0) ? "Even\n" : "Odd\n");

4.33 What will the following program display?

#include <iostream>
using namespace std;

int main()
{

const int UPPER = 8, LOWER = 2;
int num1, num2, num3 = 12, num4 = 3;

num1 = num3 < num4 ? UPPER : LOWER;
num2 = num4 > UPPER ? num3 : LOWER;
cout << num1 << " " << num2 << endl;
return 0;

}

NOTE: The parentheses are placed around the conditional expression because the <<
operator has higher precedence than the ?: operator. Without the parentheses, just the
value of the expression score < 60 would be sent to cout.

210 Chapter 4 Making Decisions

4.12 The switch Statement

CONCEPT: The switch statement lets the value of a variable or expression determine
where the program will branch to.

A branch occurs when one part of a program causes another part to execute. The if/else
if statement allows your program to branch into one of several possible paths. It performs
a series of tests (usually relational) and branches when one of these tests is true. The
switch statement is a similar mechanism. It, however, tests the value of an integer expres-
sion and then uses that value to determine which set of statements to branch to. Here is the
format of the switch statement:

switch (IntegerExpression)
{

case ConstantExpression: // Place one or more
 // statements here

case ConstantExpression: // Place one or more
 // statements here

// case statements may be repeated
// as many times as necessary

default: // Place one or more
 // statements here

}

The first line of the statement starts with the word switch, followed by an integer expres-
sion inside parentheses. This can be either of the following:

• A variable of any of the integer data types (including char).
• An expression whose value is of any of the integer data types.

On the next line is the beginning of a block containing several case statements. Each case
statement is formatted in the following manner:

case ConstantExpression: // Place one or more
// statements here

After the word case is a constant expression (which must be of an integer type such as an
int or char), followed by a colon. The constant expression can be either an integer literal
or an integer named constant. The expression cannot be a variable and it cannot be a Boolean
expression such as x < 22 or n == 25. The case statement marks the beginning of a
section of statements. These statements are branched to if the value of the switch expres-
sion matches that of the case expression.

WARNING! The expressions of each case statement in the block must be unique.

The switch Statement 211

An optional default section comes after all the case statements. This section is branched
to if none of the case expressions match the switch expression. Thus it functions like a
trailing else in an if/else if statement.

Program 4-23 shows how a simple switch statement works.

The first case statement is case 'A':, the second is case 'B':, and the third is case 'C':.
These statements mark where the program is to branch to if the variable choice contains the
values 'A', 'B', or 'C'. (Remember, character variables and constants are considered inte-
gers.) The default section is branched to if the user enters anything other than A, B, or C.

Notice the break statements at the end of the case 'A', case 'B', and case 'C' sections.

Program 4-23

1 // This program demonstrates the use of a switch statement.
2 // The program simply tells the user what character they entered.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 char choice;
9
10 cout << "Enter A, B, or C: ";
11 cin >> choice;
12
13 switch (choice)
14 {
15 case 'A':cout << "You entered A.\n";
16 break;
17 case 'B':cout << "You entered B.\n";
18 break;
19 case 'C':cout << "You entered C.\n";
20 break;
21 default: cout << "You did not enter A, B, or C!\n";
22 }
23 return 0;
24 }

Program Output with Example Input Shown in Bold
Enter A, B, or C: B[Enter]
You entered B.

Program Output with Different Example Input Shown in Bold
Enter A, B, or C: F[Enter]
You did not enter A, B, or C!

212 Chapter 4 Making Decisions

switch (choice)
{

case 'A':cout << "You entered A.\n";
 break;
case 'B':cout << "You entered B.\n";
 break;
case 'C':cout << "You entered C.\n";
 break;
default:cout << "You did not enter A, B, or C!\n";

}

The break statement causes the program to exit the switch statement. The next statement
executed after encountering a break statement will be whatever statement follows the closing
brace that terminates the switch statement. A break statement is needed whenever you want
to “break out of” a switch statement because it is not automatically exited after carrying out a
set of statements the way an if/else if statement is.

The case statements show the program where to start executing in the block and the break
statements show the program where to stop. Without the break statements, the program
would execute all of the lines from the matching case statement to the end of the block.

Program 4-24 is a modification of Program 4-23 that demonstrates what happens if the
break statements are omitted.

NOTE: The default section (or the last case section if there is no default) does not
need a break statement. Some programmers prefer to put one there anyway for
consistency.

Program 4-24

1 // This program demonstrates how a switch statement
2 // works if there are no break statements.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 char choice;
9
10 cout << "Enter A, B, or C: ";
11 cin >> choice;
12
13 // The following switch statement is missing its break statements!
14 switch (choice)
15 {
16 case 'A':cout << "You entered A.\n";
17 case 'B':cout << "You entered B.\n";
18 case 'C':cout << "You entered C.\n";
19 default :cout << "You did not enter A, B, or C!\n";
20 }
21 return 0;
22 }

(program continues)

The switch Statement 213

Without the break statement, the program “falls through” all of the statements below
the one with the matching case expression. Sometimes this is what you want. Program
4-25 lists the features of three TV models a customer may choose from. The model 100
has remote control. The model 200 has remote control and stereo sound. The model 300
has remote control, stereo sound, and picture-in-a-picture capability. The program uses a
switch statement with carefully omitted breaks to print the features of the selected
model.

Program Output with Example Input Shown in Bold
Enter A, B, or C: A[Enter]
You entered A.
You entered B.
You entered C.
You did not enter A, B, or C!

Program Output with Different Example Input Shown in Bold
Enter A, B, or C: C[Enter]
You entered C.
You did not enter A, B, or C!

Program 4-25

1 // This program is carefully constructed to use the "fall through"
2 // feature of the switch statement.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int modelNum;
9
10 // Display available models and get the user's choice
11 cout << "Our TVs come in three models:\n";
12 cout << "The 100, 200, and 300. Which do you want? ";
13 cin >> modelNum;
14
15 // Display the features of the selected model
16 cout << "That model has the following features:\n";
17 switch (modelNum)
18 {
19 case 300: cout << " Picture-in-a-picture\n";
20 case 200: cout << " Stereo sound\n";
21 case 100: cout << " Remote control\n";
22 break;
23 default : cout << "You can only choose the 100, 200, or 300.\n ";
24 }
25 return 0;
26 }

(program continues)

Program 4-24 (continued)

214 Chapter 4 Making Decisions

Another example of how useful this “fall through” capability can be is when you want the
program to branch to the same set of statements for multiple case expressions. For instance,
Program 4-26 asks the user to select a grade of dog food. The available choices are A, B, and
C. The switch statement will recognize either upper or lowercase letters.

Program Output with Example Input Shown in Bold
Our TVs come in three models:
The 100, 200, and 300. Which do you want? 100[Enter]
That model has the following features:
 Remote control

Program Output with Different Example Input Shown in Bold
Our TVs come in three models:
The 100, 200, and 300. Which do you want? 200[Enter]
That model has the following features:
 Stereo sound
 Remote control

Program Output with Different Example Input Shown in Bold
Our TVs come in three models:
The 100, 200, and 300. Which do you want? 300[Enter]
That model has the following features:
 Picture-in-a-picture
 Stereo sound
 Remote control

Program Output with Different Example Input Shown in Bold
Our TVs come in three models:
The 100, 200, and 300. Which do you want? 500[Enter]
That model has the following features:
You can only choose the 100, 200, or 300.

Program 4-26

1 // The switch statement in this program uses the "fall through" feature
2 // to catch both uppercase and lowercase letters entered by the user.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 char feedGrade;
9
10 // Get the desired grade of feed
11 cout << "Our dog food is available in three grades:\n";
12 cout << "A, B, and C. Which do you want pricing for? ";
13 cin >> feedGrade;
14

(program continues)

Program 4-25 (continued)

The switch Statement 215

When the user enters 'a' the corresponding case has no statements associated with it, so
the program falls through to the next case, which corresponds with 'A'.

case 'a':
case 'A':cout << "30 cents per pound.\n";

break;

The same is technique is used for 'b' and 'c'.

Using switch in Menu-Driven Systems
The switch statement is a natural mechanism for building menu-driven systems like the
one we built in Program 4-10. However in that program, once the user selects which health
club package to purchase, the program uses an if/else if statement to calculate the
charges. Program 4-27 is a modification of that program that uses a switch statement
instead. Notice that this program also uses a logical AND operator so that the prompt and
input for the number of months only has to appear once.

15 // Find and display the price
16 switch(feedGrade)
17 {
18 case 'a':
19 case 'A': cout << "30 cents per pound.\n";
20 break;
21 case 'b':
22 case 'B': cout << "20 cents per pound.\n";
23 break;
24 case 'c':
25 case 'C': cout << "15 cents per pound.\n";
26 break;
27 default : cout << "That is an invalid choice.\n";
28 }
29 return 0;
30 }

Program Output with Example Input Shown in Bold
 Our dog food is available in three grades:
 A, B, and C. Which do you want pricing for? b[Enter]
 20 cents per pound.

Program Output with Different Example Input Shown in Bold
 Our dog food is available in three grades:
 A, B, and C. Which do you want pricing for? B[Enter]
 20 cents per pound.

Program 4-26 (continued)

216 Chapter 4 Making Decisions

Program 4-27

1 // This menu-driven program uses a switch statement to carry out
2 // the appropriate set of actions based on the user's menu choice.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {
9 // Constants for membership rates
10 const double ADULT_RATE = 40.0;
11 const double CHILD_RATE = 20.0;
12 const double SENIOR_RATE = 30.0;
13
14 int choice; // Menu choice
15 int months; // Number of months
16 double charges; // Monthly charges
17
18 // Display the menu and get the user's choice
19 cout << " Health Club Membership Menu\n\n";
20 cout << "1. Standard Adult Membership\n";
21 cout << "2. Child Membership\n";
22 cout << "3. Senior Citizen Membership\n";
23 cout << "4. Quit the Program\n\n";
24 cout << "Enter your choice: ";
25 cin >> choice;
26
27 // Validate and process the menu choice
28 if ((choice >= 1) && (choice <= 3))
29 { cout << "For how many months? ";
30 cin >> months;
31
32 // Set charges based on user input
33 switch (choice)
34 {
35 case 1: charges = months * ADULT_RATE;
36 break;
37 case 2: charges = months * CHILD_RATE;
38 break;
39 case 3: charges = months * SENIOR_RATE;
40 }
41 // Display the monthly charges
42 cout << fixed << showpoint << setprecision(2);
43 cout << "The total charges are $" << charges << endl;
44 }
45 else if (choice != 4)
46 { cout << "The valid choices are 1 through 4.\n";
47 cout << "Run the program again and select one of these.\n";
48 }
49 return 0;
50 }

(program continues)

The switch Statement 217

Checkpoint

4.34 Explain why you cannot convert the following if/else if statement into a
switch statement.

if (temp == 100)
x = 0;

else if (population > 1000)
x = 1;

else if (rate < .1)
x = -1;

4.35 What is wrong with the following switch statement?

switch (temp)
{

case temp < 0 : cout << "Temp is negative.\n";
 break;

case temp == 0: cout << "Temp is zero.\n";
 break;

case temp > 0 : cout << "Temp is positive.\n";
 break;

}

4.36 What will the following program segment display?

int funny = 7, serious = 15;

funny = serious * 2;
switch (funny)
{ case 0 : cout << "That is funny.\n";
 break;
 case 30: cout << "That is serious.\n";
 break;
 case 32: cout << "That is seriously funny.\n";
 break;
 default: cout << funny << endl;
}

Program Output with Example Input Shown in Bold
Health Club Membership Menu

1. Standard Adult Membership
2. Child Membership
3. Senior Citizen Membership
4. Quit the Program

Enter your choice: 2[Enter]
For how many months? 6[Enter]
The total charges are $120.00

Program 4-27 (continued)

218 Chapter 4 Making Decisions

4.37 Complete the following program skeleton by writing a switch statement that dis-
plays "one" if the user has entered 1, "two" if the user has entered 2, and "three"
if the user has entered 3. If a number other than 1, 2, or 3 is entered, the program
should display an error message.

#include <iostream>
using namespace std;

int main()
{

int userNum;

cout << "Enter one of the numbers 1, 2, or 3: ";
cin >> userNum;

// Write the switch statement here.

return 0;
}

4.38 Rewrite the following program. Use a switch statement instead of the if/else if
statement.

#include <iostream>
using namespace std;

int main()
{

int selection;

cout << "Which formula do you want to see?\n\n";
cout << "1. Area of a circle\n";
cout << "2. Area of a rectangle\n";
cout << "3. Area of a cylinder\n"
cout << "4. None of them!\n";
cin >> selection;
if (selection == 1)

cout << "Pi times radius squared\n";
else if (selection == 2)

cout << "Length times width\n";
else if (selection == 3)

cout << "Pi times radius squared times height\n";
else if (selection == 4)

cout << "Well okay then, good-bye!\n";
else

cout << "Not good with numbers, eh?\n";
return 0;

}

Enumerated Data Types 219

4.13 Enumerated Data Types

CONCEPT: An enumerated data type in C++ is a data type whose legal values are a set
of named constant integers.

So far we have used data types that are built into the C++ language, such as int and
double, and object types, like string, which are provided by C++ classes. However, C++
also allows programmers to create their own data types. An enumerated data type is a
programmer-defined data type that contains a set of named integer constants. Here is an
example of an enumerated type declaration.

enum Roster { Tom, Sharon, Bill, Teresa, John };

This creates a data type named Roster. It is called an enumerated type because the legal set
of values that variables of this data type can have are enumerated, or listed, as part of the
declaration. A variable of the Roster data type may only have values that are in the list
inside the braces.

It is important to realize that the example enum statement does not actually create any
variables—it just defines the data type. It says that when we later create variables of
this data type, this is what they will look like—integers whose values are limited to the
integers associated with the symbolic names in the enumerated set. The following
statement shows how a variable of the Roster data type would be defined.

Roster student;

The form of this statement is like any other variable definition: first the data type
name, then the variable name. Notice that the data type name is Roster, not enum
Roster.

Because student is a variable of the Roster data type, we may store any of the values
Tom, Sharon, Bill, Teresa, or John in it. An assignment operation would look like
this:

student = Sharon;

The value of the variable could then be tested like this:

if (student == Sharon)

Notice in the two examples that there are no quotation marks around Sharon. It is a
named constant, not a string literal.

In Chapter 3 you learned that named constants are constant values that are accessed
through their symbolic name. So what is the value of Sharon? The symbol Tom is stored as
the integer 0. Sharon is stored as the integer 1. Bill is stored as the integer 2, and so forth.

Even though the values in an enumerated data type are actually stored as integers, you can-
not always substitute the integer value for the symbolic name. For example, assuming that
student is a variable of the Roster data type, the following assignment statement is illegal.

student = 2; // Error!

220 Chapter 4 Making Decisions

You can, however, test an enumerated variable by using an integer value instead of a sym-
bolic name. For example, the following two if statements are equivalent.

if (student == Bill)
if (student == 2)

You can also use relational operators to compare two enumerated variables. For example,
the following if statement determines if the value stored in student1 is less than the value
stored in student2:

if (student1 < student2)

If student1 equals Bill and student2 equals John, this statement would be true. How-
ever, if student1 equals Bill and student2 equals Sharon, the statement would be false.

By default, the symbols in the enumeration list are assigned the integer values 0, 1, 2, and so forth.
If this is not appropriate, you can specify the values to be assigned, as in the following example.

enum Department { factory = 1, sales = 2, warehouse = 4 };

Remember that if you do assign values to the enumerated symbols, they must be integers.
The following value assignments would produce an error.

enum Department { factory = 1.1, sales = 2.2, warehouse = 4.4 };
 // Error!

While there is no requirement that assigned integer values be placed in ascending order, it
is generally considered a good idea to do this.

If you leave out the value assignment for one or more of the symbols, it will be assigned a
default value, as illustrated here:

enum Colors { red, orange, yellow = 9, green, blue };

red will be assigned the value 0, orange will be 1, yellow will be 9, green will be 10, and
blue will be 11.

One of the purposes of an enumerated data type is that the symbolic names help to make a
program self-documenting. However, because these names are not strings, they are for use
inside the program only. Using the Roster data type in our example, the following two
statements would output a 2, not the name Sharon.

Roster student1 = Sharon;
cout << student1;

Because the symbolic names of an enumerated data type are associated with integer values,
they may be used in a switch statement, as shown in Program 4-28. This program also
demonstrates that it is possible to use an enumerated data type without actually creating
any variables of that type.

Program 4-28

1 // This program demonstrates an enumerated data type.
2 #include <iostream>
3 using namespace std;
4

(program continues)

Enumerated Data Types 221

Checkpoint

4.39 Find all the things that are wrong with the following declaration.

Enum Pet = { "dog", "cat", "bird", "fish" }

5 // Declare the enumerated type
6 enum Roster { Tom = 1, Sharon, Bill, Teresa, John };
7 // Sharon – John will be assigned default values 2-5.
8 int main()
9 {
10 int who;
11
12 cout << "This program will give you a student's birthday.\n";
13 cout << "Whose birthday do you want to know?\n";
14 cout << "1 = Tom\n";
15 cout << "2 = Sharon\n";
16 cout << "3 = Bill\n";
17 cout << "4 = Teresa\n";
18 cout << "5 = John\n";
19 cin >> who;
20
21 switch (who)
22 {
23 case Tom : cout << "\nTom's birthday is January 3.\n";
24 break;
25 case Sharon: cout << "\nSharon's birthday is April 22.\n";
26 break;
27 case Bill : cout << "\nBill's birthday is December 19.\n";
28 break;
29 case Teresa: cout << "\nTeresa's birthday is February 2.\n";
30 break;
31 case John : cout << "\nJohn's birthday is June 17.\n";
32 break;
33 default : cout << "\nInvalid selection\n";
34 }
35 return 0;
36 }

Program Output with Example Input Shown in Bold
This program will give you a student's birthday.
Whose birthday do you want to know?
1 = Tom
2 = Sharon
3 = Bill
4 = Teresa
5 = John
2[Enter]

Sharon's birthday is April 22.

Program 4-28 (continued)

222 Chapter 4 Making Decisions

4.40 Follow the instructions to complete the following program segment.

enum Paint { red, blue, yellow, green, orange, purple };
Paint color = green;

// Write an if/else statement that will print out "primary color"
// if color is red, blue, or yellow, and will print out
// "mixed color" otherwise. The if test should use a relational
// expression.

4.14 Testing for File Open Errors

CONCEPT: When opening a file you can test the file stream object to determine if an
error occurred.

In Chapter 3 you were introduced to file operations and saw that the file stream member
function open is used to open a file. Sometimes the open member function will not work.
For example, the following code will fail if the file info.txt does not exist:

ifstream inputFile;
inputFile.open("info.txt");

You can determine when a file has failed to open by testing the value of the file stream
object with the ! operator. The following program segment attempts to open the file
customers.txt. If the file cannot be opened, an error message is displayed.

ifstream inputFile;
inputFile.open("customers.txt");
if (!inputFile)
{

cout << "Error opening file.\n";
}

Another way to detect a failed attempt to open a file is with the fail member function, as
shown in the following code.

ifstream inputFile;
inputFile.open("customers.txt");
if (inputFile.fail())
{

cout << "The customer.txt file could not be opened.\n"
 << "Make sure it is located in the default directory\n"
 << "where your program expects to find it.\n";

}

The fail member function returns true whenever an attempted file operation is
unsuccessful. When using file I/O, you should always test the file stream object to make
sure the file was opened successfully. If the file could not be opened, the user should be
informed and appropriate action taken by the program.

223

4.15 Focus on Testing and Debugging:
Validating Output Results

CONCEPT: When testing a newly created or modified program, the output it produces
must be carefully examined to ensure it is correct.

Once a program being developed has been designed, written in a programming language,
and found to compile and link without errors, it is easy to jump to the conclusion that it
works correctly. This is especially true if it runs without aborting and produces “reason-
able” output. However, just because a program runs and produces output does not mean
that it is correct. It may still contain logic errors that cause the output to be incorrect. To
determine if a program actually works correctly it must be tested with data whose output
can be predicted and the output examined to ensure it is accurate.

Program 4-29 runs and produces output that may initially appear reasonable. However, it
contains a bug that causes it to produce incorrect output.

Program 4-29

1 // This program determines total buffet luncheon cost when
2 // the number of guests and the per person cost are known.
3 // It contains a logic error.
4 #include <iostream>
5 #include <iomanip>
6 using namespace std;
7
8 const int ADULT_MEAL_COST = 6.25; // Child meal cost = 75% of this
9
10 int main()
11 {
12 int numAdults, // Number of guests ages 12 and older
13 numChildren; // Number of guests ages 2-11
14 double adultMealTotal, // Cost for all adult meals
15 childMealTotal, // Cost for all child meals
16 totalMealCost;
17
18 // Get number of adults and children attending
19 cout << "This program calculates total cost "
20 << "for a buffet luncheon.\n";
21 cout << "Enter the number of adult guests (age 12 and over): ";
22 cin >> numAdults;
23 cout << "Enter the number of child guests (age 2-11): ";
24 cin >> numChildren;
25
26 // Calculate meal costs
27 adultMealTotal = numAdults * ADULT_MEAL_COST;
28 childMealTotal = numChildren * ADULT_MEAL_COST * .75;
29 totalMealCost = adultMealTotal + childMealTotal;

(program continues)

Focus on Testing and Debugging: Validating Output Results

224 Chapter 4 Making Decisions

At first glance the program may appear to run correctly. The per person charge for
adults is $6.25, so if there were 100 adult guests the price would be $625. But there are
only 96 guests and four of them are children, so it should cost less. $570 sounds
“about right”.

However, “about right” is not an a sufficient test of accuracy. If the program had been
run with data whose output could have been more easily checked, the programmer
would have quickly seen that there is an error. Here is the output from two more runs of
the same program using more carefully selected sample data.

Program Output with Different Example Input Shown in Bold
This program calculates total cost for a buffet luncheon.
Enter the number of adult guests (age 12 and over): 1[Enter]
Enter the number of child guests (age 2-11): 0[Enter]

Total buffet cost is $6.00

Program Output with Still Different Example Input Shown in Bold
This program calculates total cost for a buffet luncheon.
Enter the number of adult guests (age 12 and over): 0[Enter]
Enter the number of child guests (age 2-11): 1[Enter]

Total buffet cost is $4.50

From this output we can see that the cost of a child meal is correctly being calculated as
75% of the cost of an adult meal, but the adult meal cost is wrong. For one adult, it is
coming out as $6.00, when it should have been $6.25.

To find the problem, the programmer should determine which lines of code are most apt to
have caused the problem. Most likely something is wrong either in the initialization or
storage of ADULT_MEAL_COST on line 8, in the calculation or storage of adultMealTotal
or totalMealCost on lines 14, 16, 27, and 29 or in the printing of totalMealCost on
line 33. Because the cost for one adult meal is erroneously coming out as a whole dollar
amount, even though it is formatted to appear as a floating-point number, one of the things
to check is whether all the variables that need to hold floating-point values have been defined
as type float or double. Sure enough, although adultMealTotal and totalMealCost

30
31 // Display total meal cost
32 cout << fixed << showpoint << setprecision(2);
33 cout << "\nTotal buffet cost is $" << totalMealCost << endl;
34 return 0;
35 }

Program Output with Example Input Shown in Bold
This program calculates total cost for a buffet luncheon.
Enter the number of adult guests (age 12 and over): 92[Enter]
Enter the number of child guests (age 2-11): 4[Enter]

Total buffet cost is $570.00

Program 4-29 (continued)

Green Fields Landscaping Case Study—Part 2 225

have each been defined as a double, the named constant ADULT_MEAL_COST has been defined
to be an int. So the 6.25 with which it is initialized is truncated to 6 when it is stored. When
the definition of this named constant is rewritten as

const double ADULT_MEAL_COST = 6.25;

and the program is rerun, we get the following results.

Output of Revised Program with Example Input Shown in Bold

This program calculates total cost for a buffet luncheon.
Enter the number of adult guests (age 12 and over): 1[Enter]
Enter the number of child guests (age 2-11): 0[Enter]

Total buffet cost is $6.25

Now that this error has been found and fixed, the program is correct. However, additional
testing with carefully developed test cases should be used to confirm this. The topic of how
to develop good test cases will be dealt with further in the next chapter.

4.16 Green Fields Landscaping Case Study—Part 2

Problem Statement
Another of the services provided by Green Fields Landscaping is the sale of evergreen trees,
which are priced by height. Customers have the choice of purchasing a tree on a “cash and
carry” basis, of purchasing a tree and having it delivered, or of purchasing a tree and hav-
ing it both delivered and planted. You have been asked to develop a program that uses the
number of trees purchased, their height, and the delivery and planting information to cre-
ate a customer invoice. Assume for now that all trees purchased are the same height.

Program Design

Program Steps

The program must carry out the following general steps:

1. Have the user input the number of trees purchased and their height.
2. Have the user indicate if the trees will be planted by Green Fields.
3. If planting service is not desired, have the user indicate if they want delivery.
4. Calculate the total tree cost.
5. Calculate the planting and delivery charges.
6. Calculate the total of all charges.
7. Print a bill that displays the purchase information and all charges.

Table 4-12 Evergreen Tree Pricing Information

Under 3 feet tall 39.00 (tax included)

3 to 5 feet tall 69.00 (tax included)

6 to 8 feet tall 99.00 (tax included)

over 8 feet tall 199.00 (tax included)

delivery only (per tree) 20.00 (100.00 max. per order)

delivery + planting 50% of the cost of the tree

226 Chapter 4 Making Decisions

Named constants

double PRICE_1 = 39.00
double PRICE_2 = 69.00
double PRICE_3 = 99.00
double PRICE_4 = 199.00
double PER_TREE_DELIVERY = 20.00
double MAX_DELIVERY = 100.00

Variables whose values will be input

int numTrees // Number of evergreen trees purchased
int height // Tree height to the nearest foot
char planted // Are trees to be planted?('Y'/'N')
char delivered // Are trees to be delivered?('Y'/'N')

Variables whose values will be output

double treeCost // Cost of each tree
double totalTreeCost // Total price for all the trees
double deliveryCost // Delivery cost for all the trees
double plantingCost // Planting cost for all the trees
double totalCharges // Total invoice amount

Detailed Pseudocode (including actual variable names and needed calculations)

Initialize deliveryCost and plantingCost to 0
Display screen heading
Input numTrees, height, planted
If planted = 'N'
 Input delivery
End If
If height < 3
 treeCost = PRICE_1
Else If height <= 5
 treeCost = PRICE_2
Else If height <= 8
 treeCost = PRICE_3
Else
 treeCost = PRICE_4
End If
totalTreeCost = numTrees * treeCost
If planted = 'Y'
 plantingCost = totalTreeCost / 2 // deliveryCost stays 0
Else If delivered = 'Y'
 If numTrees <= 5
 deliveryCost = PER_TREE_DELIVERY * numTrees
 Else
 deliveryCost = MAX_DELIVERY
 End If
End If
totalCharges = totalTreeCost + deliveryCost + plantingCost
Display invoice heading
Display numTrees, treeCost, totalTreeCost,
 deliveryCost, plantingCost, totalCharges

Green Fields Landscaping Case Study—Part 2 227

The Program
The next step, after the pseudocode has been checked for logic errors, is to expand the
pseudocode into the final program. This is shown in Program 4-30.

Program 4-30

1 // This program is used by Green Fields Landscaping to create
2 // customer invoices for evergreen tree sales.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {
9 const double PRICE_1 = 39.00, // Set prices for different
10 PRICE_2 = 69.00, // size trees
11 PRICE_3 = 99.00,
12 PRICE_4 = 199.00;
13
14 const double PER_TREE_DELIVERY = 20.00, // Set delivery fees
15 MAX_DELIVERY = 100.00;
16
17 int numTrees, // Number of evergreen trees purchased
18 height; // Tree height to the nearest foot
19 char planted, // Are trees to be planted?('Y'/'N')
20 delivered; // Are trees to be delivered?('Y'/'N')
21 double treeCost, // Cost of each tree
22 totalTreeCost, // Total price for all the trees
23 deliveryCost = 0.0, // Delivery cost for all the trees
24 plantingCost = 0.0, // Planting cost for all the trees
25 totalCharges; // Total invoice amount
26
27 // Display purchase screen and get purchase information
28 cout << " Green Fields Landscaping\n"
29 << " Evergreen Tree Purchase\n\n";
30 cout << "Number of trees purchased: ";
31 cin >> numTrees;
32 cout << "Tree height to the nearest foot: ";
33 cin >> height;
34 cout << "Will Green Fields do the planting?(Y/N): ";
35 cin >> planted;
36
37 if (!(planted == 'Y' || planted == 'y'))
38 { cout << "Do you want the trees delivered? (Y/N): ";
39 cin >> delivered;
40 }

(program continues)

228 Chapter 4 Making Decisions

41
42 // Calculate costs
43 if (height < 3)
44 treeCost = PRICE_1;
45 else if(height <= 5)
46 treeCost = PRICE_2;
47 else if(height <= 8)
48 treeCost = PRICE_3;
49 else
50 treeCost = PRICE_4;
51
52 totalTreeCost = numTrees * treeCost;
53
54 if ((planted == 'Y') || (planted == 'y'))
55 plantingCost = totalTreeCost / 2;
56 else if((delivered == 'Y') || (delivered == 'y'))
57 if (numTrees <= 5)
58 deliveryCost = PER_TREE_DELIVERY * numTrees;
59 else
60 deliveryCost = MAX_DELIVERY;
61 //else planting and delivery costs both remain 0.0
62
63 totalCharges = totalTreeCost + deliveryCost + plantingCost;
64
65 // Display information on the invoice
66 cout << fixed << showpoint << setprecision(2);
67 cout << "\n\n Green Fields Landscaping\n"
68 << " Evergreen Tree Purchase\n\n";
69 cout << setw(2) << numTrees << " trees @ $" << setw(6) << treeCost
70 << " each = $" << setw(8) << totalTreeCost << endl;
71 cout << "Delivery charge $"
72 << setw(8) << deliveryCost << endl;
73 cout << "Planting charge $"
74 << setw(8) << plantingCost << endl;
75 cout << " ________" << endl;
76 cout << "Total Amount Due $"
77 << setw(8) << totalCharges << endl << endl;
78 return 0;
79 }

Program Output with Example Input Shown in Bold
 Green Fields Landscaping
 Evergreen Tree Purchase

Number of trees purchased: 4[Enter]
Tree height to the nearest foot: 7[Enter]
Will Green Fields do the planting?(Y/N): y[Enter]

(program continues)

Program 4-30 (continued)

229

Crazy Al’s Computer Emporium Case Study
The following additional case study, which contain applications of material introduced in
Chapter 4, can be found on the student CD.

Crazy Al’s is a retail seller of home computers whose sales staff work on commission. The
commission rate varies depending on the amount of sales. This case study develops a pro-
gram that computes monthly sales commission and then subtracts any pay already
advanced to the salesperson to calculate how much remaining pay is due at the end of the
month. The case study, which employs branching logic to determine the correct commis-
sion rate, includes problem definition, general and detailed pseudocode design, and a final
running program with sample output.

4.17 Tying It All Together: Fortune Teller

With the rand() function you learned about in Chapter 3 and the if/else if statement
you learned about in this chapter, you can now create a simple fortune telling game. Your
program will start by asking users to enter three careers they would like to have some day.
The program will then use random numbers to predict their future.

 Green Fields Landscaping
 Evergreen Tree Purchase

 4 trees @ $ 99.00 each = $ 396.00
Delivery charge $ 0.00
Planting charge $ 198.00

Total Amount Due $ 594.00

Program 4-31

1 // This program predicts the player's future using
2 // random numbers and an if/else if statement.
3 #include <iostream>
4 #include <string> // Needed to use strings
5 #include <cstdlib> // Needed for random numbers
6 using namespace std;
7
8 int main()
9 {
10 // Strings to hold user entered careers
11 string career1, career2, career3;
12
13 int randomNum; // Will hold the randomly generated integer
14

(program continues)

Program 4-30 (continued)

Tying It All Together: Fortune Teller

230 Chapter 4 Making Decisions

15 // "Seed" the random generator
16 unsigned seed = time(0);
17 srand(seed);
18
19 // Explain the game and get the player's career choices
20 cout << "I am a fortune teller. Look into my crystal screen \n"
21 << "and enter 3 careers you would like to have. Example: \n\n"
22 << " chef \n astronaut \n CIA agent \n\n"
23 << "Then I will predict what you will be. \n\n";
24
25 cout << "Career choice 1: ";
26 getline(cin, career1);
27 cout << "Career choice 2: ";
28 getline(cin, career2);
29 cout << "Career choice 3: ";
30 getline(cin, career3);
31
32 // Randomly generate an integer between 1 and 4.
33 randomNum = 1 + rand() % 4;
34
35 // Use branching logic to output the prediction
36 if (randomNum == 1)
37 cout << "\nYou will be a " << career1 << ". \n";
38 else if (randomNum == 2)
39 cout << "\nYou will be a " << career2 << ". \n";
40 else if (randomNum == 3)
41 cout << "\nYou will be a " << career3 << ". \n";
42 else
43 cout << "\nSorry. You will not be any of these. \n";
44 return 0;
45 }

Sample Run with User Input Shown in Bold
I am a fortune teller. Look into my crystal screen
and enter 3 careers you would like to have. For example,

 chef
 astronaut
 CIA agent

Then I will predict what you will be.

Career choice 1: radio announcer[Enter]
Career choice 2: sky diving instructor[Enter]
Career choice 3: circus clown[Enter]

You will be a radio announcer.

Program 4-31 (continued)

Chapter 4 Making Decisions

Review Questions and Exercises 231

Review Questions and Exercises

Fill-in-the-Blank and Short Answer

1. An expression using the greater-than, less-than, greater-than-or-equal-to, less-than-or-
equal-to, equal, or not-equal operator is called a(n) __________ expression.

2. The value of a relational expression is 0 if the expression is __________ or 1 if the
expression is __________.

3. The if statement regards an expression with the value 0 as __________ and an
expression with a nonzero value as __________.

4. For an if statement to conditionally execute a group of statements, the statements
must be enclosed in a set of __________.

5. In an if/else statement, the if part executes its statement(s) if the expression is
__________, and the else part executes its statement(s) if the expression is
__________.

6. The trailing else in an if/else if statement has a similar purpose as the
__________ section of a switch statement.

7. If the sub-expression on the left of the && logical operator is __________, the right
sub-expression is not checked.

8. If the sub-expression on the left of the || logical operator is __________, the right
sub-expression is not checked.

9. The __________ logical operator has higher precedence than the other logical
operators.

10. Logical operators have __________ precedence than relational operators.

11. The __________ logical operator works best when testing a number to determine if it
is within a range.

12. The __________ logical operator works best when testing a number to determine if it
is outside a range.

13. A variable with __________ scope is only visible when the program is executing in the
block containing the variable’s definition.

14. The expression that follows the switch statement must have a(n) __________ value.

15. A program will “fall through” to the following case section if it is missing the
__________ statement.

16. What value will be stored in the variable t after each of the following statements
executes?

A) t = (12 > 1);__________
B) t = (2 < 0);__________
C) t = (5 == (3 * 2));__________
D) t = (5 == 5);__________

17. Write an if statement that assigns 100 to x when y is equal to 0.

18. Write an if/else statement that assigns 0 to x when y is equal to 10. Otherwise it
should assign 1 to x.

232 Chapter 4 Making Decisions

19. Write an if/else statement that prints “Excellent” when score is 90 or higher,
“Good” when score is between 80 and 89, and “Try Harder” when score is less
than 80.

20. Write an if statement that sets the variable hours to 10 when the flag variable
minimum is set.

21. Convert the following conditional expression into an if/else statement.

q = (x < y) ? (a + b) : (x * 2);

22. Convert the following if/else if statement into a switch statement:

if (choice == 1)
{

cout << fixed << showpoint << setprecision(2);
}
else if ((choice == 2) || (choice == 3))
{

cout << fixed << showpoint << setprecision(4);
}
else if (choice == 4)
{

cout << fixed << showpoint << setprecision(6);
}
else
{

cout << fixed << showpoint << setprecision(8);
}

23. Assume the variables x = 5, y = 6, and z = 8. Indicate if each of the following
conditions is true or false:

A) (x == 5) || (y > 3)
B) (7 <= x) && (z > 4)
C) (2 != y) && (z != 4)

24. Assume the variables x = 5, y = 6, and z = 8. Indicate if each of the following
conditions is true or false:

A) (x >= 0) || (x <= y)
B) (z - y) > y
C) !((z - y) > x)

Algorithm Workbench

25. Write a C++ statement that prints the message “The number is valid.” if the variable
grade is within the range 0 through 100.

26. Write a C++ statement that prints the message “The number is valid.” if the variable
temperature is within the range −50 through 150.

27. Write a C++ statement that prints the message “The number is not valid.” if the
variable hours is outside the range 0 through 80.

28. Write a C++ statement that displays the strings title1 and title2 in alphabetical
order.

Review Questions and Exercises 233

29. Using the following chart , write a C++ statement that assigns .10, .15, or .20 to
commission, depending on the value in sales.

30. Write one or more C++ statements that assign the correct value to discount, using
the logic described here:

Assign .20 to discount if dept equals 5 and price is $100 or more.
Assign .15 to discount if dept is anything else and price is $100 or more.
Assign .10 to discount if dept equals 5 and price is less than $100.
Assign .05 to discount if dept is anything else and price is less than $100.

31. The following statement should determine if x is not greater than 20. What is wrong
with it?

if (!x > 20)

32. The following statement should determine if count is within the range of 0 through
100. What is wrong with it?

if (count >= 0 || count <= 100)

33. The following statement should determine if count is outside the range of 0 through
100. What is wrong with it?

if (count < 0 && count > 100)

34. The following statement should determine if x has a value other than 1 or 2. What is
wrong with it?

if (x! = 1 || x! = 2)

Find the Errors

35. Each of the following program segments has errors. Find as many as you can.

A) cout << "Enter your 3 test scores and I will ";
 << "average them:";
 int score1, score2, score3,
 cin >> score1 >> score2 >> score3;

 double average;
 average = (score1 + score2 + score3) / 3.0;
 if (average = 100);

 perfectScore = true;// Set the flag variable
 cout << "Your average is " << average << endl;
 bool perfectScore;
 if (perfectScore);
 {
 cout << "Congratulations!\n";
 cout << "That's a perfect score.\n";
 cout << "You deserve a pat on the back!\n";

Sales Commission Rate

Up to $10,000
$10,000 to $15,000
Over $15,000

10%
15%
20%

234 Chapter 4 Making Decisions

B) double num1, num2, quotient;

 cout << "Enter a number: ";
 cin >> num1;
 cout << "Enter another number: ";
 cin >> num2;

 if (num2 == 0)
 cout << "Division by zero is not possible.\n";
 cout << "Please run the program again ";
 cout << "and enter a number besides zero.\n";
 else
 quotient = num1 / num2;
 cout << "The quotient of " << num1 <<
 cout << " divided by " << num2 << " is ";
 cout << quotient << endl;

C) int testScore;

 cout << "Enter your test score and I will tell you\n";
 cout << "the letter grade you earned: ";
 cin >> testScore;

 if (testScore < 60)
 cout << "Your grade is F.\n";
 else if (testScore < 70)
 cout << "Your grade is D.\n";
 else if (testScore < 80)
 cout << "Your grade is C.\n";
 else if (testScore < 90)
 cout << "Your grade is B.\n";
 else
 cout << "That is not a valid score.\n";
 else if (testScore <= 100)
 cout << "Your grade is A.\n";

D) double testScore;

 cout << "Enter your test score and I will tell you\n";
 cout << "the letter grade you earned: ";
 cin >> testScore;

 switch (testScore)
 { case (testScore < 60.0):
 cout << "Your grade is F.\n";
 break;
 case (testScore < 70.0):
 cout << "Your grade is D.\n";
 break;
 case (testScore < 80.0):
 cout << "Your grade is C.\n";
 break;
 case (testScore < 90.0):
 cout << "Your grade is B.\n";
 break;
 case (testScore <= 100.0):
 cout << "Your grade is A.\n";
 break;
 default: cout << "That score isn't valid\n"; }

Review Questions and Exercises 235

Soft Skills

Programmers need to be able to look at alternative approaches to solving a problem and at
different ways of implementing a solution, weighing the pros and cons of each. Further,
they need to be able to clearly articulate to others why they recommend, or have chosen, a
particular solution. Come to class prepared to discuss the following:

36. Sometimes either a switch statement or an if/else if statement can be used to
implement logic that requires branching to different blocks of program code. But the
two are not interchangeable.

A) Under what circumstances would an if/else if statement be a more appropri-
ate choice than a switch statement?

B) Under what circumstances would a switch statement be a more appropriate
choice than an if/else if statement?

C) Under what circumstances would a set of nested if/else statements be more
appropriate than either of the other two structures?

Try to come up with at least one example case for each of the three, where it is the best
way to implement the desired branching logic.

Programming Challenges

1. Minimum/Maximum

Write a program that asks the user to enter two numbers. The program should use the con-
ditional operator to determine which number is the smaller and which is the larger.

2. Roman Numeral Converter

Write a program that asks the user to enter a number within the range of 1 through 10.
Use a switch statement to display the Roman numeral version of that number.

Input Validation: Do not accept a number less than 1 or greater than 10.

3. Magic Dates

The date June 10, 1960, is special because when we write it in the following format, the
month times the day equals the year.

 6/10/60

Write a program that asks the user to enter a month (in numeric form), a day, and a two-
digit year. The program should then determine whether the month times the day is equal to
the year. If so, it should display a message saying the date is magic. Otherwise, it should
display a message saying the date is not magic.

4. Areas of Rectangles

The area of a rectangle is the rectangle’s length times its width. Write a program that asks
for the length and width of two rectangles. The program should tell the user which rectan-
gle has the greater area, or if the areas are the same.

236 Chapter 4 Making Decisions

5. Book Club Points

An online book club awards points to its customers based on the number of books purchased
each month. Points are awarded as follows:

Write a program that asks the user to enter the number of books purchased this month and
then displays the number of points awarded.

6. Mass and Weight

Scientists measure an object’s mass in kilograms and its weight in newtons. If you know an
object’s mass, you can calculate its weight in newtons with the following formula:

weight � mass � 9.8

Write a program that asks the user to enter an object’s mass, and then calculates and displays
its weight. If the object weighs more than 1000 newtons, display a message indicating that
it is too heavy. If the object weighs less than 10 newtons, display a message indicating that
the object is too light.

7. Time Calculator

Write a program that asks the user to enter a number of seconds.

• There are 86400 seconds in a day. If the number of seconds entered by the user is
greater than or equal to 86400, the program should display the number of days in
that many seconds.

• There are 3600 seconds in an hour. If the number of seconds entered by the user is
less than 86400, but is greater than or equal to 3600, the program should display the
number of hours in that many seconds.

• There are 60 seconds in a minute. If the number of seconds entered by the user is less
than 3600, but is greater than or equal to 60, the program should display the number
of minutes in that many seconds.

8. Math Tutor

This is a modification of the math tutor problem in Chapter 3. Write a program that can be
used as a math tutor for a young student. The program should display two random num-
bers between 10 and 50 that are to be added, such as:

 24
+ 12
 ——

The program should then wait for the student to enter the answer. If the answer is correct,
a message of congratulations should be printed. If the answer is incorrect, a message
should be printed showing the correct answer.

Books Purchased Points Earned

0 0
1 5
2 15
3 30

4 or more 60

Solving
the Time
Calculator
Problem

Review Questions and Exercises 237

9. Software Sales

A software company sells a package that retails for $99. Quantity discounts are given
according to the following table.

Write a program that asks for the number of units purchased and computes the total cost
of the purchase.

Input Validation: Make sure the number of units is greater than 0.

10. Bank Charges

A bank charges $10 per month plus the following check fees for a commercial checking
account:

$.10 each for fewer than 20 checks
$.08 each for 20–39 checks
$.06 each for 40–59 checks
$.04 each for 60 or more checks

Write a program that asks for the number of checks written during the past month, then
computes and displays the bank’s fees for the month.

Input Validation: Do not accept a negative value for the number of checks written.

11. Geometry Calculator

Write a program that displays the following menu:

Geometry Calculator

1. Calculate the Area of a Circle
2. Calculate the Area of a Rectangle
3. Calculate the Area of a Triangle
4. Quit

Enter your choice (1-4):

If the user enters 1, the program should ask for the radius of the circle and then display its
area. Use 3.14159 for π. If the user enters 2, the program should ask for the length and
width of the rectangle, and then display the rectangle’s area. If the user enters 3, the pro-
gram should ask for the length of the triangle’s base and its height, and then display its
area. If the user enters 4, the program should end.

Input Validation: Display an error message if the user enters a number outside the
range of 1 through 4 when selecting an item from the menu. Do not accept negative
values for the circle’s radius, the rectangle’s length or width, or the triangle’s base or
height.

Quantity Discount

10–19 20%

20–49 30%

50–99 40%

100 or more 50%

238 Chapter 4 Making Decisions

12. Running the Race

Write a program that asks for the names of three runners and the time it took each of them
to finish a race. The program should display who came in first, second, and third place.
Think about how many test cases are needed to verify that your problem works correctly.
(That is, how many different finish orders are possible?)

Input Validation: Only accept positive numbers for the times.

13. Personal Best

Write a program that asks for the name of a pole vaulter and the dates and vault heights (in
meters) of the athlete’s three best vaults. It should then report in height order (best first),
the date on which each vault was made, and its height.

Input Validation: Only accept values between 2.0 and 5.0 for the heights.

14. Body Mass Index

Write a program that calculates and displays a person’s body mass index (BMI). The BMI
is often used to determine whether a person with a sedentary lifestyle is overweight or
underweight for his or her height. A person’s BMI is calculated with the following formula:

BMI = weight × 703/height2

where weight is measured in pounds and height is measured in inches. The program should
display a message indicating whether the person has optimal weight, is underweight, or is
overweight. A sedentary person’s weight is considered to be optimal if his or her BMI is
between 18.5 and 25. If the BMI is less than 18.5, the person is considered to be under-
weight. If the BMI value is greater than 25, the person is considered to be overweight.

15. Fat Gram Calculator

Write a program that asks for the number of calories and fat grams in a food. The program
should display the percentage of calories that come from fat. If the calories from fat are less
than 30 percent of the total calories of the food, it should also display a message indicating
the food is low in fat.

One gram of fat has 9 calories, so

Calories from fat = fat grams * 9

The percentage of calories from fat can be calculated as

Calories from fat ÷ total calories

Input Validation: Make sure the number of calories is greater than 0 and the number
of fat grams is 0 or more. Also, the number of calories from fat cannot be greater than
the total number of calories. If that happens, display an error message indicating that
either the calories or fat grams were incorrectly entered.

Review Questions and Exercises 239

16. The Speed of Sound

The speed of sound varies depending on the medium through which it travels. In general,
sound travels fastest in rigid media, such as steel, slower in liquid media, such as water, and
slowest of all in gases, such as air. The following table shows the approximate speed of
sound, measured in feet per second, in air, water, and steel.

Write a program that displays a menu allowing the user to select air water, or steel. After
the user has made a selection, the number of feet a sound wave will travel in the selected
medium should be entered. The program will then display the amount of time it will take.
(Round the answer to four decimal places.)

Input Validation: Check that the user has selected one of the available menu choices.
Do not accept distances less than 0.

17. The Speed of Sound in Gases

When traveling through a gas, the speed of sound depends primarily on the density of the
medium. The less dense the medium, the faster the speed will be. The following table
shows the approximate speed of sound at 0 degree celsius, measured in meters per second,
when traveling through carbon dioxide, air, helium, and hydrogen.

Write a program that displays a menu allowing the user to select one of these 4 gases. After
a selection has been made, the user should enter the number of seconds it took for the
sound to travel in this medium from its source to the location at which it was detected. The
program should then report how far away (in meters) the source of the sound was from the
detection location.

Input Validation: Check that the user has selected one of the available menu choices.
Do not accept times less than 0 seconds or more than 30 seconds.

Medium Speed (feet per sec.)

Air 1,100

Water 4,900

Steel 16,400

Medium Speed (meters per sec.)

Carbon dioxide 258.0

Air 331.5

Helium 972.0

Hydrogen 1270.0

240 Chapter 4 Making Decisions

18. Spectral Analysis

If a scientist knows the wavelength of an electromagnetic wave she can determine what
type of radiation it is. Write a program that asks for the wavelength in meters of an electro-
magnetic wave and then displays what that wave is according to the following chart. (For
example, a wave with a wavelength of 1E-10 meters would be an X-ray.)

19. Long-Distance Calls

A long-distance carrier charges the following rates for telephone calls between the United
States and Mexico:

Write a program that asks for the starting time and the number of minutes of the call, and
displays the charges. The program should ask for the time to be entered as a floating-point
number in the form HH.MM. For example, 07:00 hours will be entered as 07.00, and
16:28 hours will be entered as 16.28.

Input Validation: The program should not accept times that are greater than 23:59.
Also, no number whose last two digits are greater than 59 should be accepted.
Hint: Assuming num is a floating-point variable, the following expression will give you
its fractional part:

num - static_cast<int>(num)

20. Freezing and Boiling Points

The following table lists the freezing and boiling points of several substances. Write a pro-
gram that asks the user to enter a temperature, and then shows all the substances that will
freeze at that temperature and all that will boil at that temperature. For example, if the
user enters –20 the program should report that water will freeze and oxygen will boil at
that temperature.

Starting Time of Call Rate per Minute

00:00–06:59 $0.12

07:00–19:00 0.55

19:01–23:59 0.35

Substance Freezing Point (°F) Boiling Point (°F)

Ethyl alcohol –173 172

Mercury –38 676

Oxygen –362 –306

Water 32 212

1 × 10–21 × 10–37 × 10–74 × 10–71 × 10–81 × 10–11

Radio WavesMicrowavesInfraredVisible LightUltravioletX RaysGamma Rays

Review Questions and Exercises 241

21. Using Files—Freezing and Boiling Points Modification

Modify the freezing and boiling points program described in Programming Challenge 20 so it
reads its input from a file instead of from the keyboard. Perform the necessary test to deter-
mine if an error occurs when the file is opened. If an error occurs, display a message informing
the user. The following data to test your program can be found in the FrzBoil.dat file.

-173 -38 -362 32
 172 676 -306 212

It is important that your program read the data from the file in the same order it is written
in the file. Notice that the four freezing point values come first, followed by the four boil-
ing point values.

22. Using Files—Internet Service Provider Part 1

An Internet service provider has three different subscription packages for its customers:

Package A: For $9.95 per month 10 hours of access are provided. Additional hours
are $2.00 per hour.

Package B: For $14.95 per month 20 hours of access are provided. Additional
hours are $1.00 per hour.

Package C: For $19.95 per month unlimited access is provided.

Write a program that calculates a customer’s monthly bill. It should input customer name,
which package the customer has purchased, and how many hours were used. It should
then create a bill that includes the input information and the total amount due. The bill
should be written to a file.

Input Validation: Be sure the user only selects package A, B, or C. Also, the number
of hours used in a month cannot exceed 744.

23. Using Files—Internet Service Provider Part 2

Modify the program in problem 22 so it also displays how much money Package A cus-
tomers would save if they purchased packages B or C, and how much money package B
customers would save if they purchased package C. If there would be no savings, no mes-
sage should be printed.

24. Using Files—Internet Service Provider Part 3

Months with 30 days have 720 hours, and months with 31 days have 744 hours. February,
with 28 days, has 672 hours. Enhance the input validation of the Internet Service Provider
program by asking the user for the month (by name), and validating that the number of
hours entered is not more than the maximum for the entire month. Here is a table of the
months, their days, and number of hours in each.

Month Days Hours

January, March, May, July,
August, October, December

31 744

April, June, September,
November

30 720

February 28 672

This page intentionally left blank

243

C
H

A
P

T
E

R

5 Looping

5.1 The Increment and Decrement Operators

CONCEPT: C++ provides a pair of unary operators for incrementing and decrementing
variables.

To increment a value means to increase it, and to decrement a value means to decrease it. In
the example below, qtyOrdered is incremented by 10 and numSold is decremented by 3.

qtyOrdered = qtyOrdered + 10;
numSold = numSold � 3;

Although the values stored in variables can be increased or decreased by any amount, it
is particularly common to increment them or decrement them by 1. In fact, if we say that

TOPICS

5.1 The Increment and Decrement Operators
5.2 Introduction to Loops:

The while Loop
5.3 Using the while Loop for Input

Validation
5.4 Counters
5.5 The do-while Loop
5.6 The for Loop
5.7 Keeping a Running Total
5.8 Sentinels
5.9 Using a Loop to Read Data from a File

5.10 Focus on Software Engineering:
Deciding Which Loop to Use

5.11 Nested Loops
5.12 Breaking Out of a Loop
5.13 The continue Statement
5.14 Focus on Testing and Debugging:

Creating Good Test Data
5.15 Central Mountain Credit Union

Case Study
5.16 Tying It All Together: What a Colorful

World

244 Chapter 5 Looping

a value is being incremented or decremented without specifying by how much, it is
understood that it is being incremented or decremented by 1. C++ provides a pair of
unary operators to do this. The ++ operator increases its operand’s value by 1. The ––
operator decreases its operand’s value by 1.

Here are three different ways to increment the value of the variable num by 1.

num = num + 1;
num += 1;
num++;

And here are three different ways to decrement it by 1:

num = num - 1;
num -= 1;
num--;

Our examples so far show the increment and decrement operators used in postfix mode,
which means the operator is placed after the variable. The operators also work in prefix
mode, where the operator is placed before the variable name:

++num;
--num;

In both prefix and postfix mode, these operators add 1 to, or subtract 1 from, their operand.
The following example illustrates the use of these operators in both prefix and postfix
mode. Notice that there is no space between the name of the variable and the ++ or –– pre-
ceding it or following it.

num = 4;
num++; // now num has the value 5
++num; // now num has the value 6
num--; // now num has the value 5 again
--num; // now num has the value 4 again

Program 5-1 includes these 5 lines of code along with cout statements to further illustrate
how they work.

NOTE: The expression num++ is pronounced “num plus plus,” and num-- is
pronounced “num minus minus.”

Program 5-1

1 // This program demonstrates the ++ and -- operators.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int num = 4; // num starts out with 4
8
9 // Display the value in num
10 cout << "The variable num is " << num << endl;
11 cout << "I will now increment num.\n\n";
12

(program continues)

The Increment and Decrement Operators 245

The Difference Between Postfix and Prefix Modes
In the simple statements used in Program 5-1, it doesn’t matter if the increment or decre-
ment operator is used in postfix or prefix mode. The difference is important, however,
when these operators are used in statements that do more than just increment or decre-
ment. For example, look at the following lines:

num = 4;
cout << num++;

This cout statement is doing two things: 1) displaying the value of num, and 2) incrementing
num. But which happens first? cout will display a different value if num is incremented first
than if num is incremented last. The answer depends on the mode of the increment operator.

Postfix mode causes the increment to happen after the value of the variable is used in the
expression. In the example, cout will display 4, then num will be incremented to 5. Prefix

13 // Use postfix ++ to increment num
14 num++;
15 cout << "Now the variable num is " << num << endl;
16 cout << "I will increment num again.\n\n";
17
18 // Use prefix ++ to increment num
19 ++num;
20 cout << "Now the variable num is " << num << endl;
21 cout << "I will now decrement num.\n\n";
22
23 // Use postfix -- to decrement num
24 num--;
25 cout << "Now the variable num is " << num << endl;
26 cout << "I will decrement num again.\n\n";
27
28 // Use prefix -- to increment num
29 --num;
30 cout << "Now the variable num is " << num << endl;
31 return 0;
32 }

Program Output
The variable num is 4
I will now increment num.

Now the variable num is 5
I will increment num again.

Now the variable num is 6
I will now decrement num.

Now the variable num is 5
I will decrement num again.

Now the variable num is 4

Program 5-1 (continued)

246 Chapter 5 Looping

mode, however, causes the increment to happen first. In the following statements, num will
first be incremented to 5, then cout will display 5:

num = 4;
cout << ++num;

Program 5-2 illustrates these dynamics further by placing increment and decrement opera-
tors in cout statements. This makes it easy to see the difference between using them in
prefix and postfix mode. However, this should not normally be done. That is, in actual
programming applications it is not recommended to place increment or decrement opera-
tors in cout statements. So you should not write code like this.

Let’s analyze the statements in this program. In line 8, num is initialized with the value 4, so
the cout statement in line 11 displays 4. Then, line 12 sends the expression num++ to cout.
Because the ++ operator is used in postfix mode, the value 4 is first sent to cout, and then
1 is added to num, making its value 5.

When line 13 executes, num will hold the value 5, so 5 is displayed. Then, line 14 sends the
expression ++num to cout. Because the ++ operator is used in prefix mode, 1 is first added
to num (making it 6), and then the value 6 is sent to cout. This same sequence of events
happens in lines 17 through 20, except the –– operator is used.

Program 5-2

1 // This program demonstrates the postfix and prefix
2 // modes of the increment and decrement operators.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int num = 4;
9
10 // Illustrate postfix and prefix ++ operator
11 cout << num << " "; // Displays 4
12 cout << num++ << " "; // Displays 4, then adds 1 to num
13 cout << num << " "; // Displays 5
14 cout << ++num << "\n\n"; // Adds 1 to num, then displays 6
15
16 // Illustrate postfix and prefix -- operator
17 cout << num << " "; // Displays 6
18 cout << num-- << " "; // Displays 6, then subtracts 1 from num
19 cout << num << " "; // Displays 5
20 cout << --num << "\n\n"; // Subtracts 1 from num, then displays 4
21
22 return 0;
23 }

Program Output
4 4 5 6

6 6 5 4

The Increment and Decrement Operators 247

For another example, look at the following code:

int x = 1;
int y
y = x++; // Postfix increment

The first statement defines the variable x (initialized with the value 1) and the second state-
ment defines the variable y. The third statement does two things:

• It assigns the value of x to the variable y.
• The variable x is incremented.

The value that will be stored in y depends on when the increment takes place. Because the
++ operator is used in postfix mode, the old value of x (which is 1) is assigned to y before x
is incremented. After the statement executes, y will contain 1, and x will contain 2. Let's
look at the same code, but with the ++ operator used in prefix mode:

int x = 1;
int y;
y = ++x; // Prefix increment

In the third statement, the ++ operator is used in prefix mode, causing variable x to be
incremented before the assignment takes place. So, this code will store 2 in y. After the
code has executed, x and y will both contain 2.

Using ++ and -- in Mathematical Expressions
The increment and decrement operators can also be used on variables in mathematical
expressions. Consider the following program segment:

a = 2;
b = 5;
c = a * b++;
cout << a << " " << b << " " << c;

In the statement c = a * b++, c is assigned the value of a times b, which is 10. The variable
b is then incremented. The cout statement will display

2 6 10

If the statement were changed to read

c = a * ++b;

the variable b would be incremented before it was multiplied by a. In this case c would be
assigned the value of 2 times 6, so the cout statement would display

2 6 12

You can pack a lot of action into a single statement using the increment and decrement
operators, but don’t get too tricky with them. You might be tempted to try something like
the following, thinking that c will be assigned 11:

a = 2;
b = 5;
c = ++(a * b); // Error!

248 Chapter 5 Looping

But this assignment statement simply will not work because the operand of the increment
and decrement operators must be an lvalue. Recall from Chapter 2 that an lvalue identifies
a place in memory whose contents may be changed. The increment and decrement opera-
tors usually have variables for their operands, but generally speaking, anything that can go
on the left side of an = operator is legal.

Using ++ and -- in Relational Expressions
The ++ and -- operators may also be used in relational expressions. Just as in mathemat-
ical expressions, the difference between postfix and prefix mode is critical. Consider the
following program segment:

x = 10;
if (x++ > 10)

cout << "x is greater than 10.\n";

Two operations are happening in this if statement: 1) The value in x is tested to determine
if it is greater than 10, and 2) x is incremented. Because the increment operator is used
in postfix mode, the comparison happens first. Since 10 is not greater than 10, the cout
statement won’t execute. If the mode of the increment operator is changed, however, the if
statement will compare 11 to 10 and the cout statement will execute:

x = 10;
if (++x > 10)

cout << "x is greater than 10.\n";

Checkpoint

5.1 What will the following program segments display?

A) x = 2;
y = x++;
cout << x << y;

B) x = 2;
y = ++x;
cout << x << y;

C) x = 2;
y = 4;
cout << x++ << --y;

D) x = 2;
y = 2 * x++;
cout << x << y;

NOTE: Some instructors prefer that you only use the ++ and –– operators in
statements whose sole purpose is to increment or decrement a variable. They may ask
you not to use them in assignment statements, mathematical expressions, or relational
expressions.

249

E) x = 99;
if (x++ < 100)

cout "It is true!\n";
else

cout << "It is false!\n";

F) x = 0;
if (++x)

cout << "It is true!\n";
else

cout << "It is false!\n";

5.2 Introduction to Loops: The while Loop

CONCEPT: A loop is part of a program that repeats.

Chapter 4 introduced the concept of control structures, which direct the flow of a
program. A loop is a control structure that causes a statement or group of statements
to repeat. C++ has three looping control structures: the while loop, the do-while
loop, and the for loop. The difference between each of these is how they control the
repetition.

The while Loop
The while loop has two important parts: (1) an expression that is tested for a true or
false value, and (2) a statement or block that is repeated as long as the expression is true.
Figure 5-1 shows the general format of the while loop and a flowchart visually depicting
how it works.

Let’s look at each part of the while loop. The first line, sometimes called the loop header,
consists of the key word while followed by a condition to be tested enclosed in parentheses.

Figure 5-1

while (condition)
{
 statement;
 statement;
 // Place as many statements
 // here as necessary
}

condition
false

true

statement(s)

The while
Loop

Introduction to Loops: The while Loop

250 Chapter 5 Looping

The condition is expressed by any expression that can be evaluated as true or false. Next
comes the body of the loop. This contains one or more C++ statements.

Here’s how the loop works. The condition expression is tested, and if it is true, each
statement in the body of the loop is executed. Then, the condition is tested again. If it is still
true, each statement is executed again. This cycle repeats until the condition is false.

Notice that, as with an if statement, each statement in the body to be conditionally exe-
cuted ends with a semicolon, but there is no semicolon after the condition expression in
parentheses. This is because the while loop is not complete without the statements that
follow it. Also, as with an if statement, when the body of the loop contains two or more
statements, these statements must be surrounded by braces. When the body of the loop
contains only one statement, the braces may be omitted. Essentially, the while loop works
like an if statement that can execute over and over. As long as the expression in the paren-
theses is true, the conditionally executed statements will repeat.

Program 5-3 uses a while loop to print “Hello” five times.

Let’s take a closer look at this program. In line 7 an integer variable number is defined and
initialized with the value 1. In line 9 the while loop begins with this statement:

while (number <= 5)

This statement tests the variable number to determine whether its value is less than or equal
to 5. Because it is, the statements in the body of the loop (lines 11 and 12) are executed:

cout << "Hello ";
number++;

Program 5-3

1 // This program demonstrates a simple while loop.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int number = 1;
8
9 while (number <= 5)
10 {
11 cout << "Hello ";
12 number++;
13 }
14 cout << "\nThat's all!\n";
15 return 0;
16 }

Program Output
Hello Hello Hello Hello Hello
That's all!

251

The statement in line 11 prints the word “Hello”. The statement in line 12 uses the incre-
ment operator to add one to number, giving it the value 2. This is the last statement in the
body of the loop, so after it executes the loop starts over. It tests the expression number
<= 5 again, and because it is still true, the statements in the body of the loop are executed
again. This cycle repeats until the value of number equals 6, making the expression number
<= 5 false. Then the loop is exited. This is illustrated in Figure 5-2.

Each execution of a loop is known as an iteration. This loop will perform five itera-
tions before the expression number <= 5 is tested and found to be false, causing the
loop to terminate. The program then resumes execution at the statement immediately
following the loop. A variable that controls the number of time a loop iterates is
referred to as a loop control variable. In the example we have just seen, number is the
loop control variable.

while is a Pretest Loop
The while loop is known as a pretest loop, which means it tests its expression before each
iteration. Notice the variable definition of number in line 7 of Program 5-3:

int number = 1;

The number variable is initialized with the value 1. If number had been initialized with a value
greater than 5, as shown in the following program segment, the loop would never execute:

int number = 6;
while (number <= 5)
{

cout << "Hello ";
number++;

}

An important characteristic of the while loop is that the loop will never iterate if the test
expression is false to start with. If you want to be sure a while loop executes the first
time, you must initialize the relevant data in such a way that the test expression starts
out as true.

Figure 5-2

while (number <= 5)
{
 cout << "Hello ";
 number++;
}

Test this condition.

If the condition is false, exit the loop.
If the condition is true, perform
these statements.

After executing the body of the loop, start over.

Introduction to Loops: The while Loop

252 Chapter 5 Looping

Infinite Loops
In all but rare cases, loops must contain within themselves a way to terminate. This means
that something inside the loop must eventually make the test expression false. The loop in
Program 5-3 stops when the expressions number <= 5 is false.

If a loop does not have a way of stopping, it is called an infinite loop. Infinite loops keep
repeating until the program is interrupted. Here is an example:

int number = 1;
while (number <= 5)
{

cout << "Hello ";
}

This is an infinite loop because it does not contain a statement that changes the value of the
number variable. Each time the expression number <= 5 is tested, number will contain the
value 1.

It’s also possible to create an infinite loop by accidentally placing a semicolon after the first
line of the while loop. Here is an example:

int number = 1;
while (number <= 5); // This semicolon is an ERROR!
{

cout << "Hello ";
number++;

}

The semicolon at the end of the first line is assumed to be a null statement and disconnects the
while statement from the block that comes after it. To the compiler, this loop looks like this:

while (number <= 5);

This while loop will forever execute the null statement, which does nothing. The program
will appear to have “gone into space” because there is nothing to display screen output or
show any activity.

Don’t Forget the Braces with a Block of Statements
If you write a loop that conditionally executes a block of statements, don’t forget to
enclose all of the statements in a set of braces. If the braces are accidentally left out, the
while statement conditionally executes only the very next statement. For example, look at
the following code.

int number = 1;
// This loop is missing its braces!
while (number <= 5)

cout << "Hello ";
number++;

In this code the number++ statement is not in the body of the loop. Because the braces are miss-
ing, the while statement only executes the statement that immediately follows it. This loop will
execute infinitely because there is no code in its body that changes the number variable.

Using the while Loop for Input Validation 253

Another common pitfall with loops is accidentally using the = operator when you intend to
use the == operator. The following is an infinite loop because the test expression assigns 1
to remainder each time it is evaluated rather than testing if remainder is equal to 1:

while (remainder = 1) // Error: Notice the assignment.
{

cout << "Enter a number: ";
cin >> num;
remainder = num % 2;

}

Remember, any nonzero value is evaluated as true.

Programming Style and the while Loop
It’s possible to create loops that look like this:

while (number <= 5) { cout << "Hello "; number++; }

Avoid this style of programming, however. The programming layout style you should use
with the while loop is similar to that of the if statement:

• If there is only one statement repeated by the loop, it should appear on the line after
the while statement and be indented one level.

• If the loop repeats a block of statements, the block should begin on the line after the
while statement and each line inside the braces should be indented.

In general, you’ll find a similar layout style being used with the other types of loops
presented in this chapter.

5.3 Using the while Loop for Input Validation

CONCEPT: The while loop can be used to create input routines that repeat until
acceptable data is entered.

Perhaps the most famous saying of the computer industry is “garbage in, garbage out.”
The integrity of a program’s output is only as good as its input, so you should try to make
sure garbage does not go into your programs. Input validation is the process of inspecting
data given to a program by the user and determining if it is valid. A good program should
give clear instructions about the kind of input that is acceptable, and not assume the user
has followed those instructions.

The while loop is especially useful for validating input. If an invalid value is entered, a
loop can require that the user re-enter it as many times as necessary. For example, the
following loop asks for a number in the range of 1 through 100:

254 Chapter 5 Looping

cout << "Enter a number in the range 1 - 100: ";
cin >> number;
while ((number < 1) || (number > 100))
{

cout << "ERROR: Enter a value in the range 1 - 100: ";
cin >> number;

}

This code first allows the user to enter a number. This takes place just before the loop. If
the input is valid, the loop will not execute. If the input is invalid, however, the statements
in the body of the loop will be executed. They will display an error message and require the
user to enter another number. The loop will continue to execute until the user enters a valid
number. The general logic of performing input validation is shown in Figure 5-3.

The read operation that takes place just before the loop is called a priming read. It provides
the first value for the loop to test. Subsequent values are obtained by the loop.

Program 5-4 calculates the number of soccer teams a youth league may create, based on a
given number of players and a maximum number of players per team. The program uses
while loops (in lines 20 through 25 and lines 31 through 35) to validate the user’s input.

Figure 5-3

Program 5-4

1 // This program calculates the number of soccer teams a youth
2 // league may create from the number of available players.
3 // Input validation is done with while loops.
4 #include <iostream>
5 using namespace std;

(program continues)

Display an
error message

Yes

No

Is the
value

invalid?
Read another

value

Read the first
value

Using the while Loop for Input Validation 255

6
7 int main()
8 {
9 int players, // Number of available players
10 teamPlayers, // Number of desired players per team
11 numTeams, // Number of teams
12 leftOver; // Number of players left over
13
14 // Get the number of players per team
15 cout << "How many players do you wish per team?\n";
16 cout << "(Enter a value in the range 9 - 15): ";
17 cin >> teamPlayers;
18
19 // Validate the input
20 while ((teamPlayers) < 9) || (teamPlayers > 15))
21 {
22 cout << "Team size should be 9 to 15 players.\n";
23 cout << "How many players do you wish per team? ";
24 cin >> teamPlayers;
25 }
26 // Get the number of players available
27 cout << "How many players are available? ";
28 cin >> players;
29
30 // Validate the input
31 while (players <= 0)
32 {
33 cout << "Please enter a positive number: ";
34 cin >> players;
35 }
36 // Calculate the number of teams
37 numTeams = players / teamPlayers;
38
39 // Calculate the number of leftover players
40 leftOver = players % teamPlayers;
41
42 // Display the results
43 cout << "\nThere will be " << numTeams << " teams with ";
44 cout << leftOver << " players left over.\n";
45 return 0;
46 }

Program Output with Example Input Shown in Bold
How many players do you wish per team?
(Enter a value in the range 9 - 15): 4[Enter]
Team size should be 9 to 15 players.
How many players do you wish per team? 12[Enter]
How many players are available? –142[Enter]
Please enter a positive number: 142[Enter]

There will be 11 teams with 10 players left over.

Program 5-4 (continued)

256 Chapter 5 Looping

Checkpoint

5.2 How many times will “Sunday\n” be printed in each of the following program
segments?

A) int count = 1;
while (count < 5)
{ cout << "My favorite day is "
 cout << "Sunday\n;
 count++;
}

B) int count = 10;
while (count < 5)
{ cout << "My favorite day is "
 cout << "Sunday\n;
 count++;
}

C) int count = 1;
while (count < 5);
{ cout << "My favorite day is "
 cout << "Sunday\n;
 count++;
}

D) int count = 1;
while (count < 5)
 cout << "My favorite day is "
 cout << "Sunday\n;
 count++;

5.3 In Checkpoint 5.2A, what is the loop control variable?

5.4 Write input validation loops that ask the user to do each of the following:

A) Enter a menu choice between 1 and 4.
B) Enter ‘Y’, ‘y’, ‘N’, or ‘n’.

5.4 Counters

CONCEPT: A counter is a variable that is regularly incremented or decremented each
time a loop iterates.

Sometimes it’s important for a program to keep track of the number of iterations a loop
performs. For example, Program 5-5 displays a table consisting of the numbers 1 through
5 and their squares, so its loop must iterate 5 times.

Program 5-5

1 // This program uses a while loop to display the numbers 1-5
2 // and their squares.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6

(program continues)

Counters 257

In Program 5-5 the loop control variable num starts at 1 and is incremented each time through the
loop. When num reaches 6, the condition num <= 5 becomes false, and the loop is exited. Vari-
able num also acts as a counter, keeping count of how many times the loop has iterated so far.

Letting the User Control the Loop
Sometimes we want to let the user decide how many times a loop should iterate. Program
5-6, which is a revision of Program 5-5, does this. It prompts the user to enter the maxi-
mum integer value to be displayed and squared. Then it has num, the loop counter, count
up to that value.

7 int main()
8 { int num = 1;
9
10 cout << "Number Square\n";
11 cout << "--------------\n";
12 while (num <= 5)
13 {
14 cout << setw(4) << num << setw(7) << (num * num) << endl;
15 num++; // Increment counter
16 }
17 return 0;
18 }

Program Output
Number Square

 1 1
 2 4
 3 9
 4 16
 5 25

NOTE: It’s important that num be properly initialized. Remember, variables defined
inside a function have no guaranteed starting value.

Program 5-6

1 // This program displays integer numbers and their squares, beginning
2 // with one and ending with whatever number the user requests.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()

(program continues)

Program 5-5 (continued)

258 Chapter 5 Looping

5.5 The do-while Loop

CONCEPT: The do-while loop is a post test loop, which means its expression is
tested after each iteration.

In addition to the while loop, C++ also offers the do-while loop. The do-while loop
looks similar to a while loop turned upside down. Figure 5-4 shows its format and a flow-
chart visually depicting how it works.

8 {
9 int num, // Counter telling what number to square
10 lastNum; // The final integer value to be squared
11
12 // Get and validate the last number in the table
13 cout << "This program will display a table of integer\n"
14 << "numbers and their squares, starting with 1.\n"
15 << "What should the last number be?\n"
16 << "Enter an integer between 2 and 10: ";
17 cin >> lastNum;
18
19 while ((lastNum < 2) || (lastNum > 10))
20 { cout << "Please enter an integer between 2 and 10: ";
21 cin >> lastNum;
22 }
23 // Display the table
24 cout << "\nNumber Square\n";
25 cout << "--------------\n";
26
27 num = 1; // Set the counter to the starting value
28 while (num <= lastNum)
29 {
30 cout << setw(4) << num << setw(7) << (num * num) << endl;
31 num++; // Increment the counter
32 }
33 return 0;
34 }

Program Output with Example Input Shown in Bold
This program will display a table of integer
numbers and their squares, starting with 1.
What should the last number be?
Enter an integer between 2 and 10: 3[Enter]

Number Square

 1 1
 2 4
 3 9

Program 5-6 (continued)

The do-while Loop 259

As with the while loop, if there is only one conditionally executed statement in the loop
body, the braces may be omitted.

Besides the way it looks, the difference between the do-while loop and the while loop is
that do-while is a post test loop. It tests its expression after each iteration is complete.
This means do-while always performs at least one iteration, even if the test expression is
false at the start. For example, in the following while loop the cout statement will not
execute at all:

int x = 1;
while (x < 0)
 cout << x << endl;

But the cout statement in the following do-while loop will execute once because the
do-while loop does not evaluate the expression x < 0 until the end of the iteration.

int x = 1;
do

 cout << x << endl;
while (x < 0);

You should use the do-while loop when you want to make sure the loop executes at least
once. For example, Program 5-7 computes and displays the average of a set of test scores
before asking if the user wants to repeat the process with another set of scores. As with the
while loop, a do-while loop can be written to iterate a set number of times or to allow
the user to control how many times to loop. Program 5-7 illustrates another method for
letting the user control the loop. It will repeat as long as the user enters a Y or y for yes.

Figure 5-4

NOTE: The do-while loop must be terminated with a semicolon after the closing
parenthesis of the test expression.

Program 5-7

1 // This program averages 3 test scores. It uses a do-while loop
2 // that allows the code to repeat as many times as the user wishes.
3 #include <iostream>
4 using namespace std;

(program continues)

do
{ statement;
 statement;
 // Place as many statements
 // here as necessary.
} while (condition);

false

true

statement(s)

condition

260 Chapter 5 Looping

Using do-while with Menus
The do-while loop is a good choice for repeating a menu. Recall Program 4-27, which
displays a menu of health club packages. Program 5-8 is a modification of that program
that uses a do-while loop to repeat the program until the user selects item 4 from
the menu.

5
6 int main()
7 {
8 int score1, score2, score3; // Three test scores
9 double average; // Average test score
10 char again; // Loop again? Y or N
11
12 do
13 { // Get three test scores
14 cout << "\nEnter 3 scores and I will average them: ";
15 cin >> score1 >> score2 >> score3;
16
17 // Calculate and display the average
18 average = (score1 + score2 + score3) / 3.0;
19 cout << "The average is " << average << ".\n";
20
21 // Does the user want to average another set?
22 cout << "Do you want to average another set? (Y/N) ";
23 cin >> again;
24 } while ((again == 'Y') || (again == 'y'));
25 return 0;
26 }

Program Output with Example Input Shown in Bold

Enter 3 scores and I will average them: 80 90 70[Enter]
The average is 80.
Do you want to average another set? (Y/N) y[Enter]

Enter 3 scores and I will average them: 60 75 88[Enter]
The average is 74.3333.
Do you want to average another set? (Y/N) n[Enter]

Program 5-8

1 // This menu-driven Health Club membership program carries out the
2 // appropriate actions based on the menu choice entered. A do-while loop
3 // allows the program to repeat until the user selects menu choice 4.
4 #include <iostream>
5 #include <iomanip>
6 using namespace std;

(program continues)

Program 5-7 (continued)

The do-while Loop 261

7
8 int main()
9 {
10 // Constants for membership rates
11 const double ADULT_RATE = 40.0;
12 const double CHILD_RATE = 20.0;
13 const double SENIOR_RATE = 30.0;
14
15 int choice; // Menu choice
16 int months; // Number of months
17 double charges; // Monthly charges
18
19 do
20 { // Display the menu and get the user's choice
21 cout << "\n Health Club Membership Menu\n\n";
22 cout << "1. Standard Adult Membership\n";
23 cout << "2. Child Membership\n";
24 cout << "3. Senior Citizen Membership\n";
25 cout << "4. Quit the Program\n\n";
26 cout << "Enter your choice: ";
27 cin >> choice;
28
29 // Validate the menu selection
30 while ((choice < 1) || (choice > 4))
31 {
32 cout << "Please enter 1, 2, 3, or 4: ";
33 cin >> choice;
34 }
35 // Process the user's choice
36 if (choice != 4)
37 { cout << "For how many months? ";
38 cin >> months;
39
40 // Compute charges based on user input
41 switch (choice)
42 {
43 case 1: charges = months * ADULT_RATE;
44 break;
45 case 2: charges = months * CHILD_RATE;
46 break;
47 case 3: charges = months * SENIOR_RATE;
48 }
49 // Display the monthly charges
50 cout << fixed << showpoint << setprecision(2);
51 cout << "The total charges are $" << charges << endl;
52 }
53 } while (choice != 4); // Loop again if the user did not
54 // select choice 4 to quit
55 return 0;
56 }

(program continues)

Program 5-8 (continued)

262 Chapter 5 Looping

Checkpoint

5.5 What will each of the following program segments display?

A) int count = 10;
do
 cout << "Hello World\n";
while (count++ < 1);

B) int v = 0;
do
 cout << v++;
while (v < 5);

C) int count = 0, funny = 1, serious = 0, limit = 4;
do
{ funny++;
 serious += 2;
} while (count++ < limit);
cout << funny << " " << serious << " ";
cout << count << endl;

5.6 Write a program segment with a do-while loop that displays whether a user-
entered integer is even or odd. The code should then ask the user if he or she wants
to test another number. The loop should repeat so long as the user enters Y or y.

Program Output with Example Input Shown in Bold

Health Club Membership Menu

1. Standard Adult Membership
2. Child Membership
3. Senior Citizen Membership
4. Quit the Program

Enter your choice: 1[Enter]
For how many months? 12[Enter]
The total charges are $480.00

Health Club Membership Menu

1. Standard Adult Membership
2. Child Membership
3. Senior Citizen Membership
4. Quit the Program

Enter your choice: 4[Enter]

Program 5-8 (continued)

The for Loop 263

5.6 The for Loop

CONCEPT: The for loop is a pretest loop that combines the initialization, testing,
and updating of a loop control variable in a single loop header.

In general, there are two categories of loops: conditional loops and count-controlled loops.
A conditional loop executes as long as a particular condition exists. For example, an input
validation loop executes as long as the input value is invalid. When you write a conditional
loop, you have no way of knowing the number of times it will iterate.

Sometimes you know the exact number of iterations that a loop must perform. A loop
that repeats a specific number of times is known as a count-controlled loop. For exam-
ple, if a loop asks the user to enter the sales amounts for each month in the year, it will
iterate twelve times. In essence, the loop counts to twelve and asks the user to enter a
sales amount each time it makes a count. A count-controlled loop must possess three
elements:

1. It must initialize a counter variable to a starting value.
2. It must test the counter variable by comparing it to a final value. When the counter

variable reaches its final value, the loop terminates.
3. It must update the counter variable during each iteration. This is usually done by

incrementing the variable.

Count-controlled loops are so common that C++ provides a type of loop specifically for
them. It is known as the for loop. The for loop is specifically designed to initialize, test,
and update a counter variable. Here is the format of the for loop.

for (initialization; test; update)
{

statement;
statement;
// Place as many statements
// here as necessary.

}

As with the other loops you have used, if there is only one statement in the loop body, the
braces may be omitted.

The first line of the for loop is the loop header. After the key word for, there are three
expressions inside the parentheses, separated by semicolons. (Notice there is no semicolon
after the third expression.) The first expression is the initialization expression. It is typically
used to initialize a counter to its starting value. This is the first action performed by the loop
and it is only done once.

The second expression is the test expression. It tests a condition in the same way the test
expression in the while and do-while loop does, and controls the execution of the loop.
As long as this condition is true, the body of the for loop will repeat. The for loop is a
pretest loop, so it evaluates the test expression before each iteration.

The third expression is the update expression. It executes at the end of each iteration.
Typically, this is a statement that increments the loop’s counter variable.

The for Loop

264 Chapter 5 Looping

Here is an example of a simple for loop that prints “Hello” five times:

for (count = 1; count <= 5; count++)
cout << "Hello" << endl;

In this loop, the initialization expression is count = 1, the test expression is count <= 5,
and the update expression is count++. The body of the loop has one statement, which is the
cout statement. Figure 5-5 illustrates the sequence of events that take place during the loop’s
execution. Notice that Steps 2 through 4 are repeated as long as the test expression is true.

Figure 5-6 shows the loop’s logic in the form of a flowchart.

Notice how the counter variable count is used to control the number of times the loop iter-
ates. During the execution of the loop, this variable takes on the values 1 through 5, and
when the test expression count <= 5 becomes false, the loop terminates. Also notice that
in this example the count variable is used only in the loop header, to control the number of
loop iterations. It is not used for any other purpose. However, it is also possible to use the
counter variable within the body of a loop. For example, look at the following code:

for (number = 1; number <= 5; number++)
cout << number << " ";

Figure 5-5

Figure 5-6

for (count = 1; count <= 5; count++)
{ cout << "Hello" << endl;

Step 1: Perform the initialization expression.

Step 2: Evaluate the test expression.
If it is true, go to step 3.
Otherwise, terminate the loop.

Step 3: Execute the body
of the loop.

Step 4: Perform the update expression.
 Then go back to step 2.

{

cout
statement

True

False

count
<= 5

Increment
count

Assign 1 to
count

The for Loop 265

The counter variable in this loop is number. In addition to controlling the number of
iterations, it is also used in the body of the loop. This loop will produce the following
output:

1 2 3 4 5

As you can see, the loop displays the contents of the number variable during each iteration.

Program 5-9 is a new version of Program 5-5 that displays the numbers 1–5 and their
squares by using a for loop instead of a while loop.

The for Loop is a Pretest Loop
Because the for loop tests its test expression before it performs an iteration, it is possible
to write a for loop in such a way that it will never iterate. Here is an example:

for (count = 11; count <= 10; count++)
cout << "Hello" << endl;

Because the variable count is initialized to a value that makes the test expression false
from the beginning, this loop terminates as soon as it begins.

Program 5-9

1 // This program uses a for loop to display the numbers 1-5
2 // and their squares.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 { int num;
9
10 cout << "Number Square\n";
11 cout << "--------------\n";
12
13 for (num = 1; num <= 5; num++)
14 cout << setw(4) << num << setw(7) << (num * num) << endl;
15 return 0;
16 }

Program Output
Number Squared

 1 1
 2 4
 3 9
 4 16
 5 25

266 Chapter 5 Looping

Avoid Modifying the Counter Variable in the Body of
the for Loop
Be careful not to place a statement that modifies the counter variable in the body of the for
loop. All modifications of the counter variable should take place in the update expression,
which is automatically executed at the end of each iteration. If a statement in the body of the
loop also modifies the counter variable, the loop will probably not terminate when you
expect it to. The following loop, for example, increments x twice for each iteration:

for (x = 1; x <= 10; x++)
{

cout << x << endl;
x++; // Wrong!

}

Other Forms of the Update Expression
You are not limited to incrementing the loop control variable by just 1 in the update
expression. Here is a loop that displays all the even numbers from 2 through 100 by add-
ing 2 to its counter:

for (num = 2; num <= 100; num += 2)
cout << num << endl;

And here is a loop that counts backward from 10 down to 0:

for (num = 10; num >= 0; num--)
cout << num << endl;

Defining a Variable in the for Loop’s Initialization
Expression
Not only may the counter variable be initialized in the initialization expression, it may be
defined there as well. The following code shows an example. This is a modified version of
the loop in Program 5-9.

for (int num = 1; num <= 5; num++)
cout << setw(4) << num << setw(7) << (num * num) << endl;

In this loop, the num variable is both defined and initialized in the initialization expression.
If the counter variable is used only in the loop, it is considered good programming practice
to define it in the loop header. This makes the variable’s purpose clearer.

When a variable is defined in the initialization expression of a for loop, the scope of the
variable is limited to the loop. This means you cannot access the variable in statements
outside the loop. For example, the following program segment will not compile because
the last cout statement cannot access the variable count.

for (int count = 1; count <= 10; count++)
cout << count << endl;

cout << "count is now " << count << endl; // ERROR!

The for Loop 267

Creating a User-Controlled for Loop
In Program 5-6 we allowed the user to control how many times a while loop should iter-
ate. This can also be done with a for loop by having the user enter the final value for the
counter variable. The following program segment illustrates this.

// Get the final counter value
cout << "How many times should the loop execute? ";
cin >> finalValue;

for (int num = 1; num <= finalValue; num++)
{

// Statements in the loop body go here.
}

Using Multiple Statements in the Initialization
and Update Expressions
It is possible to execute more than one statement in the initialization expression and the
update expression. When using multiple statements in either of these expressions, simply
separate the statements with commas. For example, look at the loop in the following code,
which has two statements in the initialization expression.

for (int x = 1, y = 1; x <= 5; x++)
{

cout << x << " plus " << y << " equals " << (x + y) << endl;
}

The loop’s initialization expression is

int x = 1, y = 1

This defines and initializes two int variables, x and y. The output produced by this loop is:

1 plus 1 equals 2
2 plus 1 equals 3
3 plus 1 equals 4
4 plus 1 equals 5
5 plus 1 equals 6

We can further modify the loop to execute two statements in the update expression. Here is
an example:

for (int x = 1, y = 1; x <= 5; x++, y++)
{

cout << x << " plus " << y << " equals " << (x + y) << endl;
}

The loop’s update expression increments both the x and y variables.

x++, y++

The output produced by this loop is:

1 plus 1 equals 2
2 plus 2 equals 4
3 plus 3 equals 6
4 plus 4 equals 8
5 plus 5 equals 10

268 Chapter 5 Looping

Connecting multiple statements with commas works well in the initialization and update
expressions, but do not try to connect multiple expressions this way in the test expression.
If you wish to combine multiple expressions in the test expression, you must use the && or
|| operators.

Omitting the for Loop’s Expressions or Loop Body
Although it is generally considered bad programming style to do so, one or more of the
for loop’s expressions, or even its loop body, can be omitted.

The initialization expression may be omitted from inside the for loop’s parentheses if it
has already been performed or if no initialization is needed. Here is an example a loop with
the initialization being performed prior to the loop:

int num = 1;
for (; num <= maxValue; num++)

cout << num << " " << (num * num) << endl;

The update expression may be omitted if it is being performed elsewhere in the loop or if
none is needed. Although this type of code is not recommended, the following for loop
works just like a while loop:

int num = 1;
for (; num <= maxValue;)
{ cout << num << " " << (num * num) << endl;
 num++;
}

It is also possible, though not recommended, to write a for loop that has no formal body.
In this case, all the work of the loop is done by statements in the loop header. Here is an
example that displays the numbers from 1 to 10. The combined increment operation and
cout statement in the update expression perform the work of each iteration.

for (number = 1; number <= 10; cout << number++);

Checkpoint

5.7 Name the three expressions that appear inside the parentheses in the for loop’s
header.

5.8 You want to write a for loop that displays “I love to program” 50 times. Assume
that you will use a counter variable named count.
A) What initialization expression will you use?
B) What test expression will you use?
C) What update expression will you use?
D) Write the loop.

5.9 What will each of the following program segments display?

A) for (int count = 0; count < 6; count++)
cout << (count + count) << " ";

B) for (int value = -5; value < 5; value++)
cout << value << " ";

Keeping a Running Total 269

C) int x
for (x = 3; x <= 10; x += 3)

cout << x << " ";
cout << x << " ";

5.10 Write a for loop that displays your name 10 times.

5.11 Write a for loop that displays all of the odd numbers, 1 through 49.

5.12 Write a for loop that displays every fifth number, 0 through 100.

5.7 Keeping a Running Total

CONCEPT: A running total is a sum of numbers that accumulates with each iteration of a
loop. The variable used to keep the running total is called an accumulator.

Many programming tasks require you to add up a series of numbers. For example, if you
want to find the average of a set of number, you must first add them up. Programs that add
a series of numbers typically use two elements:

• A loop that reads each number in the series.
• A variable that accumulates the total of the numbers as they are read.

The variable that is used to accumulate the total of the numbers is called an accumulator. It
is often said that the loop keeps a running total because it accumulates the total as it reads
each number in the series. Figure 5-7 shows the general logic of a loop that calculates a
running total.

When the loop finishes, the accumulator will contain the total of the numbers read by the
loop. Notice that the first step in the flowchart is to set the accumulator variable to 0. This
is a critical step. Each time the loop reads a number, it adds it to the accumulator. If the
accumulator starts with any value other than 0, it will not contain the correct total when
the loop finishes.

Figure 5-7

Yes

No

Read the next
number

Add the
number to the
accumulator

Set
accumulator

to 0

Is there
another
number
to read?

270 Chapter 5 Looping

Let’s look at a program that keeps a running total. Program 5-10 calculates a company’s
total sales over a period of time by reading daily sales figures and adding them to an accu-
mulator. It then uses this total to find the average sales per day.

Program 5-10

1 // This program takes daily sales figures over a period of time
2 // and calculates their total. It then uses this total to compute
3 // the average daily sales.
4 #include <iostream>
5 #include <iomanip>
6 using namespace std;
7
8 int main()
9 {
10 int numDays; // Number of days
11 double dailySales, // The sales amount for a single day
12 totalSales = 0.0, // Accumulator, initialized with 0
13 averageSales; // The average daily sales amount
14
15 // Get the number of days
16 cout << "For how many days do you have sales figures? ";
17 cin >> numDays;
18
19 // Get the sales for each day and accumulate a total
20 for (int day = 1; day <= numDays; day++) // day is the counter
21 {
22 cout << "Enter the sales for day " << day << ": ";
23 cin >> dailySales;
24 totalSales += dailySales; // Accumulate the running total
25 }
26 // Compute the average daily sales
27 averageSales = totalSales / numDays;
28
29 // Display the total sales and average daily sales
30 cout << fixed << showpoint << setprecision(2);
31 cout << "\nTotal sales: $" << setw(8) << totalSales;
32 cout << "\nAverage daily sales: $" << setw(8) << averageSales
33 << endl;
34 return 0;
35 }

Program Output with Example Input Shown in Bold
For how many days do you have sales figures? 5[Enter]
Enter the sales for day 1: 425.16[Enter]
Enter the sales for day 2: 397.20[Enter]
Enter the sales for day 3: 404.11[Enter]
Enter the sales for day 4: 468.43[Enter]
Enter the sales for day 5: 502.19[Enter]

Total sales: $ 2197.09
Average daily sales: $ 439.42

Sentinels 271

Let’s take a closer look at a few of the key lines in this program. In line 12 the totalSales
variable is defined. This is the accumulator. Notice that it is initialized with 0. In line 17 the user
enters how many days of sales figures there are. This number is stored in the numDays variable
and determines how many times the loop beginning in line 20 iterates. The variable day, which
is defined in the loop’s initialization expression, is initialized with 1. This variable is the counter
that controls the loop and keeps track of which day’s sales amount is currently being read in and
processed. The test expression specifies the loop will repeat as long as day is less than or equal to
numDays. The update expression increments day by one at the end of each loop iteration.

During each loop iteration, in line 23, the user enters the amount of sales for one specific
day. This amount is stored in the dailySales variable. Then, in line 24, this amount is
added to the existing value stored in the totalSales variable. Note that line 24 does not
assign dailySales to totalSales, but rather increases the value stored in totalSales by
the amount in dailySales. After the loop has finished, totalSales will contain the total of
all the daily sales figures entered. In line 27, this total is used to calculate the average daily
sales amount. To do this the value stored in totalSales is divided by the value stored in
numDays and the result is placed in the variable averageSales. The program now has all the
information needed to display the totalSales and averageSales in lines 31–33.

5.8 Sentinels

CONCEPT: A sentinel is a special value that marks the end of a list of values.

Program 5-10, in the previous section, requires the user to know in advance the number of
days there are sales figures for. Sometimes the user has a list that is very long and doesn’t
know how many items there are. In other cases, the user might be entering several lists and
it is impractical to require that every item in every list be counted.

A technique that can be used in these situations is to ask the user to enter a sentinel at the
end of the list. A sentinel is a special value that cannot be mistaken as a member of the list
and signals that there are no more values to be entered. When the user enters the sentinel,
the loop terminates.

Program 5-11 provides an example of using an end sentinel. This program calculates the
total points earned by a soccer team over a series of games. It allows the user to enter the
series of game points, then enter –1 to signal the end of the list.

Program 5-11

1 // This program illustrates the use of an end sentinel. It calculates
2 // the total number of points a soccer team has earned over a series
3 // of games. The user enters the point values, then -1 when finished.
4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {
9 int game = 1, // Game counter
10 points, // Holds number of points for a specific game
11 total = 0; // Accumulates total points for all games

(program continues)

272 Chapter 5 Looping

The value -1 was chosen for the sentinel in this program because it is not possible for a
team to score negative points. Notice that this program performs a priming read in line 17
to get the first value. This is done so the while loop will not try to test the value of points
until a first value has been read in. It also makes it possible for the loop to immediately ter-
minate if the user enters -1 for the first value, as shown in the second sample run. Also
note that the sentinel value is not included in the running total.

12
13 // Read in the points for game 1
14 cout << "Enter the number of points your team has earned\n";
15 cout << "so far this season. Then enter -1 when finished.\n\n";
16 cout << "Enter the points for game " << game << ": ";
17 cin >> points;
18
19 // Loop as long as the end sentinel has not yet been entered
20 while (points != -1)
21 { // Add point just read in to the accumulator
22 total += points;
23
24 // Enter the points for the next game
25 cout << "Enter the points for game " << ++game << ": ";
26 cin >> points;
27 }
28 // Display the total points
29 cout << "\nThe total points are " << total << endl;
30 return 0;
31 }

Program Output with Example Input Shown in Bold
Enter the number of points your team has earned
so far this season. Then enter -1 when finished.

Enter the points for game 1: 7
Enter the points for game 2: 9
Enter the points for game 3: 4
Enter the points for game 4: 6
Enter the points for game 5: -1

The total points are 26

Program Output with Different Example Input Shown in Bold
Enter the number of points your team has earned
so far this season. Then enter -1 when finished.

Enter the points for game 1: -1

The total points are 0

Program 5-11 (continued)

Using a Loop to Read Data from a File 273

Checkpoint

5.13 In the following program segment, which variable is the counter and which is the
accumulator?

int x = 0, y = 0, z;
cout << "How many numbers do you wish to enter? ";
cin >> z;
while (x < z)
{

int a;
cout << "Enter a number: ";
cin >> a;
y += a;
x++;

}
cout << "The sum of those numbers is " << y << endl;

5.14 Write a for loop that sums up the squares of the integers from 1 through 10.

5.15 Write a for loop that sums up the squares of the odd integers from 1 through 9.

5.16 Write a for loop that repeats seven times, asking the user to enter a number each
time and summing the numbers entered.

5.17 Write a for loop that calculates the total of the following series of numbers:

5.18 Write a for loop that calculates the total of the following series of numbers:

5.19 Write a sentinel controlled while loop that accumulates a series of test scores input
by the user, until -99 is entered. The code should then report how many scores were
entered and the average of these scores. Do not count the end sentinel -99 as a score.

5.9 Using a Loop to Read Data from a File

CONCEPT: It is possible to read data from an input file without knowing how many
values there are. This can be done by placing a read statement in a loop
and reading data until all the values have been read.

You already know how easy it is for a program to read data from a file. By placing the state-
ment that reads the data in a loop, the same statement can be executed multiple times and
can therefore be used to read many different pieces of data. For example, it would be easy to
modify Program 5-10 to read the sales figures or Program 5-11 to read the game points from
a data file, rather than having these input from the keyboard by the user. However, both of
these programs require the user to know how much data there is. Program 5-10 requires the
user to enter the number of data values to be read and Program 5-11 requires the user to
input a sentinel value to signal there is no more data when all the values have been entered.

When reading data from a file, it is not necessary for the user to know how many data val-
ues there are or where the data ends. This is because files have an end of file mark at their
end. You cannot see it, but it is there, and a program can test to see whether or not it has

1
30
------ 2

29
------ 3

28
------ 4

27
------ ...30

1
------+ + + +

1
2
--- 1

4
--- 1

8
--- 1

16
------ ... 1

1024
------------+ + + +

274 Chapter 5 Looping

been reached. One way to do this is with the eof member function, which can be called for
any ifstream object. It returns true when the previous read encountered the end of file.

Otherwise it returns false. The format of the function call is

inputFile.eof()

where inputFile is the name of an ifstream object. The following code segment shows a
call to this function being used to control a loop.

inputFile >> item; // Read a value from the file
while (!inputFile.eof()) // While the end of file was not reached yet
{ cout << item; // Display the value just read

inputFile >> item; // Read the next value
}

This loop will read and display items from the file until the end of file is reached. Notice that
the first read from the data file is done before the while loop, and thus before the eof func-
tion is called the first time. This is necessary because the eof function does not return true,
signaling you are at the end of the file, even if a file is empty. It only returns true when
the end of file is detected while attempting to do a read. If the first read attempt fails because
the file is empty, the loop body will never be executed and no data values will be processed. If
a data value is successfully read, the loop will be entered, the value will be processed (in this
case displayed), and then the next read operation will be performed. Program 5-12 demon-
strates how to use a loop controlled by the return value of the eof function to read all the
numbers from a file, regardless of how many there are.

Program 5-12

1 // This program uses a loop to read and display all the numbers in a
2 // file. The ifstream eof member function is used to control the loop.
3 #include <iostream>
4 #include <fstream>
5 using namespace std;
6
7 int main()
8 {
9 int number;
10 ifstream inputFile;
11
12 inputFile.open("numbers.dat"); // Open the file
13 if (!inputFile) // Test for errors
14 cout << "Error opening file.\n";
15 else
16 { inputFile >> number; // Read the first number
17 while (!inputFile.eof()) // While read was good; no eof yet
18 {
19 cout << number << " "; // Display the number
20 inputFile >> number; // Read the next number
21 }
22 cout << endl;
23 inputFile.close(); // Close the file
24 }
25 return 0;
26 }

(program continues)

Using a Loop to Read Data from a File 275

Although the eof function is commonly used to test if the end of a file has been reached,
there is a potential problem with using it. For it to work correctly, using the method we
have shown, there must be whitespace (a space, tab, or [Enter]) in the file after the last data
value. Otherwise the eof function will return a true when the last value is read, rather
than when no more values exist to be read, and this last value will never be processed. For
example, the data file used for input in Program 5-12 contained the 7 numbers shown in
the output, followed by a space. If the final space is removed from the data file and the pro-
gram is rerun, the following output will be produced.

Program Output with Final Whitespace Removed from the File
2 4 6 8 10 12

Luckily a safer method exists in C++ to determine when there is no more data in a file. The
stream extraction operator (>>) not only can read data from a file, but it also returns a
value indicating whether the data was successfully read or not. If the operator returns
true, then a value was successfully read. If the operator returns false, it means that no
value was read from the file. For example, look at the following code.

if (inputFile >> number)
{

// Data was successfully read from the file
cout << "The data read from the file is " << number << endl;

}
else
{

// No data was read from the file
cout << "Could not read an item from the file.\n";

}

Notice that the read operation and the test to see if it was successful are both done in the
same statement. Combining a read and its test for success like this can also be used to
control a loop. By using the return value of the >> operator to control a while loop that
reads from a file, data will be read in until a read fails. This only occurs when there is no
more data to read (or some catastophic event, such as a disk crash). All the data in the
file will be read, regardless of whether the final data value is followed by whitespace or
not. Program 5-13 modifies Program 5-12 to use this method to control the loop.

Program Output
2 4 6 8 10 12 14

Program 5-13

1 // This program uses a loop to read and display all of the numbers in
2 // a file. The >> operator return value is used to control the loop.
3 #include <iostream>
4 #include <fstream>
5 using namespace std;
6

(program continues)

Program 5-12 (continued)

276 Chapter 5 Looping

5.10 Focus on Software Engineering:
Deciding Which Loop to Use

CONCEPT: Although most repetitive algorithms can be written with any of the three
types of loops, each works best in different situations.

Each of C++’s three loops are ideal to use in different situations. Here’s a short summary of
when each loop should be used.

The while Loop
The while loop is a pretest loop. It is ideal in situations where you do not want the loop to
iterate if the test condition is false from the beginning. For example, validating input that
has been read and reading lists of data terminated by a sentinel value are good applications
of the while loop.

cout << "This program finds the square of any integer.\n";
cout << "\nEnter an integer, or -99 to quit: ";
cin >> num;

while (num != -99)
{ cout << num << " squared is " << pow(num, 2.0) << endl;

cout << "\nEnter an integer, or -99 to quit ";
cin >> num;

}

7 int main()
8 {
9 int number;
10 ifstream inputFile;
11
12 inputFile.open("numbers.dat"); // Open the file
13 if (!inputFile) // Test for errors
14 cout << "Error opening file.\n";
15 else
16 { while(inputFile >> number) // Read a number and execute the
17 { // loop while read was successful
18 cout << number << " "; // Display the number
19 }
20 cout << endl;
21 inputFile.close(); // Close the file
22 }
23 return 0;
24 }

Program Output
2 4 6 8 10 12 14

Program 5-13 (continued)

Nested Loops 277

The do-while Loop
The do-while loop is a post test loop. It is ideal in situations where you always want the
loop to iterate at least once. The do-while loop is a good choice for repeating a menu or
for asking the user if they want to repeat a set of actions.

cout << "This program finds the square of any integer.\n";
do
{ cout << "\nEnter an integer: ";

cin >> num;
cout << num << " squared is " << pow(num, 2.0) << endl;
cout << "Do you want to square another number? (Y/N) ";
cin >> doAgain;

} while ((doAgain == "Y") || (doAgain == "y"));

The for Loop
The for loop is a pretest loop with built-in expressions for initializing, testing, and updating
a counter variable. The for loop is ideal in situations where the exact number of iterations is
known.

cout << "This program finds the squares of the integers "
<< "from 1 to 8.\n\n";

for (num = 1; num <= 8; num++)
{

cout << num << " squared is " << pow(num, 2.0) << endl;
}

5.11 Nested Loops

CONCEPT: A loop that is inside another loop is called a nested loop.

In Chapter 4 you saw how one if statement could be nested inside another one. It is
also possible to nest one loop inside another loop. The first loop is called the outer
loop. The one nested inside it is called the inner loop. This is illustrated by the follow-
ing two while loops. Notice how the inner loop must be completely contained within
the outer one.

while (condition1) // Beginning of the outer loop
{ ---

while (condition2) // Beginning of the inner loop
{ ---

} // End of the inner loop

} // End of the outer loop

Nested loops are used when, for each iteration of the outer loop, something must be
repeated a number of times. Here are some examples from everyday life:

• For each batch of cookies to be baked we must put each cookie on the cookie sheet.
• For each salesperson, we must add up each sale to determine total commission.
• For each teacher we must produce a class list for each of their classes.
• For each student we must add up each test score to find the student’s test average.

Nested Loops

278 Chapter 5 Looping

Whatever the task, the inner loop will go through all its iterations each time the outer loop
is executed. This is illustrated by Program 5-14, which handles this last task, finding stu-
dent test score averages. Any kind of loop can be nested within any other kind of loop.
This program uses two for loops.

Program 5-14

1 // This program averages test scores. It asks the user for the
2 // number of students and the number of test scores per student.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int numStudents, // Number of students
9 numTests; // Number of tests per student
10 double average; // Average test score for a student
11
12 // Get the number of students
13 cout << "This program averages test scores.\n";
14 cout << "How many students are there? ";
15 cin >> numStudents;
16
17 // Get the number of test scores per student
18 cout << "How many test scores does each student have? ";
19 cin >> numTests;
20 cout << endl;
21
22 // Read each student's scores and compute their average
23 for (int snum = 1; snum <= numStudents; snum++) // Outer loop
24 { double total = 0.0; // Initialize accumulator
25
26 for (int test = 1; test <= numTests; test++) // Inner loop
27 { int score;
28
29 // Read a score and add it to the accumulator
30 cout << "Enter score " << test << " for ";
31 cout << "student " << snum << ": ";
32 cin >> score;
33 total += score; //
34 } // End inner loop
35 // Compute and display the student's average
36 average = total / numTests;
37 cout << "The average score for student " << snum;
38 cout << " is " << average << "\n\n";
39 } // End outer loop
40 return 0;
41 }

(program continues)

Breaking Out of a Loop 279

Let’s trace what happened in Program 5-14, using the sample data shown. In this case,
for each of two students, each of three scores were input and summed. First in line 23 the
outer loop was entered and snum was set to 1. Then, once the total accumulator was
initialized to zero for that student, the inner loop, which begins on line 26, was entered.
While the outer loop was still on its first iteration and snum was still 1, the inner loop
went through all of its iterations, handling tests 1, 2, and 3 for that student. It then
exited the inner loop and in lines 36 through 38 calculated and output the average for
student 1. Only then did the program reach the bottom of the outer loop and go back up
to do its second iteration. The second iteration of the outer loop processed student 2. For
each iteration of the outer loop, the inner loop did all its iterations.

It might help to think of each loop as a rotating wheel. The outer loop is a big wheel that is
moving slowly. The inner loop is a smaller wheel that is spinning quickly. For every rota-
tion the big wheel makes, the little wheel makes many rotations. Since, in our example, the
outer loop was done twice, and the inner loop was done three times for each iteration of
the outer loop, the inner loop was done a total of six times in all. This corresponds to the
six scores input by the user. The following points summarize this.

• An inner loop goes through all of its iterations for each iteration of an outer loop.
• Inner loops complete their iterations faster than outer loops.
• To get the total number of iterations of an inner loop, multiply the number of itera-

tions of the outer loop by the number of iterations done by the inner loop each time
the outer loop is done.

5.12 Breaking Out of a Loop

CONCEPT: The break statement causes a loop to terminate early.

Sometimes it’s necessary to stop a loop before it goes through all its iterations. The break
statement, which was used with switch in Chapter 4, can also be placed inside a loop.
When it is encountered, the loop stops and the program jumps to the statement immedi-
ately following the loop.

Program Output with Example Input Shown in Bold
This program averages test scores.
How many students are there? 2[Enter]
How many test scores does each student have? 3[Enter]

Enter score 1 for student 1: 84[Enter]
Enter score 2 for student 1: 79[Enter]
Enter score 3 for student 1: 97[Enter]
The average for student 1 is 86.6667
Enter score 1 for student 2: 92[Enter]
Enter score 2 for student 2: 88[Enter]
Enter score 3 for student 2: 94[Enter]
The average for student 2 is 91.3333

Program 5-14 (continued)

280 Chapter 5 Looping

The while loop in the following program segment appears to execute 10 times, but the
break statement causes it to stop after the fifth iteration.

int count = 1;
while (count <= 10)
{

cout << count << endl;
count++;
if (count == 6)

break;
}

This example is just to illustrate what a break statement inside a loop will do. You would
not normally want to use one in this way because it violates the rules of structured pro-
gramming and makes code more difficult to understand, debug, and maintain. The exit
from a loop should be controlled by its condition test at the top of the loop, as in a while
loop or for loop, or at the bottom, as in a do-while loop. Normally the only time a
break statement is used inside a loop is to exit the loop early if an error condition occurs.
Program 5-15 illustrates an example of this.

Program 5-15

1 // This program is supposed to find the square root of 5 numbers
2 // entered by the user. However, if a negative number is entered
3 // an error message displays and a break statement is used to
4 // stop the loop early.
5 #include <iostream>
6 #include <cmath>
7 using namespace std;
8
9 int main()
10 {
11 double number;
12
13 cout << "Enter 5 positive numbers separated by spaces and \n"
14 << "I will find their square roots: ";
15
16 for (int count = 1; count <= 5; count++)
17 {
18 cin >> number;
19 if (number >= 0.0)
20 { cout << "\nThe square root of " << number << " is "
21 << sqrt(number);
22 }
23 else
24 { cout << "\n\n" << number << " is negative. "
25 << "I cannot find the square root \n"
26 << "of a negative number. The program is terminating.\n";
27 break;
28 }
29 }
30 return 0;
31 }

(program continues)

The continue Statement 281

Using break in a Nested Loop
In a nested loop, the break statement only interrupts the loop it is placed in. The following
program segment displays five rows of asterisks on the screen. The outer loop controls the
number of rows and the inner loop controls the number of asterisks in each row. The inner
loop is designed to display 20 asterisks, but the break statement stops it during the
11th iteration.

for (row = 0; row < 3; row++)
{

for (star = 0; star < 20; star++)
{

cout << '*';
if (star == 10)

 break;
}
cout << endl;

}

The output of this program segment is

5.13 The continue Statement

CONCEPT: The continue statement causes a loop to stop its current iteration and
begin the next one.

The continue statement causes the current iteration of a loop to end immediately. When
continue is encountered, all the statements in the body of the loop that appear after it are

Program Output with Example Input Shown in Bold
Enter 5 positive numbers separated by spaces and
I will find their square roots: 12 15 17 19 31[Enter]

The square root of 12 is 3.4641
The square root of 15 is 3.87298

-17 is negative. I cannot find the square root
of a negative number. The program is terminating.

WARNING! Use the break statement with great caution. Because it bypasses the loop
condition to terminate a loop, it violates the rules of structured programming and
makes code more difficult to understand, debug, and maintain. For this reason, we do
not recommend using it to exit a loop. Because it is part of the C++ language, however,
we have discussed it briefly in this section.

Program 5-15 (continued)

282 Chapter 5 Looping

ignored, and the loop prepares for the next iteration. In a while loop, this means the program
jumps to the test expression at the top of the loop. As usual, if the expression is still true, the
next iteration begins. In a do-while loop, the program jumps to the test expression at the bot-
tom of the loop, which determines if the next iteration will begin. In a for loop, continue
causes the update expression to be executed, and then the test expression to be evaluated.

The following program segment demonstrates the use of continue in a while loop:

int testVal = 0;
while (testVal < 10)
{

testVal++;
if (testVal) == 4

continue; // Terminate this iteration of the loop
cout << testVal << " ";

}

This loop looks like it displays the integers 1–10. However, here is the output:

1 2 3 5 6 7 8 9 10

Notice that the number 4 does not print. This is because when testVal is equal to 4, the
continue statement causes the loop to skip the cout statement and begin the next iteration.

There are some practical uses of the continue statement, however, and Program 5-16
illustrates one of these. The program calculates the charges for DVD rentals where current
releases cost $3.50 and all others cost $2.50. If a customer rents several DVDs, every third
one is free. The continue statement is used to skip the part of the loop that calculates the
charges for every third DVD.

WARNING! As with the break statement, the continue statement violates the rules
of structured programming and makes code more difficult to understand, debug, and
maintain. For this reason, you should use continue with great caution.

Program 5-16

1 // This program calculates DVD rental charges where every third DVD
2 // is free. It illustrates the use of the continue statement.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {
9 int numDVDs; // Number of DVDs being rented
10 double total = 0.0; // Accumulates total charges for all DVDs
11 char current; // Current release? (Y/N)
12
13 // Get number of DVDs rented
14 cout << "How many DVDs are being rented? ";
15 cin >> numDVDs;
16

(program continues)

The continue Statement 283

Checkpoint

5.20 Which loop (while, do-while, or for) is best to use in the following situations?

A) The user must enter a set of exactly 14 numbers.
B) A menu must be displayed for the user to make a selection.
C) A calculation must be made an unknown number of times. (Maybe even no times.)
D) A series of numbers must be entered by the user, terminated by a sentinel value.
E) A series of values must be entered. The user specifies exactly how many.

5.21 How many stars be displayed in each of the following program segments?

A) for (x = 0; x < 20; x++)
{ for (y = 0; y < 30; y++)

 cout << '*' << endl;
}

B) for (x = 0; x < 20; x++)
{ for (y = 0; y < 30; y++)

 { if (y > 10)
 break;
 cout << '*' << endl;
 }

}

17 // Determine the charges
18 for (int dvdCount = 1; dvdCount <= numDVDs; dvdCount++)
19 { if (dvdCount % 3 == 0) // If it's a 3rd DVD it's free
20 {
21 cout << "DVD #" << dvdCount << " is free!\n";
22 continue;
23 }
24 cout << "Is DVD #" << dvdCount << " a current release (Y/N)? ";
25 cin >> current;
26 if ((current == 'Y') || (current == 'y'))
27 total += 3.50;
28 else
29 total += 2.50;
30 }
31 // Display the total charges
32 cout << fixed << showpoint << setprecision(2);
33 cout << "The total is $" << total << endl;
34 return 0;
35 }

Program Output with Example Input Shown in Bold
How many DVDs are being rented? 6[Enter]
Is DVD #1 a current release (Y/N)? y[Enter]
Is DVD #2 a current release (Y/N)? n[Enter]
DVD #3 is free!
Is DVD #4 a current release (Y/N)? n[Enter]
Is DVD #5 a current release (Y/N)? y[Enter]
DVD #6 is free!
The total is $12.00

Program 5-16 (continued)

284 Chapter 5 Looping

5.22 What will the following program segment display?

int x = 0, y = 0;

while (x++ < 5)
{

if (x == 3)
continue;

y += x;
cout << y << endl;

}

5.14 Focus on Testing and Debugging: Creating Good
Test Data

CONCEPT: Thorough testing of a program requires good test data.

Once a program has been designed, written in a programming language, and found to
compile and link without errors, it must be thoroughly tested to find any logic errors and
to ensure that it works correctly according to the original problem specification. When it
comes to creating test data, quality is more important than quantity. That is, a small set of
good test cases can provide more information about how a program works than twice as
many cases that are not carefully thought out. Each test case should be designed to test a
different aspect of the program and you should always know what each test set you use is
checking for. To illustrate this, look at Program 5-17. It uses a sentinel-controlled loop to
average two test scores for each student in the class, where all test scores are between 0 and
100. The program compiles, links, and runs. But it contains several logic errors.

Program 5-17

1 // This program averages 2 test scores for each student in a class.
2 // It contains logic errors.
3 #include <iostream>
4 #include <string>
5 #include <iomanip>
6 using namespace std;
7
8 int main()
9 {
10 string name; // Student first name
11
12 int count = 1, // Student counter
13 score, // An individual score read in
14 totalScore = 0; // Total of a student's 2 scores
15 double average; // Average of a student’s 2 scores
16
17 cout << fixed << showpoint << setprecision(1);
18 cout << "Enter the first name of student " << count
19 << " (or Q to quit): ";
20 cin >> name;

(program continues)

285

21
22 while ((name != "Q") && (name != "q"))
23 {
24 // Get and validate the first score
25 cout << "Enter score 1: ";
26 cin >> score;
27 if ((score <= 0) || (score >= 100))
28 { cout << "Score must be between 0 and 100. Please reenter: ";
29 cin >> score;
30 }
31 totalScore += score; // Add the first score onto the total
32
33 // Get and validate the second score
34 cout << "Enter score 2: ";
35 cin >> score;
36 if ((score <= 0) || (score >= 100))
37 { cout << "Score must be between 0 and 100. Please reenter: ";
38 cin >> score;
39 }
40 totalScore += score; // Add the second score onto the total
41
42 // Calculate and print average
43 average = totalScore / 2;
44 cout << name << setw(6) << average << endl;
45
46 // Get the next student name
47 cout << "Enter the first name of student " << count++
48 << " (or Q to quit): ";
49 cin >> name;
50 }
51 return 0;
52 }

Table 5-1 Preliminary Test Plans for Program 5-17

Name Score 1 Score 2 Expected Outcome

Test 1: Mary
Q

80 80 80.0
program quits

Test 2: Bill
Q

70 80 75.0
program quits

Test 3: Tom
q

80 90 85.0
program quits

Test 4: Sam
q

–1 then 1 999 then 99 50.0
program quits

Program 5-17 (continued)

Focus on Testing and Debugging: Creating Good Test Data

286 Chapter 5 Looping

Try running the program using the four test cases shown in Table 5-1. The program con-
tains five logic errors. However, if it is run with just these four test cases, none of the errors
will be revealed. The test data is not designed carefully enough to catch them. Tests 1, 2,
and 3 are really just three versions of the same test. They all simply check that the program
can compute a correct average for a single student where the result has no decimal digits.
The final test checks that the program can catch a single invalid value that is too small or
too big, but does not check what will happen if a second invalid value is entered for the
same input. Table 5-2 contains a better set of tests and illustrates some of the kinds of
things you should check for when you test a program. These tests will reveal all five of the
program’s errors.

Rerun Program 5-17 using the test cases from Table 5-2 and examine the incorrect output
to identify the errors. Then see if you can fix these errors. Do not rewrite the program. Just
make the smallest changes necessary to correct the errors. Now test the program again
using the test cases in Table 5-2. Continue making corrections and retesting until the pro-
gram successfully passes all three of these test cases. A correct solution can be found on the
student CD in the pr5-17B.cpp file of the Chapter 5 programs folder.

Table 5-2 Modified Test Plans for Program 5-17

Test Name Score 1 Score 2 Purpose
Expected
Outcome

1 Mary
Bill
Tom
Q

80
70
80

80
80
91

Program correctly
handles both even
results and ones with
decimal values.
Program can loop to
handle multiple students.
Program ends when Q is
entered for the name.

80.0
75.0
85.5
program ends

2 Sam
Ted
q

 –1 then 1
 –1 then –2 then 1

101 then 99
200 then 500
then 99

Program correctly
handles invalid scores,
even when more than
one bad score is entered
in a row.
Program catches bad
inputs immediately outside
the valid range
(e.g., –1 & 101).
Program ends when q
is entered for the name.

50.0
50.0
program ends

3 Bob
q

 0 100 Program allows values
at extreme ends of the
valid range.

50.0
program ends

Central Mountain Credit Union Case Study 287

5.15 Central Mountain Credit Union Case Study
The Central Mountain Credit Union uses a central data processing system where each
branch accesses a minicomputer at the Credit Union’s main office. The minicomputer has a
tendency to slow down when many users are on the system. Because of this, the loan
officer at one of the branch offices has asked you to write a loan amortization program to
run locally, on a desktop PC.

Problem Statement
When given the loan amount, annual interest rate, and number of years of a loan, the pro-
gram must determine and display the monthly payment amount. It must then create and
display an amortization table that lists the following information for each month of
the loan:

• payment number
• amount of that month’s payment that was applied to interest
• amount of that month’s payment that was applied to principal
• balance after that payment.

The following report may be used as a model. It shows all the required information on a
$2000 loan at 7.5% annual interest for .5 years (i.e., 6 months).

Monthly payment: $340.66

Month Interest Principal Balance

1 12.50 328.16 1671.84
2 10.45 330.21 1341.62
3 8.39 332.28 1009.34
4 6.31 334.35 674.99
5 4.22 336.44 338.55
6 2.12 338.55 0.00

Calculations
The credit union uses the following formula to calculate the monthly payment of a loan:

where:

Loan = the amount of the loan
Rate = the annual interest rate
Term = (1+ Rate/12)Years*12

Variables
Table 5-3 lists the variables needed in the program.

Payment Loan * Rate/12 * Term
Term 1–

--=

288 Chapter 5 Looping

Program Design
Figure 5-8 shows a hierarchy chart for the program.

Detailed Pseudocode (including actual variable names and needed calculations)

Input loan, rate, years
numPayments = years * 12.0
moInterestRate = rate / 12.0
term = (1 + moInterestRate)numPayments
payment = (loan * moInterestRate * term) / (term – 1.0)
Display payment
Display a report header with column headings
balance = loan // Remaining balance starts out as full loan amount

Table 5-3 Variables Used in the Central Mountain Credit Union Case Study

Variable Description

loan A double. Holds the loan amount.

rate A double. Holds the annual interest rate.

moInterestRate A double. Holds the monthly interest rate.

years A double. Holds the number of years of the loan.

balance A double. Holds the remaining balance to be paid.

term A double. Used in the monthly payment calculation.

payment A double. Holds the monthly payment amount.

numPayments An int. Holds the total number of payments.

month An int. Loop control variable that holds the current payment number.

moInterest A double. Holds the monthly interest amount.

principal A double. Holds the amount of the monthly payment that pays down the loan.

Figure 5-8

Perform
starting

calculations

Input loan
parameters

Display
report

Read loan
amount

Read annual
interest rate

Read years
of loan

Calculate
number of
payments

Calculate
monthly
payment

Calculate
monthly

interest rate

Print
header

For each month calculate
interest, principal, new
balance. Display report
detail line

Main

Central Mountain Credit Union Case Study 289

For each month of the loan
moInterest = moInterestRate * balance // Calculate interest first
If it’s not the final month
 principal = payment – moInterest // Rest of pmt goes to principal

Else // It’s the last month so
 principal = balance // pay off exact final balance
 payment = balance + moInterest

 End If
 balance = balance – principal // Only principal reduces the

// balance, not the whole pmt
 Display month, moInterest, principal, balance
End of loop

The Program
The next step, after the pseudocode has been checked for logic errors, is to expand the
pseudocode into the final program. This is shown in Program 5-18.

Program 5-18

1 // This program produces a loan amortization table for the
2 // Central Mountain Credit Union.
3 #include <iostream>
4 #include <iomanip>
5 #include <cmath> // Needed for the pow function
6 using namespace std;
7
8 int main()
9 {
10 double loan, // Loan amount
11 rate, // Annual interest rate
12 moInterestRate, // Monthly interest rate
13 years, // Years of loan
14 balance, // Monthly balance
15 term, // Used to calculate payment
16 payment; // Monthly payment
17 int numPayments; // Number of payments
18
19 // Get loan information
20 cout << "Loan amount: $";
21 cin >> loan;
22 cout << "Annual interest rate (entered as a decimal): ";
23 cin >> rate;
24 cout << "Years of loan: ";
25 cin >> years;
26
27 // Calculate monthly payment
28 numPayments = static_cast<int>(12 * years);
29 moInterestRate = rate / 12.0;
30 term = pow((1 + moInterestRate), numPayments);
31 payment = (loan * moInterestRate * term) / (term - 1.0);
32
33 // Display monthly payment
34 cout << fixed << showpoint << setprecision(2);
35 cout << "Monthly payment: $" << payment << endl;
36

(program continues)

290 Chapter 5 Looping

37 // Display report header
38 cout << endl;
39 cout << setw(5) << "Month" << setw(10) << "Interest";
40 cout << setw(10) << "Principal" << setw(9) << "Balance" << endl;
41 cout << "----------------------------------\n";
42
43 balance = loan; // Remaining balance starts out as full loan amount
44
45 // Produce a listing for each month
46 for (int month = 1; month <= numPayments; month++)
47 {
48 double moInterest, // Amount of pmt that pays interest
49 principal; // Amount of pmt that lowers the balance
50
51 // Calculate amount paid for this month's interest and principal
52 moInterest = moInterestRate * balance; // Calculate interest first
53 if (month != numPayments) // If not the final month
54 principal = payment - moInterest; // rest of pmt goes
55 // to principal
56
57 else // It's the last month so
58 { principal = balance; // pay exact final balance
59 payment = balance + moInterest;
60 }
61 // Calculate new loan balance // Only principal reduces the
62 balance -= principal; // balance, not the whole pmt
63
64 // Display this month's payment figures
65 cout << setw(4) << month << setw(10) << moInterest;
66 cout << setw(10) << principal << setw(10) << balance << endl;
67 }
68 return 0;
69 }

Program Output with Example Input Shown in Bold
Loan amount: $1200[Enter]
Annual interest rate (entered as a decimal): .08[Enter]
Years of loan: 1[Enter]
Monthly payment: $104.39

Month Interest Principal Balance

 1 8.00 96.39 1103.61
 2 7.36 97.03 1006.59
 3 6.71 97.68 908.91
 4 6.06 98.33 810.58
 5 5.40 98.98 711.60
 6 4.74 99.64 611.96
 7 4.08 100.31 511.65
 8 3.41 100.98 410.68
 9 2.74 101.65 309.03
 10 2.06 102.33 206.70
 11 1.38 103.01 103.69
 12 0.69 103.69 0.00

Program 5-18 (continued)

291

Testing the Program
Testing the program has been left as an exercise for you to do. Use what you learned in
Section 5.14 about developing good test cases to develop a set of cases you can use to
test Program 5-18. The program runs correctly except for one special case, where it fails.
The program design failed to realize the need to handle this special case differently than
it handles other data. Try to come up with input data for a test case that reveals the
error. Then, once you have identified the problem, see if you can revise the program to
fix it. A corrected version of Program 5-18 can be found in the pr5-18B.cpp file of the
Chapter 5 programs folder on the student CD.

Lightening Lanes Case Study
The following additional case study, which contain applications of material introduced in
Chapter 5, can be found on the student CD.

On Tuesday afternoons, Lightening Lanes Bowling Alley runs a special class to teach chil-
dren to bowl. Each lane has an instructor who works with a team of four student bowlers
and instructs them as they bowl three lines (i.e., games). The management of Lightening
Lanes has asked you to develop a program that will report each student’s three-game aver-
age score and compare it to the average score they bowled the previous week. In this way,
the students can see how much they are improving. The program will use looping struc-
tures and data validation techniques learned in Chapter 5.

5.16 Tying It All Together: What a Colorful World

In Chapter 5’s Tying It All Together section we’ll take a look at how to use the looping
constructs you learned about in this chapter, along with colorful output characters, to
create interesting screen displays.

All the C++ programs you have seen so far produce output that is white on a black back-
ground. This is because they use the standard C++ iostream libraries, which can only
display output in these two colors. However, C++ compilers provide other libraries you
can use to call operating system functions that can display output in many colors.
Because these libraries are tailored to specific operating systems, programs that use them
will only run on the system they were written for.

Here is how to use Microsoft Windows functions to create programs with colorful output
that can run on Windows 2000, XP, Vista, and 7.

NOTE: You might have noticed in the output that for some months, such as months 5
and 6, the interest amount plus the principal amount does not add up to the monthly
payment amount. Also, for some months, the previous balance minus the principal paid
does not exactly equal the new balance. These problems are due to round-off error,
which is caused by a disparity between the precision of a value the computer stores
internally and the precision of the value it displays. Do not worry about this for now.
You will learn later how to deal with this.

Tying It All Together: What a Colorful World

292 Chapter 5 Looping

The first thing you need to do is include the following file in your program so you will be
able to use the functions you need:

#include <windows.h>

Next, because programs can actually access more than one screen device at a time, you will
need to indicate which screen you want the colors you set to appear on. The cout object
writes to the standard output screen. You can set colors on this screen by providing a han-
dle to it. A handle is an object of type HANDLE, which is defined by Microsoft Windows.
Here is how to obtain a handle to the standard output screen:

HANDLE screen = GetStdHandle(STD_OUTPUT_HANDLE);

GetStdHandle is a Windows-specific library function and STD_OUTPUT_HANDLE is a
Windows-specific constant.

The easiest way to set a color is to call the SetConsoleTextAttribute function and pass
it the name of the handle to the output screen and a number that tells what color you want
the output text to appear in. Table 5-4 shows the number that corresponds to each color.

Once you set a color it will remain in effect for all output text until you set a new one.

The following code segment shows how you can write the string “red” in red, “white” in
white, “blue” in blue, and “bright yellow” in bright yellow.

SetConsoleTextAttribute(screen, 4);
cout << "Red" << endl;
SetConsoleTextAttribute(screen, 7);
cout << "White" << endl;
SetConsoleTextAttribute(screen, 1);
cout << "Blue" << endl;
SetConsoleTextAttribute(screen, 14);
cout << "Bright Yellow" << endl;

Here are two programs that use color. Neither one requires any input. Try running them to
see their output displayed in color. Program 5-19 uses a loop to display "Hello World" on
a black background in each of the 16 colors shown in Table 5-4.

Table 5-4 Windows Text Colors

Number Text Color Number Text Color

0 Black 8 “Bright” Black

1 Blue 9 Bright Blue

2 Green 10 Bright Green

3 Cyan 11 Bright Cyan

4 Red 12 Bright Red

5 Purple 13 Bright Purple

6 Yellow 14 Bright Yellow

7 White 15 Bright White

293

Notice in Program 5-19 that each cout statement ended with an endl. This is needed to
“flush” the buffer to ensure that all the output has been written to the screen before you
change to another color. A '\n' will not work because it causes output to go to the next
line, but does not flush the output buffer.

 Program 5-20 provides another example of creating colorful output. It uses a loop to print
the ABCs in color, alternating between bright green, red, and yellow.

Program 5-19

1 // This program demonstrates Windows functions to print colored
2 // text. It displays " Hello World!" in 16 different colors.
3 #include <iostream>
4 #include <windows.h> // Needed to display colors and call Sleep
5 using namespace std;
6
7 int main()
8 {
9 // Create a handle to the computer screen.
10 HANDLE screen = GetStdHandle(STD_OUTPUT_HANDLE);
11
12 // Write 16 lines in 16 different colors.
13 for (int color = 0; color < 16; color++)
14 {
15 SetConsoleTextAttribute (screen, color);
16 cout << " Hello World!" << endl;
17 Sleep(400); // Pause between lines to watch them appear
18 }
19 // Restore the normal text color)
20 SetConsoleTextAttribute(screen, 7);
21 return 0;
22 }

Program 5-20

1 // This program writes the ABCs in green, red, and yellow.
2 #include <iostream>
3 #include <windows.h> // Needed to display colors and call sleep
4 using namespace std;
5
6 int main()
7 {
8 // Bright Green = 10 Bright Red = 12 Bright Yellow = 14
9
10 // Get the handle to standard output device (the console)
11 HANDLE screen = GetStdHandle(STD_OUTPUT_HANDLE);
12
13 // Write the ABCs using 3 colors
14 int color = 10; // Staring color = green

(program continues)

Tying It All Together: What a Colorful World

294 Chapter 5 Looping

There are three important things to remember when working with colors:

• Include the <windows.h> header file.
• Follow each cout statement with an endl.
• Always set the text color back to normal (i.e., white) before quitting.

Review Questions and Exercises

Fill-in-the-Blank

1. To __________ a value means to increase it by one

2. To __________ a value means to decrease it by one.

3. When the increment or decrement operator is placed before the operand (or to the
operand’s left), the operator is being used in __________ mode.

4. When the increment or decrement operator is placed after the operand (or to the
operand’s right), the operator is being used in __________ mode.

5. The statement or block that is repeated is known as the __________ of the loop.

6. Each repetition of a loop is known as a(n) __________.

7. A loop that evaluates its test expression before each repetition is a(n) __________
loop.

8. A loop that evaluates its test expression after each repetition is a(n) __________ loop.

9. A loop that does not have a way of stopping is a(n) __________ loop.

10. A(n)__________ is a variable that “counts” the number of times a loop repeats.

11. A(n) __________ is a sum of numbers that accumulates with each iteration of a loop.

12. A(n) __________ is a variable that is initialized to some starting value, usually zero,
and then has numbers added to it in each iteration of a loop.

13. A(n) __________ is a special value that marks the end of a series of values.

14. The __________ loop is ideal for situations that require a counter.

15 for (char letter = 'A'; letter <= 'Z'; letter++)
16 {
17 SetConsoleTextAttribute (screen, color); // Set the color
18 cout << letter << " " << endl; // Print the letter
19
20 color +=2; // Choose next color
21 if (color > 14)
22 color = 10;
23
24 Sleep(280); // Pause between characters to watch them appear
25 }
26 // Restore normal text attribute (i.e. white)
27 SetConsoleTextAttribute(screen, 7);
28 return 0;
29 }

Program 5-20 (continued)

Chapter 5 Looping

Review Questions and Exercises 295

15. The __________ loop always iterates at least once.

16. The __________ and __________ loops will not iterate at all if their test expressions
are false to start with.

17. Inside the for loop’s parentheses, the first expression is the __________ , the second
expression is the __________ , and the third expression is the __________.

18. A loop that is inside another is called a(n) __________ loop.

19. The __________ statement causes a loop to terminate immediately.

20. The __________ statement causes a loop to skip the remaining statements in the cur-
rent iteration.

Algorithm Workbench

21. Write code that lets the user enter a number. The number should be multiplied by 2
and printed until the number exceeds 50. Use a while loop.

22. Write a do-while loop that asks the user to enter two numbers. The numbers should
be added and the sum displayed. The user should be asked if he or she wishes to per-
form the operation again. If so, the loop should repeat; otherwise it should terminate.

23. Write a for loop that displays the following set of numbers:

0, 10, 20, 30, 40, 50 . . . 1000

24. Write a loop that asks the user to enter a number. The loop should iterate 10 times
and keep a running total of the numbers entered.

25. Write a nested loop that displays the following ouput:

26. Write a nested loop that displays 10 rows of ‘#’ characters. There should be 15 ‘#’
characters in each row.

27. Rewrite the following code, converting the while loop to a do-while loop:

char doAgain = 'y';
int sum = 0;

cout << "This code will increment sum 1 or more times.\n";
while ((doAgain == 'y') || (doAgain == 'Y'))
{ sum++;

cout << "Sum has been incremented. Increment it again(y/n)? ";
cin >> doAgain;

}
cout << "Sum was incremented " << sum << " times.\n";

28. Rewrite the following code, replacing the do-while loop with a while loop. When
you do this you will no longer need an if statement.
int number;
cout << "Enter an even number: ";
do
{ cin >> number;

if (number % 2 != 0)
cout << "Number must be even. Reenter number: ";

} while (number % 2 != 0);

296 Chapter 5 Looping

29. Convert the following while loop to a for loop:

int count = 0;
while (count < 50)
{

cout << "count is " << count << endl;
count++;

}

30. Convert the following for loop to a while loop:

for (int x = 50; x > 0; x--)
{

cout << x << " seconds to go.\n";
}

Predict the Output

What will each of the following program segments display?

31. int x = 1;
while (x < 10);

 x++;
 cout << x;

32. int x = 1;
while (x < 10)

 x++;
 cout << x;

33. for (int count = 1; count <= 10; count++)
{ cout << ++count << " "; // This is a bad thing to do!
}

34. for (int row = 1; row <= 3; row++)
{ cout << "\n$";

for (int digit = 1; digit <= 4; digit++)
cout << '9';

}

Find the Errors

35. Each of the programs in this section has errors. Find as many as you can.

A) // Find the error in this program.
#include <iostream>
using namespace std;
int main()
{ int num1 = 0, num2 = 10, result;

num1++;
result = ++(num1 + num2);
cout << num1 << " " << num2 << " " << result;
return 0;

}

Review Questions and Exercises 297

B) // This program adds two numbers entered by the user.
#include <iostream>
using namespace std;
int main()
{ int num1, num2;

char again;

while ((again == 'y') || (again == 'Y'))
cout << "Enter two numbers: ";
cin >> num1 >> num2;
cout << "Their sum is << (num1 + num2) << endl;
cout << "Do you want to do this again? ";
cin >> again;
return 0;

}

36. A) // This program uses a loop to raise a number to a power.
#include <iostream>
using namespace std;
int main()
{ int num, bigNum, power, count;

cout << "Enter an integer: ";
cin >> num;
cout << "What power do you want it raised to? ";
cin >> power;
bigNum = num;
while (count++ < power);

bigNum *= num;
cout << "The result is << bigNum << endl;
return 0;

}

B) // This program averages a set of numbers.
#include <iostream>
using namespace std;

int main()
{

int numCount, total;
double average;

cout << "How many numbers do you want to average? ";
cin >> numCount;
for (int count = 0; count < numCount; count++)
{

int num;
cout << "Enter a number: ";
cin >> num;
total += num;
count++;

}
average = total / numCount;
cout << "The average is << average << endl;
return 0;

}

298 Chapter 5 Looping

37. A) // This program displays the sum of two numbers.
#include <iostream>
using namespace std;

int main()
{

int choice, num1, num2;

do
{

cout << "Enter a number: ";
cin >> num1;
cout << "Enter another number: ";
cin >> num2;
cout << "Their sum is " << (num1 + num2) << endl;
cout << "Do you want to do this again?\n";
cout << "1 = yes, 0 = no\n";
cin >> choice;

} while (choice = 1)
return 0;

}

B) // This program displays the sum of the numbers 1 - 100.
#include <iostream>
using namespace std;

int main()
{

int count = 1, total;

while (count <= 100)
total += count;

cout << "The sum of the numbers 1 - 100 is ";
cout << total << endl;
return 0;

}

Soft Skills

Programmers not only need to be able to analyze what is wrong with a faulty algorithm,
but also need to be able to explain the problem to others.

38. Write a clear problem description for a simple program and create a pseudocode solution
for it. The pseudocode should incorporate the logic, including all the calculations,
needed in the program, but should purposely contain a subtle logic error. Then pair
up with another student in the class who has done the same thing and swap your
work. Each of you should trace the logic to find the error in the pseudocode you are
given, then clearly explain to your partner what the problem is, why the “code” will
not work as written, and what should be done to correct it.

As an alternative, your instructor may wish to provide you with a problem descrip-
tion and an incorrect pseudocode solution. Again, the goal is not only for you to find
the error, but also to clearly explain what the problem is, why the “code” will not
work as written, and what should be done to correct it.

Review Questions and Exercises 299

Programming Challenges

1. Characters for the ASCII Codes

Write a program that uses a loop to display the characters for each ASCII code 32 through
127. Display 16 characters on each line with one space between characters.

2. Sum of Numbers

Write a program that asks the user for a positive integer value. The program should use a
loop to get the sum of all the integers from 1 up to the number entered. For example, if the
user enters 50, the loop will find the sum of 1, 2, 3, 4, … 50.

Input Validation: Do not accept an input that is less than 1.

3. Distance Traveled

The distance a vehicle travels can be calculated as follows:

distance = speed * time

For example, if a train travels 40 miles per hour for 3 hours, the distance traveled is
120 miles.

Write a program that asks the user for the speed of a vehicle (in miles per hour) and how
many hours it has traveled. It should then use a loop to display the total distance traveled
at the end of each hour of that time period. Here is an example of the output:

What is the speed of the vehicle in mph? 40
How many hours has it traveled? 3
Hour Distance Traveled

1 40
2 80
3 120

Input Validation: Do not accept a negative number for speed and do not accept any
value less than one for time traveled.

4. Celsius to Fahrenheit Table

In one of the Chapter 3 Programming Challenges you were asked to write a program that
converts a Celsius temperature to Fahrenheit. Modify that program so it uses a loop to dis-
play a table of the Celsius temperatures from 0 to 20 and their Fahrenheit equivalents.

5. Speed Conversion Chart

Write a program that displays a table of speeds in kilometers per hour with their values
converted to miles per hour. The table should display the speeds from 60 kilometers per
hour through 130 kilometers per hour, in increments of 5 kilometers per hour. (In other
words, it should display 60 kph, 65 kph, 70 kph and so forth, up through 130 kph.)

MPH = KPH * 0.6214

6. Ocean Levels

Assuming the level of the Earth’s oceans continues rising at about 3.1 millimeters per year,
write a program that displays a table showing the total number of millimeters the oceans
will have risen each year for the next 25 years.

Solving the
Ocean Levels
Problem

300 Chapter 5 Looping

7. Pennies for Pay

Write a program that calculates how much a person earns in a month if the salary is one
penny the first day, two pennies the second day, four pennies the third day, and so on
with the daily pay doubling each day the employee works. The program should ask the
user for the number of days the employee worked during the month and should display a
table showing how much the salary was for each day worked, as well as the total pay
earned for the month. The output should be displayed in dollars with two decimal
points, not in pennies.

Input Validation: Do not accept a number less than 1 or more than 31 for the number
of days worked.

8. Calories Burned

Running on a particular treadmill you burn 3.9 calories per minute. Write a program that
uses a loop to display the number of calories burned after 10, 15, 20, 25, and 30 minutes.

9. Membership Fees Increase

A country club, which currently charges $2500 per year for membership, has announced it
will increase its membership fee by 4% each year for the next six years. Write a program
that uses a loop to display the projected rates for the next six years.

10. Random Number Guessing Game

Write a program that generates a random number between 1 and 100 and asks the user to
guess what the number is. If the user’s guess is higher than the random number, the
program should display "Too high. Try again." If the user’s guess is lower than the
random number, the program should display "Too low. Try again." The program
should use a loop that repeats until the user correctly guesses the random number. Then
the program should display "Congratulations. You figured out my number."

11. Random Number Guessing Game Enhancement

Enhance the program that you wrote for Programming Challenge 10 so it keeps a count of
the number of guesses the user makes. When the user correctly guesses the random num-
ber, the program should display the number of guesses along with the message of congrat-
ulations.

12. The Greatest and Least of These

Write a program with a loop that lets the user enter a series of integers, followed by �99 to
signal the end of the series. After all the numbers have been entered, the program should
display the largest and smallest numbers entered.

Review Questions and Exercises 301

13. Student Line Up

A teacher has asked all her students to line up single file according to their first name. For
example, in one class Amy will be at the front of the line and Yolanda will be at the end.
Write a program that prompts the user to enter the number of students in the class, then
loops to read in that many names. Once all the names have been read in it reports which
student would be at the front of the line and which one would be at the end of the line.
You may assume that no two students have the same name.

Input Validation: Do not accept a number less than 1 or greater than 25 for the num-
ber of students.

14. Rate of Inflation

The annual rate of inflation is the rate at which money loses its value. For example, if the
annual rate of inflation is 3.0%, then in one year it will cost $1030 to buy the goods that
could have been purchased for $1000 today. Put another way, a year from now $1000 will
only buy 1/1.03 * $1000, or $970.87, worth of goods. Two years from now $1000 will
only buy only 1/1.03 of $970.87, or $942.59 worth of goods. Write a program that allows
the user to enter an annual rate of inflation and then reports how much $1000 today will
be worth each year for the next 10 years.

Input validation: Do not accept an inflation rate less than 1% or greater than 15%.

15. Population

Write a program that will predict the size of a population of organisms. The program
should ask the user for the starting number of organisms, their average daily population
increase (as a percentage of current population), and the number of days they will multiply.
A loop should display the size of the population for each day.

Input Validation: Do not accept a number less than two for the starting size of the
population. Do not accept a negative number for average daily population increase.
Do not accept a number less than one for the number of days they will multiply.

16. Math Tutor

This program started in Chapter 3 and was modified in Chapter 4. Starting with the vesion
described in Chapter 4, modify the program again so it displays a menu allowing the user
to select an addition, subtraction, or multiplication problem. The final selection on the
menu should let the user quit the program. After the user has finished the math problem,
the program should display the menu again. This process is repeated until the user chooses
to quit the program.

Input Validation: If the user selects an item not on the menu, display an error message
and display the menu again.

302 Chapter 5 Looping

17. Hotel Suites Occupancy

Write a program that calculates the occupancy rate of the 120 suites (20 per floor) located
on the top 6 floors of a 15-story luxury hotel. These are floors 10–12 and 14–16 because,
like many hotels, there is no 13th floor. Solve the problem by using a single loop that loops
once for each floor between 10 and 16 and, on each iteration, asks the user to input the
number of suites occupied on that floor. After all the iterations, the program should display
how many suites the hotel has, how many of them are occupied, and what percentage of
them are occupied.

Input Validation: Do not accept a value less than 0 or more than 20 for the number of
suites occupied on a given floor.

18. Rectangle Display

Write a program that asks the user for two positive integers between 2 and 10 to use for
the length and width of a rectangle. If the numbers are different, the larger of the two num-
bers should be used for the length and the smaller for the width. The program should then
display a rectangle of this size on the screen using the character ‘X’. For example, if the
user enters either 2 5 or 5 2, the program should display the following:

XXXXX
XXXXX

19. Diamond Display

Write a program that uses nested loops to display the diamond pattern shown below.

 +
 +++
 +++++
+++++++
 +++++
 +++
 +

20. Triangle Display

Write a program that uses nested loops to display the triangle pattern shown below.

+
+++
+++++
+++++++
+++++
+++
+

21. Arrowhead Display

Write a program that uses nested loops to display the arrowhead pattern shown below.

 +
 +++
 +++++
+++++++++++++
 +++++
 +++
 +

Review Questions and Exercises 303

22. Sales Bar Chart

Write a program that asks the user to enter today’s sales rounded to the nearest $100 for
each of three stores. The program should then display a bar graph comparing each store’s
sales. Create each bar in the graph by displaying a row of asterisks. Each asterisk should
represent $100 of sales.

Here is an example of the program’s output. User input is shown in bold.

Enter today’s sales for store 1: 1000[Enter]
Enter today’s sales for store 2: 1200[Enter]
Enter today’s sales for store 3: 900[Enter]

 DAILY SALES
 (each * = $100)
Store 1: **********
Store 2: ************
Store 3: *********

Input Validation: Do not accept sales figures less than $0.00.

23. Population Bar Chart

Write a program that produces a bar chart showing the population growth of Prairieville,
a small town in the Midwest, at 20 year intervals during the past 100 years. The program
should read in the population figures (rounded to the nearest 1000 people) for 1900,
1920, 1940, 1960, 1980, and 2000 from a file. For each year it should display the date
and a bar consisting of one asterisk for each 1000 people. The data can be found in the
people.dat file.

Here is an example of how the chart might begin:

PRAIRIEVILLE POPULATION GROWTH
(each * represents 1000 people)

1900 **
1920 ****
1940 *****

24. Payroll Report

Write a program that displays a weekly payroll report. A loop in the program should ask
the user for the employee number, gross pay, state tax, federal tax, and FICA withholdings.
The loop will terminate when 0 is entered for the employee number. After the data is
entered, the program should display totals for gross pay, state tax, federal tax, FICA with-
holdings, and net pay.

Input Validation: Do not accept negative numbers for any of the items entered. If the
state tax + federal tax + FICA withholdings for any employee is greater than gross
pay, print an error message and ask the user to reenter the data for that employee.

304 Chapter 5 Looping

25. Savings Account Balance

Write a program that calculates the balance of a savings account at the end of a three-
month period. It should ask the user for the starting balance and the annual interest rate. A
loop should then iterate once for every month in the period, performing the following:

A) Ask the user for the total amount deposited into the account during that month.
Do not accept negative numbers. This amount should be added to the balance.

B) Ask the user for the total amount withdrawn from the account during that
month. Do not accept negative numbers or numbers greater than the balance
after the deposits for the month have been added in.

C) Calculate the interest for that month. The monthly interest rate is the annual
interest rate divided by 12. Multiply the monthly interest rate by the average of
that month’s starting and ending balance to get the interest amount for the
month. This amount should be added to the balance.

After the last iteration, the program should display a final report that includes the follow-
ing information:

• starting balance at the beginning of the three-month period.
• total deposits made during the three months
• total withdrawals made during the three months
• total interest posted to the account during the three months
• final balance.

26. Using Files—Student Line Up

Modify the Student Line Up program described in Programming Challenge 13 so that it
gets the names from a data file. Names should be read in until there is no more data to
read. Data to test your program can be found in the LineUp.dat file.

27. Using Files—Savings Account Balance Modification

Modify the Savings Account Balance program described in Programming Challenge 25 so
that it writes the final report to a file. After the program runs, print the file to hand in to
your instructor.

305

C
H

A
P

T
E

R

6 Functions

6.1 Modular Programming

CONCEPT: A program may be broken up into a set of manageable functions, or
modules. This is called modular programming.

A function is a collection of statements that performs a specific task. So far you have used
functions in two ways: 1) you have created a function called main in every program you’ve
written, and 2) you have called library functions such as pow and sqrt. In this chapter you
will learn how to create your own functions that can be used like library functions.

Functions are commonly used to break a problem down into small manageable pieces, or
modules. Instead of writing one long function that contains all the statements necessary to
solve a problem, several smaller functions can be written, with each one solving a specific
part of the problem. These small functions can then be executed in the desired order to
solve the problem. This approach is sometimes called divide and conquer because a large
problem is divided into several smaller problems that are more easily solved. Figure 6-1
illustrates this idea by comparing two programs, one that uses a single module containing
all of the statements necessary to solve a problem, and another that divides a problem into
a set of smaller problems, each handled by a separate function.

TOPICS

6.1 Modular Programming
6.2 Defining and Calling Functions
6.3 Function Prototypes
6.4 Sending Data into a Function
6.5 Passing Data by Value
6.6 The return Statement
6.7 Returning a Value from a Function
6.8 Returning a Boolean Value
6.9 Using Functions in a Menu-Driven

Program
6.10 Local and Global Variables

6.11 Static Local Variables
6.12 Default Arguments
6.13 Using Reference Variables as

Parameters
6.14 Overloading Functions
6.15 The exit() Function
6.16 Stubs and Drivers
6.17 Little Lotto Case Study
6.18 Tying It All Together: Glowing

Jack-o-lantern

306 Chapter 6 Functions

Another reason to write functions is that they simplify programs. If a specific task is per-
formed in several places in a program, a function can be written once to perform that task,
and then be executed anytime it is needed. This benefit of using functions is known as code
reuse because you are writing the code to perform a task once and then reusing it each time
you need to perform the task.

6.2 Defining and Calling Functions

CONCEPT: A function call is a statement that causes a function to execute. A function
definition contains the statements that make up the function.

When creating a function, you must write its definition. All function definitions have the
following parts:

Name Every function must have a name. In general, the same rules that apply
to variable names also apply to function names.

Parameter list The program module that calls a function can send data to it. The parameter
list is the list of variables that hold the values being passed to the function. If
no values are being passed to the function, its parameter list is empty.

Figure 6-1

main function

function 2

function 3

function 4

 int main()
 {
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 }

 int main()
 {
 statement;
 statement;
 statement;
 }

 void function2()
 {
 statement;
 statement;
 statement;
 }

 void function3()
 {
 statement;
 statement;
 statement;
 }

 void function4()
 {
 statement;
 statement;
 statement;
 }

This program has one long, complex
function containing all of the statements
necessary to solve a problem.

In this program the problem has been
divided into smaller problems, each
handled by a separate function.

Defining and
Calling
Functions

Defining and Calling Functions 307

Body The body of a function is the set of statements that carry out the task the
function is performing. These statements are enclosed in a set of braces.

Return type A function can send a value back to the program module that called it.
The return type is the data type of the value being sent back.

Figure 6-2 shows the definition of a simple function with the various parts labeled. Notice
that the function’s return type is actually listed first.

The line in the definition that reads int main () is called the function header.

Void Functions
You already know that a function can return a value. The main function in all of the programs
you have seen in this book is declared to return an int value to the operating system.
The return 0; statement causes the value 0 to be returned when the main function finishes
executing.

It isn’t necessary for all functions to return a value, however. Some functions simply perform
one or more statements and then return. In C++ these are called void functions. The
displayMessage function shown here is an example:

void displayMessage()
{

cout << "Hello from the function displayMessage.\n";
}

The function’s name is displayMessage. This name is descriptive, as function names
should be. It gives an indication of what the function does. It displays a message.
Notice the function’s return type is void. This means the function does not send back a
value when it has finished executing and returns to the part of the program that
invoked it. Because no value is being sent back, no return statement is required. When
the statements in the function have finished executing and the right brace that ends the
function is encountered, the program automatically returns.

Calling a Function
A function is executed when it is called. Function main is called automatically when a
program starts, but all other functions must be executed by function call statements.
When a function is called, the program branches to that function and executes the

Figure 6-2

int main ()
{
 cout << "Hello World\n";
 return 0;
}

 Name

Parameter list (This one is empty)

Body

Return type

308 Chapter 6 Functions

statements in its body. Let’s look at Program 6-1, which contains two functions: main
and displayMessage.

The function displayMessage is called by the following statement in line 20:

displayMessage();

This statement is the function call. It is simply the name of the function followed by a set of
parentheses and a semicolon. Let’s compare this with the function header:

Function Header void displayMessage()
Function Call displayMessage();

The function header is part of the function definition. It declares the function’s return type,
name, and parameter list. It must not be terminated with a semicolon because the defini-
tion of the function’s body follows it.

The function call is a statement that executes the function, so it is terminated with a
semicolon like all other C++ statements. Notice that the function call does not list the
return type and, if the program is not passing data into the function, the parentheses are
left empty.

Program 6-1

1 // This program has two functions: main and displayMessage.
2 #include <iostream>
3 using namespace std;
4
5 /***************************************
6 * displayMessage *
7 * This function displays a greeting. *
8 ***************************************/
9 void displayMessage()
10 {
11 cout << "Hello from the function displayMessage.\n";
12 }
13
14 /***************************************
15 * main *
16 ***************************************/
17 int main()
18 {
19 cout << "Hello from main.\n";
20 displayMessage(); // Call displayMessage
21 cout << "Back in function main again.\n";
22 return 0;
23 }

Program Output
Hello from main.
Hello from the function displayMessage.
Back in function main again.

Defining and Calling Functions 309

Even though the program starts executing at main, the function displayMessage is defined
first. This is because before a function can be called, the compiler must know certain things
about it. It must know the function’s name, its return type, how many parameter variables it
has, and what the data type of each of these variables is. One way to ensure the compiler will
know this information is to place the function definition before all calls to that function.
(Later you will see an alternative and preferred method of accomplishing this.)

Notice how Program 6-1 flows. It starts, of course, in function main. When the call to
displayMessage is encountered, the program branches to that function and performs its state-
ments. Once displayMessage has finished executing, the program branches back to function
main and resumes with the line that follows the function call. This is illustrated in Figure 6-3.

Function call statements may be used in control structures such as loops, if statements, and
switch statements. Program 6-2 places the displayMessage function call inside a loop.

NOTE: Later in this chapter you will see how data can be passed into a function by
being listed inside the parentheses.

NOTE: You should always document your functions by writing comments that
describe what they do. These comments should appear just before the function
definition.

Figure 6-3

Program 6-2

1 // The function displayMessage is repeatedly called from within a loop.
2 #include <iostream>
3 using namespace std;
4
5 /***************************************
6 * displayMessage *
7 * This function displays a greeting. *
8 ***************************************/
9 void displayMessage()
10 {
11 cout << "Hello from the function displayMessage.\n";
12 }
13

(program continues)

void displayMessage()
{
 cout << "Hello from the function displayMessage.\n";
}

int main()
{
 cout << "Hello from main.\n"
 displayMessage();
 cout << "Back in function main again.\n";
 return 0;
}

310 Chapter 6 Functions

It is possible to have many functions and function calls in a program. Program 6-3 has
three functions: main, first, and second.

14 /***************************************
15 * main *
16 ***************************************/
17 int main()
18 {
19 cout << "Hello from main.\n";
20
21 for (int count = 0; count < 3; count++)
22 displayMessage(); // Call displayMessage
23
24 cout << "Back in function main again.\n";
25 return 0;
26 }

Program Output
Hello from main.
Hello from the function displayMessage.
Hello from the function displayMessage.
Hello from the function displayMessage.
Back in function main again.

Program 6-3

1 // This program has three functions: main, first, and second.
2 #include <iostream>
3 using namespace std;
4
5 /***************************************
6 * first *
7 * This function displays a message. *
8 ***************************************/
9 void first()
10 {
11 cout << "I am now inside the function first.\n";
12 }
13
14 /***************************************
15 * second *
16 * This function displays a message. *
17 ***************************************/
18 void second()
19 {
20 cout << "I am now inside the function second.\n";
21 }
22
23 /***************************************
24 * main *
25 ***************************************/

(program continues)

Program 6-2 (continued)

Defining and Calling Functions 311

In lines 29 and 30 of Program 6-3, function main contains a call to first and a call
to second:

first();
second();

Each call statement causes the program to branch to a function and then back to main
when the function is finished. Figure 6-4 illustrates the paths taken by the program.

26 int main()
27 {
28 cout << "I am starting in function main.\n";
29 first(); // Call function first
30 second(); // Call function second
31 cout << "Back in function main again.\n";
32 return 0;
33 }

Program Output
I am starting in function main.
I am now inside the function first.
I am now inside the function second.
Back in function main again.

Figure 6-4

Program 6-3 (continued)

void first()
{
 cout << "I am now inside the function first.\n";
}

void second()
{
 cout << "I am now inside the function second.\n";
}

int main()
{
 cout << "I am starting in function main.\n"
 first();
 second();
 cout << "Back in function main again.\n";
 return 0;
}

312 Chapter 6 Functions

Functions may also be called in a hierarchical, or layered, fashion. This is demonstrated by
Program 6-4, which has three functions: main, deep, and deeper.

In Program 6-4, function main only calls the function deep. In turn, deep calls deeper.
The paths taken by the program are shown in Figure 6-5.

Program 6-4

1 // This program has three functions: main, deep, and deeper
2 #include <iostream>
3 using namespace std;
4
5 /***************************************
6 * deeper *
7 * This function displays a message. *
8 ***************************************/
9 void deeper()
10 {
11 cout << "I am now inside the function deeper.\n";
12 }
13
14 /***************************************
15 * deep *
16 * This function displays a message. *
17 ***************************************/
18 void deep()
19 {
20 cout << "I am now inside the function deep.\n";
21 deeper(); // Call function deeper
22 cout << "Now I am back in deep.\n";
23 }
24
25 /***************************************
26 * main *
27 ***************************************/
28 int main()
29 {
30 cout << "I am starting in function main.\n";
31 deep(); // Call function deep
32 cout << "Back in function main again.\n";
33 return 0;
34 }

Program Output
I am starting in function main.
I am now inside the function deep.
I am now inside the function deeper.
Now I am back in deep.
Back in function main again.

Defining and Calling Functions 313

Checkpoint

6.1 Is the following a function header or a function call?

calcTotal();

6.2 Is the following a function header or a function call?

void showResults()

6.3 What will the output of the following program be if the user enters 10?

#include <iostream>
using namespace std;

void func1()
{

cout << "Able was I\n";
}

void func2()
{

cout << "I saw Elba\n";
}

int main()
{

int input;
cout << "Enter a number: ";
cin >> input;
if (input < 10)
{

func1();
func2();

}

Figure 6-5

void deep()
{
 cout << "I am now inside the function deep.\n";
 deeper(); // Call function deeper
 cout << "Now I am back in deep.\n";
}

void deeper()
{
 cout << "I am now inside the function deeper.\n";
}

int main()
{
 cout << "I am starting in function main.\n";
 deep(); // Call function deep
 cout << "Back in function main again.\n";
 return 0;
}

314 Chapter 6 Functions

else
{

func2();
func1();

}
return 0;

}

6.4 The following program skeleton determines whether a person qualifies for a credit
card. To qualify, the person must have worked on his or her current job for at least
two years and make at least $17,000 per year. Finish the program by writing the
definitions of the functions qualify and noQualify. The function qualify should
explain that the applicant qualifies for the card and that the annual interest rate is
12 percent. The function noQualify should explain that the applicant does not
qualify for the card and give a general explanation why.

#include <iostream>
using namespace std;

// You must write definitions for the two functions qualify
// and noQualify.

int main()
{

double salary;
int years;

cout << "This program will determine if you qualify\n";
cout << "for our credit card.\n";
cout << "What is your annual salary? ";
cin >> salary;
cout << "How many years have you worked at your ";
cout << "current job? ";
cin >> years;

if (salary >= 17000.0 && years >= 2)
 qualify();

else
 noQualify();

return 0;
}

6.3 Function Prototypes

CONCEPT: A function prototype eliminates the need to place a function definition
before all calls to the function.

Before the compiler encounters a call to a particular function, it must already know certain
things about the function. In particular, it must know the number of parameters the func-
tion uses, the type of each parameter, and the return type of the function. Parameters allow
information to be sent to a function. Certain return types allow information to be returned

Function Prototypes 315

from a function. You will learn more about parameters and return types in later sections of
this chapter. For now, the functions we will use will have no parameters and, except for
main, will have a return type of void.

One way of ensuring that the compiler has this required information is to place the
function definition before all calls to that function. This was the approach taken in
Programs 6-1 through 6-4. Another method is to declare the function with a function
prototype. Here is a prototype for the displayMessage function in Program 6-1:

void displayMessage();

This prototype looks similar to the function header, except there is a semicolon at the end.
The statement tells the compiler that the function displayMessage uses no parameters
and has a void return type, meaning it doesn’t return a value.

Function prototypes are usually placed near the top of a program so the compiler will
encounter them before any function calls. Program 6-5 is a modification of Program 6-3.
The definitions of the functions first and second have been placed after main, and their
function prototypes have been placed above main, directly after the using namespace
std statement.

NOTE: Function prototypes are also known as function declarations.

WARNING! You must either place the function definition or the function prototype
ahead of all calls to the function. Otherwise the program will not compile.

Program 6-5

1 // This program has three functions: main, first, and second.
2 // It uses function prototypes.
3 #include <iostream>
4 using namespace std;
5
6 // Function prototypes
7 void first();
8 void second();
9
10 int main()
11 {
12 cout << "I am starting in function main.\n";
13 first(); // Call function first
14 second(); // Call function second
15 cout << "Back in function main again.\n";
16 return 0;
17 }
18
19 /***************************************
20 * first *
21 * This function displays a message. *
22 ***************************************/

(program continues)

316 Chapter 6 Functions

When the compiler is reading Program 6-5, it encounters the calls to the functions first
and second in lines 13 and 14 before it has read the definition of those functions.
Because of the function prototypes, however, the compiler already knows the return type
and parameter information of first and second. There should be a prototype for each
function in a program except main. A prototype is never needed for main because it is
the starting point of the program.

6.4 Sending Data into a Function

CONCEPT: When a function is called, the program may send values into the function.

Values that are sent into a function are called arguments. You’re already familiar with how
to use arguments in a function call. In the following statement the function pow is being
called with two arguments, 2.0 and 4.0 passed to it:

result = pow(2.0, 4.0);

A parameter is a special variable that holds a value being passed as an argument into a
function. By using parameters, you can design your own functions that accept data this
way. Here is the definition of a function that uses a parameter:

void displayValue(int num)
{

cout << "The value is " << num << endl;
}

Notice the integer variable definition inside the parentheses (int num). The variable num
is a parameter. This enables the function displayValue to accept an integer value as an
argument. Program 6-6 is a complete program that uses this function.

23 void first()
24 {
25 cout << "I am now inside the function first.\n";
26 }
27
28 /***************************************
29 * second *
30 * This function displays a message. *
31 ***************************************/
32 void second()
33 {
34 cout << "I am now inside the function second.\n";
35 }

 Program Output is the same as the output of Program 6-3.

NOTE: Although some programmers make main the last function in the program,
many prefer it to be first because it is the program’s starting point.

Program 6-5 (continued)

Using Function
Arguments

Sending Data into a Function 317

Notice the function prototype for displayValue in line 6:

void displayValue(int num); // Function prototype

It lists both the data type and the name of the function’s parameter variable. However, it is
not actually necessary to list the name of the parameter variable inside the parentheses.
Only the data type of the variable is required. The function prototype could have been
written like this:

void displayValue(int); // Function prototype

Because some instructors prefer that you list only the data type for each parameter in a
function prototype, while others prefer that you list both the data type and name, we use
both versions throughout this book. Your instructor will tell you which version to use.

NOTE: In this text, the values that are passed into a function are called arguments, and
the variables that receive those values are called parameters. There are several variations
of these terms in use. Some call the arguments actual parameters and call the parameters
formal parameters. Others use the terms actual arguments and formal arguments.
Regardless of which set of terms you use, it is important to be consistent.

Program 6-6

1 // This program demonstrates a function with a parameter.
2 #include <iostream>
3 using namespace std;
4
5 // Function prototype
6 void displayValue(int num);
7
8 int main()
9 {
10 cout << "I am passing 5 to displayValue.\n";
11 displayValue(5); // Call displayValue with argument 5
12 cout << "Now I am back in main.\n";
13 return 0;
14 }
15
16 /**
17 * displayValue *
18 * This function uses an integer parameter *
19 * whose value is displayed. *
20 **/
21 void displayValue(int num)
22 {
23 cout << "The value is " << num << endl;
24 }

Program Output
I am passing 5 to displayValue.
The value is 5
Now I am back in main.

318 Chapter 6 Functions

In Program 6-6 the displayValue function is called in line 11 of main with the argument
5 inside the parentheses. The number 5 is passed into num, which is displayValue’s
parameter. This is illustrated in Figure 6-6.

Any argument listed inside the parentheses of a function call is copied into the function’s
parameter variable. In essence, parameter variables are initialized to the value of the cor-
responding arguments passed to them when the function is called. Program 6-7 shows
the function displayValue being called several times with a different argument passed
each time.

Figure 6-6

Program 6-7

1 // This program demonstrates a function with a parameter.
2 #include <iostream>
3 using namespace std;
4
5 // Function prototype
6 void displayValue(int num);
7
8 int main()
9 {
10 cout << "I am passing several values to displayValue.\n";
11 displayValue(5); // Call displayValue with argument 5
12 displayValue(10); // Call displayValue with argument 10
13 displayValue(2); // Call displayValue with argument 2
14 displayValue(16); // Call displayValue with argument 16
15 cout << "Now I am back in main.\n";
16 return 0;
17 }
18
19 /**
20 * displayValue *
21 * This function uses an integer parameter *
22 * whose value is displayed. *
23 **/
24 void displayValue(int num)
25 {
26 cout << "The value is " << num << endl;
27 }

(program continues)

displayValue(5); // Function call

void displayValue(int num) // Function header
{
 cout << "The value is " << num << endl;
}

Sending Data into a Function 319

In lines 11–14 of Program 6-7 the displayValue function is called four times, and each
time num takes on a different value. Any expression whose value could normally be assigned
to num may be used as an argument. For example, the following function call would pass
the value 8 into num:

displayValue(3 + 5);

When a function is called, it is best if each argument passed to it has the same data type as
the parameter receiving it. However, it is possible to send an argument with a different
data type. In this case, the argument will be promoted or demoted to match the data type
of the parameter receiving it. Be very careful if you do this, as you may introduce a hard to
find bug. For example, the displayValue function in Program 6-7 has an integer parameter,
which means it expects to receive an integer value. If the function is called as shown here,

displayValue(4.7);

the argument will be truncated and the integer 4 will be stored in the parameter num.

Often it is useful to pass several arguments into a function. Program 6-8 includes a func-
tion that has three parameters. Look carefully at how these three parameters are defined in
the function header in line 27, as well as in the function prototype in line 6. In this case the
prototype lists variable names along with the data types of the function’s parameters. This
makes the prototype look exactly like the function header except that the prototype must
end with a semicolon and the function header must not end with a semicolon.

// Prototype
 void showSum(int num1, int num2, int num3); // Ends with ;

// Function header
 void showSum(int num1, int num2, int num3) // NO ;

Notice also that the call to the function, in line 18 of the program, now must send
three arguments to the function.

showSum(value1, value2, value3);

Program Output
I am passing several values to displayValue.
The value is 5
The value is 10
The value is 2
The value is 16
Now I am back in main.

Program 6-8

1 // This program demonstrates a function with three parameters.
2 #include <iostream>
3 using namespace std;
4

(program continues)

Program 6-7 (continued)

320 Chapter 6 Functions

One important point to mention about Program 6-8 is how the showSum parameter vari-
ables are defined in its function header.

void showSum(int num1, int num2, int num3)

As you might expect they are each preceded by their data type and they are separated by
commas. However, unlike regular variable definitions, they cannot be combined into a single
definition even if they all have the same data type. That is, even though all three parameter
variables are integers, they cannot be defined like this:

void showSum(int num1, num2, num3) // Error!

Another point to notice is that whereas the function prototype and function header must
list the data type of each parameter, the call to the function must not list any data types.
Each argument in the function call must be a value or something that can be evaluated to
produce a value. If value1, value2, and value3 hold the values 4, 8, and 7 respectively, as
they did in the sample run for Program 6-8, the following three function calls would all be
legal and would cause the showSum function to display the same thing.

showSum(value1, value2, value3); // Legal The sum is 19

showSum(4, 8, 7); // Legal The sum is 19

showSum(3+1, 16/2, 7); // Legal The sum is 19

But the following function call would cause an error.

showSum(int value1, int value2, int value3); // Error!

5 // Function prototype
6 void showSum(int num1, int num2, int num3);
7
8 int main()
9 {
10 int value1, value2, value3;
11
12 // Get 3 integers
13 cout << "Enter three integers and I will display ";
14 cout << "their sum: ";
15 cin >> value1 >> value2 >> value3;
16
17 // Call showSum, passing 3 arguments.
18 showSum(value1, value2, value3);
19 return 0;
20 }
21
22 /**
23 * showSum *
24 * This function displays the sum of the *
25 * 3 integers passed into its parameters. *
26 **/
27 void showSum(int num1, int num2, int num3)
28 {
29 cout << "The sum is " << (num1 + num2 + num3) << endl;
30 }

Program Output with Example Input Shown in Bold
Enter three integers and I will display their sum: 4 8 7[Enter]
The sum is 19

Program 6-8 (continued)

Passing Data by Value 321

Figure 6-7 shows the difference in the syntax between the function call and the function
header when variables are used as arguments. It also illustrates that when a function with
multiple parameters is called, the arguments are passed to the parameters in order.

The following function call will cause 4 to be passed into the num1 parameter, 8 to be
passed into num2, and 7 to be passed into num3:

showSum(4, 8, 7);

However, the following function call will cause 7 to be passed into the num1 parameter, 8
to be passed into num2, and 4 to be passed into num3:

showSum(7, 8, 4);

6.5 Passing Data by Value

CONCEPT: When an argument is passed into a parameter by value, only a copy of the
argument’s value is passed. Changes to the parameter do not affect the
original argument.

As you have seen in this chapter, parameters are special-purpose variables that are defined
inside the parentheses of a function definition. Their purpose is to hold the information passed
to them by the arguments, which are listed inside the parentheses of a function call. Normally
when information is passed to a function it is passed by value. This means the parameter
receives a copy of the value that is passed to it. If a parameter’s value is changed inside a func-
tion, it has no effect on the original argument. Program 6-9 demonstrates this concept.

It also illustrates that when a function prototype lists variable names along with data types,
the names it uses are just dummy names. That is, they are not actually used by the compiler
and do not have to agree with the names used in the function header. If you compare the
changeMe function prototype in line 7 with the changeMe function header in line 29, you

Figure 6-7

NOTE: Like all variables, parameters have a scope. The scope of a parameter is limited
to the body of the function which uses it.

 showSum(value1, value2, value3)

 void showSum(int num1, int num2, int num3)
 {
 cout << num1 + num2 + num3 << endl;
 }

Function call

322 Chapter 6 Functions

will notice they both specify that the function has one int parameter. However, the name
used for it in the prototype does not match the name used for it in the function header.

Even though the parameter variable myValue is changed in the changeMe function, the
argument number is not modified. This occurs because the myValue variable contains only
a copy of the number variable. Just this copy is changed, not the original. The changeMe
function does not have access to the original argument.

Program 6-9

1 // This program demonstrates that changes to a function
2 // parameter have no effect on the original argument.
3 #include <iostream>
4 using namespace std;
5
6 // Function Prototype
7 void changeMe(int aValue);
8
9 int main()
10 {
11 int number = 12;
12
13 // Display the value in number
14 cout << "In main number is " << number << endl;
15
16 // Call changeMe, passing the value in number as an argument
17 changeMe(number);
18
19 // Display the value in number again
20 cout << "Back in main again, number is still " << number << endl;
21 return 0;
22 }
23
24 /*************************************
25 * changeMe *
26 * This function changes the value *
27 * stored in its parameter myValue *
28 *************************************/
29 void changeMe(int myValue)
30 {
31 // Change the value of myValue to 0
32 myValue = 0;
33
34 // Display the value in myValue
35 cout << "In changeMe, the value has been changed to "
36 << myValue << endl;
37 }

Program Output
In main number is 12
In changeMe, the value has been changed to 0
Back in main again, number is still 12

Passing Data by Value 323

Figure 6-8 illustrates that a parameter variable’s storage location in memory is separate
from that of the original argument.

Checkpoint

6.5 Indicate which of the following is the function prototype, the function header, and
the function call:

void showNum(double num)
void showNum(double);
showNum(45.67);

6.6 Write a function named timesTen. The function should have an integer parameter
named number. When timesTen is called, it should display the product of number
times 10. (Note: just write the function. Do not write a complete program.)

6.7 Write a function prototype for the timesTen function you wrote in question 6.6.

6.8 What is the output of the following program?

#include <iostream>
using namespace std;

void showDouble(int value); // Function prototype

int main()
{

int num;

for (num = 0; num < 10; num++)
showDouble(num);

return 0;
}

// Definition of function showDouble
void showDouble(int value)
{

cout << value << " " << (value * 2) << endl;
}

Figure 6-8

NOTE: Later in this chapter you will learn ways to give a function access to its original
arguments.

Original argument
(in its memory location)

 12

 Function parameter
 (in its own memory location)

 12

324 Chapter 6 Functions

6.9 What is the output of the following program?

#include <iostream>
using namespace std;

void func1(double, int); // Function prototype

int main()
{

int x = 0;
double y = 1.5;

cout << x << " " << y << endl;
func1(y, x);
cout << x << " " << y << endl;
return 0;

}
void func1(double a, int b)
{

cout << a << " " << b << endl;
a = 0.0;
b = 10;
cout << a << " " << b << endl;

}

6.10 The following program skeleton asks for the number of hours you’ve worked and
your hourly pay rate. It then calculates and displays your wages. The function
showDollars, which you are to write, formats the output of the wages.

#include <iostream>
#include <iomanip>
using namespace std;

void showDollars(double pay); // Function prototype

int main()
{

double payRate, hoursWorked, wages;

cout << "How many hours have you worked? "
cin >> hoursWorked;
cout << "What is your hourly pay rate? ";
cin >> payRate;
wages = hoursWorked * payRate;
showDollars(wages);
return 0;

}

// You must write the definition of the function showDollars
// here. It should take one parameter of the type double.
// The function should display the message "Your wages are $"
// followed by the value of the parameter. It should be displayed
// with 2 places of precision after the decimal point, in fixed
// notation, and the decimal point should always display.

The return Statement 325

6.6 The return Statement

CONCEPT: The return statement causes a function to end immediately.

When the last statement in a function has finished executing, the function terminates.
The program returns to the module that called it and continues executing from the point
immediately following the function call. It is possible, however, to force a function to
return to where it was called from before its last statement has been executed. This can
be done with the return statement, as illustrated in Program 6-10. In this program,
the function divide shows the quotient of arg1 divided by arg2. If arg2 is set to zero,
however, the function returns without performing the division.

Program 6-10

1 // This program uses a function to perform division.
2 // It illustrates the return statement.
3 #include <iostream>
4 using namespace std;
5
6 // Function prototype
7 void divide(double arg1, double arg2);
8
9 int main()
10 {
11 double num1, num2;
12
13 cout << "Enter two numbers and I will divide the first\n";
14 cout << "number by the second number: ";
15 cin >> num1 >> num2;
16 divide(num1, num2);
17 return 0;
18 }
19
20 /**
21 * divide *
22 * This function uses two parameters, arg1 and arg2. *
23 * If arg2 does not = zero, the function displays the *
24 * result of arg1/arg2. Otherwise it returns without *
25 * performing the division. *
26 **/
27 void divide(double arg1, double arg2)
28 {
29 if (arg2 == 0.0)
30 {
31 cout << "Sorry, I cannot divide by zero.\n";
32 return;
33 }
34 cout << "The quotient is " << (arg1 / arg2) << endl;
35 }

(program continues)

326 Chapter 6 Functions

In the example running of the program, the user entered 12 and 0 as input. These were
stored as double values is variables num1 and num2. In line 16 the divide function was
called, passing 12.0 into the arg1 parameter and 0.0 into the arg2 parameter. Inside the
divide function, the if statement in line 29 executes. Because arg2 is equal to 0.0, the code
in lines 31 and 32 execute. When the return statement in line 32 executes, the divide func-
tion immediately ends. This means the cout statement in line 34 does not execute. The
program resumes at line 17 in the main function.

6.7 Returning a Value from a Function

CONCEPT: A function may send a value back to the part of the program that called
the function.

You’ve seen that data may be passed into a function by way of parameter variables. Data
may also be returned from a function back to the statement that called it. Functions that
return a value are known as value-returning functions.

The pow function, which you have already used, is an example of a value-returning
function. Here is an example:

double x;
x = pow(4.0, 2.0);

This code calls the pow function, passing 4.0 and 2.0 as arguments. The function calculates
the value of 4.0 raised to the power of 2.0 and returns that value. The value, which is 16.0,
is assigned to the x variable by the = operator.

Although several arguments can be passed into a function, only one value can be returned from
it. Think of a function as having multiple communication channels for receiving data (parame-
ters), but only one channel for sending data (the return value). This is illustrated in Figure 6-9.

Program Output with Example Input Shown in Bold
Enter two numbers and I will divide the first
number by the second number: 12 0[Enter]
Sorry, I cannot divide by zero.

Figure 6-9

NOTE: In order to return multiple values from a function, they must be “packaged” in
such a way that they are treated as a single value. You will learn to do this in Chapter 7.

Program 6-10 (continued)

Argument 1

Argument 2
 Function Return value
Argument 3

Argument 4

Value-Returning
Functions

Returning a Value from a Function 327

Defining a Value-Returning Function
When you are writing a value-returning function, you must decide what type of value the
function will return. This is because you must specify the data type of the return value in
the function header and function prototype. Up until now all the functions we have written
have been void functions. This means they do not return a value. These functions use the
key word void as the return type in their function header and function prototype. A value-
returning function, on the other hand, uses int, double, bool, or any other valid data
type in its header. Here is an example of a function that returns an int value:

int sum(int num1, int num2)
{

int result;

result = num1 + num2;
return result;

}

The name of this function is sum. Notice in the function header that the return type is int,
as illustrated in Figure 6-10.

This code defines a function named sum that accepts two int arguments. The arguments are
passed into the parameter variables num1 and num2. Inside the function, the variable result
is defined. Variables that are defined inside a function are called local variables. After the
variable definition, the values of the parameter variables num1 and num2 are added, and their
sum is assigned to the result variable. The last statement in the function is:

return result;

This statement causes the function to end, and it sends the value of the result variable
back to the statement that called the function. A value-returning function must have a
return statement written in the following general format:

return expression;

In the general format, expression is the value to be returned. It can be any expression
that has a value, such as a variable, literal, or mathematical expression. The value of the
expression is converted to the data type that the function returns, and is sent back to the
statement that called the function. In this case, the sum function returns the value in
the result variable.

Figure 6-10

int sum(int num1, int num2)

Return type

328 Chapter 6 Functions

However, we could have eliminated the result variable entirely and returned the expres-
sion num1 + num2, as shown in the following code:

int sum(int num1, int num2)
{

return num1 + num2;
}

The prototype for a value-returning function follows the same conventions that we cov-
ered earlier. Here is the prototype for the sum function:

int sum(int num1, int num2);

Calling a Value-Returning Function
Program 6-11 shows an example of how to call the sum function.

Program 6-11

1 // This program uses a function that returns a value.
2 #include <iostream>
3 using namespace std;
4
5 // Function prototype
6 int sum(int num1, int num2);
7
8 int main()
9 {
10 int value1 = 20, // The first value
11 value2 = 40, // The second value
12 total; // Holds the returned total
13
14 // Call the sum function, passing the contents of
15 // value1 and value2 as arguments. Assign the return
16 // value to the total variable.
17 total = sum(value1, value2);
18
19 // Display the sum of the values.
20 cout << "The sum of " << value1 << " and "
21 << value2 << " is " << total << endl;
22 return 0;
23 }
24
25 /***
26 * sum *
27 * This function returns the sum of its two parameters. *
28 ***/
29 int sum(int num1, int num2)
30 {
31 return num1 + num2;
32 }

Program Output
The sum of 20 and 40 is 60

Returning a Value from a Function 329

Here is the statement in line 17, which calls the sum function, passing value1 and value2
as arguments.

total = sum(value1, value2);

This statement assigns the value returned by the sum function to the total variable. In this
case, the function will return 60. Figure 6-11 shows how the arguments are passed into the
function and how a value is passed back from the function.

When you call a value-returning function, you usually want to do something meaningful
with the value it returns. Program 6-11 shows a function’s return value being assigned to a
variable. This is commonly how return values are used, but you can do many other things
with them as well. For example, the following code shows a math expression that uses a
call to the sum function:

int x = 10, y = 15;
double average;
average = sum(x, y) / 2.0;

In the last statement, the sum function is called with x and y as its arguments. The
function’s return value, which is 25, is divided by 2.0. The result, 12.5, is assigned to
average. Here is another example:

int x = 10, y = 15;
cout << "The sum is " << sum(x, y) << endl;

This code sends the sum function’s return value to cout so it can be displayed on the screen.
The message “The sum is 25” will be displayed.

Remember, a value-returning function returns a value of a specific data type. You can use
the function’s return value anywhere that you can use a regular value of the same data
type. This means that anywhere an int value can be used, a call to an int value-returning
function can be used. Likewise, anywhere a double value can be used, a call to a double
value-returning function can be used. The same is true for all other data types.

Let’s look at another example. Program 6-12, which calculates the area of a circle, has two
functions in addition to main. One of the functions is named square, and it returns the square
of any number passed to it as an argument. The square function is called in a mathematical
statement. The program also has a function named getRadius, which prompts the user to
enter the circle’s radius. The value entered by the user is returned from the function.

Figure 6-11

int sum(int num1, int num2)
{
 return num + num;
}

total = sum(value1, value2);

40

20

60

330 Chapter 6 Functions

Program 6-12

1 // This program demonstrates two value-returning functions.
2 // The square function is called in a mathematical statement.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 //Function prototypes
8 double getRadius();
9 double square(double number);
10
11 int main()
12 {
13 const double PI = 3.14159; // Constant for pi
14 double radius; // Holds the circle's radius
15 double area; // Holds the circle's area
16
17 // Set the numeric output formatting
18 cout << fixed << showpoint << setprecision(2);
19
20 // Get the radius of the circle
21 cout << "This program calculates the area of a circle.\n";
22 radius = getRadius();
23
24 // Caclulate the area of the circle
25 area = PI * square(radius);
26
27 // Display the area
28 cout << "The area is " << area << endl;
29 return 0;
30 }
31
32 /**
33 * getRadius *
34 * This function returns the circle radius *
35 * input by the user. *
36 **/
37 double getRadius()
38 {
39 double rad;
40
41 cout << "Enter the radius of the circle: ";
42 cin >> rad;
43 return rad;
44 }
45
46 /***
47 * square *
48 * This function returns the square of the *
49 * double argument sent to it *
50 ***/

(program continues)

Returning a Value from a Function 331

First, look at the getRadius function which is defined in lines 37 through 44. Notice that
there is nothing inside the parentheses of the function header on line 37. This means the
function has no parameters, so no arguments are sent to it when it is called. The purpose of
this function is to get the circle radius from the user. In line 39 the function defines a local
variable, rad. Line 41 displays a prompt and line 42 accepts the user’s input for the circle’s
radius, which is stored in the rad variable. In line 43 the value of the rad variable is
returned. The getRadius function is called in line 22 of the main function. When the value
is returned from the getRadius function it is assigned to the radius variable.

Next look at the square function, which is defined in lines 51 through 54. When the
function is called, a double argument is passed to it. The function stores the argument
in its number parameter. The return statement in line 53 returns the value of the
expression number * number, which is the square of the value in the number parameter.
The square function is called in line 25 of the main function, with the value of radius
passed as an argument. The square function will return the square of the radius vari-
able, and that value will be used in the mathematical expression that computes the
circle’s area.

Assuming the user has entered 10 as the radius, and this value is passed as an argument to
the square function, the square function will return the value 100. Figure 6-12 illustrates
how the value 100 is passed back to be used in the mathematical expression.

Functions can return values of any type. Both the getRadius and square functions in
Program 6-12 return a double. The sum function you saw in Program 6-11 returned
an int. When a statement calls a value-returning function, it should properly handle
the return value. For example, if you assign the return value of the square function to
a variable, the variable should be a double. If the return value of the function has a
fractional portion and you assign it to an int variable, the value will be truncated.

51 double square(double number)
52 {
53 return number * number;
54 }

Program Output with Example Input Shown in Bold
This program calculates the area of a circle.
Enter the radius of the circle: 10[Enter]
The area is 314.16

Figure 6-12

Program 6-12 (continued)

double square(double number)
{
 return number * number;
}

area = PI * square(radius);
10

100

332 Chapter 6 Functions

6.8 Returning a Boolean Value

CONCEPT: Functions may return true or false values.

Frequently there is a need for a function that tests an argument and returns a true or false
value indicating whether or not a condition is satisfied. Such a function would return a bool
value. For example, the isValid function shown below accepts an int argument and returns
true if the argument is within the range of 1 through 100, or false otherwise.

bool isValid(int number)
{

bool status;

if (number >= 1 && number <= 100)
status = true;

else
status = false;

return status;
}

The following code shows an if/else statement that makes a call to the function:

int value = 20;
if (isValid(value))

cout << "The value is within range.\n";
else

cout << "The value is out of range.\n";

Because value equals 20, this code will display the message “The value is within range.”
when it executes.

Program 6-13 shows another example of a function whose return type is bool. This pro-
gram has a function named isEven which returns true if its argument is an even number.
Otherwise, the function returns false.

Program 6-13

1 // This program uses a function that returns true or false.
2 #include <iostream>
3 using namespace std;
4
5 // Function prototype
6 bool isEven(int);
7
8 int main()
9 {
10 int val; // Holds the value to be tested
11
12 // Get a number from the user
13 cout << "Enter an integer and I will tell you ";
14 cout << "if it is even or odd: ";
15 cin >> val;
16

(program continues)

Returning a Boolean Value 333

Notice how the isEven function is called in line 18 with the following statement:

if (isEven(val))

Recall from Chapter 4 that this is asking if the function call isEven(val) returned the
value true. When the if statement executes, isEven is called with val as its argument. If
val is even, isEven returns true, otherwise it returns false.

Notice also how the isEven function that begins on line 31 uses an if statement to return
either the value true or the value false. There are several other ways this function could
have been written. Let’s compare three different ways to write it.

// Program 6-13 code // Version 2 // Version 3
bool isEven(int number) bool isEven(int number) bool isEven(int number)
{ { bool answer; { bool answer = false;
 if (number % 2 == 0)
 return true; if (number % 2 == 0) if (number % 2 == 0)
 else answer = true; answer = true;
 return false; else
} answer = false; return answer;

}
 return answer;
}

17 // Indicate whether it is even or odd
18 if (isEven(val))
19 cout << val << " is even.\n";
20 else
21 cout << val << " is odd.\n";
22 return 0;
23 }
24
25 /***
26 * isEven *
27 * This Boolean function tests if the integer argument *
28 * it receives is even or odd. It returns true if the *
29 * argument is even and false if it is odd. *
30 ***/
31 bool isEven(int number)
32 {
33 if (number % 2 == 0)
34 return true; // The number is even if there's no remainder
35 else
36 return false; // Otherwise, the number is odd
37 }

Program Output with Example Input Shown in Bold
Enter an integer and I will tell you if it is even or odd: 5[Enter]
5 is odd.

Program 6-13 (continued)

334 Chapter 6 Functions

Although the code used in Program 6-13 is short and clear, it has two different return
statements. Many instructors prefer that a value-returning function have only a single
return statement, placed at the end of the function. Versions 2 and 3 do this. Your
instructor will let you know which method you should use.

Checkpoint

6.11 How many return values may a function have?

6.12 Write a header for a function named distance. The function should return a
double and have two double parameters: rate and time.

6.13 Write a header for a function named days. The function should return an int and
have three int parameters: years, months, and weeks.

6.14 Write a header for a function named getKey. The function should return a char
and use no parameters.

6.15 Write a header for a function named lightYears. The function should return a
long and have one long parameter: miles.

6.9 Using Functions in a Menu-Driven Program

CONCEPT: Functions are ideal for use in menu-driven programs. When the user
selects an item from a menu, the program can call the appropriate
function.

In Chapters 4 and 5 you saw a menu-driven program that calculates the charges for a
health club membership. Program 6-14 is an improved modular version of that program.

Program 6-14

1 // This is a modular, menu-driven program that computes
2 // health club membership fees.
3 #include <iostream>
4 #include <iomanip>
5 #include <string>
6 using namespace std;
7
8 // Function prototypes
9 void displayMenu();
10 int getChoice();
11 void showFees(string category, double rate, int months);
12
13 int main()
14 {
15 // Constants for monthly membership rates
16 const double ADULT_RATE = 40.00,
17 SENIOR_RATE = 30.00,
18 CHILD_RATE = 20.00;
19 int choice, // Holds the user's menu choice
20 months; // Number of months being paid
21

(program continues)

Using Functions in a Menu-Driven Program 335

22 // Set numeric output formatting
23 cout << fixed << showpoint << setprecision(2);
24
25 do
26 { displayMenu();
27 choice = getChoice(); // Assign choice the value returned
28 // by the getChoice function
29 if (choice != 4) // If user does not want to quit, proceed
30 {
31 cout << "For how many months? ";
32 cin >> months;
33
34 switch (choice)
35 {
36 case 1: showFees("Adult", ADULT_RATE, months);
37 break;
38 case 2: showFees("Child", CHILD_RATE, months);
39 break;
40 case 3: showFees("Senior", SENIOR_RATE, months);
41 }
42 }
43 } while (choice != 4);
44 return 0;
45 }
46
47 /**
48 * displayMenu *
49 * This function clears the screen and then *
50 * displays the menu choices. *
51 **/
52 void displayMenu()
53 {
54 system("cls"); // Clear the screen.
55 cout << "\n Health Club Membership Menu\n\n";
56 cout << "1. Standard Adult Membership\n";
57 cout << "2. Child Membership\n";
58 cout << "3. Senior Citizen Membership\n";
59 cout << "4. Quit the Program\n\n";
60 }
61
62 /**
63 * getChoice *
64 * This function inputs, validates, and returns *
65 * the user's menu choice. *
66 **/
67 int getChoice()
68 {
69 int choice;
70
71 cin >> choice;

(program continues)

Program 6-14 (continued)

336 Chapter 6 Functions

Notice how each function, or module, of Program 6-14 is designed to perform a specific task.
The displayMenu function, as its name suggests, displays the menu of choices. The
getChoice function gets the user’s menu choice and validates it before returning it to the
main function. The showFees function computes and displays membership information
and fees. Notice, in particular, the versatility of this function, which is called in three
different places within the switch statement. It is passed three arguments: a string holding
the membership type, a double holding the monthly fee for that membership type, and an

72 while (choice < 1 || choice > 4)
73 { cout << "The only valid choices are 1-4. Please re-enter. ";
74 cin >> choice;
75 }
76 return choice;
77 }
78
79 /**
80 * showFees *
81 * This function uses the membership type, monthly rate, and *
82 * number of months passed to it as arguments to compute and *
83 * display a member's total charges. It then holds the screen *
84 * until the user presses the ENTER key. This is necessary *
85 * because after returning from this function the displayMenu *
86 * function will be called, and it will clear the screen. *
87 **/
88 void showFees(string memberType, double rate, int months)
89 {
90 cout << endl
91 << "Membership Type : " << memberType << " "
92 << "Number of months: " << months << endl
93 << "Total charges : $" << (rate * months) << endl;
94
95 // Hold the screen until the user presses the ENTER key.
96 cout << "\nPress the Enter key to return to the menu. ";
97 cin.get(); // Clear the previous \n out of the input buffer
98 cin.get(); // Wait for the user to press ENTER
99 }

Program Output with Example Input Shown in Bold
Health Club Membership Menu

1. Standard Adult Membership
2. Child Membership
3. Senior Citizen Membership
4. Quit the Program

1[Enter]
For how many months? 3[Enter]

Membership Type : Adult Number of months: 3
Total charges : $120

Press the Enter key to return to the menu.

Program 6-14 (continued)

Local and Global Variables 337

int holding the number of months being billed. Without these arguments, we would need a
whole set of functions: one to compute adult membership fees, another to compute child
membership fees, and a third to compute senior membership fees. Because we can vary the
information passed as arguments to the function, however, we are able to create a single
general-purpose function that works for all three cases.

Clearing the Screen
Sometimes in a program you want to clear the screen and place the cursor back up at the top.
This is particularly useful when you are writing a menu-driven program. After the user has
made a menu selection and the function to carry out that choice has been executed, it would
be nice to be able to clear the screen before redisplaying the menu. This can be accomplished
by inserting a command in your program that asks the operating system to clear the screen
for you. Here is the command for Unix-based operating systems, such as Linux and Mac OS:

system("clear");

And here is the command for Windows operating systems. You may have noticed that it
appears in line 54 of Program 6-14, just before the menu is displayed.

system("cls");

This removes the previous report from the screen before the user selects a new one to be dis-
played. However, it is important not to clear the screen too quickly after a report displays, or
it will disappear before the user has a chance to look at it. Take a look at lines 95 through 98
of Program 6-14. These lines hold the report screen until the user presses the [Enter] key to
signal readiness to return to the menu and begin something new.

6.10 Local and Global Variables

CONCEPT: A local variable is defined inside a function and is not accessible outside
the function. A global variable is defined outside all functions and is
accessible to all functions in its scope.

Local Variables
Variables defined inside a function are local to that function. They are hidden from the
statements in other functions, which normally cannot access them. Program 6-15 shows
that because the variables defined in a function are hidden, other functions may have
separate, distinct variables with the same name.

Program 6-15

1 // This program shows that variables defined in a function
2 // are hidden from other functions.
3 #include <iostream>
4 using namespace std;}
5

(program continues)

338 Chapter 6 Functions

Even though there are two variables named num, the program can only “see” one of them
at a time because they are in different functions. When the program is executing in main,
the num variable defined in main is visible. When anotherFunction is called, however,
only variables defined inside it are visible, so the num variable in main is hidden.
Figure 6-13 illustrates the closed nature of the two functions. The boxes represent the
scope of the variables.

6 void anotherFunction(); // Function prototype
7
8 int main()
9 {
10 int num = 1; // Local variable
11
12 cout << "In main, num is " << num << endl;
13 anotherFunction();
14 cout << "Back in main, num is still " << num << endl;
15 return 0;
16 }
17
18 /***
19 * anotherFunction *
20 * This function displays the value of its local variable num. *
21 ***/
22 void anotherFunction()
23 {
24 int num = 20; // Local variable
25
26 cout << "In anotherFunction, num is " << num << endl;
27 }

Program Output
In main, num is 1
In anotherFunction, num is 20
Back in main, num is still 1

Figure 6-13

Program 6-15 (continued)

Function main

int num = 1; This num variable is visible
 only in main

Function anotherFunction

int num = 20; This num variable is visible
 only in anotherFunction

Local and Global Variables 339

Local Variable Lifetime
A local variable exists only while the function it is defined in is executing. This is known as
the lifetime of a local variable. When the function begins, its parameter variables and any
local variables it defines are created in memory, and when the function ends, they are
destroyed. This means that any values stored in a function’s parameters or local variables
are lost between calls to the function.

Initializing Local Variables with Parameter Values
It is possible to use parameter variables to initialize local variables. Sometimes this
simplifies the code in a function. Here is a modified version of the sum function we
looked at earlier. In this version, the function’s parameters are used to initialize the
local variable result.

int sum(int num1, int num2)
{

int result = num1 + num2;
return result;

}

Global Variables
A global variable is any variable defined outside all the functions in a program, including
main. The scope of a global variable is the portion of the program from the variable defini-
tion to the end of the entire program. This means that a global variable can be accessed by
all functions that are defined after the global variable is defined. Program 6-16 shows two
functions, main and anotherFunction, which access the same global variable, num.

Program 6-16

1 // This program shows that a global variable is visible to all functions
2 // that appear in a program after the variable's definition.
3 #include <iostream>
4 using namespace std;
5
6 void anotherFunction(); // Function prototype
7 int num = 2; // Global variable
8
9 int main()
10 {
11 cout << "In main, num is " << num << endl;
12 anotherFunction();
13 cout << "Back in main, num is " << num << endl;
14 return 0;
15 }
16
17 /***
18 * anotherFunction *
19 * This function changes the value of the global variable num. *
20 ***/

(program continues)

340 Chapter 6 Functions

In Program 6-16, num is defined outside of all the functions. Because its definition appears
before the definitions of main and anotherFunction, both functions have access to it.

In C++, unless you explicitly initialize numeric global variables, they are automatically
initialized to zero. Global character variables are initialized to NULL.* In Program 6-17
the variable globalNum is never set to any value by a statement, but because it is global
it is automatically set to zero.

Global Constants
Although global variables can be useful, you should restrict your use of them. When
beginning students first learn to write programs with multiple functions, they are
sometimes tempted to make all their variables global. This is usually because global

21 void anotherFunction()
22 {
23 cout << "In anotherFunction, num is " << num << endl;
24 num = 50;
25 cout << "But, it is now changed to " << num << endl;
26 }

Program Output
In main, num is 2
In anotherFunction, num is 2
But, it is now changed to 50
Back in main, num is 50

* The NULL character is stored as ASCII 0.

Program 6-17

1 // This program has an uninitialized global variable.
2 #include <iostream>
3 using namespace std;
4
5 int globalNum; // Global variable automatically set to zero
6
7 int main()
8 {
9 cout << "globalNum is " << globalNum << endl;
10 return 0;
11 }

Program Output
globalNum is 0

NOTE: Remember that local variables are not automatically initialized as global
variables are. The programmer must handle this.

Program 6-16 (continued)

Local and Global Variables 341

variables can be accessed by any function in the program without being passed as argu-
ments. Although this approach might make a program easier to create, it usually
causes problems later.
The reasons are as follows:

• Global variables make debugging difficult. Any statement in a program can change
the value of a global variable. If you find that the wrong value is being stored in a
global variable, you have to track down every statement that accesses it to determine
where the bad value is coming from. In a program with thousands of lines of code,
this can be difficult.

• Functions that use global variables are usually dependent on those variables. If you
want to use such a function in a different program, most likely you will have to rede-
sign it so it does not rely on the global variable.

• Global variables make a program hard to understand. A global variable can be mod-
ified by any statement in the program. So to understand any part of the program that
uses a global variable, you have to be aware of all the other parts of the program that
access it.

In most cases, you should declare variables locally and pass them as arguments to the
functions that need to access them. Certainly this is the case with variables used to
store, manipulate, and retrieve data. If you wish to share global information among
modules, you should declare a global constant. A global constant, defined with the key
word const, is a read only variable that is visible to all modules, but that cannot be
changed by any of them. Therefore modules do not have to worry about who else may
be using them.

Program 6-18 shows an example of how global constants might be used. The program
calculates gross pay, including overtime, for a company’s management trainees. All
trainees earn the same amount per hour. In addition to main, this program has two
functions: getBasePay and getOvertimePay. The getBasePay function accepts the
number of hours worked and returns the amount of pay for the non-overtime hours.
The getOvertimePay function accepts the number of hours worked and returns the
amount of pay for the overtime hours, if any.

Program 6-18

1 // This program calculates gross pay. It uses global constants.
2 #include <iostream>
3 #include <iomanip>
4 using namespace std;
5
6 // Global constants
7 const double PAY_RATE = 22.55; // Hourly pay rate
8 const double BASE_HOURS = 40.0; // Max non-overtime hours
9 const double OT_MULTIPLIER = 1.5; // Overtime multiplier
10
11 // Function prototypes
12 double getBasePay(double);
13 double getOvertimePay(double);
14

(program continues)

342 Chapter 6 Functions

15 int main()
16 {
17 double hours, // Hours worked
18 basePay, // Base pay
19 overtimePay = 0.0, // Overtime pay
20 totalPay; // Total pay
21
22 // Get the number of hours worked
23 cout << "How many hours did you work? ";
24 cin >> hours;
25
26 // Get the amount of base pay
27 basePay = getBasePay(hours);
28
29 // Get overtime pay, if any
30 if (hours > BASE_HOURS)
31 overtimePay = getOvertimePay(hours);
32
33 // Calculate the total pay
34 totalPay = basePay + overtimePay;
35
36 // Display the pay
37 cout << setprecision(2) << fixed << showpoint;
38 cout << "Base pay $" << setw(7) << basePay << endl;
39 cout << "Overtime pay $" << setw(7) << overtimePay << endl;
40 cout << "Total pay $" << setw(7) << totalPay << endl;
41 return 0;
42 }
43
44 /***
45 * getBasePay *
46 * This function uses the hours worked value passed in to *
47 * compute and return an employee's pay for non-overtime hours.*
48 ***/
49 double getBasePay(double hoursWorked)
50 {
51 double basePay;
52
53 if (hoursWorked > BASE_HOURS)
54 basePay = BASE_HOURS * PAY_RATE;
55 else
56 basePay = hoursWorked * PAY_RATE;
57
58 return basePay;
59 }
60
61 /**
62 * getOvertimePay *
63 * This function uses the hours worked value passed in *
64 * to compute and return an employee's overtime pay. *
65 **/

(program continues)

Program 6-18 (continued)

Local and Global Variables 343

Let’s take a closer look at the program. Three global constants are defined in lines 7, 8, and
9. The PAY_RATE constant is set to the employee’s hourly pay rate, which is 22.55. The
BASE_HOURS constant is set to 40.0, which is the number of hours an employee can work
in a week without getting paid overtime. The OT_MULTIPLIER constant is set to 1.5, which
is the pay rate multiplier for overtime hours. This means that the employee’s hourly pay
rate is multiplied by 1.5 for all overtime hours.

Because these constants are global, and are defined before all of the functions in the pro-
gram, all the functions may access them. For example, the getBasePay function accesses
the BASE_HOURS constant in lines 53 and 54, and accesses the PAY_RATE constant in lines
54 and 56. The getOvertimePay function accesses the BASE_HOURS constant in line 70
and all three constants in line 73.

Local and Global Variables with the Same Name
You cannot have two local variables with the same name in the same function. This
applies to parameter variables as well. A parameter variable is, in essence, a local vari-
able. So, you cannot give a parameter variable and a local variable in the same function
the same name.

However, you can have a parameter or local variable with the same name as a global vari-
able or constant. When you do this, the name of the parameter or local variable shadows
the name of the global variable or constant. This means that the global variable or con-
stant’s name is hidden by the name of the parameter or local variable. So, the global vari-
able or constant can’t be seen or used in this part of the program. Program 6-19 illustrates
this. It has a global constant named BIRDS set to 500 and a local constant in the california
function named BIRDS set to 10000.

66 double getOvertimePay(double hoursWorked)
67 {
68 double overtimePay;
69
70 if (hoursWorked > BASE_HOURS)
71 {
72 overtimePay =
73 (hoursWorked - BASE_HOURS) * PAY_RATE * OT_MULTIPLIER;
74 }
75 else
76 overtimePay = 0.0;
77
78 return overtimePay;
79 }

Program Output with Example Input Shown in Bold
How many hours did you work? 48[Enter]
Base pay $ 902.00
Overtime pay $ 270.60
Total pay $1172.60

Program 6-18 (continued)

344 Chapter 6 Functions

When the program is executing in the main function, the global constant BIRDS, which is
set to 500, is visible. The cout statement in line 12 displays “In main there are 500
birds.” (My apologies to folks living in Maine for the difference in spelling.) When the
program is executing in the california function, however, the local constant BIRDS
shadows the global constant BIRDS. When the california function accesses BIRDS, it
accesses the local constant. That is why the cout statement in line 24 displays “In cali-
fornia there are 10000 birds.”

(

6.11 Static Local Variables
If a function is called more than once in a program, the values stored in the function’s local
variables do not persist between function calls. This is because local variables are
destroyed when a function terminates and are then re-created when the function starts
again. This is shown in Program 6-20.

Program 6-19

1 // This program demonstrates how a local variable or constant
2 // can shadow the name of a global variable or constant.
3 #include <iostream>
4 using namespace std;
5
6 void california(); // Function prototype
7
8 const int BIRDS = 500; // Global constant
9
10 int main()
11 {
12 cout << "In main there are " << BIRDS << " birds.\n";
13 california();
14 return 0;
15 }
16
17 /*******************************
18 * california *
19 *******************************/
20 void california()
21 {
22 const int BIRDS = 10000;
23
24 cout << "In california there are " << BIRDS << " birds.\n";
25 }

Program Output
In main there are 500 birds.
In california there are 10000 birds.

Static Local Variables 345

Even though in line 25 the last statement in the showLocal function stores 99 in localNum,
the variable is destroyed when the function terminates. The next time the function is called,
localNum is re-created and initialized to 5 all over again.

Sometimes, however, it’s desirable for a program to “remember” what value is stored in a local
variable between function calls. This can be accomplished by making the variable static.
Static local variables are not destroyed when a function returns. They exist for the entire life-
time of the program, even though their scope is only the function in which they are defined.
Program 6-21 uses a static local variable to count how many times a function is called.

Program 6-20

1 // This program shows that local variables do not retain
2 // their values between function calls.
3 #include <iostream>
4 using namespace std;
5
6 void showLocal(); // Function prototype
7
8 int main()
9 {
10 showLocal();
11 showLocal();
12 return 0;
13 }
14
15 /**
16 * showLocal *
17 * This function sets, displays, and then changes the *
18 * value of local variable localNum before returning. *
19 **/
20 void showLocal()
21 {
22 int localNum = 5; // Local variable
23
24 cout << "localNum is " << localNum << endl;
25 localNum = 99;
26 }

Program Output
localNum is 5
localNum is 5

Program 6-21

1 // This program uses a static local variable.
2 #include <iostream>
3 using namespace std;
4
5 void showStatic(); // Function prototype
6

(program continues)

346 Chapter 6 Functions

In Program 6-21 numCalls is defined and initialized to 0 in line 23. It is incremented in
line 26 once each time the showStatic function is called and, because it is a static vari-
able, it retains its value between calls. You might think that every time the function is
called, numCalls would be reinitialized to 0. But this does not happen because a variable is
only initialized when it is first created, and static variables are only created once during the
running of the program. If we had not initialized numCalls, it would automatically have
been initialized to 0 because numeric static local variables, like global variables, are initial-
ized to 0 if the programmer does not initialize them.

Checkpoint

6.16 What is the difference between a static local variable and a global variable?

6.17 What is the output of the following program?

#include <iostream>
using namespace std;

void myFunc(); // Function prototype

7 int main()
8 {
9 // Call the showStatic function five times
10 for (int count = 0; count < 5; count++)
11 showStatic();
12 return 0;
13 }
14
15 /**
16 * showStatic *
17 * This function keeps track of how many times it *
18 * has been called by incrementing a static local *
19 * variable, numCalls, each time it is called. *
20 **/
21 void showStatic()
22 {
23 static int numCalls = 0; // Static local variable
24
25 cout << "This function has been called "
26 << ++numCalls << " times. " << endl;
27 }

Program Output
This function has been called 1 times.
This function has been called 2 times.
This function has been called 3 times.
This function has been called 4 times.
This function has been called 5 times.

Program 6-21 (continued)

Default Arguments 347

int main()
{ int var = 100;

cout << var << endl;
myFunc();
cout << var << endl;
return 0;

}
// Definition of function myFunc
void myFunc()
{ int var = 50;

cout << var << endl;
}

6.18 What is the output of the following program?

#include <iostream>
using namespace std;

void showVar(); // Function prototype

int main()
{ for (int count = 0; count < 10; count++)

showVar();
return 0;

}
// Definition of function showVar
void showVar()
{ static int var = 10;

cout << var << endl;
var++;

}

6.12 Default Arguments

CONCEPT: Default arguments are passed to parameters automatically if no argument
is provided in the function call.

It’s possible to assign default arguments to function parameters. A default argument is
passed to the parameter when the actual argument is left out of the function call. The
default arguments are usually listed in the function prototype. Here is an example:

void showArea(double length = 20.0, double width = 10.0);

Because parameter names are not required in function prototypes, the example prototype
could also be declared like this:

void showArea(double = 20.0, double = 10.0);

In either case, the default arguments, which must be literal values or constants, have an =
operator in front of them.

348 Chapter 6 Functions

Notice that in both example prototypes, the function showArea has two double parame-
ters. The first is assigned the default argument 20.0 and the second is assigned the default
argument 10.0. Here is the definition of the function:

void showArea(double length, double width)
{

double area = length * width;
cout << "The area is " << area << endl;

}

The default argument for length is 20.0 and the default argument for width is 10.0.
Because both parameters have default arguments, they may optionally be omitted in the
function call, as shown here:

showArea();

In this function call, both default arguments will be passed to the parameters. Parameter
length will receive the value 20.0 and width will receive the value 10.0. The output of the
function will be

The area is 200

The default arguments are only used when the actual arguments are omitted from the func-
tion call. In the following call, the first argument is specified, but the second is omitted:

showArea(12.0);

The value 12.0 will be passed to length, while the default value 10.0 will be passed to
width. The output of the function will be

The area is 120

Of course, all the default arguments may be overridden. In the following function call,
arguments are supplied for both parameters:

showArea(12.0, 5.5);

The output of this function call will be

The area is 66

Program 6-22 illustrates the use of default function arguments. It has a function that displays
asterisks on the screen. This function receives arguments specifying how many rows of aster-
isks to display and how many asterisks to print on each row. Default arguments are provided
to display 1 row of 10 asterisks.

NOTE: A function’s default arguments should be assigned in the earliest occurrence of
the function name. This will usually be the function prototype. However, if a function
does not have a prototype, default arguments may be specified in the function header.
The showArea function could be defined as follows:

void showArea(double length = 20.0, double width = 10.0)
{

double area = length * width;
cout << "The area is " << area << endl;

}

Default Arguments 349

Although C++’s default arguments are very convenient, they are not totally flexible in their
use. When an argument is left out of a function call, all arguments that come after it must
be left out as well. In the displayStars function in Program 6-22, it is not possible to
omit the argument for starsPerRow without also omitting the argument for numRows. For
example, the following function call would be illegal:

displayStars(, 3); // Illegal function call!

Program 6-22

1 // This program demonstrates the use of default function arguments.
2 #include <iostream>
3 using namespace std;
4
5 // Function prototype with default arguments
6 void displayStars(int starsPerRow = 10, int numRows = 1);
7
8 int main()
9 {
10 displayStars(); // starsPerRow & numRows use defaults (10 & 1)
11 cout << endl;
12 displayStars(5); // starsPerRow 5. numRows uses default value 1
13 cout << endl;
14 displayStars(7, 3); // starsPerRow 7. numRows 3. No defaults used.
15 return 0;
16 }
17
18 /***
19 * displayStars *
20 * This function displays a rectangle made of asterisks. *
21 * If arguments are not passed to it, it uses the default *
22 * arguments 10 for starsPerRow and 1 for numRows. *
23 ***/
24 void displayStars(int starsPerRow, int numRows)
25 {
26 // Nested loop. The outer loop controls the rows and
27 // the inner loop controls the number of stars per row.
28 for (int row = 1; row <= numRows; row++)
29 {
30 for (int star = 1; star <= starsPerRow; star++)
31 cout << '*';
32 cout << endl;
33 }
34 }

Program Output

350 Chapter 6 Functions

It is possible, however, for a function to have some parameters with default arguments and some
without. For example, in the following function, only the last parameter has a default argument:

// Function prototype
void calcPay(int empNum, double payRate, double hours = 40.0);

// Definition of function calcPay
void calcPay(int empNum, double payRate, double hours)
{

double wages;

wages = payRate * hours;

cout << "Gross pay for employee number ";
cout << empNum << " is " << wages << endl;

}

When calling this function, arguments must always be specified for the first two parameters
(empNum and payRate) because they have no default arguments. Here are examples of valid calls:

calcPay(769, 15.75); // Uses default argument for hours
calcPay(142, 12.00, 20); // Specifies number of hours

When a function uses a mixture of parameters with and without default arguments, the parame-
ters with default arguments must be declared last. In the calcPay function, hours could not
have been declared before either of the other parameters. The following prototypes are illegal:

// Illegal prototype
void calcPay(int empNum, double hours = 40.0, double payRate);

// Illegal prototype
void calcPay(double hours = 40.0, int empNum, double payRate);

Here is a summary of the important points about default arguments:

• The value of a default argument must be a literal value or a named constant.
• When an argument is left out of a function call (because it has a default value), all the

arguments that come after it must also be left out.
• When a function has a mixture of parameters both with and without default

arguments, the parameters with default arguments must be defined last.

6.13 Using Reference Variables as Parameters

CONCEPT: A reference variable is a variable that references the memory location of
another variable. Any change made to the reference variable is actually
made to the one it references. Reference variables are sometimes used as
function parameters.

Earlier you saw that arguments are normally passed to a function by value. This means
that parameters receive only a copy of the value sent to them, which they store in the
function’s local memory. Any changes made to the parameter’s value do not affect the
value of the original argument.

Sometimes, however, we want a function to be able to change a value in the calling function
(i.e., the function that called it). This can be done by making the parameter a reference variable.

Using Reference Variables as Parameters 351

You learned in Chapter 1 that variables are the names of memory locations that may hold data.
When we use a variable we are accessing data stored in the memory location assigned to it. A
reference variable is an alias for another variable. Instead of having its own memory location
for storing data, it accesses the memory location of another variable. Any change made to the
reference variable’s data is actually made to the data stored in the memory location of the other
variable. When we use a reference variable as a parameter, it becomes an alias for the corre-
sponding variable in the argument list. Any change made to the parameter is actually made to
the variable in the calling function. When data is passed to a parameter in this manner, the
argument is said to be passed by reference.

Reference variables are defined like regular variables, except there is an ampersand (&)
between the data type and the name. For example, the following function definition makes
the parameter refVar a reference variable:

void doubleNum(int &refVar)
{

refVar *= 2;
}

You may place the space either before or after the ampersand. The doubleNum function
heading could also have been written like this:

void doubleNum(int& refVar)

This function doubles refVar by multiplying it by 2. Because refVar is a reference vari-
able, this action is actually performed on the variable that was passed to the function as an
argument.

The prototype for a function with a reference parameter must have an ampersand as well.
As in the function header, it goes between the data type and the variable name. If the vari-
able name is omitted from the prototype, the ampersand simply follows the data type. All
of the following prototypes for the doubleNum function are correct.

void doubleNum(int &refVar);
void doubleNum(int& refVar);
void doubleNum(int &);
void doubleNum(int&);

Your instructor will let you know which form to use.

Program 6-23 demonstrates the use of a parameter that is a reference variable.

NOTE: The variable refVar is called “a reference to an int.”

NOTE: The ampersand must appear in both the prototype and the header of any function
that uses a reference variable as a parameter. It does not appear in the function call.

Program 6-23

1 // This program uses a reference variable as a function parameter.
2 #include <iostream>
3 using namespace std;
4

(program continues)

352 Chapter 6 Functions

The parameter refVar in Program 6-23 “points” to the value variable in function main.
When a program works with a reference variable, it is actually working with the variable it
references, or points to. This is illustrated in Figure 6-14.

Using reference variables as function parameters is especially useful when the purpose of
the function is to accept input values to be stored in variables of the calling function.
Another use of reference parameters is when multiple values must be sent back from the
function. If the function is computing and sending back a single value, it is generally con-
sidered more appropriate to use a value-returning function and send the value back with a
return statement.

Program 6-24 is a modification of Program 6-23. It adds a function getNum, which accepts
an input from the user and stores it in userNum. However, the parameter userNum is a

5 // Function prototype. The parameter is a reference variable.
6 void doubleNum(int &refVar);
7
8 int main()
9 {
10 int value = 4;
11
12 cout << "In main, value is " << value << endl;
13 cout << "Now calling doubleNum..." << endl;
14 doubleNum(value);
15 cout << "Now back in main, value is " << value << endl;
16 return 0;
17 }
18
19 /**
20 * doubleNum *
21 * This function's parameter is a reference variable. The & *
22 * tells us that. This means it receives a reference to the *
23 * original variable passed to it, rather than a copy of that *
24 * variable's data. The statement refVar *= 2 is doubling the *
25 * data stored in the value variable defined in main. *
26 **/
27 void doubleNum (int &refVar)
28 {
29 refVar *= 2;
30 }

Program Output
In main, value is 4
Now calling doubleNum...
Now back in main, value is 8

Figure 6-14

Program 6-23 (continued)

Reference variable

Original argument 4

Using Reference Variables as Parameters 353

reference to main’s variable value, so that is where the input data is actually stored. Pro-
gram 6-24 also rewrites the function doubleNum as a value-returning function. Notice, in
line 19, how main must now store the value when doubleNum returns it.

Program 6-24

1 // This program uses 2 functions: a void function with a reference
2 // variable as a parameter, and a value-returning function.
3 #include <iostream>
4 using namespace std;
5
6 // Function prototypes
7 void getNum(int &);
8 int doubleNum(int);
9
10 int main()
11 {
12 int value;
13
14 // Call getNum to get a number and store it in value
15 getNum(value);
16
17 // Call doubleNum, passing it the number stored in value
18 // Assign value the number returned by the function
19 value = doubleNum(value);
20
21 // Display the resulting number
22 cout << "That value doubled is " << value << endl;
23 return 0;
24 }
25
26 /**
27 * getNum *
28 * This function stores user input data in main's value *
29 * variable by using a reference variable as a parameter. *
30 **/
31 void getNum(int &userNum)
32 {
33 cout << "Enter a number: ";
34 cin >> userNum;
35 }
36
37 /***
38 * doubleNum *
39 * This function doubles the number it receives as an *
40 * argument and returns it to main thru a return statement.*
41 ***/
42 int doubleNum (int number)
43 {
44 return number * 2;
45 }

Program Output with Example Input Shown in Bold
Enter a number: 12[Enter]
That value doubled is 24

354 Chapter 6 Functions

If a function has more than one parameter that is a reference variable, you must use an
ampersand for each of them in both the prototype and the function header. Here is the pro-
totype for a function that uses four reference variable parameters:

void addThree(int& num1, int& num2, int& num3, int& sum);

and here is the function definition:

void addThree(int& num1, int& num2, int& num3, int& sum)
{

cout << "Enter three integer values: ";
cin >> num1 >> num2 >> num3;
sum = num1 + num2 + num3;

}

When to Pass Arguments by Reference and When to Pass
Arguments by Value
New programmers often have a problem determining when an argument should be passed
to a function by reference and when it should be passed by value. The problem is further
compounded by the fact that if a value must be “sent back” to the calling function there
are two ways to do it: by using a reference parameter or by using a return statement. Here
are some general guidelines.

• When an argument is a constant, it must be passed by value. Only variables can be
passed by reference.

• When a variable passed as an argument should not have its value changed, it should
be passed by value. This protects it from being altered.

• When exactly one value needs to be “sent back” from a function to the calling rou-
tine, it should generally be returned with a return statement rather than through a
reference parameter.

• When two or more variables passed as arguments to a function need to have their
values changed by that function, they should be passed by reference.

• When a copy of an argument cannot reasonably or correctly be made, such as when
the argument is a file stream object, it must be passed by reference.

NOTE: Only variables may be passed by reference. If you attempt to pass a non-variable
argument, such as a literal, a constant, or an expression, into a reference parameter, an
error will result.

WARNING! Don’t get carried away with using reference variables as function
parameters. Any time you allow a function to alter a variable that’s outside the function,
you are creating potential debugging problems. Reference variables should only be used
as parameters when the purpose of a function is to accept input data to be stored in the
calling function’s variables or when it is the programmer’s intent that a function alter a
value passed to it.

Using Reference Variables as Parameters 355

Here are three common instances when reference parameters are used.

• When data values being input in a function need to be known by the calling function.
• When a function must change existing values in the calling function.
• When a file stream object is passed to a function.

Program 6-25 illustrates the first two of these uses. The getNums function uses reference
variables as parameters so that it can store the values it inputs into the main function’s
small and big variables. The orderNums function uses reference variables as parameters
so that when it swaps the two items passed to it, the values will actually be swapped in the
main function.

Program 6-25

1 // This program illustrates two appropriate uses of passing arguments
2 // by reference.
3 #include <iostream>
4 using namespace std;
5
6 // Function prototypes
7 void getNums (int&, int&); // Uses reference parameters to input
8 // values in the function, but to actually
9 // store them in variables defined in main
10
11 void orderNums(int&, int&); // Uses reference parameters to change the
12 // values of existing values stored in main
13
14 int main()
15 {
16 int small, big;
17
18 // Call getNums to input the two numbers
19 getNums(small, big);
20
21 // Call orderNums to put the numbers in order
22 orderNums(small, big);
23
24 // Display the new values
25 cout << "The two input numbers ordered smallest to biggest are "
26 << small << " and " << big << endl;
27 return 0;
28 }
29
30 /**
31 * getNums *
32 * The arguments passed into input1 and input2 are passed *
33 * by reference so that the values entered into them will *
34 * actually be stored in the memory space of main's small *
35 * and big variables. *
36 **/

(program continues)

356 Chapter 6 Functions

Passing Files to Functions
As mentioned previously, reference parameters should always be used when a file stream object is
passed to a function. Program 6-26 illustrates how to pass a file to a function. The weather.dat
file used by the program contains the following seven values: 72 83 71 69 75 77 70.

37 void getNums(int &input1, int &input2)
38 {
39 cout << "Enter an integer: ";
40 cin >> input1;
41 cout << "Enter a second integer: ";
42 cin >> input2;
43 }
44
45 /**
46 * orderNums *
47 * The arguments passed into num1 and num2 are passed by *
48 * reference so that if they are out of order main's *
49 * variables small and big can be swapped. Just swapping *
50 * num1 and num2 in orderNum's local memory would not *
51 * accomplish the desired result. *
52 **/
53 void orderNums (int &num1, int &num2)
54 {
55 int temp;
56
57 if (num1 > num2) // If the numbers are out of order, swap them
58 { temp = num1;
59 num1 = num2;
60 num2 = temp;
61 }
62 }

Program Output With Example Input Shown in Bold
Enter an integer: 10[Enter]
Enter a second integer: 5[Enter]
The two input numbers ordered smallest to biggest are 5 and 10

Program 6-26

1 // This program reads 7 daily high temperatures from a file
2 // and displays them. It demonstrates how to pass a file to a
3 // function. The function argument, which is a file stream object,
4 // must be passed by reference.
5 #include <iostream>
6 #include <fstream>
7 using namespace std;
8
9 void readFile(ifstream&); // Function prototype
10

(program continues)

Program 6-25 (continued)

Using Reference Variables as Parameters 357

Checkpoint

6.19 What kinds of values may be specified as default arguments?

6.20 Write the prototype and header for a function called compute. The function should
have three parameters: an int, a double, and a long (not necessarily in that order).
The int parameter should have a default argument of 5, and the long parameter
should have a default argument of 65536. The double parameter should not have
a default argument.

6.21 Write the prototype and header for a function called calculate. The function
should have three parameters: an int, a reference to a double, and a long (not
necessarily in that order.) Only the int parameter should have a default argument,
which is 47.

6.22 What is the output of the following program?

#include <iostream>
using namespace std;

void test(int = 2, int = 4, int = 6);

11 int main()
12 {
13 ifstream dataIn;
14
15 dataIn.open("weather.dat");
16 if (dataIn.fail())
17 cout << "Error opening data file.\n";
18 else
19 { readFile(dataIn);
20 dataIn.close();
21 }
22 return 0;
23 }
24
25 /**
26 * readFile *
27 * This function reads and displays the contents of the *
28 * input file whose file stream object is passed to it. *
29 **/
30 void readFile(ifstream &someFile)
31 {
32 int temperature;
33
34 while (someFile >> temperature)
35 cout << temperature << " ";
36 cout << endl;
37 }

Program Output
72 83 71 69 75 77 70

Program 6-26 (continued)

358 Chapter 6 Functions

int main()
{

test();
test(6);
test(3, 9);
test(1, 5, 7);
return 0;

}

void test (int first, int second, int third)
{

first += 3;
second += 6;
third += 9;
cout << first << " " << second << " " << third << endl;

}

6.23 The following program asks the user to enter two numbers. What is the output of
the program if the user enters 12 and 14?

#include <iostream>
using namespace std;

void func1(int &, int &);
void func2(int &, int &, int &);
void func3(int, int, int);

int main()
{

int x = 0, y = 0, z = 0;
cout << x << " " << y << z << endl;
func1(x, y);
cout << x << " " << y << z << endl;
func2(x, y, z);
cout << x << " " << y << z << endl;
func3(x, y, z);
cout << x << " " << y << z << endl;
return 0;

}

void func1(int &a, int &b)
{ cout << "Enter two numbers: ";

cin >> a >> b;
}

void func2(int &a, int &b, int &c)
{ b++;

c--;
a = b + c;

}

void func3(int a, int b, int c)
{ a = b - c;
}

Overloading Functions 359

6.14 Overloading Functions

CONCEPT: Two or more functions may have the same name, as long as their
parameter lists are different.

Sometimes you will create two or more functions that perform the same operation, but use
a different set of parameters, or parameters of different data types. For instance, in
Program 6-12 there is a square function that uses a double parameter. But suppose you
also wanted a square function that works exclusively with integers and accepts an int as
its argument. Both functions would do the same thing, return the square of their argument.
The only difference is the data type involved in the operation. If you were to use both these
functions in the same program, you could assign a unique name to each function. For
example, the function that squares an int might be named squareInt, and the one that
squares a double might be named squareDouble. C++, however, allows you to overload
function names. That means you may assign the same name to multiple functions, as long
as their parameter lists are different. Program 6-27 uses two overloaded square functions.

Program 6-27

1 // This program uses overloaded functions.
2 #include <iostream>
3 #include <iomanip>
4 using namespace std;
5
6 // Function prototypes
7 int square(int);
8 double square(double);
9
10 int main()
11 {
12 int userInt;
13 double userReal;
14
15 // Get an int and a double
16 cout << "Enter an integer and a floating-point value: ";
17 cin >> userInt >> userReal;
18
19 // Display their squares
20 cout << "Here are their squares: ";
21 cout << fixed << showpoint << setprecision(2);
22 cout << square(userInt) << " and " << square(userReal) << endl;
23 return 0;
24 }
25
26 /***
27 * overloaded function square *
28 * This function returns the square of the value *
29 * passed into its int parameter. *
30 ***/
31 int square(int number)

(program continues)

360 Chapter 6 Functions

Here are the headers for the square functions used in Program 6-27:

int square(int number)
double square(double number)

In C++, each function has a signature. The function signature is the name of the function
and the data types of the function’s parameters in the proper order. The square functions
in Program 6-27 would have the following signatures:

square(int)
square(double)

When an overloaded function is called, C++ uses the function signature to distinguish
it from other functions with the same name. In Program 6-27, when an int argument
is passed to square, the version of the function that has an int parameter is called.
Likewise, when a double argument is passed to square, the version with a double
parameter is called.

Note that the function’s return value is not part of the signature. The following functions
could not be used in the same program because their parameter lists aren’t different.

int square(int number)
{

return number * number
}

double square(int number) // Wrong! Parameter lists must differ
{

return number * number
}

Overloading is also convenient when there are similar functions that use a different num-
ber of parameters. For example, consider a program with functions that return the sum of

32 {
33 return number * number;
34 }
35
36 /***
37 * overloaded function square *
38 * This function returns the square of the value *
39 * passed into its double parameter. *
40 ***/
41 double square(double number)
42 {
43 return number * number;
44 }

Program Output with Example Input Shown in Bold
Enter an integer and a floating-point value: 12 4.2[Enter]
Here are their squares: 144 and 17.64

Program 6-27 (continued)

Overloading Functions 361

integers. One returns the sum of two integers, another returns the sum of three integers,
and yet another returns the sum of four integers. Here are their function headers:

int sum(int num1, int num2)
int sum(int num1, int num2, int num3)
int sum(int num1, int num2, int num3, int num4)

Because the number of parameters is different in each, they may all be used in the same
program. Program 6-28 uses two functions, each named calcWeeklyPay, to determine an
employee’s gross weekly pay. One version of the function uses an int and a double
parameter, while the other version only uses a double parameter.

Program 6-28

1 // This program demonstrates overloaded functions to calculate
2 // the gross weekly pay of hourly-wage or salaried employees.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 // Function prototypes
8 char getChoice();
9 double calcWeeklyPay(int, double);
10 double calcWeeklyPay(double);
11
12 int main()
13 {
14 char selection; // Menu selection
15 int worked; // Weekly hours worked
16 double rate, // Hourly pay rate
17 yearly; // Annual salary
18
19 // Set numeric output formatting
20 cout << fixed << showpoint << setprecision(2);
21
22 // Display the menu and get a selection
23 cout << "Do you want to calculate the weekly pay of\n";
24 cout << "(H) an hourly-wage employee, or \n";
25 cout << "(S) a salaried employee? ";
26 selection = getChoice();
27
28 // Process the menu selection
29 switch (selection)
30 {
31 // Hourly employee
32 case 'H' :
33 case 'h' : cout << "How many hours were worked? ";
34 cin >> worked;
35 cout << "What is the hourly pay rate? ";
36 cin >> rate;
37 cout << "The gross weekly pay is $";
38 cout << calcWeeklyPay(worked, rate) << endl;
39 break;
40

(program continues)

362 Chapter 6 Functions

41 // Salaried employee
42 case 'S' :
43 case 's' : cout << "What is the annual salary? ";
44 cin >> yearly;
45 cout << "The gross weekly pay is $";
46 cout << calcWeeklyPay(yearly) << endl;
47 }
48 return 0;
49 }
50
51 /***
52 * getChoice *
53 * Accepts and returns user's validated menu choice. *
54 ***/
55 char getChoice()
56 {
57 char letter; // Holds user's letter choice
58
59 // Get the user's choice
60 cin >> letter;
61
62 // Validate the choice
63 while (letter != 'H' && letter != 'h'
64 && letter != 'S' && letter != 's')
65 {
66 cout << "Enter H or S: ";
67 cin >> letter;
68 }
69 // Return the choice
70 return letter;
71 }
72
73 /***
74 * overloaded function calcWeeklyPay *
75 * This function calculates and returns the gross weekly pay *
76 * of an hourly-wage employee. Parameters hours and payRate *
77 * hold the number of hours worked and the hourly pay rate. *
78 ***/
79 double calcWeeklyPay(int hours, double payRate)
80 {
81 return hours * payRate;
82 }
83
84 /***
85 * overloaded function calcWeeklyPay *
86 * This function calculates and returns the gross weekly pay *
87 * of a salaried employee. The parameter annSalary holds the *
88 * employee's annual salary. *
89 ***/
90 double calcWeeklyPay(double annSalary)
91 {
92 return annSalary / 52.0;
93 }

(program continues)

Program 6-28 (continued)

The exit() Function 363

6.15 The exit() Function

CONCEPT: The exit() function causes a program to terminate, regardless of which
function or control mechanism is executing.

A C++ program stops executing when a return statement in function main is encountered.
When other functions end, however, the program does not stop. Control of the program
goes back to the place immediately following the function call. Sometimes, however, the
programmer wishes, under certain conditions, to terminate a program in a function other
than main. To accomplish this, the exit function is used.

When the exit function is called, it causes the program to stop, regardless of which func-
tion contains the call. Program 6-29 demonstrates this.

Program Output with Example Input Shown in Bold
Do you want to calculate the weekly pay of
(H) an hourly-wage employee, or
(S) a salaried employee? H[Enter]
How many hours were worked? 40[Enter]
What is the hourly pay rate? 18.50[Enter]
The gross weekly pay is $740.00

Program Output with Other Example Data Shown in Bold
Do you want to calculate the weekly pay of
(H) an hourly-wage employee, or
(S) a salaried employee? S[Enter]
What is the annual salary? 48000.00[Enter]
The gross weekly pay is $923.08

Program 6-29

1 // This program shows how the exit function causes a program
2 // to stop executing.
3 #include <iostream>
4 #include <cstdlib> // Needed to use the exit function
5 using namespace std;
6
7 // Function prototype
8 void someFunction();
9
10 int main()
11 {
12 someFunction();
13 return 0;
14 }
15

(program continues)

Program 6-28 (continued)

364 Chapter 6 Functions

To use the exit function, be sure to include the cstdlib header file. Notice the func-
tion takes an integer argument. This argument is the exit code you wish the program to
pass back to the computer’s operating system. This code is sometimes used outside of
the program to indicate whether the program ended successfully or as the result of a
failure. In Program 6-29, the exit code zero is passed, which commonly indicates a suc-
cessful exit. If you are unsure which code to use with the exit function, there are two
named constants, EXIT_FAILURE and EXIT_SUCCESS, defined in cstdlib for you to
use. The constant EXIT_FAILURE is defined as the termination code that commonly
represents an unsuccessful exit under the current operating system. Here is an example
of its use:

exit(EXIT_FAILURE);

The constant EXIT_SUCCESS is defined as the termination code that commonly represents a
successful exit under the current operating system. Here is an example:

exit(EXIT_SUCCESS);

Because it is considered good programming practice to terminate a program at the end of
the main function, many programmers use exit() only to handle error conditions.

Checkpoint

6.24 Is it required that overloaded functions have different return types, different
parameter lists, or both?

16 /**
17 * someFunction *
18 * This function demonstrates that exit() can be used to end *
19 * a program from a function other than main. This is not *
20 * considered good programming practice and should normally *
21 * be done only to signal that an error condition has occurred. *
22 **/
23 void someFunction()
24 {
25 cout << "This program terminates with the exit function.\n";
26 cout << "Bye!\n";
27 exit(0);
28 cout << "This message will never be displayed\n";
29 cout << "because the program has already terminated.\n";
30 }

Program Output
This program terminates with the exit function.
Bye!

WARNING! exit() is a nonstructured programming technique. Use with caution.

Program 6-29 (continued)

The exit() Function 365

6.25 What is the output of the following program?

#include <iostream>
#include <cstdlib>
using namespace std;

void showVals(double, double);

int main()
{

double x = 1.2, y = 4.5;

showVals(x, y);
return 0;

}

void showVals(double p1, double p2)
{

cout << p1 << endl;
exit(0);
cout << p2 << endl;

}

6.26 What is the output of the following program?

#include <iostream>
using namespace std;
int manip(int);
int manip(int, int);
int manip(int, double);

int main()
{

int x = 2, y= 4, z;
double a = 3.1;

z = manip(x) + manip(x, y) + manip(y, a);
cout << z << endl;
return 0;

}

int manip(int val)
{

return val + val * 2;
}

int manip(int val1, int val2)
{

return (val1 + val2) * 2;
}

int manip(int val1, double val2)
{

return val1 * static_cast<int>(val2);
}

366 Chapter 6 Functions

*

6.16 Stubs and Drivers
Stubs and drivers are very helpful tools for testing and debugging programs that use
functions. They allow you to test the individual functions in a program, in isolation from
the parts of the program that call the functions.

A stub is a dummy function that is called instead of the actual function it represents. It
usually displays a test message acknowledging that it was called, and nothing more. For
example, if a stub were used for the showFees function in Program 6-14 (the modular
health club membership program), it might look like this:

// Stub for the showFees function
void showFees(string memberType, double rate, int months)
{
 cout << "The function showFees was called with arguments:\n"
 << "Member type: " << memberType << endl
 << "rate: " << rate << endl
 << "months: " << months << endl;
}

Here is example output of the program if it were run with this stub instead of with the
actual showFees function. Input is shown in bold.

Health Club Membership Menu

1. Standard Adult Membership
2. Child Membership
3. Senior Citizen Membership
4. Quit the Program

1[Enter]
For how many months? 3[Enter]
The function showFees was called with arguments:
Member type: Adult
rate: 40
months: 3

Health Club Membership Menu

1. Standard Adult Membership
2. Child Membership
3. Senior Citizen Membership
4. Quit the Program

4[Enter]

As you can see, by replacing an actual function with a stub, you can concentrate your test-
ing efforts on the parts of the program that call the function. Primarily, the stub allows you
to determine whether your program is calling a function when you expect it to and confirm
that valid values are being passed to the function. If the stub represents a function that
returns a value, then the stub should return a test value. This helps you confirm that the
return value is being handled properly. When the parts of the program that call a function

Stubs and Drivers 367

are debugged to your satisfaction, you can move on to testing and debugging the actual
functions themselves. This is where drivers become useful.

A driver is a program that tests a function by simply calling it. If the function accepts any
arguments, the driver passes test data. If the function returns a value, the driver displays
the return value on the screen. This allows you to see how the function performs in isola-
tion from the rest of the program it will eventually be part of. Program 6-30 is a driver for
testing the showFees function in the health club membership program.

Program 6-30

1 // This program is a driver for testing the showFees function.
2 #include <iostream>
3 #include <string>
4 using namespace std;
5
6 // Function prototype
7 void showFees(string, double, int);
8
9 int main()
10 {
11 cout << "Calling the showFees function with arguments "
12 << "Adult, 40.00, 3.\n";
13 showFees("Adult", 40.00, 3);
14
15 cout << "Calling the showFees function with arguments "
16 << "Child, 20.00, 2.\n";
17 showFees("Child", 20.00, 2);
18
19 cout << "Calling the showFees function with arguments "
20 << "Senior, 30.00, 4.\n";
21 showFees("Senior", 30.00, 4);
22
23 return 0;
24 }
25
26 /***
27 * showFees *
28 * This function uses the membership type, monthly *
29 * rate and number of months passed to it as arguments *
30 * to compute and print a member's total charges. *
31 ***/
32 void showFees(string memberType, double rate, int months)
33 {
34 cout << endl
35 << "Membership Type : " << memberType << " "
36 << "Monthly rate $" << rate << endl
37 << "Number of months: " << months << endl
38 << "Total charges : $"<< (rate * months)
39 << endl << endl;
40 }

(program continues)

368 Chapter 6 Functions

As shown in Program 6-30, a driver can be used to thoroughly test a function. It can
repeatedly call the function with different test values as arguments. When the function per-
forms as desired, it can be placed into the actual program it will be part of.

6.17 Little Lotto Case Study

Problem Statement
The mathematics department of Jefferson Junior High School wants a program developed
that will illustrate basic probability for their students in an entertaining way. In particular
they want a program called “Little Lotto” that simulates a lottery. In this program students
can specify the number of numbers in the selection set (1-12) and the number of numbers
patrons must pick and match to the winning numbers (between 1 and the size of the selec-
tion set). The order of the selected numbers is not significant. It will report the patron’s
chances of winning as both a number and a probability.

Example Output

This example output clarifies exactly what the department wants the program to do.

This program will tell you your probability of winning "Little Lotto".

How many numbers (1-12) are there to pick from? 12
How many numbers must you pick to play? 5

Your chance of winning the lottery is 1 chance in 792.
This is a probability of 0.0013

Program Output
Calling the showFees function with arguments Adult, 40.00, 3.

Membership Type : Adult Monthly rate $40
Number of months: 3
Total charges : $120

Calling the showFees function with arguments Child, 20.00, 2.

Membership Type : Child Monthly rate $20
Number of months: 2
Total charges : $40

Calling the showFees function with arguments Senior, 30.00, 4.

Membership Type : Senior Monthly rate $30
Number of months: 4
Total charges : $120

Program 6-30 (continued)

Little Lotto Case Study 369

Program Design

Program Steps

The program must carry out the following general steps:

1. Get and validate how many numbers there are to choose from (n).
2. Get and validate how many of these numbers must be selected (k).
3. Compute the number of ways a set of k items can be selected from a set of n items.
4. Report to the player his chance of winning and his probability of winning.

Program Modules

The program will be designed as a set of modules, each having a specific function. Here are
the modules that will be used:

Program Organization

In previous chapters hierarchy charts were used to illustrate the relationship of actions that
a program must carry out. However, they are more commonly used to illustrate the rela-
tionship of program modules in a program that is organized into a set of functions. The
following hierarchy chart illustrates the organization of the Little Lotto program. Notice
that it clarifies which functions call which other functions.

Variables whose values will be input

int pickFrom // Number of numbers available to select from
int numPicks // Number of numbers that must be chosen

Table 6-1 Little Lotto Program Modules

Function Description

main This function explains the “game”, organizes calls to other functions,
and reports results.

getLotteryInfo This function gets and validates the number of numbers to select from (n)
and the number that must be chosen (k).

computeWays This function computes the number of different sets of size k that can be
chosen from n numbers.

factorial This function computes factorials. It is used by computeWays.

Figure 6-15

main

getLotteryInfo computeWays

factorial

370 Chapter 6 Functions

Variables and values whose values will be output

long int ways // Number of different possible selections
 // Only 1 of these can "win"

1.0 / ways // Probability of winning

Detailed Pseudocode for Each Module

In a modular program, a separate pseudocode routine should be created to capture the logic
of each function. Here is the pseudocode for each function in the Little Lotto program.

main
Display information on what the program does
Call getLotteryInfo // Puts value in pickFrom and numPicks variables
Call computeWays // Returns number of ways numbers can be selected
Store the returned result in the ways variable
Display ways and 1 / ways

End main

getLotteryInfo // Places inputs in reference variables
Input pickFrom
While pickFrom < 1 or pickFrom > 12

Display an error message
Input pickFrom

End while
Input numPicks
While numPicks < 1 or numPicks > pickFrom

Display an error message
Input pickFrom

End while
End getLotteryInfo

computeWays // Receives pickFrom as n and numPicks as k
Call factorial 3 times to get information for its calculations
Return factorial(n)

factorial(k) * factorial (n-k)
End computeWays

factorial // Receives number whose factorial is to be calculated
factTotal = 1
Loop for count = number down to 1

factTotal = factTotal * count
End Loop
Return factTotal

End factorial

The Program
The next step, after the pseudocode has been checked for logic errors, is to expand the
pseudocode into the final program. This is shown in Program 6-31.

Little Lotto Case Study 371

Program 6-31

1 // This program finds the probability of winning a "mini" lottery
2 // when the user's set of numbers must exactly match the set drawn
3 // by the lottery organizers. It uses three functions.
4 #include <iostream>
5 #include <iomanip>
6 using namespace std;
7
8 // Function prototypes
9 void getLotteryInfo(int&, int&);
10 long int computeWays(int, int);
11 long int factorial(int);
12
13 int main()
14 {
15 int pickFrom, // The number of numbers to pick from
16 numPicks; // The number of numbers to select
17 long int ways; // The number of different possible
18 // ways to pick the set of numbers
19
20 cout << "This program will tell you your probability of "
21 << "winning \"Little Lotto\". \n";
22 getLotteryInfo(pickFrom, numPicks);
23 ways = computeWays(pickFrom, numPicks);
24
25 cout << fixed << showpoint << setprecision(4);
26 cout << "\nYour chance of winning the lottery is "
27 << "1 chance in " << ways << ".\n";
28 cout << "This is a probability of " << (1.0 / ways) << "\n";
29 return 0;
30 }
31
32 /***
33 * getLotteryInfo *
34 * Gets and validates lottery info. from the user and places it in *
35 * reference parameters referencing variables in the main function.*
36 ***/
37 void getLotteryInfo(int &pickFrom, int &numPicks)
38 {
39 cout << "\nHow many numbers (1-12) are there to pick from? ";
40 cin >> pickFrom;
41 while (pickFrom < 1 || pickFrom > 12)
42 {
43 cout << "There must be between 1 and 12 numbers.\n"
44 << "How many numbers (1-12) are there to pick from? ";
45 cin >> pickFrom;
46 }
47 cout << "How many numbers must you pick to play? ";
48 cin >> numPicks;
49 while (numPicks < 1 || numPicks > pickFrom)

(program continues)

372 Chapter 6 Functions

50 {
51 if (numPicks < 1) // too few picks
52 cout << "You must pick at least one number.\n";
53 else // too many picks
54 cout << "You must pick " << pickFrom << " or fewer numbers.\n";
55
56 cout << "How many numbers must you pick to play? ";
57 cin >> numPicks;
58 }
59 }
60
61 /***
62 * computeWays *
63 * Computes and returns the number of different possible sets *
64 * of k numbers that can be chosen from a set of n numbers. *
65 * The formula for this is n! *
66 * -------- *
67 * k!(n-k)! *
68 ***/
69 // Note that the computation is done in a way that does not require
70 // multiplying two factorials together. This is done to prevent any
71 // intermediate result becoming so large that it causes overflow.
72 long int computeWays(int n, int k)
73 {
74 return (factorial(n) / factorial(k) / factorial (n-k));
75 }
76
77 /***
78 * factorial *
79 * Computes and returns the factorial of the non-negative integer *
80 * passed to it. n! means n * (n-1) * (n-2) ... * 1 *
81 * 0! is a special case and is defined to be 1. *
82 ***/
83 // Notice that if number equals 0, the loop condition will
84 // initially be false and the loop will never be executed.
85 // This will, correctly, leave factTotal = 1.
86
87 long int factorial(int number)
88 {
89 long int factTotal = 1;
90
91 for (int count = number; count >= 1; count--)
92 {
93 factTotal *= count;
94 }
95 return factTotal;
96 }

(program continues)

Program 6-31 (continued)

373

High Adventure Travel Agency Case Study
The following additional case study, which contain applications of material introduced in
Chapter 6, can be found on the student CD.

High Adventure Travel Agency offers four vacation packages for thrill-seeking customers.
Each has its own rates and options and can be customized to meet individual customer
preferences. This case study develops a modular program that calculates and itemizes
charges for these packages.

6.18 Tying It All Together: Glowing Jack-o-lantern
Functions are not just practical. They are fun. True, they let you simplify programs by
breaking them into smaller modules. And they minimize repetitive code. If you need to do
the same thing in several different places in your program, you can just write a function to
do it, then call that function from different places in the program instead of writing the
same block of code more than once. But they also let you do new and fun things. This is
because even though the function code is the same, it will behave differently every time it is
called with different arguments.

For example, we could write the following printSpaces function and each time it will
print a different number of spaces depending on the value passed in to its parameter n.

void printSpaces(int n)
{
 for (int space = 1; space <= n; space++)
 cout << " ";
}

Now that may not sound like fun, but let’s see how we can use it to modify the colored
alphabet program we created in Chapter 5’s Tying It All Together section. We will make
the letters appear to “climb down a set of stairs” by moving them across the screen as they
are displayed. So that they will all fit on one screen, we will print them in pairs.

Recall from Chapter 5, however, that the function we are using to display output in color
uses a Windows operating system function, so this program will only run on Windows
systems.

Program Output with Example Input Shown in Bold
This program will tell you your probability of winning "Little Lotto".

How many numbers (1-12) are there to pick from? 10[Enter]
How many numbers must you pick to play? 3[Enter]

Your chance of winning the lottery is 1 chance in 120.
This is a probability of 0.0083

Program 6-31 (continued)

Tying It All Together: Glowing Jack-o-lantern

374 Chapter 6 Functions

Program 6-32

1 // This program writes the ABCs in green, red, and yellow,
2 // displaying them diagonally across the screen so they
3 // appear to be climbing down a staircase.
4 #include <iostream>
5 #include <windows.h> // Needed to display colors and call Sleep
6 using namespace std;
7
8 // Prototype
9 void printSpaces(int n);
10
11 int main()
12 {
13 // Bright Green = 10 Bright Red = 12 Bright Yellow = 14
14
15 // Get the handle to standard output device (the console)
16 HANDLE screen = GetStdHandle(STD_OUTPUT_HANDLE);
17
18 // Write the ABCs using 3 colors
19 // Display 2 per line, stair stepping across the screen
20 int color = 10; // Staring color = green
21 for (char letter = 'A'; letter <= 'Z'; letter+=2)
22 {
23 SetConsoleTextAttribute (screen, color); // Set the color
24 printSpaces(letter-'A'); // Indent
25 cout << letter // Print 2 letters
26 << static_cast<char>(letter+1) << endl;
27 color +=2; // Choose next color
28 if (color > 14)
29 color = 10;
30
31 Sleep(280); // Pause between characters to watch them appear
32 }
33 // Restore normal text attribute (i.e. white)
34 SetConsoleTextAttribute(screen, 7);
35 return 0;
36 }
37
38 /**
39 * printSpaces *
40 * Prints n spaces where n is passed as an *
41 * argument to the function. *
42 **/
43 void printSpaces(int n)
44 {
45 for (int space = 1; space <= n; space++)
46 cout << " ";
47 }

375

Now let’s use a function to do something else that’s fun. We will modify the Smiley Face we
created in Chapter 2’s Tying It All Together to become a spooky Jack-o-lantern glowing in
the dark, and we will let the user pick what color to display it in.

Program 6-33

1 // This program displays a Jack-o-lantern glowing in the dark.
2 // It lets the user select what color it should be.
3 #include <iostream>
4 #include <windows.h> // Needed to display colors
5 using namespace std;
6
7 // Function prototypes
8 void displayMenu();
9 int getChoice();
10 void makeJackOLantern();
11
12 int main()
13 {
14 const int quit = 6;
15 int colorChoice;
16 // Get the handle to standard output device (the console)
17 HANDLE screen = GetStdHandle(STD_OUTPUT_HANDLE);
18

(program continues)

Run the program and view the results.
The output display should look like
the one below, but in color of course.

AB

 CD

EF

GH

IJ

KL

MN

OP

QR

ST

UV

WX

YZ

Now, can you modify the program to make
the letters appear to climb UP the stairs? The
program will still print starting with the top
line and move down the screen, but the final
display should look like this:

If you have trouble figuring this out, the
solution can be found in the Program 6-32B.
cpp file on the student CD.

AB

 CD

EF

GH

IJ

KL

MN

OP

QR

ST

UV

WX

YZ

Tying It All Together: Glowing Jack-o-lantern

376 Chapter 6 Functions

19 do
20 { SetConsoleTextAttribute(screen, 7); // Set to white on black
21 displayMenu(); // for menu display
22 colorChoice = getChoice();
23
24 if (colorChoice != quit)
25 { SetConsoleTextAttribute (screen, colorChoice + 9);
26 makeJackOLantern();
27 }
28 } while (colorChoice != quit);
29 return 0;
30 }
31
32 /**
33 * displayMenu *
34 * This function displays the menu of color choices.*
35 **/
36 void displayMenu()
37 { system("cls"); // Clear the screen
38 cout << "I will draw a Jack-o-lantern. What color should it be?\n\n"
39 << "Enter 1 for Green 2 for Blue 3 for Red \n"
40 << " 4 for Purple 5 for Yellow 6 to quit: ";
41 }
42
43 /**
44 * getChoice *
45 * This function inputs, validates, and returns *
46 * the user's menu choice. *
47 **/
48 int getChoice()
49 {
50 int choice;
51
52 cin >> choice;
53 while (choice < 1 || choice > 6)
54 { cout << "The only valid choices are 1-6. Please re-enter. ";
55 cin >> choice;
56 }
57 return choice;
58 }
59
60 /***
61 * makeJackOLantern *
62 * This function draws a Jack-o-lantern *
63 * in whatever color the user selected. *
64 ***/

(program continues)

Program 6-33 (continued)

377

Review Questions and Exercises

Fill-in-the-Blank and Short Answer

1. The _________ is the part of a function definition that shows the function name,
return type, and parameter list.

2. If a function doesn’t return a value, the word _________ will appear as its return type.

3. If function showValue has the following header: void showValue(int quantity)
you would use the statement _________ to call it with the argument 5.

4. Either a function’s _________ or its _________ must precede all calls to the function.

5. Values that are sent into a function are called _________.

6. Special variables that hold copies of function arguments are called _________.

7. When only a copy of an argument is passed to a function, it is said to be passed by
_________.

8. A(n)_________ eliminates the need to place a function definition before all calls to the
function.

9. A(n)_________ variable is defined inside a function and is not accessible outside the
function.

10. _________ variables are defined outside all functions and are accessible to any func-
tion within their scope.

11. _________ variables provide an easy way to share large amounts of data among all the
functions in a program.

12. Unless you explicitly initialize numeric global variables, they are automatically
initialized to _________.

13. If a function has a local variable with the same name as a global variable, only the
_________ variable can be seen by the function.

14. _________ local variables retain their value between function calls.

15. The _________ statement causes a function to end immediately.

16. _________ arguments are passed to parameters automatically if no argument is
provided in the function call.

65 void makeJackOLantern()
66 {
67 cout << "\n\n";
68 cout << " ^ ^ \n";
69 cout << " * \n";
70 cout << " ___/ " << endl;
71 cout << "\n\n Press ENTER to return to the menu." ;
72 cin.get(); // Clear the previous \n out of the input buffer
73 cin.get(); // Wait for the user to press ENTER
74 }

Program 6-33 (continued)

Review Questions and Exercises

378 Chapter 6 Functions

17. When a function uses a mixture of parameters with and without default arguments,
the parameters with default arguments must be defined _________.

18. The value of a default argument must be a(n)_________.

19. When used as parameters, _________ variables allow a function to access the parame-
ter’s original argument.

20. Reference variables are defined like regular variables, except there is a(n) _________ in
front of the name.

21. Reference variables allow arguments to be passed by ____________.

22. The _________ function causes a program to terminate immediately.

23. Two or more functions may have the same name, as long as their _________ are
different.

24. What is the advantage of breaking your application’s code into several small functions?

25. What is the difference between an argument and a parameter variable?

26. When a function accepts multiple arguments, does it matter what order the arguments
are passed in?

27. What does it mean to overload a function?

28. If you are writing a function that accepts an argument and you want to make sure the
function cannot change the value of the argument, what should you do?

29. Give an example where an argument should be passed by reference.

30. How do you return a value from a function?

31. Can a function have a local variable with the same name as a global variable?

32. When should a static local variable be used?

Algorithm Workbench

33. The following statement calls a function named half, which returns a value that is
half that of the argument passed to it. Assume that result and number have both
been defined to be double variables. Write the half function.

result = half(number);

34. A program contains the following function.

int cube(int num)
{

return num * num * num;
}

Write a statement that passes the value 4 to this function and assigns its return value
to the variable result.

35. Write a function, named timesTen, that accepts an integer argument. When the
function is called, it should display the product of its argument multiplied times 10.

36. A program contains the following function.

void display(int arg1, double arg2, char arg3)
{

cout << "Here are the values: "
 << arg1 << " " << arg2 << " " << arg3 << endl;

}

Review Questions and Exercises 379

Write a statement that calls the function and passes the following variables to it:

int age;
double income;
char initial;

37. Write a function named getNumber, which uses a reference parameter to accept an
integer argument. The function should prompt the user to enter a number in the range
of 1 through 100. The input should be validated and stored in the parameter variable.

38. Write a function named biggest that receives three integer arguments and returns the
largest of the three values.

Find the Errors

39. Each of the following functions has errors. Locate as many errors as you can.

A) void total(int value1, value2, value3)

{
return value1 + value2 + value3;

}

B) double average(int value1, int value2, int value3)

{
double average;

average = value1 + value2 + value3 / 3;
}

C) void area(int length = 30, int width)

{
return length * width;

}

D) void getValue(int value&)

{
cout << "Enter a value: ";
cin >> value&;

}

E) // Overloaded functions

int getValue()
{

int inputValue;
cout << "Enter an integer: ";
cin >> inputValue;
return inputValue;

}
double getValue()
{

double inputValue;

cout << "Enter a floating-point number: ";
cin >> inputValue;
return inputValue;

}

380 Chapter 6 Functions

Soft Skills

Programmers need to develop the ability to break a large problem into a set of manageable
components, or modules, each of which can focus on handling one specific task. If these
tasks are large, they may be divided even further into a set of subtasks. Each component
can then be programmed as a separate function. Often there is more than one acceptable
way to divide a program into modules and to organize the modules. However, in general, if
module A calls module B then module B should carry out some subtask that helps module
A perform its function.

40. Read the following program statement and then come to class prepared to discuss
how you would design the program. How many modules would you use? What task
would each module handle? How would you organize the modules? That is, which
modules would call which other modules? Be prepared to state the advantages of the
design you have chosen.

Artistic Solutions Paint Job Estimator

Artistic Solutions, a painting company, has determined that for every 160 square feet of wall
space, one gallon of paint and three hours of labor are required. The company charges
$28.00 per hour for labor. Design a modular program that allows the user to enter the num-
ber of rooms that are to be painted, the approximate square feet of wall space in each room
(it may differ from room to room), and the price of the paint per gallon. It should then create
a report that includes a fancy company header and displays the following information:

• The number of gallons of paint required (rounded up to the next full gallon)
• The hours of labor required
• The cost of the paint
• The labor charges
• The total cost of the paint job

Input validation: The program should not accept a value less than 1 or more than 12
for the number of rooms or a value less than 100 for the square footage of a room. It
should not accept a value less than $10.00 or more than $25.00 for the price of a gal-
lon of paint.

Programming Challenges

1. Markup

Write a program that asks the user to enter an item’s wholesale cost and its markup per-
centage. It should then display the item’s retail price. For example:

• If an item’s wholesale cost is 5.00 and its markup percentage is 100%, then the item’s
retail price is 10.00.

• If an item’s wholesale cost is 5.00 and its markup percentage is 50%, then the item’s
retail price is 7.50.

The program should have a function named calculateRetail that receives the wholesale
cost and the markup percentage as arguments, and returns the retail price of the item.

Input Validation: Do not accept negative values for either the wholesale cost of the
item or the percent markup.

Solving the
Markup
Problem

Review Questions and Exercises 381

2. Celsius Temperature Table

The formula for converting a temperature from Fahrenheit to celsius is

where F is the Fahrenheit temperature and C is the Celsius temperature. Write a function
named celsius that accepts a Fahrenheit temperature as an argument. The function
should return the temperature, converted to Celsius. Demonstrate the function by calling
it in a loop that displays a table of the Fahrenheit temperatures 0 through 20 and their
Celsius equivalents.

3. Falling Distance

The following formula can be used to determine the distance an object falls due to gravity
in a specific time period:

d � 1⁄2 gt2

The variables in the formula are as follows: d is the distance in meters, g is 9.8, and t is the
time in seconds that the object has been falling.

Write a function named fallingDistance that accepts an object’s falling time (in sec-
onds) as an argument. The function should return the distance, in meters, that the object
has fallen during that time interval. Write a program that demonstrates the function by
calling it in a loop that passes the values 1 through 10 as arguments, and displays the
return value.

4. Kinetic Energy

In physics, an object that is in motion is said to have kinetic energy. The following formula
can be used to determine a moving object’s kinetic energy:

KE � 1⁄2 mv2

The variables in the formula are as follows: KE is the kinetic energy in joules, m is the
object’s mass in kilograms, and v is the object’s velocity in meters per second.

Write a function named kineticEnergy that accepts an object’s mass (in kilograms) and
velocity (in meters per second) as arguments. The function should return the amount of
kinetic energy that the object has. Demonstrate the function by calling it in a program that
asks the user to enter values for mass and velocity.

5. Winning Division

Write a program that determines which of a company’s four divisions (Northeast, South-
east, Northwest, and Southwest) had the greatest sales for a quarter. It should include the
following two functions, which are called by main.

• double getSales() is passed the name of a division. It asks the user for a division’s
quarterly sales figure, validates the input, then returns it. It should be called once for
each division.

• void findHighest() is passed the four sales totals. It determines which is the larg-
est and prints the name of the high grossing division, along with its sales figure.

Input Validation: Do not accept dollar amounts less than $0.00.

C
5
9
--- F 32�()�

382 Chapter 6 Functions

6. Safest Driving Area

Write a program that determines which of 5 geographic regions within a major city (north,
south, east, west, and central) had the fewest reported traffic accidents last year. It should
have the following two functions, which are called by main.

• int getNumAccidents() is passed the name of a region. It asks the user for the
number of traffic accidents reported in that region during the last year, validates the
input, then returns it. It should be called once for each city region.

• void findLowest() is passed the five accident totals. It determines which is the
smallest and prints the name of the region, along with its accident figure.

Input Validation: Do not accept an accident number that is less than 0.

7. Lowest Score Drop

• Write a program that calculates the average of a group of test scores, where the low-
est score in the group is dropped. It should use the following functions:

• void getScore() should ask the user for a test score, store it in a reference parame-
ter variable, and validate it. This function should be called by main once for each of
the five scores to be entered.

• void calcAverage() should calculate and display the average of the four highest
scores. This function should be called just once by main, and should be passed the
five scores.

• int findLowest() should find and return the lowest of the five scores passed to it.
It should be called by calcAverage, which uses the function to determine one of the
five scores to drop.

Input Validation: Do not accept test scores lower than 0 or higher than 100.

8. Star Search

A particular talent competition has 5 judges, each of whom awards a score between 0 and
10 to each performer. Fractional scores, such as 8.3, are allowed. A performer’s final score
is determined by dropping the highest and lowest score received, then averaging the 3
remaining scores. Write a program that uses these rules to calculate and display a contes-
tant’s score. It should include the following functions:

• void getJudgeData() should ask the user for a judge’s score, store it in a reference
parameter variable, and validate it. This function should be called by main once for
each of the 5 judges.

• double calcScore() should calculate and return the average of the 3 scores that
remain after dropping the highest and lowest scores the performer received. This
function should be called just once by main, and should be passed the 5 scores.

The last two functions, described below, should be called by calcScore, which uses the
returned information to determine which of the scores to drop.

• int findLowest() should find and return the lowest of the 5 scores passed to it.
• int findHighest() should find and return the highest of the 5 scores passed to it.

Input Validation: Do not accept judge scores lower than 0 or higher than 10.

Review Questions and Exercises 383

9. isPrime Function

A prime number is an integer greater than 1 that is evenly divisible by only 1 and itself. For
example, the number 5 is prime because it can only be evenly divided by 1 and 5. The num-
ber 6, however, is not prime because it can be divided by 1, 2, 3, and 6.

Write a Boolean function named isPrime, which takes an integer as an argument and
returns true if the argument is a prime number, and false otherwise. Demonstrate the
function in a complete program.

10. Present Value

Suppose you want to deposit a certain amount of money into a savings account, and then
leave it alone to draw interest for the next 10 years. At the end of 10 years you would like
to have $10,000 in the account. How much do you need to deposit today to make that
happen? To find out you can use the following formula, which is known as the present
value formula:

The terms in the formula are as follows:

• P is the present value, or the amount that you need to deposit today.
• F is the future value that you want in the account (in this case, $10,000).
• r is the annual interest rate (expressed in decimal form, such as .042).
• n is the number of years that you plan to let the money sit in the account.

Write a program with a function named presentValue that performs this calculation. The
function should accept the future value, annual interest rate, and number of years as argu-
ments. It should return the present value, which is the amount that you need to deposit
today. Demonstrate the function in a program that lets the user experiment with different
values for the formula’s terms.

11. Stock Profit

The profit from the sale of a stock can be calculated as follows:

Profit � ((NS � SP) � SC) � ((NS � PP) � PC)

where NS is the number of shares, SP is the sale price per share, SC is the sale commission
paid, PP is the purchase price per share, and PC is the purchase commission paid. If the
calculation yields a positive value, then the sale of the stock resulted in a profit. If the cal-
culation yields a negative number, then the sale resulted in a loss.

Write a function that accepts as arguments the number of shares, the purchase price per
share, the purchase commission paid, the sale price per share, and the sale commission
paid. The function should return the profit (or loss) from the sale of stock.

Demonstrate the function in a program that asks the user to enter the necessary data and
displays the amount of the profit or loss.

TIP: Recall that the % operator divides one number by another, and returns the
remainder of the division. In an expression such as num1 % num2, the % operator will
return 0 if num1 is evenly divisible by num2.

P F
1 r�()n

--------------------�

384 Chapter 6 Functions

12. Multiple Stock Sales

Use the function that you wrote for Programming Challenge 10 (Stock Profit) in a program
that calculates the total profit or loss from the sale of multiple stocks. The program should
ask the user for the number of stock sales, and the necessary data for each stock sale. It
should accumulate the profit or loss for each stock sale and then display the total.

13. Order Status

The Middletown Wholesale Copper Wire Company sells spools of copper wiring for $100
each and ships them for $10 apiece. Write a program that displays the status of an order. It
should use two functions. The first function asks for the following data and stores the
input values in reference parameters.

• The number of spools ordered.
• The number of spools in stock.
• Any special shipping and handling charges (above the regular $10 rate).

The second function receives as arguments any values needed to compute and display the
following information:

• The number of ordered spools ready to ship from current stock.
• The number of ordered spools on backorder (if the number ordered is greater than

what is in stock).
• Total selling price of the portion ready to ship (the number of spools ready to ship

times $100).
• Total shipping and handling charges on the portion ready to ship.
• Total of the order ready to ship.

The shipping and handling parameter in the second function should have the default argu-
ment 10.00.

Input Validation: Do not accept numbers less than 1 for spools ordered. Do not
accept a number less than 0 for spools in stock or for shipping and handling charges.

14. Overloaded Hospital

Write a program that computes and displays the charges for a patient’s hospital stay. First,
the program should ask if the patient was admitted as an in-patient or an out-patient. If the
patient was an in-patient the following data should be entered:

• The number of days spent in the hospital
• The daily rate
• Charges for hospital services (lab tests, etc.)
• Hospital medication charges.

If the patient was an out-patient the following data should be entered:

• Charges for hospital services (lab tests, etc.)
• Hospital medication charges.

Review Questions and Exercises 385

The program should use two overloaded functions to calculate the total charges. One of
the functions should accept arguments for the in-patient data, while the other function
accepts arguments for out-patient data. Both functions should return the total charges.

Input Validation: Do not accept negative numbers for any information.

15. Population

In a population, the birth rate is the percentage increase of the population due to births
and the death rate is the percentage decrease of the population due to deaths. Write a pro-
gram that asks for the following:

• The starting size of a population
• The annual birth rate
• The annual death rate
• The number of years to display

The program should then display the starting population and the projected population at
the end of each year. It should use a function that calculates and returns the projected new
size of the population after a year. The formula is

N = P(1 + B)(1 - D)

where N is the new population size, P is the previous population size, B is the birth rate, and
D is the death rate.

Input Validation: Do not accept numbers less than 2 for the starting size. Do not
accept negative numbers for birth rate or death rate. Do not accept numbers less than
1 for the number of years.

16. Transient Population

Modify Programming Challenge 15 to also consider the effect on population caused by peo-
ple moving into or out of a geographic area. Given as input a starting population size, the
annual birth rate, the annual death rate, the number of individuals that typically move into
the area each year, and the number of individuals that typically leave the area each year, the
program should project what the population will be numYears from now. You can either
prompt the user to input a value for numYears, or you can set it within the program.

Input Validation: Do not accept numbers less than 2 for the starting size. Do not
accept negative numbers for birth rate, death rate, arrivals or departures.

17. Using Files—Hospital Report

Modify Programming Challenge 14, Overloaded Hospital, to write the report it creates to
a file. Print the contents of the file to hand in to your instructor.

386 Chapter 6 Functions

Group Project

18. Using Files—Travel Expenses
This program should be designed and written by a team of students. Here are some
suggestions:

• One student should design function main, which will call the other functions in
the program. The rest of the functions should be designed by other team members.

• Analyze the program requirements so each student is given about the same work load.
• Decide on the function names, parameters, and return types in advance.
• Use stubs and drivers to test and debug the program.
• The program can be implemented either as a multi-file program, or all the functions

can be cut and pasted into the main file.

Here is the assignment. Write a program that calculates and displays the total travel
expenses of a business person on a trip. The program should have functions that ask for
and return the following:

• The total number of days spent on the trip
• The time of departure on the first day of the trip, and the time of arrival back home

on the last day of the trip
• The amount of any round-trip airfare
• The amount of any car rentals
• Miles driven, if a private vehicle was used. Vehicle allowance is $0.58 per mile.
• Parking fees. (The company allows up to $12 per day. Anything in excess of this

must be paid by the employee.)
• Taxi fees. (The company allows up to $40 per day for each day a taxi was used. Any-

thing in excess of this must be paid by the employee.)
• Conference or seminar registration fees
• Hotel expenses. (The company allows up to $90 per night for lodging. Anything in

excess of this must be paid by the employee.)
• The cost of each meal eaten. On the first day of the trip, breakfast is allowed as an

expense if the time of departure is before 7 a.m. Lunch is allowed if the time of
departure is before noon. Dinner is allowed if the time of departure is before 6 p.m.
On the last day of the trip, breakfast is allowed if the time of arrival is after 8 a.m.
Lunch is allowed if the time of arrival is after 1 p.m. Dinner is allowed if the time of
arrival is after 7 p.m. The program should only ask for the costs of allowable meals.
(The company allows up to $18 for breakfast, $12 for lunch, and $20 for dinner.
Anything in excess of this must be paid by the employee.)

The program should perform the necessary calculations to determine the total amount
spent by the business traveler in each category (mileage charges, parking, hotel, meals, etc.)
as well as the maximum amount allowed in each category. It should then create a well laid
out expense report that includes the amount spent and the amount allowed in each cate-
gory, as well as the total amount spent and total amount allowed for the entire trip. This
report should be written to a file.

Input Validation: Do not accept negative numbers for any dollar amount or for miles
driven in a private vehicle. Do not accept numbers less than 1 for the number of days.
Only accept valid times for the time of departure and the time of arrival.

387

C
H

A
P

T
E

R

7 Introduction to
Classes and Objects

7.1 Abstract Data Types

CONCEPT: An abstract data type (ADT) is a data type that specifies the values the
data type can hold and the operations that can be done on them without
the details of how the data type is implemented.

Abstraction
An abstraction is a general model of something. It is a definition that includes only the
general characteristics of an object without the details that characterize specific instances
of the object.

An automobile provides an illustration of abstraction. Most people understand what an
automobile is, and many people know how to drive one. Yet few people understand
exactly how an automobile works or what all its parts are. This is a feature of abstraction.

TOPICS

7.1 Abstract Data Types
7.2 Object-Oriented Programming
7.3 Introduction to Classes
7.4 Introduction to Objects
7.5 Defining Member Functions
7.6 Constructors
7.7 Destructors
7.8 Private Member Functions
7.9 Passing Objects to Functions
7.10 Object Composition

7.11 Focus on Software Engineering:
Separating Class Specification,
Implementation, and Client Code

7.12 Input Validation Objects
7.13 Structures
7.14 Home Software Company OOP

Case Study
7.15 Introduction to Object-Oriented

Analysis and Design
7.16 Screen Control
7.17 Tying It All Together: Yoyo Animation

388 Chapter 7 Introduction to Classes and Objects

Details of the internal components, organization, and operations of an object are kept
separate from the description of what it can do and how to operate it. We are surrounded
in our everyday lives with such examples of abstraction, from our microwaves and wash-
ing machines to our DVD players and computers. We know what these objects can do and
we understand how to operate them, but most of us do not know, or care, how they work
inside. We do not need to be concerned with this information.

The Use of Abstraction in Software Development
Abstraction occurs in programming as well. In order to focus on the bigger picture of
creating a working application, a programmer needs to be able to use certain objects and
routines without having to be concerned with the details of their implementation. You
have been doing this since the beginning of this text when you used objects such as cin and
cout and functions such as sqrt and pow. All you need to know to use the objects or
functions is what they do and the interface for using them. For example, to use the sqrt
function you only have to know its name and that it must be called with one numeric
argument, the value whose square root is to be returned. To use the pow function you only
have to know its name and that it must be called with two numeric arguments, the first
being the value to be raised to a power and the second being the exponent. In neither case
is it necessary to know what algorithm is used by the function to compute the result it
returns.

Abstraction applies to data too. To use any data type you need to know just two things
about it: what values it can hold and what operations apply to it. For example, to use a
double you need to know that it can only hold numeric values, such as 5.0 or –5.1, and
not strings, such as "5.1". To use a double you also need to know what operations can
be performed on it. It can be used with the addition, subtraction, multiplication, and
division operators, but not with the modulus operator (which only works with integer
operands, as in the expression 8 % 3). You do not have to know anything else about a
double to use it. You do not have to know how it is stored in memory or how the
arithmetic operations that can be performed on it are carried out by the computer. This
separation of a data type’s logical properties from its implementation details is known as
data abstraction.

Abstract Data Types
The term abstract data type (ADT) describes any data type for which the implementation
details are kept separate from the logical properties needed to use it. In common usage,
however, the term is applied only to data types created by the programmer. Often these
data types can hold more than one value, as with classes, which you will learn about in this
chapter. The programmer defines a set of values the data type can hold, defines a set of
operations that can be performed on the data, and creates a set of functions to carry out
these operations. In C++ and other object-oriented languages, programmer created ADTs
are normally implemented as classes.

Object-Oriented Programming 389

7.2 Object-Oriented Programming

CONCEPT: Object-oriented programming is centered around objects that encapsulate
both data and the functions that operate on them.

There are two common programming methods in practice today: procedural programming and
object-oriented programming (OOP). So far you have been creating procedural programs.

In a procedural program data is typically stored in a collection of variables and there is a set of
functions that perform operations on the data. The data and the functions are separate entities.

Usually the variables are passed to the functions that perform the desired operations. As you
might imagine, the focus of procedural programming is on creating the functions, or proce-
dures, that operate on the program’s data.

Procedural programming has worked well for software developers for many years. However,
as programs become larger and more complex, the separation of a program’s data and the
code that operates on the data can lead to problems. For example, the data in a procedural
program is stored in variables, as well as in more complex structures that are created from
variables. The procedures that operate on the data must be designed with those variables and
data structures in mind. But, what happens if the format of the data is altered? Quite often, a
program’s specifications change, resulting in redesigned data structures. When the structure
of the data changes, the code that operates on the data must also be changed to accept the
new format. Finding all the code that needs changing results in additional work for program-
mers and an opportunity for bugs to be introduced into the code.

This has helped influence the shift from procedural programming to object-oriented
programming. Whereas procedural programming is centered on creating procedures,
OOP is centered on creating objects. An object is a software entity that combines both
data and procedures in a single unit. An object’s data items, also referred to as its
attributes, are stored in member variables. The procedures that an object performs are
called its member functions. This bundling of an object’s data and procedures together is
called encapsulation.

Figure 7-1 shows a representation of what a Circle object we create might look like. It has just
one member variable to hold data and two member functions. The Circle object’s data item is
its radius. Its first function sets the radius, and its second function calculates and returns the area.

NOTE: In some object-oriented programming languages, the procedures that an object
performs are called methods.

Figure 7-1

Member variables (Attributes)
double radius;

Member functions
void setRadius(double r)
{ radius = r; }

double getArea()
{ return 3.14 * pow(radius, 2); }

Circle

390 Chapter 7 Introduction to Classes and Objects

The member variable and the member functions are all members of the Circle object. They
are bound together in a single unit. When an operation is to be performed, such as calculating
the area of the circle, a message is passed to the object telling it to perform the getArea func-
tion. Because getArea is a member of the Circle object, it automatically has access to the
object’s member variables. Therefore, there is no need to pass radius to the getArea function.

Not only do objects encapsulate associated data and functions, they also permit data hid-
ing. Data hiding refers to an object’s ability to hide its data from code outside the object.
Only the object’s member functions can directly access and make changes to the object’s
data. An object typically hides its data, but allows outside code to access it through some
of its member functions. As Figure 7-2 illustrates, the object’s member functions provide
programming statements outside the object with a way to indirectly access the object’s
data.

When an object’s internal data is hidden from outside code, and access to that data is
restricted to the object’s member functions, the data is protected from accidental corruption.
In addition, the programming code outside the object does not need to know about the
format or internal structure of the object’s data. The code only needs to interact with
the object’s functions. When a programmer changes the structure of an object’s internal
data, the object’s member functions are also modified so they will still properly operate on
the data. These changes, however, are hidden from code outside the object. The way in
which outside code interacts with the member functions does not change.

Earlier we used the automobile as an example of an abstract object that can be used without
having to understand the details of how it works. It has a rather simple interface that consists
of an ignition switch, steering wheel, gas pedal, brake pedal, and a gear selector. (Vehicles
with manual transmissions also provide a clutch pedal). If you want to drive an automobile,
you only have to learn to operate these elements of its interface. To start the motor, you
simply turn the key in the ignition switch. What happens internally is irrelevant to the driver.
If you want to steer the auto to the left, you rotate the steering wheel left. The movements of
all the linkages connecting the steering wheel to the front tires occur without your awareness.
If the manufacturer redesigns the vehicle to perform one of the behind-the-scenes operations
differently, the driver does not need to learn a new interface.

Because automobiles have simple user interfaces, they can be driven by people who have
no mechanical knowledge. This is good for the makers of automobiles because it means
more people are likely to become customers. It’s good for the users of automobiles because
they can learn just a few simple procedures and operate almost any vehicle.

Figure 7-2

Circle

radius

setRadiusCode
Outside

the
Object

getArea
 computed area using radius

Introduction to Classes 391

These are also valid concerns in software development. A program is rarely written by only
one person. Even the small programs you have created so far weren’t written entirely by
you. If you incorporated C++ library functions, or objects like cin and cout, you used
code written by someone else. In the world of professional software development, pro-
grammers commonly work in teams, buy and sell their code, and collaborate on projects.
With OOP, programmers can create objects with powerful engines tucked away “under the
hood,” but simple interfaces that safeguard the object’s algorithms and data.

7.3 Introduction to Classes

CONCEPT: In C++, the class is the construct primarily used to create objects.

A class is a programmer-defined data type that describes what an object of the class will
look like when it is created. It consists of a set of variables and a set of functions. Here is
the general format of a class declaration.

class ClassName // Class declaration begins with
{ // the key word class and a name.

Declarations for class member variables
and member functions go here.

}; // Notice the required semicolon.

We will learn how to implement a class by building one step by step. Our example will be the
simple Circle class depicted in Figure 7-1. The first step is to determine what member vari-
ables and member functions the class should have. In this case we have determined, as
already described, that the class needs a member variable to hold the circle’s radius and two
member functions: setRadius and getArea.

Once the class has been designed, the next step is to write the class declaration. This tells
the compiler what the class includes. Here is the declaration for our Circle class. Notice
that the class name begins with a capital letter. Although this is not strictly required, it is
conventional to always begin class names with an uppercase letter.

class Circle
{ private:

 double radius;

public:
void setRadius(double r)
{ radius = r; }

double getArea()
{ return 3.14 * pow(radius, 2); }

};

NOTE: This information, along with other design information, is sometimes expressed
using a modeling tool know as the Unified Modeling Language, or UML. Appendix D
on the student CD (Using UML in Class Design) shows how to do this.

Creating a
Class

392 Chapter 7 Introduction to Classes and Objects

Access Specifiers
The class declaration looks very much like Figure 7-1 with the addition of two key words,
private and public. These are called access specifiers, because they designate who can
access various members of the class. Notice that each access specifier is followed by a
colon. A public member variable can be accessed by functions outside the class and a public
member function can be called by functions outside the class. A private member variable,
on the other hand, can only be accessed by a function that is a member of the same class
and a private member function can only be called by other functions that are members of
the class. If we had omitted the words public and private altogether, everything would
have defaulted to being private. This would not have been very useful because then, except
in special circumstances, no functions outside the class could ever use the class.

In our Circle class, the member variable radius is declared to be private and the member
functions are declared to be public. This is common. Member data is usually made private
to safeguard it. Public functions are then created to allow carefully controlled access to this
data from outside the class. For now, all our class member variables will be declared as private
and all our member functions will be declared as public. Later you will see cases where private
member functions are used.

Placement of private and public Members
It does not matter whether we list the private or public members first. In fact, it is not even
required that all members of the same access specification be declared together. Both examples
below are legal declarations of the Circle class.

class Circle class Circle
{public: { public:

void setRadius(double r) void setRadius(double r)
{ radius = r; } { radius = r; }

double getArea() private:
{ return 3.14 * pow(radius, 2); } double radius;

private: public:
double radius; double getArea()

}; { return 3.14 * pow
 (radius, 2); }
 };

However, most programmers consider it more orderly and preferable to separate private
and public members. In this text we follow the standard practice of listing private members
together first, followed by the public members, as shown in the initial Circle declaration.

NOTE: If a program statement outside a class attempts to access a private member, a
compiler error will result. Later you will learn how outside functions may be given
special permission to access private class members.

Introduction to Objects 393

7.4 Introduction to Objects

CONCEPT: Objects are instances of a class. They are created with a definition
statement after the class has been declared.

A class declaration is similar to the blueprint for a house. The blueprint itself is not a
house, but is a detailed description of a house. When we use the blueprint to build an
actual house, we could say we are constructing an instance of the house described by the
blueprint. If we wish, we can construct several identical houses from the same blueprint.
Each house is a separate instance of the house described by the blueprint. This idea is illus-
trated in Figure 7-3.

A class declaration serves a similar purpose. It describes what the objects created from the
class will look like when they are constructed. Each object created from it is called an
instance of the class.

Class objects are created with simple definition statements, just like variables. For example,
the following statement defines circle1 and circle2 to be two objects of the Circle class:

Circle circle1,
 circle2;

Defining a class object is called the instantiation of a class.

The objects circle1 and circle2 are two distinct instances of the Circle class, with dif-
ferent memory assigned to hold the values stored in their member variables.

Figure 7-3

House Plan

Living Room

Bedroom

Blueprint that describes a house.

Instances of the house described by the blueprint.

Creating and
Using Class
Objects

394 Chapter 7 Introduction to Classes and Objects

Accessing an Object’s Members
Public members of a class object are accessed with the dot operator. For example, the fol-
lowing statements call the setRadius function of circle1 and circle2.

circle1.setRadius(1); // This sets circle1's radius to 1
circle2.setRadius(2.5); // This sets circle2's radius to 2.5

Now that the radii have been set, we can call the getArea member function to return the
area of the Circle objects:

cout << "The area of circle1 is " << circle1.getArea() << endl;
cout << "The area of circle2 is " << circle2.getArea() << endl;

Program 7-1 is a complete program that demonstrates the Circle class. Notice that the
statements to create and use Circle objects are in main, not in the class declaration.

Program 7-1

1 // This program demonstrates a simple class.
2 #include <iostream>
3 #include <cmath>
4 using namespace std;
5
6 // Circle class declaration
7 class Circle
8 { private:
9 double radius;
10
11 public:
12 void setRadius(double r)
13 { radius = r; }
14
15 double getArea()
16 { return 3.14 * pow(radius, 2); }
17 };
18
19 int main()
20 {
21 // Define 2 Circle objects
22 Circle circle1,
23 circle2;
24
25 // Call the setRadius function for each circle
26 circle1.setRadius(1); // This sets circle1's radius to 1
27 circle2.setRadius(2.5); // This sets circle2's radius to 2.5
28
29 // Call the getArea function for each circle and
30 // display the returned result
31 cout << "The area of circle1 is " << circle1.getArea() << endl;
32 cout << "The area of circle2 is " << circle2.getArea() << endl;
33
34 return 0;
35 }

Program Output
The area of circle1 is 3.14
The area of circle2 is 19.625

Defining Member Functions 395

Notice in lines 13 and 16 of Program 7-1 how the class member functions setRadius and
getArea use the member variable radius. They do not need to use the dot operator to ref-
erence it because member functions of a class can access member variables of the same
class like regular variables, without any extra notation. Notice also that the class member
function getArea only uses, but does not modify, the member variable radius. A function
like this, that uses the value of a class variable but does not change it, is known as an accessor.
The function setRadius, on the other hand, modifies the contents of radius. A member
function like this, which stores a value in a member variable or changes its value, is known
as a mutator. Some programmers refer to mutators as set functions or setter functions
because they set the value of a class variable, and refer to accessors as get functions or getter
functions because they just retrieve or use the value.

7.5 Defining Member Functions

CONCEPT: Class member functions can be defined either inside or outside the class
declaration.

Class member functions are defined similarly to regular functions. Except for a few special
cases we will look at later, they have a function header that includes a return type (which
may be void), a function name, and a parameter list (which may possibly be empty). The
statements that carry out the actions of the function are contained within a pair of braces
that follow the function header.

So far, all the class functions we have written have been defined within the class declaration
itself. When a class function is defined in this location, it is called an inline function. Inline
functions provide a convenient way to contain function information within a class declara-
tion, but they can only be used when a function body is very short, usually a single line.
When a function body is longer, a prototype for the function should appear in the class
declaration, instead of the function definition itself. The function definition is then placed
outside the class declaration, either following it or in a separate file.

Even though the two functions in our Circle class are short enough to be written as inline
functions, we will rewrite them as regular functions, defined outside the class declaration,
to illustrate how this is done. Inside the class declaration the functions would be replaced
by the following prototypes:

void setRadius(double);
double getArea();

Following the class declaration we would place a function implementation section contain-
ing the following function definitions:

void Circle::setRadius(double r)
{ radius = r;
}

double Circle::getArea()
{ return 3.14 * pow(radius, 2);
}

396 Chapter 7 Introduction to Classes and Objects

Notice that these look like ordinary functions except they contain the class name and a
double colon (::) between the function return type and function name. The :: symbol is
called the scope resolution operator. It is needed to indicate that these are class member
functions and to tell the compiler which class they belong to.

Here are some additional examples to illustrate how the scope resolution is used when a
class function is defined outside the class declaration.

double getArea() // Wrong! The class name and scope
 // resolution operator are missing.

Circle::double getArea() // Wrong! The class name and scope
 // resolution operator are misplaced.

double Circle::getArea() // Correct!

Program 7-2 revises Program 7-1 to define the class member functions outside the class.

WARNING! The class name and scope resolution operator are an extension of the
function name. When a function is defined outside the class declaration, these must be
present and must be located immediately before the function name in the function
header.

Program 7-2

1 // This program demonstrates a simple class with member functions
2 // defined outside the class declaration.
3 #include <iostream>
4 #include <cmath>
5 using namespace std;
6
7 // Circle class declaration
8 class Circle
9 { private:
10 double radius; // This is a member variable.
11
12 public:
13 void setRadius(double); // These are just prototypes
14 double getArea(); // for the member functions.
15 };
16
17 // The member function implementation section follows. It contains the
18 // actual function definitions for the Circle class member functions.
19
20 /***
21 * Circle::setRadius *
22 * This function copies the argument passed into the parameter to *
23 * the private member variable radius. *
24 ***/

(program continues)

Defining Member Functions 397

Naming Conventions for Class Member Functions
Program 7-3 provides another example using classes and objects. It declares and imple-
ments a Rectangle class that has two private member variables and five public member
functions. Notice that the names of the member functions in Program 7-3 all begin with
the word set or the word get. Functions setLength and setWidth are mutator, or set,
functions. It is common to name a mutator with the word set followed by the name of the
member variable whose value it is setting. As you would expect, the setLength function
sets the value of the length member variable and the setWidth function sets the value of
the width member variable.

Member functions getLength and getWidth are accessor, or get, functions. It is common to
name an accessor with the word get followed by the name of the member variable whose
value it is getting. Function getLength returns the value stored in the length member vari-
able, while getWidth returns the value stored in the width member variable. The member
function getArea also has a name that begins with get because it gets and returns the area,
even though it calculates this value rather than retrieving it from a member variable.

25 void Circle::setRadius(double r)
26 { radius = r;
27 }
28
29 /**
30 * Circle::getArea *
31 * This function calculates and returns the Circle object's area. *
32 * It does not need any parameters because it already has access *
33 * to the member variable radius. *
34 **/
35 double Circle::getArea()
36 { return 3.14 * pow(radius, 2);
37 }
38
39 /**
40 * main *
41 **/
42 int main()
43 {
44 Circle circle1, // Define 2 Circle objects
45 circle2;
46
47 circle1.setRadius(1); // This sets circle1's radius to 1
48 circle2.setRadius(2.5); // This sets circle2's radius to 2.5
49
50 // Get and display each circle's area
51 cout << "The area of circle1 is " << circle1.getArea() << endl;
52 cout << "The area of circle2 is " << circle2.getArea() << endl;
53
54 return 0;
55 }

 Program Output is the same as for Program 7-1.

Program 7-2 (continued)

398 Chapter 7 Introduction to Classes and Objects

Program 7-3

1 // This program implements a Rectangle class.
2 #include <iostream>
3 using namespace std;
4
5 // Rectangle class declaration
6 class Rectangle
7 {
8 private:
9 double length;
10 double width;
11 public:
12 void setLength(double);
13 void setWidth(double);
14 double getLength();
15 double getWidth();
16 double getArea();
17 };
18
19 // Member function implementation section
20
21 /**
22 * Rectangle::setLength *
23 * This function sets the value of the member variable length. *
24 * If the argument passed to the function is zero or greater, it is *
25 * copied into length. If it is negative, 1.0 is assigned to length.*
26 **/
27 void Rectangle::setLength(double len)
28 {
29 if (len >= 0)
30 length = len;
31 else
32 { length = 1.0;
33 cout << "Invalid length. Using a default value of 1.\n";
34 }
35 }
36
37 /**
38 * Rectangle::setWidth *
39 * This function sets the value of the member variable width. *
40 * If the argument passed to the function is zero or greater, it is *
41 * copied into width. If it is negative, 1.0 is assigned to width. *
42 **/
43 void Rectangle::setWidth(double w)
44 {
45 if (w >= 0)
46 width = w;
47 else
48 { width = 1.0;
49 cout << "Invalid width. Using a default value of 1.\n";
50 }
51 }
52

(program continues)

Defining Member Functions 399

53 /**
54 * Rectangle::getLength *
55 * This function returns the value in member variable length. *
56 **/
57 double Rectangle::getLength()
58 {
59 return length;
60 }
61
62 /**
63 * Rectangle::getWidth *
64 * This function returns the value in member variable width. *
65 **/
66 double Rectangle::getWidth()
67 {
68 return width;
69 }
70
71 /***
72 * Rectangle::getArea *
73 * This function calculates and returns the area of the rectangle. *
74 ***/
75 double Rectangle::getArea()
76 {
77 return length * width;
78 }
79
80 /***
81 * main *
82 ***/
83 int main()
84 {
85 Rectangle box; // Declare a Rectangle object
86 double boxLength, boxWidth;
87
88 // Get box length and width
89 cout << "This program will calculate the area of a rectangle.\n";
90 cout << "What is the length? ";
91 cin >> boxLength;
92 cout << "What is the width? ";
93 cin >> boxWidth;
94
95 // Call member functions to set box dimensions
96 box.setLength(boxLength);
97 box.setWidth(boxWidth);
98
99 // Call member functions to get box information to display
100 cout << "\nHere is the rectangle’s data:\n";
101 cout << "Length: " << box.getLength() << endl;
102 cout << "Width : " << box.getWidth() << endl;
103 cout << "Area : " << box.getArea() << endl;
104 return 0;
105 }

(program continues)

Program 7-3 (continued)

400 Chapter 7 Introduction to Classes and Objects

We mentioned earlier that when designing a class it is common practice to make all member
variables private and to provide public set and get functions for accessing those variables.
This safeguards the data. Functions outside the class can only access the member data
through calls to the public member functions and these functions can be written to prevent
the data from being corrupted or modified in a way that might adversely affect the behavior
of an object of the class. Notice in Program 7-3 how the two set functions are written to filter
out invalid data. Rather than allow an invalid value to be stored in a member variable,
they use a default value if the data passed to them is not acceptable.

Avoiding Stale Data
In the Rectangle class, the getLength and getWidth member functions return the values
stored in the length and width member variables, but the getArea member function
returns the result of a calculation. You might wonder why the area of the rectangle is not
also stored in a member variable. The area is not stored because it could potentially
become stale. When the value of an item is dependent on other data and that item is not
updated when the other data is changed, it is said that the item has become stale. If the
area of the rectangle were stored in a member variable, its value would become incorrect as
soon as either the length or width member variables changed.

When designing a class, you should normally not use a member variable to store a calculated
value that could potentially become stale. Instead, provide a member function that calculates
the value, using the most current data, and then returns the result of the calculation.

Program Output with Example Input Shown in Bold
This program will calculate the area of a rectangle.
What is the length? 3[Enter]
What is the width? –1[Enter]
Invalid width. Using a default value of 1.

Here is the rectangle’s data:
Length: 3
Width : 1
Area : 3

Program Output with Different Example Input Shown in Bold
This program will calculate the area of a rectangle.
What is the length? 10.1[Enter]
What is the width? 5[Enter]

Here is the rectangle’s data:
Length: 10.1
Width : 5
Area : 50.5

Program 7-3 (continued)

Defining Member Functions 401

More on Inline Functions
When designing a class, you will need to decide which member functions to write as inline
functions within the class declaration and which ones to define outside the class. Inline
functions are handled completely differently by the compiler than regular functions are. An
understanding of this difference may help you decide which to use when.

A lot goes on behind the scenes each time a regular function is called. A number of special
items, such as the address to return to when the function has finished executing and the values
of the function arguments, must be stored in a section of memory called the stack. In addi-
tion, local variables are created and a location is reserved to hold the function’s return value.
All this overhead, which sets the stage for a function call, takes CPU time. Although the time
needed is small, it can add up if a function is called many times, as in a loop.

An inline function, on the other hand, is not called in the conventional sense at all. Instead, in
a process known as inline expansion, the compiler replaces every call to the function with the
actual code of the function itself. This means that if the function is called from multiple
places in the program, the entire body of its code will be inserted multiple times, increasing
the size of the program. This is why only a function with very few lines of code should be
written as an inline function. In fact, if the function is too large to make the inline expansion
practical, the compiler will ignore the request to handle the function this way. However,
when a member function is small, it can improve performance to write it as an inline func-
tion because of the reduced overhead of not having to make actual function calls.*

Checkpoint

7.1 Which of the following shows the correct use of the scope resolution operator in a
member function definition?
A) InvItem::void setOnHand(int units)
B) void InvItem::setOnHand(int units)

7.2 An object’s private member variables can be accessed from outside the object by
A) public member functions
B) any function
C) the dot operator
D) the scope resolution operator

7.3 Assuming that soap is an instance of the Inventory class, which of the following is
a valid call to the setOnHand member function?
A) setOnHand(20);
B) soap::setOnHand(20);
C) soap.setOnHand(20);
D) Inventory.setOnHand(20);

7.4 Complete the following code skeleton to declare a class called Date. The class
should contain member variables and functions to store and retrieve the month,
day, and year components of a date.

class Date
{ private:

public:
}

* On systems that use paging, however, inline functions can decrease performance because of the additional page faults
caused by the increased program size.

402 Chapter 7 Introduction to Classes and Objects

7.6 Constructors

CONCEPT: A constructor is a member function that is automatically called when a
class object is created.

A constructor is a special public member function that is automatically called to construct
a class object when it is created. If the programmer does not write a constructor, C++ auto-
matically provides one. You never see it, but it runs silently in the background each time
your program defines an object. Often, however, programmers write their own constructor
when they create a class. If they do this, in addition to constructing each newly created
object of the class, it will execute whatever code the programmer has included in it. Most
often programmers use a constructor to initialize an object’s member variables. However, it
can do anything a normal function can do.

A constructor looks like a regular function except that its name must be the same as the
name of the class it is a part of. This is how the compiler knows that a particular member
function is a constructor. Also, the constructor must have no return type. Program 7-4
includes a class called Demo with a constructor that does nothing except print a message. It
was written this way to demonstrate when the constructor executes. Because the Demo
object is created between two cout statements, the constructor will print its message
between the output lines produced by those two statements.

NOTE: Appendix D on the student CD shows how to denote a constructor in UML.

Program 7-4

1 // This program demonstrates when a constructor executes.
2 #include <iostream>
3 using namespace std;
4
5 class Demo
6 {
7 public:
8 Demo() // Constructor
9 {
10 cout << "Now the constructor is running.\n";
11 }
12 };
13
14 int main()
15 {
16 cout << "This is displayed before the object is created.\n";
17
18 Demo demoObj; // Define a Demo object
19
20 cout << "This is displayed after the object is created.\n";
21 return 0;
22 }

(program continues)

Constructors 403

In Program 7-4 the constructor was defined as an inline function inside the class declara-
tion. As with all class member functions, a constructor can be written either as an inline
function (if it is short enough), or can have just its prototype placed in the class declaration
and be defined outside the class. In this case, as you recall, its name must be preceded by
the name of the class the function belongs to and the scope resolution operator. Because
the name of the constructor function is the same as the class name, the same name appears
twice. Here is how the function header for the Demo constructor would look if it had been
defined outside the class.

Demo::Demo() // Constructor
{
 cout << "Now the constructor is running.\n";
}

Program 7-5 modifies Program 7-2 to include a constructor that initializes an object’s
member data. The constructor is defined outside of the class.

Program Output
This is displayed before the object is created.
Now the constructor is running.
This is displayed after the object is created.

Program 7-5

1 // This program uses a constructor to initialize a member variable.
2 #include <iostream>
3 #include <cmath>
4 using namespace std;
5
6 // Circle class declaration
7 class Circle
8 { private:
9 double radius;
10
11 public: // Member function prototypes
12 Circle();
13 void setRadius(double);
14 double getArea();
15 };
16
17 // Circle member function implementation section
18
19 /**
20 * Circle::Circle *
21 * This is the constructor. It initializes *
22 * the member variable radius to 1. *
23 **/
24 Circle::Circle()
25 { radius = 1;
26 }
27

(program continues)

Program 7-4 (continued)

404 Chapter 7 Introduction to Classes and Objects

28 /**
29 * Circle::setRadius *
30 * This function validates the radius value *
31 * passed to it before assigning it to member *
32 * variable radius. *
33 ***/
34 void Circle::setRadius(double r)
35 { if (r >= 0)
36 radius = r;
37 // else leave it set to its previous value
38 }
39
40 /**
41 * Circle::getArea *
42 * This function calculates and returns the *
43 * Circle object's area. It does not need any *
44 * parameters because it can directly access *
45 * the member variable radius. *
46 **/
47 double Circle::getArea()
48 { return 3.14 * pow(radius, 2);
49 }
50
51 /***************************************
52 * main *
53 * The main function creates and uses *
54 * 2 Circle objects. *
55 ***************************************/
56 int main()
57 {
58 // Define a Circle object. Because the setRadius function
59 // is never called for it, it will keep the value set
60 // by the constructor.
61 Circle circle1;
62
63 // Define a second Circle object and set its radius to 2.5
64 Circle circle2;
65 circle2.setRadius(2.5);
66
67 // Get and display each circle's area
68 cout << "The area of circle1 is " << circle1.getArea() << endl;
69 cout << "The area of circle2 is " << circle2.getArea() << endl;
70
71 return 0;
72 }

Program Output
The area of circle1 is 3.14
The area of circle2 is 19.625

Program 7-5 (continued)

Constructors 405

Overloading Constructors
Recall from Chapter 6 that when two or more functions share the same name, the function
name is said to be overloaded. Multiple functions with the same name may exist in a C++
program, as long as their parameter lists are different.

Any class member function may be overloaded, including the constructor. One constructor
might take an integer argument, for example, while another constructor takes a double.
There could even be a third constructor taking two integers. As long as each constructor
has a different list of parameters, the compiler can tell them apart.

Program 7-6 declares and uses a class named Sale, which has two constructors. The first
has a parameter that accepts a sales tax rate. The second, which is for tax-exempt sales,
has no parameters. It sets the tax rate to 0. A constructor like this, which has no parameters,
is called a default constructor.

Program 7-6

1 // This program demonstrates the use of overloaded constructors.
2 #include <iostream>
3 #include <iomanip>
4 using namespace std;
5
6 // Sale class declaration
7 class Sale
8 {
9 private:
10 double taxRate;
11
12 public:
13 Sale(double rate) // Constructor with 1 parameter
14 { taxRate = rate; // handles taxable sales
15 }
16
17 Sale() // Default constructor
18 { taxRate = 0; // handles tax-exempt sales
19 }
20
21 double calcSaleTotal(double cost)
22 { double total = cost + cost*taxRate;
23 return total;
24 }
25 };
26
27 int main()
28 {
29 Sale cashier1(.06); // Define a Sale object with 6% sales tax
30 Sale cashier2; // Define a tax-exempt Sale object
31
32 // Format the output
33 cout << fixed << showpoint << setprecision(2);
34

(program continues)

406 Chapter 7 Introduction to Classes and Objects

Notice on lines 29 and 30 of Program 7-6 how the two Sale objects are defined.

Sale cashier1(.06);
Sale cashier2;

There is a pair of parentheses after the name cashier1 to hold the value being sent to the
1-parameter constructor. However, there are no parentheses after the name cashier2,
which sends no arguments. In C++ when an object is defined using the default constructor,
instead of passing arguments, there must not be any parentheses.

Sale cashier2; // Correct
Sale cashier2(); // Wrong!

Default Constructors
The Sale class needed a default constructor to handle tax-free sales. Other classes may
appear not to need one—for example, if objects created from them are always expected to
pass arguments to the constructors. Yet, any time you design a class that will have
constructors, it is considered good programming practice to include a default constructor.
If you do not have one, and the program inadvertently tries to create an object without passing
any arguments, it will not compile. This is because there must be a constructor to create an
object. In order to create an object that passes no arguments, there must be a constructor
that expects no arguments—a default constructor. If the programmer writes no constructors
for a class, the compiler automatically creates a default constructor for the class. However,
if the programmer writes any constructors at all, even ones that all have parameters, the
compiler does not create a default constructor. So it is the responsibility of the programmer
to do this.

A class may have many constructors, but can only have one default constructor. This is
because if multiple functions have the same name, the compiler must be able to determine
from their parameter lists which one is being called at any given time. It uses the number

35 // Get and display the total sale price for two $24.95 sales
36 cout << "\nWith a 0.06 sales tax rate, the total\n";
37 cout << "of the $24.95 sale is $";
38 cout << cashier1.calcSaleTotal(24.95) << endl;
39
40 cout << "\nOn a tax-exempt purchase, the total\n";
41 cout << "of the $24.95 sale is, of course, $";
42 cout << cashier2.calcSaleTotal(24.95) << endl;
43 return 0;
44 }

Program Output
With a 0.06 sales tax rate, the total
of the $24.95 sale is $26.45

On a tax-exempt purchase, the total
of the $24.95 sale is, of course, $24.95

Program 7-6 (continued)

Destructors 407

and type of arguments passed to the function to determine which of the overloaded func-
tions to invoke. Because there can be only one function with the class name that is able to
accept no arguments, there can be only one default constructor.

Normally, as in the Sale class, default constructors have no parameters. However, it is
possible to have a default constructor with parameters if all of its parameters have
default values, so that it can be called with no arguments. It would be an error to create
one constructor that accepts no arguments and another that has arguments but allows
default values for all of them. This would create two “default” constructors. The follow-
ing class declaration illegally does this.

class Sale // Illegal declaration!
{
 private:
 double taxRate;

 public:
 Sale() // Default constructor with no arguments
 { taxRate = 0.05; }

 Sale(double r = 0.05) // Default constructor with a default argument
 { taxRate = r; }

 double calcSaleTotal(double cost)
 { double total = cost + cost * taxRate;
 return total;
};

As you can see, the first constructor has no parameters. The second constructor has one
parameter, but it has a default argument. If an object is defined with no argument list, the
compiler will not be able to resolve which constructor to execute.

7.7 Destructors

CONCEPT: A destructor is a member function that is automatically called when an
object is destroyed.

Destructors are public member functions with the same name as the class, preceded by a
tilde character (~). For example, the destructor for the Rectangle class would be named
~Rectangle.

Destructors are automatically called when an object is destroyed. In the same way that
constructors can be used to set things up when an object is created, destructors are used to
perform shutdown procedures when the object goes out of existence.

Program 7-7 shows a simple class with a constructor and a destructor. It illustrates when
each is called during the program’s execution.

NOTE: Appendix D on the student CD shows how to denote a destructor in UML.

408 Chapter 7 Introduction to Classes and Objects

In addition to the fact that destructors are automatically called when an object is
destroyed, the following points should be mentioned:

• Like constructors, destructors have no return type.
• Destructors cannot accept arguments, so they never have a parameter list.
• Because destructors can accept no arguments, there can only be one destructor.

Destructors are most useful when working with objects that are dynamically allocated.
You will learn about this in Chapter 10.

Checkpoint

7.5 Briefly describe the purpose of a constructor.

7.6 Constructor functions have the same name as the
A) class
B) class instance
C) program
D) none of the above

Program 7-7

1 // This program demonstrates a destructor.
2 #include <iostream>
3 using namespace std;
4
5 class Demo
6 {
7 public:
8 Demo(); // Constructor prototype
9 ~Demo(); // Destructor prototype
10 };
11
12 Demo::Demo() // Constructor function definition
13 { cout << "An object has just been defined, so the constructor"
14 << " is running.\n";
15 }
16
17 Demo::~Demo() // Destructor function definition
18 { cout << "Now the destructor is running.\n";
19 }
20
21 int main()
22 {
23 Demo demoObj; // Declare a Demo object;
24
25 cout << "The object now exists, but is about to be destroyed.\n";
26 return 0;
27 }

Program Output
An object has just been defined, so the constructor is running.
The object now exists, but is about to be destroyed.
Now the destructor is running.

Destructors 409

7.7 A constructor that requires no arguments is called
A) a default constructor
B) an inline constructor
C) a null constructor
D) none of the above

7.8 Assume the following is a constructor:

ClassAct::ClassAct(int x)
{

item = x;
}

Define a ClassAct object called sally that passes the value 25 to the constructor.

7.9 True or false: Like any C++ function, a constructor may be overloaded, providing
each constructor has a unique parameter list.

7.10 True or false: A class may have a constructor with no parameter list, and an over-
loaded constructor whose parameters all take default arguments.

7.11 A destructor function name always starts with
A) a number
B) the tilde character (~)
C) a data type name
D) the name of the class

7.12 True or false: Just as a class can have multiple constructors, it can also have multi-
ple destructors.

7.13 What will the following program display on the screen?

#include <iostream>
using namespace std;

class Tank
{
private:

int gallons;
public:

Tank()
{ gallons = 50; }

Tank(int gal)
{ gallons = gal; }

int getGallons()
{ return gallons; }

};

int main()
{ Tank storage1, storage2, storage3(20);

cout << storage1.getGallons() << endl;
cout << storage2.getGallons() << endl;
cout << storage3.getGallons() << endl;
return 0;

}

410 Chapter 7 Introduction to Classes and Objects

7.14 What will the following program display on the screen?

#include <iostream>
using namespace std;

class Package
{
private:

int value;
public:

Package()
 { value = 7; cout << value << endl; }
Package(int v)
 { value = v; cout << value << endl; }
~Package()
 { cout << "goodbye" << endl; }

};

int main()
{ Package obj1(4);

Package obj2;
return 0;

}

7.8 Private Member Functions

CONCEPT: Private member functions may only be called from a function that is a
member of the same class.

Until now all of the class member functions you have seen have been public functions. This
means they can be called by code in programs outside the class. Often, however, a class
needs functions for internal processing that should not be called by code outside the class.
Such functions should be made private.

Program 7-8 shows an example of a class with a private function. The SimpleStat class is
designed to find and report information, such as the average and the largest number, from
a set of non-negative integers sent to it. However, once a number has been received and
added to a running total, it is not kept. So the class cannot later determine which number
was the biggest. It must do this by determining, as it receives each number, if it is bigger
than any number it previously received. The private isNewLargest function does this.

NOTE: Appendix D on the student CD shows how to denote private and public
members in UML.

Private Member Functions 411

Program 7-8

1 // This program uses a private Boolean function to determine if
2 // a new value sent to it is the largest value received so far.
3 #include <iostream>
4 using namespace std;
5
6 class SimpleStat
7 {
8 private:
9 int largest; // The largest number received so far
10 int sum; // The sum of the numbers received
11 int count; // How many numbers have been received
12
13 bool isNewLargest(int);
14 public:
15
16 SimpleStat(); // Default constructor
17 bool addNumber(int);
18 double getAverage();
19
20 int getLargest()
21 { return largest; }
22
23 int getCount()
24 { return count; }
25 };
26
27 // SimpleStat Class Implementation Code
28
29 /*************************************
30 * SimpleStat Default Constructor *
31 *************************************/
32 SimpleStat::SimpleStat()
33 {
34 largest = sum = count = 0;
35 }
36
37 /*************************************
38 * SimpleStat::addNumber *
39 *************************************/
40 bool SimpleStat::addNumber(int num)
41 { bool goodNum = true;
42 if (num >= 0) // If num is valid
43 {
44 sum += num; // Add it to the sum
45 count++; // Count it
46 if(isNewLargest(num)) // Find out if it is
47 largest = num; // the new largest
48 }
49 else // num is invalid
50 goodNum = false;
51
52 return goodNum;
53 }
54

(program continues)

412 Chapter 7 Introduction to Classes and Objects

55 /*************************************
56 * SimpleStat::isNewLargest *
57 *************************************/
58 bool SimpleStat::isNewLargest(int num)
59 {
60 if (num > largest)
61 return true;
62 else
63 return false;
64 }
65
66 /*************************************
67 * SimpleStat::getAverage *
68 *************************************/
69 double SimpleStat::getAverage()
70 {
71 if (count > 0)
72 return static_cast<double>(sum) / count;
73 else
74 return 0;
75 }
76
77 // Client Program
78
79 /*************************************
80 * main *
81 *************************************/
82 int main()
83 {
84 int num;
85 SimpleStat statHelper;
86
87 cout << "Please enter the set of non-negative integer \n";
88 cout << "values you want to average. Separate them with \n";
89 cout << "spaces and enter -1 after the last value. \n\n";
90
91 cin >> num;
92 while (num >= 0)
93 {
94 statHelper.addNumber(num);
95 cin >> num;
96 }
97 cout << "\nYou entered " << statHelper.getCount() << " values. \n";
98 cout << "The largest value was " << statHelper.getLargest() << endl;
99 cout << "The average value was " << statHelper.getAverage() << endl;
100
101 return 0;
102 }

(program continues)

Program 7-8 (continued)

Passing Objects to Functions 413

In Program 7-8 the private function isNewLargest was written to create a more modular
class with code that is easy to follow. The program could have been written without this
function. However, in that case, the addNumber function would have to handle the addi-
tional work of comparing the new value with largest itself. In later chapters you will
encounter many examples where the use of private functions is essential.

7.9 Passing Objects to Functions

CONCEPT: Class objects may be passed as arguments to functions.

In Chapter 6 you learned how to use variables as function arguments. Class objects can
also be passed as arguments to functions. For example, the following function has a
parameter that receives a Rectangle object.

void displayRectangle(Rectangle r)
{
 cout << "Length = " << r.getLength() << endl;
 cout << "Width = " << r.getWidth() << endl;
 cout << "Area = " << r.getArea() << endl;
}

The following lines of code create a Rectangle object with length 15 and width 10, and
then pass it to the displayRectangle function.

Rectangle box(15, 10);
displayRectangle(box);

Assuming the Rectangle class includes the member functions used in this example, the
displayRectangle function will output the following information:

Length = 15
Width = 10
Area = 150

As with regular variables, objects can be passed to functions by value or by reference. In
the Rectangle example, box is passed to the displayRectangle function by value. This

Program Output with Example Input Shown in Bold
Please enter the set of non-negative integer
values you want to average. Separate them with
spaces and enter -1 after the last value.

7 6 8 8 9 7 7 8 9 7 -1[Enter]

You entered 10 values.
The largest value was 9
The average value was 7.6

Program 7-8 (continued)

414 Chapter 7 Introduction to Classes and Objects

means that displayRectangle receives a copy of box. If displayRectangle called any
Rectangle class mutator functions, they would only change the copy of box, not the orig-
inal. If a function needs to store or change data in an object’s member variables, the object
must be passed to it by reference.

Program 7-9 illustrates this. It has two functions that receive an InventoryItem object.
The object is passed to storeValues by reference because this function needs to call a
class mutator function that stores new values into the object. The object is passed to
showValues by value because this function only needs to use accessor functions that
retrieve and use values in the object’s data members. Notice in Program 7-9 that the
InventoryItem class declaration appears before the prototype for the storeValues and
showValues functions. This is important. Because both functions use an InventoryItem
object as a parameter, the compiler must know what InventoryItem is before it encoun-
ters any definitions for variables of that type. Otherwise an error will occur.

Program 7-9

1 // This program passes an object to a function. It passes it
2 // to one function by reference and to another by value.
3 #include <iostream>
4 #include <iomanip>
5 #include <string>
6 using namespace std;
7
8 class InventoryItem
9 {
10 private:
11 int partNum; // Part number
12 string description; // Item description
13 int onHand; // Units on hand
14 double price; // Unit price
15
16 public:
17
18 void storeInfo(int p, string d, int oH, double cost); // Prototype
19
20 int getPartNum()
21 { return partNum; }
22
23 string getDescription()
24 { return description; }
25
26 int getOnHand()
27 { return onHand; }
28
29 double getPrice()
30 { return price; }
31 };
32

(program continues)

Passing Objects to Functions 415

33 // Implementation code for InventoryItem class function storeInfo
34 void InventoryItem::storeInfo(int p, string d, int oH, double cost)
35 { partNum = p;
36 description = d;
37 onHand = oH;
38 price = cost;
39 }
40
41 // Function prototypes for client program
42 void storeValues(InventoryItem&); // Receives an object by reference
43 void showValues (InventoryItem); // Receives an object by value
44
45 //**************** main ******************
46 int main()
47 {
48 InventoryItem part; // part is an InventoryItem object
49
50 storeValues(part);
51 showValues(part);
52 return 0;
53 }
54
55 /**
56 * storeValues *
57 * This function stores user input data in the members of *
58 * an InventoryItem object passed to it by reference. *
59 * **/
60 void storeValues(InventoryItem &item)
61 {
62 int partNum; // Local variables to hold user input
63 string description;
64 int qty;
65 double price;
66
67 // Get the data from the user
68 cout << "Enter data for the new part number \n";
69 cout << "Part number: ";
70 cin >> partNum;
71 cout << "Description: ";
72 cin.get(); // Move past the '\n' left in the
73 // input buffer by the last input
74 getline(cin, description);
75 cout << "Quantity on hand: ";
76 cin >> qty;
77 cout << "Unit price: ";
78 cin >> price;
79
80 // Store the data in the InventoryItem object
81 item.storeInfo(partNum, description, qty, price);
82 }
83

(program continues)

Program 7-9 (continued)

416 Chapter 7 Introduction to Classes and Objects

Constant Reference Parameters
In Program 7-9 part, the InventoryItem object, was passed by value to the showValues
function. However, passing an object by value requires making a copy of all of the
object’s members. This can slow down a program’s execution time, particularly if it has
many members. When an object is passed by reference, on the other hand, no copy has to
be made because the function has access to the original object. For this reason it is
generally preferable to pass objects by reference.

There is a disadvantage to passing an object by reference, however. Because the function
has access to the original object, it can call its mutator functions and alter its member
data. This is why we normally do not pass variables by reference when we want to safe-
guard their contents. Luckily there is a solution. To protect an object when it is passed as
an argument, without having to make a copy, it can be passed as a constant reference.
This means that a reference to the original object is passed to the function, but it cannot
call any mutator functions or change any of the object’s member data. It can only call
accessor functions that have themselves been designated as constant functions.

To declare a parameter to be a constant reference parameter, the key word const must
be placed in the parameter list of both the function prototype and function header. Here
is what the function prototype and header of the showValues function from Program 7-9
would look like, modified to use a constant reference parameter.

84 /**
85 * showValues *
86 * This function displays the member data stored in the *
87 * InventoryItem object passed to it by value. *
88 **/
89 void showValues(InventoryItem item)
90 {
91 cout << fixed << showpoint << setprecision(2) << endl;;
92 cout << "Part Number : " << item.getPartNum() << endl;
93 cout << "Description : " << item.getDescription() << endl;
94 cout << "Units On Hand: " << item.getOnHand() << endl;
95 cout << "Price : $" << item.getPrice() << endl;
96 }

Program Output with Example Input Shown in Bold
Enter data for the new part number

Part number: 175[Enter]
Description: Hammer[Enter]
Quantity on hand: 12[Enter]
Unit price: 7.49[Enter]

Part Number : 175
Description : Hammer
Units On Hand: 12
Price : $7.49

Program 7-9 (continued)

Passing Objects to Functions 417

void showValues (const InventoryItem&) // Function prototype
void showValues (const InventoryItem &item) // Function header

Now the showValues function can only call InventoryItem functions that also have the
key word const listed in their function prototype and header, like this:

double getPrice() const

If showValues tried to call any other InventoryItem functions, a compiler error would
occur. Notice that when showValues is modified to have a constant reference parameter,
only the function prototypes and headers are changed to include the word const. The
body of the showValues function and the call to showValues do not change.

Returning an Object from a Function
Just as functions can be written to return an int, string, double, or other data type,
they can also be designed to return an object. In this case the function normally creates a
local instance of the class, sets its data members, and then returns it. Here is an example
of how the InventoryItem object used in Program 7-9 could be created within the
storeValues function and then returned to the calling function.

InventoryItem storeValues()
{
 InventoryItem tempItem; // Local InventoryItem object
 int partNum; // Local variables to hold user input
 string description;
 int qty;
 double price;

 // Code to get the data from the user goes here.

 tempItem.storeInfo(partNum, description, qty, price);
 return tempItem;
}

The main function could then create part like this:

InventoryItem part = storeValues();

Program 7-10 revises Program 7-9 to incorporate the techniques we have just discussed.
The function previously named storeValues is renamed createItem, as it now creates
an InventoryItem object and returns it to main. The showValues function now receives
part as a constant reference, instead of having it passed by value, as before.

Program 7-10

1 // This program uses a constant reference parameter.
2 // It also illustrates how to return an object from a function.
3 #include <iostream>
4 #include <iomanip>
5 #include <string>
6 using namespace std;
7

(program continues)

418 Chapter 7 Introduction to Classes and Objects

8 class InventoryItem
9 {
10 private:
11 int partNum; // Part number
12 string description; // Item description
13 int onHand; // Units on hand
14 double price; // Unit price
15
16 public:
17
18 void storeInfo(int p, string d, int oH, double cost); // Prototype
19
20 int getPartNum() const // The get functions have all been made
21 { return partNum; } // const functions. This ensures they
22 // cannot alter any class member data.
23 string getDescription() const
24 { return description; }
25
26 int getOnHand() const
27 { return onHand; }
28
29 double getPrice() const
30 { return price; }
31 };
32
33 // Implementation code for InventoryItem class function storeInfo
34 void InventoryItem::storeInfo(int p, string d, int oH, double cost)
35 { partNum = p;
36 description = d;
37 onHand = oH;
38 price = cost;
39 }
40
41 // Function prototypes for client program
42 InventoryItem createItem(); // Returns an InventoryItem object
43 void showValues (const InventoryItem&); // Receives a reference to an
44 // InventoryItem object
45
46 //*************** main *****************
47 int main()
48 {
49 InventoryItem part = createItem();
50 showValues(part);
51 return 0;
52 }
53
54 /**
55 * createItem *
56 * This function stores user input data in the members of a *
57 * locally defined InventoryItem object, then returns it. *
58 **/

(program continues)

Program 7-10 (continued)

Passing Objects to Functions 419

59 InventoryItem createItem()
60 {
61 InventoryItem tempItem; // Local InventoryItem object
62 int partNum; // Local variables to hold user input
63 string description;
64 int qty;
65 double price;
66
67 // Get the data from the user
68 cout << "Enter data for the new part number \n";
69 cout << "Part number: ";
70 cin >> partNum;
71 cout << "Description: ";
72 cin.get(); // Move past the '\n' left in the
73 // input buffer by the last input
74 getline(cin, description);
75 cout << "Quantity on hand: ";
76 cin >> qty;
77 cout << "Unit price: ";
78 cin >> price;
79
80 // Store the data in the InventoryItem object and return it
81 tempItem.storeInfo(partNum, description, qty, price);
82 return tempItem;
83 }
84
85 /***
86 * showValues *
87 * This function displays the member data in the InventoryItem *
88 * object passed to it. Because it was passed as a constant *
89 * reference, showValues accesses the original object, not a *
90 * copy, but it can only call member functions declared to be *
91 * const. This prevents it from calling any mutator functions. *
92 ***/
93 void showValues(const InventoryItem &item)
94 {
95 cout << fixed << showpoint << setprecision(2) << endl;;
96 cout << "Part Number : " << item.getPartNum() << endl;
97 cout << "Description : " << item.getDescription() << endl;
98 cout << "Units On Hand: " << item.getOnHand() << endl;
99 cout << "Price : $" << item.getPrice() << endl;
100 }

Program Output is the Same as for Program 7-9.

Program 7-10 (continued)

420 Chapter 7 Introduction to Classes and Objects

Checkpoint

7.15 A private class member function can be called by
A) any other function
B) only public functions in the same class
C) only private functions in the same class
D) any function in the same class

7.16 When an object is passed to a function, a copy of it is made if the object is
A) passed by value
B) passed by reference
C) passed by constant reference
D) any of the above

7.17 If a function receives an object as an argument and needs to change the object’s
member data, the object should be
A) passed by value
B) passed by reference
C) passed by constant reference
D) none of the above

7.18 True or false: Objects can be passed to functions, but they cannot be returned by
functions.

7.19 True or false: When an object is passed to a function, but the function is not sup-
posed to change it, it should be passed by value.

7.10 Object Composition

CONCEPT: It is possible for a class to have a member variable that is an instance of
another class.

Sometimes it’s helpful to nest an object of one class inside another class. For example, con-
sider the following declarations:

class Rectangle
{
 private:
 double length;
 double width;
 public:
 void setLength(double);
 void setWidth(double);
 double getLength();
 double getWidth();
 double getArea();
};

Object Composition 421

class Carpet
{
 private:
 double pricePerSqYd;
 Rectangle size; // size is an instance of
 // the Rectangle class
 public:
 void setPricePerYd(double p);
 void setDimensions(double l, double w);
 double getTotalPrice();
};

Notice that the Carpet class has a member variable named size, which is an instance of
the Rectangle class. The Carpet class can use this object to store the room dimensions
and to compute the area for a carpet purchase. Figure 7-4 illustrates how the two classes
are related.

When one class is nested inside another like this, it is called object composition.

Program 7-11 uses these two classes to create an application that computes carpet sale prices.

Figure 7-4

Carpet

Carpet member functions

size

pricePerSqYd

Rectangle

length
width

Rectangle
member functions

422 Chapter 7 Introduction to Classes and Objects

Program 7-11

1 // This program nests one class inside another. It has a class
2 // with a member variable that is an instance of another class.
3 #include <iostream>
4 using namespace std;
5
6 class Rectangle
7 {
8 private:
9 double length;
10 double width;
11 public:
12 void setLength(double len)
13 { length = len; }
14
15 void setWidth(double wid)
16 { width = wid; }
17
18 double getLength()
19 { return length; }
20
21 double getWidth()
22 { return width; }
23
24 double getArea()
25 { return length * width; }
26 };
27
28 class Carpet
29 {
30 private:
31 double pricePerSqYd;
32 Rectangle size; // size is an instance of
33 // the Rectangle class
34 public:
35 void setPricePerYd(double p)
36 { pricePerSqYd = p; }
37
38 void setDimensions(double len, double wid)
39 { size.setLength(len/3); // Convert feet to yards
40 size.setWidth (wid/3);
41 }
42
43 double getTotalPrice()
44 { return (size.getArea() * pricePerSqYd); }
45 };
46

(program continues)

Object Composition 423

Let’s take a closer look at Program 7-11. Notice that the client program, which defines purchase,
a Carpet object, only uses it to call Carpet class functions, not Rectangle class functions. It
does not even know that the Carpet class has a Rectangle object inside it. Notice also, in lines
39, 40, and 44, how Carpet class functions call Rectangle functions. Just as the user program
calls Carpet functions through the name of its Carpet object, the Carpet class functions must
call Rectangle functions through the name of its Rectangle object. The Rectangle object,
defined in line 32, is named size. That is why the Carpet functions make calls like this:

size.getArea()

Checkpoint

7.20 Assume a Map class has a member variable named position that is an instance of the
Location class. The Location class has a private member variable named latitude
and a public member function called getLatitude. Which of the following lines of
code would correctly get and return the value stored in latitude?
A) return Location.latitude;
B) return Location.getLatitude();
C) return position.latitude;
D) return position.getLatitude();

47 // ************** Client Program *****************
48 int main()
49 {
50 Carpet purchase; // This variable is a Carpet object
51 double pricePerYd;
52 double length;
53 double width;
54
55 cout << "Room length in feet: ";
56 cin >> length;
57 cout << "Room width in feet : ";
58 cin >> width;
59 cout << "Carpet price per sq. yard: ";
60 cin >> pricePerYd;
61
62 purchase.setDimensions(length, width);
63 purchase.setPricePerYd(pricePerYd);
64
65 cout << "\nThe total price of my new " << length << " x " << width
66 << " carpet is $" << purchase.getTotalPrice() << endl;
67
68 return 0;
69 }

Program Output with Example Input Shown in Bold
Room length in feet: 16.5[Enter]
Room width in feet : 12[Enter]
Carpet price per sq. yard: 22.49[Enter]

The total price of my new 16.5 x 12 carpet is $494.78

Program 7-11 (continued)

424 Chapter 7 Introduction to Classes and Objects

7.21 Write a class declaration for a class named Circle, which has the data member
radius, a double, and the following member functions: setRadius and getArea.
Write the code for these as inline functions.

7.22 Write a class declaration for a class named Pizza that has the data members price,
a double, and size, a Circle object (declared in question 7.21). It also has member
functions: setPrice, setSize, and costPerSqIn. Write the code for these as inline
functions.

7.23 Write 4 lines of code that might appear in a client program using the Pizza class to
do the following:
Define an instance of the Pizza class named myPizza.
Call a Pizza function to set the price.
Call a Pizza function to set the size (i.e., the radius).
Call a Pizza function to return the price per square inch and then print it.

7.11 Focus on Software Engineering: Separating Class
Specification, Implementation, and Client Code

CONCEPT: Usually class declarations are stored in their own header files and member
function definitions are stored in their own .cpp files.

In the programs we’ve looked at so far, the class declaration, the member function definitions,
and the application program that uses the class are all stored in one file. A more conventional
way of designing C++ programs is to store these in three separate files. Typically, program
components are stored in the following fashion:

• Class declarations are stored in their own header files. A header file that contains a
class declaration is called a class specification file. The name of the class specification
file is usually the same as the name of the class, with a .h extension. For example, the
Rectangle class would be declared in the file Rectangle .h.

• Any program that uses the class should #include this header file.

• The member function definitions for a class are stored in a separate .cpp file, which
is called the class implementation file. The file usually has the same name as the class,
with the .cpp extension. For example the Rectangle class member functions would
be defined in the file Rectangle.cpp.

• The class .cpp file should be compiled and linked with the application program that uses
the class. This program, also known as the client program, or client code, is the one that
includes the main function. This process can be automated with a project or make util-
ity. Integrated development environments such as Visual Studio also provide the means
to create multi-file projects.

Let’s see how we could rewrite Program 7-3, the rectangle program, using this design approach.
First, the Rectangle class declaration would be stored in the following Rectangle.h file.

425

This is the specification file for the Rectangle class. It contains only the declaration of the
Rectangle class. It does not contain any member function definitions. When we write
other programs that use the Rectangle class, we can have an #include directive that
includes this file. That way, we won’t have to write the class declaration in every program
that uses the Rectangle class.

This file also introduces two new preprocessor directives: #ifndef and #endif. The
#ifndef directive that appears in line 2 is called an include guard. It prevents the header
file from accidentally being included more than once. When your main program file has
an #include directive for a header file, there is always the possibility that the header file
will have an #include directive for a second header file. If your main program file also
has an #include directive for the second header file, the preprocessor will include the
second header file twice. Unless an include guard has been written into the second header
file, an error will occur because the compiler will process the declarations in the second
header file twice. Let’s see how an include guard works.

The word ifndef stands for “if not defined”. It is used to determine whether or not a spe-
cific constant has already been defined with a #define directive. When the Rectangle.h
file is being compiled, the #ifndef directive checks for the existence of a constant named
RECTANGLE_H. If this constant has not been defined yet, it is immediately defined in line 3,
and the rest of the file is included. However, if the constant has already been defined, it
means that this file has already been included. In that case, it is not included a second time.
Instead, everything between the #ifndef and #endif directives is skipped. Note that the
constant used in the #infdef and #define directives should be written in all capital letters
and is customarily named FILENAME_H, where FILENAME is the name of the header file.

Next we need an implementation file that contains the class member function definitions.
The implementation file for the Rectangle class is Rectangle.cpp.

Contents of Rectangle.h
1 // File Rectangle.h -- Rectangle class specification file
2 #ifndef RECTANGLE_H
3 #define RECTANGLE_H
4
5 // Rectangle class declaration
6 class Rectangle
7 {
8 private:
9 double length;
10 double width;
11 public:
12 bool setLength(double);
13 bool setWidth(double);
14 double getLength();
15 double getWidth();
16 double getArea();
17 };
18 #endif

Focus on Software Engineering: Separating Class Specification, Implementation, and Client Code

426 Chapter 7 Introduction to Classes and Objects

Contents of Rectangle.cpp
1 // File Rectangle.cpp -- Rectangle class function implementation file
2 #include "Rectangle.h"
3
4 /***
5 * Rectangle::setLength *
6 * If the argument passed to the setLength function is zero or *
7 * greater, it is copied into the member variable length, and true *
8 * is returned. If the argument is negative, the value of length *
9 * remains unchanged and false is returned. *
10 ***/
11 bool Rectangle::setLength(double len)
12 {
13 bool validData = true;
14
15 if (len >= 0) // If the len is valid
16 length = len; // copy it to length
17 else
18 validData = false; // else leave length unchanged
19
20 return validData;
21 }
22
23 /**
24 * Rectangle::setWidth *
25 * If the argument passed to the setWidth function is zero or *
26 * greater, it is copied into the member variable width, and true *
27 * is returned. If the argument is negative, the value of width *
28 * remains unchanged and false is returned. *
29 **/
30 bool Rectangle::setWidth(double w)
31 {
32 bool validData = true;
33
34 if (w >= 0) // If w is valid
35 width = w; // copy it to width
36 else
37 validData = false; // else leave width unchanged
38
39 return validData;
40 }
41
42 /**
43 * Rectangle::getLength *
44 * This function returns the value in member variable length. *
45 **/
46 double Rectangle::getLength()
47 {
48 return length;
49 }
50

427

Look at the code for the five functions. Notice that the three accessor functions,
getLength, getWidth, and getArea, are the same as those that appeared in Program 7-3.
However, a change has been made to the two mutator functions, setLength and setWidth,
to illustrate another way in which public class functions can safeguard private member
data. In Program 7-3, the setLength and setWidth functions use a default value for
length and width if invalid data is passed to them. In the Rectangle.cpp code, these two
functions return a Boolean value indicating whether or not the value received was stored in
the member variable. If a valid argument is received, it is stored in the member variable
and true is returned. If an invalid argument is received, the member variable is left
unchanged and false is returned. The client program that uses this class must test the
returned Boolean value to determine how to proceed.

Now look at line 2, which has the following #include directive:

#include "Rectangle.h"

This directive includes the Rectangle.h file, which contains the Rectangle class declara-
tion. Notice that the name of the header file is enclosed in double-quote characters (" ")
instead of angled brackets (< >). When you are including a C++ system header file, such as
iostream, you enclose the name of the file in angled brackets. This indicates that the file is
located in the compiler’s include file directory. That is the directory or folder where all of
the standard C++ header files are located. When you are including a header file that you
have written, such as a class specification file, you enclose the name of the file in double-
quote marks. This indicates that the file is located in the current project directory.

Any file that uses the Rectangle class must have an #include directive for the
Rectangle.h file. We need to include Rectangle.h in the class specification file
because the functions in this file belong to the Rectangle class. Before the compiler
can process a function with Rectangle:: in its name, it must have already processed
the Rectangle class declaration.

With the Rectangle class stored in its own specification and implementation files, we can
see how to use them in a program. Program 7-12 is a modified version of Program 7-3.
Notice that Program 7-12 is much shorter than Program 7-3 because it does not contain the
Rectangle class declaration or member function definitions. Instead, it is designed to be

51 /**
52 * Rectangle::getWidth *
53 * This function returns the value in member variable width. *
54 **/
55 double Rectangle::getWidth()
56 {
57 return width;
58 }
59
60 /***
61 * Rectangle::getArea *
62 * This function calculates and returns the area of the rectangle. *
63 ***/
64 double Rectangle::getArea()
65 {
66 return length * width;
67 }

Focus on Software Engineering: Separating Class Specification, Implementation, and Client Code

428 Chapter 7 Introduction to Classes and Objects

compiled and linked with the class specification and implementation files. Program 7-12 only
needs to contain the client code that creates and uses a Rectangle object.

Notice that line 6 of Program 7-12 has an #include directive for the Rectangle.h
file. This is needed so the Rectangle class declaration will be included in the file.

Now that we have created the three files for this program, the following steps must be
taken to create an executable program.

• First, the implementation file, Rectangle.cpp, should be compiled to create an
object file. This file would typically be named Rectangle.obj.

• Next, the main program file, located in file pr7-12.cpp, must be compiled to create
an object file. This file would typically be named pr7-12.obj.

• Finally, the object files pr7-12.obj and Rectangle.obj are linked together to
create an executable file, which would be named something like pr7-12.exe.

Program 7-12

1 // This program that uses the Rectangle class.
2 // The Rectangle class declaration is in file Rectangle.h.
3 // The Rectangle member function definitions are in Rectangle.cpp
4 // These files should all be combined into a project.
5 #include <iostream>
6 #include "Rectangle.h" // Contains Rectangle class declaration
7 using namespace std;
8
9 int main()
10 {
11 Rectangle box; // Declare a Rectangle object
12 double boxLength, boxWidth;
13
14 //Get box length and width
15 cout << "This program will calculate the area of a rectangle.\n";
16 cout << "What is the length? ";
17 cin >> boxLength;
18 cout << "What is the width? ";
19 cin >> boxWidth;
20
21 // Call member functions to set box dimensions.
22 // If the function call returns false, it means the
23 // argument sent to it was invalid and not stored.
24 if (!box.setLength(boxLength)) // Store the length
25 cout << "Invalid box length entered.\n";
26 else if (!box.setWidth(boxWidth)) // Store the width
27 cout << "Invalid box width entered.\n";
28 else // Both values were valid
29 {
30 // Call member functions to get box information to display
31 cout << "\nHere is the rectangle's data:\n";
32 cout << "Length: " << box.getLength() << endl;
33 cout << "Width : " << box.getWidth() << endl;
34 cout << "Area : " << box.getArea() << endl;
35 }
36 return 0;
37 }

429

Table 7-1 summarizes how the different files of Program 7-12 are organized and compiled
on a typical Windows computer.

Figure 7-5 further illustrates this process.

The exact details on how these steps take place are different for each C++ development sys-
tem. Fortunately, most systems perform all of these steps automatically for you. For exam-
ple, in Microsoft Visual C++ you create a project, and then you simply add all of the files
to the project. When you compile the project, the steps are taken care of for you and an
executable file is generated. Once the executable file has been created, you can run the pro-
gram. When valid values are entered for boxLength and boxWidth the output should be
identical to that shown for Program 7-3.

Advantages of Using Multiple Files
Separating a client program from the details of a class it uses is considered good program-
ming practice. A class is an example of an abstract data type and, as you learned earlier in
this chapter, the only thing a programmer writing an application that uses the class needs
to know is what the class does, what kind of data it can hold, what functions it provides,

Table 7-1 Files Used in Program 7-12

Rectangle.h Contains the Rectangle class declaration. This file is included by
Rectangle.cpp and pr7-12.cpp.

Rectangle.cpp Contains the definitions of the Rectangle class member functions. This
file is compiled to create an object file, such as Rectangle.obj.

pr7-12.cpp Contains the application program that uses the class. In this case, the
application program consists of just the function main. This file is
compiled to create an object file, such as pr7-12.obj.

Linking the .obj
files

The two object code files created by compiling Rectangle.cpp and
pr7-12.cpp are linked to make the executable file pr7-12.exe

Figure 7-5

NOTE: Appendix J, Multi-Source File Programs, which is located on the student CD,
provides additional information on creating multifile projects.

Link

Compile

Compile

Include

Headers
Source

files
Object
files

Executable
file

Rectangle.h
Specification

file

Rectangle.cpp
Implementation

file

Rectangle.obj

pr7-12.exe

pr7-12.cpp
Main program

file

pr7-12.obj

Focus on Software Engineering: Separating Class Specification, Implementation, and Client Code

430 Chapter 7 Introduction to Classes and Objects

and how to call them. Programmers, and any programs using the class, do not need to
know anything about the implementation of the class. In addition, often many different
programs use a particular class. If the implementation code that defines the class member
functions is in its own separate file, this code does not have to be in all of these programs.
They can each simply #include the file containing the defintions.

Separating a class into a specification file and an implementation file is also considered
good programming practice. If you wish to give your class to other programmers, you
don’t have to share all of your source code. You can just provide a copy of the specification
file and the compiled object file for the class’s implementation. The other programmers
simply insert the necessary #include directive into their programs, compile them, and link
them with your class object file. This prevents other programmers, who might not understand
all the details of your code, from making changes that introduce bugs.

Separating a class into specification and implementation files also makes things easier when
class member functions must be modified. It is only necessary to modify the implementa-
tion file and recompile it to create a new object file. Programs that use the class don’t have
to be recompiled. They just have to be linked with the new object file.

Performing Input/Output in a Class Object
You may have noticed in Program 7-12 that we avoided doing any I/O inside the Rectangle
class. In general is it considered good design to have class member functions avoid using
cin and cout. This is so anyone writing a program that uses the class will not be locked
into the way the class performs input or output. Unless a class is specifically designed to
perform I/O, operations like user input and output are best left to the person designing the
application. In general, classes should provide member functions for retrieving data values
without displaying them on the screen. Likewise, they should provide member functions
that store data into private member variables without using cin. Program 7-12 follows
both of these practices.

Checkpoint

7.24 Assume the following class components exist in a program:

BasePay class declaration
BasePay member function definitions
Overtime class declaration
Overtime member function definitions

What files would you store each of the above components in?

7.25 What header files should be included in the client program that uses the BasePay
and Overtime classes?

NOTE: There are instances where it is appropriate for a class to perform I/O. For
example, a class might be designed to display a menu on the screen and get the user’s
selection. Another example is a class designed to handle a program’s file I/O. Classes
that hold and manipulate data, however, should not be tied to any particular I/O
routines. This allows them to be more versatile.

Input Validation Objects 431

7.12 Input Validation Objects

CONCEPT: Classes may be designed to validate user input.

One application of OOP is to design general-purpose objects that can be used by a variety of
applications. An example of such an object is one that performs input validation. For example,
assume a program displays a menu that allows the user to select items A, B, C, or D. The program
should validate any character entered by the user and only accept one of these four letters.

In this section, we will design a general-purpose class to handle this type of input valida-
tion. Before we discuss the class, let’s look at a C++ library function we will need.

The toupper Function
Our input validation class will use the toupper library function (pronounced “to upper”). To
use the toupper function, you must place the following #include directive in your program:

#include <cctype>

The toupper function accepts a single character as its argument and returns the uppercase
equivalent of that character. For example, the following statement will display the charac-
ter M on the screen:

cout << toupper('m');

And the following statement assigns the character A to the variable letter:

letter = toupper('a');

If the character passed to toupper is already uppercase or is not a letter, that character is
returned unchanged.

Among its other uses, the toupper function can simplify the task of comparing characters with-
out regard to case. For example, look at the following code segment. It asks the user to enter a let-
ter in the range K through Q, then attempts to validate the character that was entered.

cout << "Enter a letter in the range K-Q: ";
cin >> letter;
while (letter < 'K' || letter > 'Q')
{ cout << "That is not a valid letter.\n";

cout << "Enter a letter from K to Q: ";
cin >> letter;

}

This code will successfully validate the user’s input as long as the character entered is
uppercase. However, if the user enters a lowercase character in the range k through q, the
code will fail. Those characters are higher on the ASCII chart than their uppercase equiva-
lents, so the contents of letter will be greater than ‘Q’ anytime a lowercase letter is
entered. We can use the toupper function to fix this problem by comparing the uppercase
form of the input to our range of valid characters. The following code shows how.

cout << "Enter a letter in the range K-Q: ";
cin >> letter;
while (toupper (letter) < 'K' || toupper(letter) > 'Q')
{ cout << "That is not a valid letter.\n";

cout << "Enter a letter from K to Q: ";
cin >> letter;

}

432 Chapter 7 Introduction to Classes and Objects

Note that the toupper function does not actually convert its argument to uppercase but
returns the uppercase equivalent of it. After the function toupper(letter) has been exe-
cuted, the content of letter is still the same as it was before the function was called. If we
wish to actually convert a variable’s contents to uppercase, we must use a statement like this:

letter = toupper(letter);

This statement assigns the return value of toupper(letter) to letter, thus converting the
contents of the variable to uppercase. This approach is demonstrated in the following code.

cout << "Enter a letter in the range K-Q: ";
cin >> letter;
letter = toupper(letter);
while (letter < 'K' || letter > 'Q')
{ cout << "That is not a valid letter.\n";

cout << "Enter a letter from K to Q: ";
cin >> letter;
letter = toupper(letter);

}

The toupper function will be used to implement this type of input validation in the CharRange
class, which is discussed next.

The CharRange Input Validation Class
Now we will examine the CharRange class. An object of the CharRange class allows the
user to enter a character, then validates that it is within a specified range of characters.
When the user enters a character outside the designated range, the object displays an error
message and waits for the user to re-enter the character. The header file containing the
class declaration and the implementation file holding the member function definitions are
shown here.

NOTE: toupper, as well as other character-handling library functions, are discussed
further in Chapter 12.

Contents of CharRange.h
1 // CharRange.h -- CharRange class specification file
2 #ifndef CHARRANGE_H
3 #define CHARRANGE_H
4
5 class CharRange
6 {
7 private:
8 char input; // User input
9 char lower; // Lowest valid character
10 char upper; // Highest valid character
11 public:
12 CharRange(char, char);
13 char getChar();
14 };
15 #endif

Input Validation Objects 433

Let’s look at the class member functions. On lines 10 through 14, the constructor estab-
lishes the range of valid characters:

CharRange::CharRange(char l, char u)
{

lower = toupper(l);
upper = toupper(u);

}

The toupper function is used to get the uppercase equivalents of the values in the parame-
ters l and u. These uppercase values are copied into the private member variables lower
and upper. These mark the lower and upper ends of the valid range of characters.

Contents of CharRange.cpp

1 // CharRange.cpp -- CharRange class function implementation file
2 #include <iostream>
3 #include <cctype> // Needed to use toupper
4 #include "CharRange.h"
5 using namespace std;
6
7 /***
8 * CharRange default constructor *
9 ***/
10 CharRange::CharRange(char l, char u)
11 {
12 lower = toupper(l); // Set the valid lower
13 upper = toupper(u); // and upper bounds
14 }
15
16 /**
17 * CharRange ::getChar *
18 * This function inputs a character, validates it is in *
19 * the correct range, then returns the valid character. *
20 **/
21 char CharRange::getChar()
22 {
23 cin.get(input); // Get a character
24 cin.ignore(); // Ignore the '\n' in the input buffer
25 input = toupper(input); // Convert the character to uppercase
26
27 // Ensure character is in the correct range.
28 // If not, require the user to re-enter it.
29 while (input < lower || input > upper)
30 {
31 cout << "That is not a valid character.\n";
32 cout << "Enter a value from " << lower;
33 cout << " to " << upper << ".\n";
34 cin.get(input);
35 cin.ignore();
36 input = toupper(input);
37 }
38 return input;
39 }

434 Chapter 7 Introduction to Classes and Objects

Here’s an example of how to create an object of the CharRange class:

CharRange input('A', 'D');

This statement creates a CharRange object named input. The object allows the user to
enter a character in the ranges ‘A’ through ‘D’ and ‘a’ through ‘d’ (valid characters are A, B,
C, D, a, b, c, and d).

Accepting and validating input is done by the getChar member function, whose code is
found in lines 21 through 39. This function reads a character from the keyboard, converts
it to uppercase, and validates it. If the character is outside the range specified by the lower
and upper variables, whose values were passed to the constructor when the CharRange
object was created, an error message is displayed and another character is read.

Program 7-13 is a simple program that demonstrates the CharRange class. (This class will
be used again later in other programs.)

NOTE: As mentioned before, in general it is best to avoid using input and output
statements in class member functions. This, however, is a class specifically designed to
perform input and output.

Program 7-13

1 // This program uses the CharRange class and demonstrates its
2 // capabilities. This file should be combined into a project
3 // along with the CharRange.h and CharRange.cpp files.
4 #include <iostream>
5 #include "CharRange.h"
6 using namespace std;
7
8 int main()
9 {
10 char ch; // Holds user input
11
12 CharRange input('J', 'N'); // Create a CharRange object named
13 // input that ensures entered
14 // characters are in the range J - N
15
16 // Prompt the user to enter a letter
17 cout << "Enter any of the characters J, K, L, M, or N.\n";
18 cout << "Entering N will stop this program.\n";
19
20 // Call an input member function to accept the user input and
21 // validate it before returning it to be assigned to variable ch
22 ch = input.getChar();
23
24 // Continue allowing letters to be entered until an 'N' is input
25 while (ch != 'N')
26 { cout << "You entered " << ch << endl;
27 ch = input.getChar();
28 }
29 return 0;
30 }

(program continues)

Structures 435

7.13 Structures

CONCEPT: C++ allows a set of variables to be combined together into a single unit
called a structure.

A structure is a programmer-defined data type that can hold many different data values. In
the past, before the use of object-oriented programming became common, programmers
typically used these to group logically connected data together into a single unit. Once a
structure type is declared and its data members identified, multiple variables of this type
can be created, just as multiple objects can be created for the same class.

Although structures are less commonly used today, it is important that you know what
they are and how to use them. Not only may you encounter them in older programs, but
there are actually some instances in which classes will not work and you must use struc-
tures. You will see an example of this later in this chapter.

The way a structure is declared is similar to the way a class is declared, with the following
differences:

• The key word struct is used instead of the key word class.
• Although structures can include member functions, they rarely do. So normally a

structure declaration only declares member variables.
• Structure declarations normally do not include the access specifiers public or private.

Unlike class members, which are private by default, members of a structure default to
being public. Programmers normally want them to remain public, and simply use the
default.

Here is an example of a declaration for a structure that bundles together five variables
holding payroll data for an employee. The name of this particular structure is PayRoll.
Notice that it begins with a capital letter. The convention is to begin structure names, just
like class names, with an uppercase letter. Notice also that, like a class declaration, there
must be a semicolon after the closing brace of the declaration.

Program Output with Example Input Shown in Bold
Enter any of the characters J, K, L, M, or N.
Entering N will stop this program.
j[Enter]
You entered J
L[Enter]
You entered L
p[Enter]
That is not a valid character.
Enter a value from J to N.
m[Enter]
You entered M
n[Enter]

Program 7-13 (continued)

436 Chapter 7 Introduction to Classes and Objects

struct PayRoll
{

int empNumber;
string name;
double hours,
 payRate,
 grossPay;

};

Just as a class declaration is not instantiated until objects of the class are created, a struc-
ture declaration does not create any instances of the structure. The structure declaration
in our example simply tells the compiler what a Payroll structure looks like. It in essence
creates a new data type named Payroll.

You define variables that are Payroll structures the way you define any variable, by first
listing the data type, and then the variable name. The following definition creates three
variables that are Payroll structures.

Payroll deptHead, foreman, associate;

Each is an instance of a Payroll structure, with its own memory allocated to hold its
member data. Notice that although the three structure variables have distinct names, each
contains members with the same name. Figure 7.6 illustrates this.

Accessing Structure Members
Members of a structure are accessed just like public members of a class, with the dot oper-
ator. However, the data members of a class are normally private and must be accessed
through functions. Because structure data members are public, they are accessed directly and
can be used like regular variables. The following statements assign values to the empNumber
member of each of the Payroll variables we created.

deptHead.empNumber = 475;
foreman.empNumber = 897;
associate.empNumber = 729;

And the following statements display the contents of all the deptHead’s members.

cout << deptHead.empNumber << endl;
cout << deptHead.name << endl;
cout << deptHead.hours << endl;
cout << deptHead.payRate << endl;
cout << deptHead.grossPay << endl;

Figure 7-6

empNumber

name

hours

payRate

grossPay

deptHead

empNumber

name

hours

payRate

grossPay

foreman

empNumber

name

hours

payRate

grossPay

associate

Creating and
Using
Structures

Structures 437

Program 7-14 is a complete program that uses the PayRoll structure. Notice how the indi-
vidual structure members are used just like regular variables in cin statements, in cout
statements, and in mathematical operations.

Program 7-14

1 // This program demonstrates the use of a structure.
2 #include <iostream>
3 #include <iomanip>
4 #include <string>
5 using namespace std;
6
7 struct PayRoll
8 {
9 int empNumber; // Employee number
10 string name; // Employee name
11 double hours, // Hours worked
12 payRate; // Hourly pay rate
13 };
14
15 int main()
16 {
17 PayRoll employee; // Employee is a PayRoll structure
18 double grossPay; // Gross amount the employee earned this week
19
20 //Get the employee's data
21 cout << "Enter the employee's number: ";
22 cin >> employee.empNumber;
23
24 cout << "Enter the employee's name: ";
25 cin.ignore(); // Skip the '\n' character left in the input buffer
26 getline(cin, employee.name);
27
28 cout << "Hours worked this week: ";
29 cin >> employee.hours;
30
31 cout << "Employee's hourly pay rate: ";
32 cin >> employee.payRate;
33
34 // Calculate the employee's gross pay
35 grossPay = employee.hours * employee.payRate;
36
37 // Display the results
38 cout << "\nHere is the employee's payroll data:\n";
39 cout << "Name: " << employee.name << endl;
40 cout << "Employee number: " << employee.empNumber << endl;
41 cout << "Hours worked: " << employee.hours << endl;
42 cout << "Hourly pay rate: " << employee.payRate << endl;
43 cout << fixed << showpoint << setprecision(2);
44 cout << "Gross pay: $" << grossPay << endl;
45 return 0;
46 }

(program continues)

438 Chapter 7 Introduction to Classes and Objects

In Program 7-14 the variable employee is defined in line 17 to be an instance of a Payroll
structure. Its five data members can then be accessed with the dot operator through the
name of the variable. For example, in line 22 the following statement reads a value into the
variable’s empNumber member.

cin >> employee.empNumber; // Correct

It would have been wrong to try to access this member through the name of the structure type.

cin >> Payroll.empNumber; // Wrong!

Displaying and Comparing Structure Variables
In Program 7-14 each member of the employee structure variable was displayed separately.
This is necessary because the entire contents of a structure variable cannot be displayed by
simply passing the whole variable to cout. For example, the following statement will not
work.

cout << employee << endl; // Error!

Likewise, while it is possible to compare the contents of two individual structure members,
you cannot perform comparison operations on entire structures. For example, if
employee1 and employee2 are both Payroll structure variables, this comparison will
cause an error.

if (employee1 == employee2) // Error!

The following comparison, on the other hand, is perfectly legal.

if (employee1.hours == employee2.hours) // Legal

Initializing a Structure
There are two ways a structure variable can be initialized when it is defined: with an
initialization list or with a constructor.

The simplest way to initialize the members of a structure variable is to use an initialization
list. An initialization list is a list of values used to initialize a set of memory locations. The

Program Output with Example Input Shown in Bold
Enter the employee's number: 2214[Enter]
Enter the employee's name: Jack Smith[Enter]
Hours worked this week: 40[Enter]
Employee's hourly pay rate: 12.50[Enter]

Here is the employee's payroll data:
Name: Jack Smith
Employee number: 2214
Hours worked: 40
Hourly pay rate: 12.5
Gross pay: $500.00

Program 7-14 (continued)

Structures 439

items in the list are separated by commas and surrounded by braces. Suppose, for example,
the following Date structure has been declared:

struct Date
{ int day,

 month,
 year;

};

A Date variable can now be defined and initialized by following the variable name with the
assignment operator and an initialization list, as shown here:

Date birthday = {23, 8, 1983};

This statement defines birthday to be a variable which is a Date structure. The values
inside the curly braces are assigned to its members in order. So the data members of
birthday have been initialized as shown in Figure 7-7.

It is also possible to initialize just some of the members of a structure variable. For exam-
ple, if we know the birthday to be stored is August 23, but do not know the year, the
variable could be defined and initialized like this:

Date birthday = {23, 8};

Only the day and month members are initialized here. The year member is not initialized.
If you leave a structure member uninitialized, however, you must leave all the members
that follow it uninitialized as well. C++ does not provide a way to skip members when
using an initialization list. The following statement, which attempts to skip the initializa-
tion of the month member, is not legal.

Date birthday = {23, , 1983}; // Illegal!

It is important to note that you cannot initialize a structure member in the declaration of
the structure because the structure declaration just creates a new data type. No variables of
this type exist yet. For example, the following declaration is illegal:

// Illegal structure declaration
struct Date
{ int day = 23,

 month = 8,
 year = 1983;

};

Because a structure declaration only declares what a structure “looks like”, the member
variables are not created in memory until the structure is instantiated by defining a variable
of that structure type. Until then there is no place to store an initial value.

Figure 7-7

23birthday.day

birthday.month

birthday.year

8

1983

440 Chapter 7 Introduction to Classes and Objects

Although an initialization list is easy to use, it has two drawbacks:

1. It does not allow you to leave some members uninitialized and still initialize others
that follow.

2. It will not work on many compilers if the structure includes any objects, such as
strings.

In these cases you can initialize structure member variables the same way you initialize class
member variables—by using a constructor. As with a class constructor, a constructor for a
structure must be a public member function with the same name as the structure and no
return type. Because all structure members are public by default, however, the key word
public does not need to be used. Here is a structure declaration for a structure named
Employee. It includes a 2-argument constructor that provides default values in case an
Employee variable is created without passing any arguments to the constructor.

struct Employee
{

string name; // Employee name
int vacationDays, // Vacation days allowed per year
 daysUsed; // Vacation days used so far

Employee(string n = "", int d = 0) // Constructor
{ name = n;
 vacationDays = 10;
 daysUsed = d;
}

};

Nested Structures
Just as objects of one class can be nested within another class, instances of one structure
can be nested within another structure. For example, consider the following structure dec-
larations:

struct Costs
{

double wholesale;
double retail;

};

struct Item
{

string partNum;
string description;
Costs pricing;

};

The Costs structure has two double members, wholesale and retail. The Item struc-
ture has three members. The first two, partNum and description, are string objects.
The third, pricing, is a nested Costs structure. Assume variable widget is defined to be
an Item structure:

Item widget;

Structures 441

Figure 7-8 illustrates its members.

They would be accessed as follows:

widget.partnum = "123A";
widget.description = "iron widget";
widget.pricing.wholesale = 100.0;
widget.pricing.retail = 150.0;

Notice that wholesale and retail are not members of widget; pricing is. To access
wholesale and retail, widget’s pricing member must first be accessed and then, because
it is a Costs structure, its wholesale and retail members can be accessed. Notice also, as
with all structures, it is the member name, not the structure name, that must be used in
accessing a member. The following statements would not be legal.

cout << widget.retail; // Wrong!
cout << widget.Costs.wholesale; // Wrong!

When you are deciding whether to use nested structures or not, think about how various
members are related. A structure bundles together items that logically belong together.
Normally the members of a structure are attributes describing some object. In our exam-
ple, the object was a widget and its part number, description, and wholesale and retail
prices were its attributes. When some of the attributes are related and form a logical sub-
group of the object’s attributes, it makes sense to bundle them together and use a nested
structure. Notice the relatedness of the attributes in the inner structure of Program 7-15,
which uses a nested structure.

Figure 7-8

Program 7-15

1 // This program demonstrates the use of a nested structure.
2 #include <iostream>
3 #include <iomanip>
4 #include <string>
5 using namespace std;
6

(program continues)

widget partNum

description

pricing
wholesale

retail

442 Chapter 7 Introduction to Classes and Objects

7 struct CostInfo
8 {
9 double food, // Food costs
10 medical, // Medical costs
11 license, // License fee
12 misc; // Miscellaneous costs
13 };
14
15 struct PetInfo
16 {
17 string name; // Pet name
18 string type; // Pet type
19 int age; // Pet age
20
21 CostInfo cost; // A PetInfo structure has a CostInfo structure
22 // nested inside as one of its members
23
24 PetInfo() // Default constructor
25 { name = "unknown";
26 type = "unknown";
27 age = 0;
28 cost.food = cost.medical = cost.license = cost.misc = 0.00;
29 }
30 };
31
32 int main()
33 {
34 // Define a PetInfo structure variable called pet
35 PetInfo pet;
36
37 // Assign values to the pet member variables.
38 // Notice that cost.misc is not assigned a value,
39 // so it remains 0, as set by the constructor.
40 pet.name = "Sassy";
41 pet.type = "cat";
42 pet.age = 5;
43 pet.cost.food = 300.00;
44 pet.cost.medical = 200.00;
45 pet.cost.license = 7.00;
46
47 // Display the total annual costs for the pet
48 cout << fixed << showpoint << setprecision(2);
49 cout << "Annual costs for my " << pet.age << "-year-old "
50 << pet.type << " " << pet.name << " are $"
51 << (pet.cost.food + pet.cost.medical +
52 pet.cost.license + pet.cost.misc) << endl;
53 return 0;
54 }

Sample Output
Annual costs for my 5-year-old cat Sassy are $507.00

Program 7-15 (continued)

Structures 443

Checkpoint

7.26 Write a structure declaration for a structure named Student that holds the following
data about a student:

ID (int)
entry year (int)
GPA (double)

Then write definition statements that create the following two Student variables
and initialize them using initialization lists.

Variable s1 should have ID number 1234, entry year 2008, and GPA 3.41.
Variable s2 should have ID number 5678 and entry year 2010. The GPA
member should be left uninitialized.

7.27 Write a structure declaration for a structure named Account that holds the following
data about a savings account. Include a constructor that allows data values to be
passed in for all four members.

Account number (string)
Account balance (double)
Interest rate (double)
Average monthly balance (double)

Then write a definition statement for an Account variable that initializes the mem-
bers with the following data:

Account number: ACZ42137
Account balance: $4512.59
Interest rate: 4%
Average monthly balance: $4217.07

7.28 The following program skeleton, when complete, asks the user to enter the following
information about his or her favorite movie:

Name of the movie
Name of the movie’s director
The year the movie was released

Complete the program by declaring the structure that holds this information, defining
a structure variable, and writing the required individual statements.

#include <iostream>
#include <string>
using namespace std;

// Write the structure declaration to hold the movie information.

int main()
{

// Define the structure variable here.

cout << "Enter the following information about your "
 << " favorite movie.\n" << "Name: ";
// Write a statement here that lets the user enter a movie name.
// Store it in the appropriate structure member.

444 Chapter 7 Introduction to Classes and Objects

cout << "Director: ";
// Write a statement here that lets the user enter the director's
// name. Store it in the appropriate structure member.

cout << "Year of Release: ";
// Write a statement here that lets the user enter the movie
// release year. Store it in the appropriate structure member.

cout << "\nHere is information on your favorite movie:\n";
// Write statements here that display the information
// just entered into the structure variable.
return 0;

}

7.29 Write a structure declaration named Measurement, with the following members:
miles, an integer
meters, a long integer

7.30 Write a structure declaration named Destination, with the following members:
city, a string
distance, a Measurement structure (declared in question 7.29)

Now define a variable of this structure type.

7.31 Write assignment statements that store the following information in the variable
you defined in question 7.30:

City: Tupelo
Miles 375
Meters: 603,375

Passing Structures to Functions
Structure variables, just like class objects, can be passed to functions by value, by reference,
and by constant reference. By default, they are passed by value. This means that a copy of
the entire original structure is made and passed to the function. Because it is not desirable
to take the time to copy an entire structure, unless it is quite small, structures are normally
passed to functions by reference. This, however, gives the function access to the member
variables of the original structure, allowing it to change them. If you do not want a func-
tion to change any member variable values, the structure variable should be passed to the
function as a constant reference.

Program 7-16 is a modification of Program 7-9 that defines a structure variable and passes
it to two functions.

Program 7-16

1 // This program passes a structure variable to one function
2 // by reference and to another as a constant reference.
3 #include <iostream>
4 #include <iomanip>
5 #include <string>
6 using namespace std;
7

(program continues)

Structures 445

8 struct InvItem // Holds data for an inventory item
9 {
10 int partNum; // Part number
11 string description; // Item description
12 int onHand; // Units on hand
13 double price; // Unit price
14 };
15
16 // Function prototypes
17 void getItemData(InvItem &); // Function getItemData will receive an
18 // InvItem structure passed to it by
19 // reference so new values can be stored
20 // in its member variables.
21
22 void showItem(const InvItem &);
23 // Function showItem will receive an
24 // InvItem structure passed to it as a
25 // constant reference because showItem
26 // just needs display member variable
27 // values, not change them.
28 int main()
29 {
30 InvItem part; // Define an InvItem structure variable.
31
32 getItemData(part);
33 showItem(part);
34 return 0;
35 }
36
37 /**
38 * getItemData *
39 * This function stores data input by the user in the members of an *
40 * InvItem structure variable passed to the function by reference. *
41 * **/
42 void getItemData(InvItem &item)
43 {
44 cout << "Enter the part number: ";
45 cin >> item.partNum;
46 cout << "Enter the part description: ";
47 cin.get(); // Move past the '\n' left in the
48 // input buffer by the last input.
49 getline(cin, item.description);
50 cout << "Enter the quantity on hand: ";
51 cin >> item.onHand;
52 cout << "Enter the unit price: ";
53 cin >> item.price;
54 }
55

(program continues)

Program 7-16 (continued)

446 Chapter 7 Introduction to Classes and Objects

Returning a Structure from a Function
A structure variable can also be returned from a function. In this case the return type of
the function is the name of the structure. Program 7-16 could have been written to allow
the getItemData function to create a local instance of an InvItem structure, place data
values into its member variables, and then pass it back to main, instead of receiving it
from main as a reference variable. This is what the revised getItemData function would
look like.

/***
 * getItemData *
 * This function stores data input by the user in the members *
 * of a local InvItem structure variable and then returns it. *
 * ***/

InvItem getItemData()
{

InvItem item; // Create a local InvItem variable
 // to hold data until it can be returned.
cout << "Enter the part number: ";
cin >> item.partNum;
cout << "Enter the part description: ";
cin.get(); // Move past the '\n' left in the
 // input buffer by the last input.
getline(cin, item.description);

56 /**
57 * showItem *
58 * This function displays the data stored in the members of an *
59 * InvItem structure variable passed to it as a constant reference. *
60 * **/
61 void showItem(const InvItem &item)
62 {
63 cout << fixed << showpoint << setprecision(2) << endl;;
64 cout << "Part Number : " << item.partNum << endl;
65 cout << "Description : " << item.description << endl;
66 cout << "Units On Hand: " << item.onHand << endl;
67 cout << "Price : $" << item.price << endl;
68 }

Program Output with Example Input Shown in Bold
Enter the part number: 800[Enter]
Enter the part description: Screwdriver[Enter]
Enter the quantity on hand: 135[Enter]
Enter the unit price: 1.25[Enter]

Part Number : 800
Description : Screwdriver
Units On Hand: 135
Price : $1.25

Program 7-16 (continued)

Structures 447

cout << "Enter the quantity on hand: ";
cin >> item.onHand;
cout << "Enter the unit price: ";
cin >> item.price;

return item;
}

And here is how it would be called from main.

part = getItemData();

This version of Program 7-16 can be found on the student CD as Program 7-16B.

Checkpoint
struct Rectangle
{

int length;
int width;

};

7.32 Write a function that accepts the Rectangle structure defined above as its argu-
ment and displays the structure’s contents on the screen.

7.33 Write a function that uses a Rectangle structure reference variable as its parameter
and stores the user’s input in the structure’s members.

7.34 Write a function that returns a Rectangle structure. The function should create a
local Rectangle variable, store the user’s input in its members, and then return it.

Unions
A union is like a structure, except all the member variables occupy the same memory area,
so only one member can be used at a time. A union might be used in an application where
the program needs to work with two or more values (of different data types), but only
needs to use one of the values at a time. Unions conserve memory by storing all their mem-
bers in the same memory location.

Unions are declared just like structures, except the key word union is used instead of
struct. Here is an example:

union PaySource
{

short hours;
float sales;

};

NOTE: In Chapter 6 you learned that C++ only allows you to return a single value
from a function. Structures, however, provide a way around this limitation. Even
though a structure may have several members, it is technically a single object. By
packaging multiple values inside a structure, you can return as many values as you need
from a function.

448 Chapter 7 Introduction to Classes and Objects

A union variable of the data type shown can then be defined like this:

PaySource employee1;

The PaySource union variable defined here has two members: hours (a short) and sales
(a float). The entire variable will only take up as much memory as the largest member (in this
case, a float). The way this variable is stored on a typical computer is illustrated in Figure 7-9.

As shown in Figure 7-9, this union uses four bytes on a typical computer. It can store a
short or a float, depending on which member is used. When a value is stored in the
sales member, all four bytes are needed to hold the data. When a value is stored in the
hours member, only the first two bytes are used. Obviously, both members can’t hold values
at the same time. This union is demonstrated in Program 7-17.

Figure 7-9

Program 7-17

1 // This program demonstrates a union.
2 #include <iostream>
3 #include <iomanip>
4 using namespace std;
5
6 union PaySource // Declare a union
7 {
8 short hours; // These two variables share
9 float sales; // the same memory space
10 };
11
12 int main()
13 {
14 PaySource employee1; // employee1 is a PaySource union
15 // This employee can have hours or
16 // sales, but not both at once
17
18 char hourlyType; // 'y' if hourly, 'n' if on commission
19 float payRate, grossPay;
20
21 cout << fixed << showpoint << setprecision(2);
22 cout << "This program calculates either hourly wages or "
23 << "sales commission.\n";
24 cout << "Is this an hourly employee (y or n)? ";
25 cin >> hourlyType;
26

(program continues)

employee1: a PaySource union variable

1st two bytes are used
by hours, a short

All four bytes are used by sales, a float

Home Software Company OOP Case Study 449

Everything else you already know about structures applies to unions.

7.14 Home Software Company OOP Case Study
You are a programmer for the Home Software Company assigned to develop a class that
models the basic workings of a bank account. The class should perform the following
tasks:

• Save the account balance.
• Save the number of transactions performed on the account.
• Allow deposits to be made to the account.
• Allow withrawals to be taken from the account.
• Calculate interest for the period.
• Report the current account balance at any time.
• Report the current number of transactions at any time.

27 if (hourlyType == 'y') // This is an hourly employee
28 {
29 cout << "What is the hourly pay rate? ";
30 cin >> payRate;
31 cout << "How many hours were worked? ";
32 cin >> employee1.hours;
33 grossPay = employee1.hours * payRate;
34 cout << "Gross pay: $" << grossPay << endl;
35 }
36 else // Employee works on commission
37 {
38 cout << "What are the total sales for this employee? ";
39 cin >> employee1.sales;
40 grossPay = employee1.sales * 0.10;
41 cout << "Gross pay: $" << grossPay << endl;
42 }
43 return 0;
44 }

Program Output with Example Input Shown in Bold
This program calculates either hourly wages or sales commission.
Is this an hourly employee (y or n)? y[Enter]
What is the hourly pay rate? 20[Enter]
How many hours were worked? 40[Enter]
Gross pay: $800.00

Program Output with Other Example Input Shown in Bold
This program calculates either hourly wages or sales commission.
Is this an hourly employee (y or n)? n[Enter]
What are the total sales for this employee? 5000[Enter]
Gross pay: $500.00

Program 7-17 (continued)

450 Chapter 7 Introduction to Classes and Objects

Private Member Variables
Table 7-2 lists the private member variables needed by the class.

Public Member Functions
Table 7-3 lists the public member functions in the class.

The Class Declaration
The following listing shows the class declaration.

Table 7-2 Private Member Variables of the Account Class

Variable Description

balance A double that holds the current account balance

intRate A double that holds the interest rate for the period

interest A double that holds the interest earned for the current period

transactions An integer that holds the current number of transactions

Table 7-3 Public Member Functions of the Account Class

Function Description

constructor Takes arguments to be initially stored in the balance and intRate
members. The default value for the balance is zero and the default value for
the interest rate is 0.045.

makeDeposit Takes a double argument that is the amount of the deposit. This argument
is added to balance.

withdraw Takes a double argument that is the amount of the withdrawal. This value
is subtracted from the balance, unless the withdrawal amount is greater
than the balance. If this happens, the function reports an error.

calcInterest Takes no arguments. This function calculates the amount of interest for the
current period, stores this value in the interest member, and then adds it
to the balance member.

getBalance Returns the current balance (stored in the balance member).

getInterest Returns the interest earned for the current period (stored in the interest
member).

getTransactions Returns the number of transactions for the current period (stored in the
transactions member).

Contents of Account.h
1 // File Account.h -- Account class specification file
2 class Account
3 {
4 private:
5 double balance;
6 double intRate;
7 double interest;
8 int transactions;
9

Home Software Company OOP Case Study 451

The withdraw Member Function
The only member function not defined inline in the class declaration is withdraw. The pur-
pose of that function is to subtract the amount of a withdrawal from the balance member.
If the amount to be withdrawn is greater than the current balance, however, no withdrawal
is made. The function returns true if the withdrawal is made or false if there is not enough
in the account.

10 public:
11
12 Account(double irate = 0.045, double bal = 0.0)
13 { balance = bal; intRate = irate;
14 interest = 0; transactions = 0;
15 }
16
17 void makeDeposit(double amount)
18 { balance += amount; transactions++;
19 }
20
21 bool withdraw(double amount); // Defined in account.cpp
22
23 void calcInterest()
24 { interest = balance * intRate; balance += interest;
25 }
26
27 double getBalance()
28 { return balance;
29 }
30
31 double getInterest()
32 { return interest;
33 }
34
35 int getTransactions()
36 { return transactions;
37 }
38 };

Contents of Account.cpp
1 // File Account.cpp -- Account class function implementation file
2 #include "Account.h"
3
4 bool Account::withdraw(double amount)
5 {
6 if (balance < amount)
7 return false; // Not enough in the account
8 else
9 {
10 balance -= amount;
11 transactions++;
12 return true;
13 }
14 }

452 Chapter 7 Introduction to Classes and Objects

The Class Interface
The balance, intRate, interest, and transactions member variables are private, so
they are hidden from the world outside the class. This is because a programmer with direct
access to these variables might unknowingly commit any of the following errors:

• A deposit or withdrawal might be made without the transactions member being
incremented.

• A withdrawal might be made for more than is in the account. This will cause the
balance member to have a negative value.

• The interest rate might be calculated and the balance member adjusted, but the
amount of interest might not get recorded in the intRate member.

• The wrong interest rate might be used.

Because of the potential for these errors, the class contains public member functions that
ensure the proper steps are taken when the account is manipulated.

Implementing the Class
Program 7-18 shows an implementation of the Account class. It presents a menu for dis-
playing a savings account’s balance, number of transactions, and interest earned. It also
allows the user to deposit an amount into the account, make a withdrawal from the
account, and calculate the interest earned for the current period. (Note that the CharRange
input validation class introduced earlier in this chapter is also used in the program.)

Program 7-18

1 // This client program uses the Account class to perform simple banking
2 // operations. This file should be combined into a project along with
3 // the Account.h, Account.cpp, CharRange.h, and CharRange.cpp files.
4 #include <iostream>
5 #include <iomanip>
6 #include <cctype>
7 #include "Account.h"
8 #include "CharRange.h"
9 using namespace std;
10
11 // Function prototypes
12 void displayMenu();
13 void makeDeposit(Account &);
14 void withdraw(Account &);
15
16 int main()
17 {
18 Account savings; // Account object to model savings account
19 CharRange input('A', 'G'); // CharRange object to do input validation
20 char choice;
21
22 cout << fixed << showpoint << setprecision(2);

(program continues)

Home Software Company OOP Case Study 453

23 do
24 {
25 displayMenu();
26 choice = input.getChar(); // This returns only an uppercase A - G
27 switch(choice)
28 {
29 case 'A': cout << "The current balance is $";
30 cout << savings.getBalance() << endl;
31 break;
32 case 'B': cout << "There have been ";
33 cout << savings.getTransactions()
34 << " transactions.\n";
35 break;
36 case 'C': cout << "Interest earned for this period: $";
37 cout << savings.getInterest() << endl;
38 break;
39 case 'D': makeDeposit(savings);
40 break;
41 case 'E': withdraw(savings);
42 break;
43 case 'F': savings.calcInterest();
44 cout << "Interest added.\n";
45 }
46 } while(choice != 'G');
47 return 0;
48 }
49
50 /**
51 * displayMenu *
52 * This function displays the user's menu on the screen. *
53 **/
54 void displayMenu()
55 {
56 cout << "\n MENU\n\n";
57 cout << "a) Display the account balance\n";
58 cout << "b) Display the number of transactions\n";
59 cout << "c) Display interest earned for this period\n";
60 cout << "d) Make a deposit\n";
61 cout << "e) Make a withdrawal\n";
62 cout << "f) Add interest for this period\n";
63 cout << "g) Exit the program\n\n";
64 cout << "Enter your choice: ";
65 }
66
67 /**
68 * makeDeposit *
69 * This function accepts a reference to an Account object. *
70 * The user is prompted for the dollar amount of the deposit, *
71 * and the makeDeposit member of the Account object is *
72 * then called. *
73 **/
74 void makeDeposit(Account &account)
75 {
76 double dollars;
77

(program continues)

Program 7-18 (continued)

454 Chapter 7 Introduction to Classes and Objects

78 cout << "Enter the amount of the deposit: ";
79 cin >> dollars;
80 cin.ignore();
81 account.makeDeposit(dollars);
82 }
83
84 /**
85 * withdraw *
86 * This function accepts a reference to an Account object. *
87 * The user is prompted for the dollar amount of the withdrawal,*
88 * and the withdraw member of the Account object is then called.*
89 **/
90 void withdraw(Account &account)
91 {
92 double dollars;
93
94 cout << "Enter the amount of the withdrawal: ";
95 cin >> dollars;
96 cin.ignore();
97 if (!account.withdraw(dollars))
98 cout << "ERROR: Withdrawal amount too large.\n\n";
99 }

Program Output with Example Input Shown in Bold
 Menu

 a) Display the account balance
 b) Display the number of transactions
 c) Display interest earned for this period
 d) Make a deposit
 e) Make a withdrawal
 f) Add interest for this period
 g) Exit the program

 Enter your choice: d[Enter]
 Enter the amount of the deposit: 500[Enter]

 Menu
 a) Display the account balance
 b) Display the number of transactions
 c) Display interest earned for this period
 d) Make a deposit
 e) Make a withdrawal
 f) Add interest for this period
 g) Exit the program

 Enter your choice: a[Enter]
 The current balance is $500.00

 Menu
 a) Display the account balance
 b) Display the number of transactions
 c) Display interest earned for this period
 d) Make a deposit
 e) Make a withdrawal
 f) Add interest for this period
 g) Exit the program

 Enter your choice: e[Enter]
 Enter the amount of the withdrawal: 700[Enter]
 ERROR: Withdrawal amount too large.

(program output continues)

Program 7-18 (continued)

Introduction to Object-Oriented Analysis and Design 455

7.15 Introduction to Object-Oriented Analysis
and Design
The planning phase of any program’s development is extremely important. It is during this
phase that the programmer carefully examines the program requirements and determines
what the program must be able to do. In OOP terminology, this phase of program develop-
ment is known as the object-oriented analysis phase. It is during this time that the
programmer determines what classes will be used.

 Menu
 a) Display the account balance
 b) Display the number of transactions
 c) Display interest earned for this period
 d) Make a deposit
 e) Make a withdrawal
 f) Add interest for this period
 g) Exit the program

 Enter your choice: e[Enter]
 Enter the amount of the withdrawal: 200[Enter]

 Menu
 a) Display the account balance
 b) Display the number of transactions
 c) Display interest earned for this period
 d) Make a deposit
 e) Make a withdrawal
 f) Add interest for this period
 g) Exit the program

 Enter your choice: f[Enter]
 Interest added.

 Menu
 a) Display the account balance
 b) Display the number of transactions
 c) Display interest earned for this period
 d) Make a deposit
 e) Make a withdrawal
 f) Add interest for this period
 g) Exit the program

 Enter your choice: a[Enter]
 The current balance is: $313.50

 Menu
 a) Display the account balance
 b) Display the number of transactions
 c) Display interest earned for this period
 d) Make a deposit
 e) Make a withdrawal
 f) Add interest for this period
 g) Exit the program

 Enter your choice: g[Enter]

Program 7-18 (continued)

456 Chapter 7 Introduction to Classes and Objects

The process of object-oriented analysis includes the following steps:

1. Identify the classes and objects to be used in the program.
2. Define the attributes for each class.
3. Define the behaviors for each class.
4. Define the relationships between classes.

Let’s look at each step more closely.

1. Identify the Classes and Objects.
Remember, a class is a package that consists of data and procedures that perform operations
on the data. In order to determine the classes that will appear in a program, the programmer
should think of the major data elements and decide what procedures or actions are required
for each class. For example, consider a restaurant that uses an object-oriented program to
enter customer orders. A customer order is a list of menu items with their respective prices.
The restaurant uses this list to charge the customer, so a class could be created to model it.
Also, the restaurant’s menu has several main entrees, appetizers, side dishes, and beverages to
choose from. A class could be designed to represent menu items as well.

Classes can be easily designed to model real-world objects, such as customer orders and a
restaurant’s menu items. Here are some other types of items that may be candidates for
classes in a program:

• User-interface components, such as windows, menus, and dialog boxes
• Input/output devices, such as the keyboard, mouse, display, and printer
• Physical objects, such as vehicles, machines, or manufactured products
• Recordkeeping items, such as customer histories, and payroll records
• A role played by a human (employee, client, teacher, student, and so forth).

2. Define Each Class’s Attributes.
A class’s attributes are the data elements used to describe an object instantiated from the
class. They are all the values needed for the object to function properly in the program. Using
the restaurant example, here is the beginning of a possible specification for a menuItem class.

Class name: MenuItem

Attributes: itemName
price
category // 1 = appetizer, 2 = salad, 3 = entrée

 // 4 = side dish, 5 = dessert, 6 = beverage

And here is the beginning of a possible specification for a CustomerOrder class.

Class name: CustomerOrder

Attributes: orderNumber
tableNumber
serverNumber
date
items // a list of MenuItem objects
totalPrice
tip

Introduction to Object-Oriented Analysis and Design 457

3. Define Each Class’s Behaviors.
Once the class’s attributes have been defined, the programmer must identify the activities,
or behaviors, each class must be capable of performing. For example, some of the the
activities the MenuItem class should be able to perform include

• changing a price
• displaying a price

Some of the activities the CustomerOrder class should be able to perform include

• accepting the information for a new order
• adding an item to an existing order
• returning any information on a previously stored order
• calculating the total price of all items on an order
• printing a list of ordered items for the kitchen
• printing a bill for the patron.

In C++, a class’s behaviors are its member functions.

4. Define the Relationships Between Classes.
The last step in our object-oriented analysis phase is to define the relationships that exist
between and among the classes in a program. The possible relationships may be formally
stated as

• Access
• Ownership (Composition)
• Inheritance.

Informally, these three relationships can be described as

• Uses-a
• Has-a
• Is-a.

The first relationship, access, allows an object to modify the attributes of another object.
Normally, an object has attributes not accessible to parts of the program outside the
object. These are known as private attributes. An access relationship between two objects
means that one object will have access to the other object’s private attributes. When this
relationship exists, it can be said that one object uses the other.

The second relationship, ownership, means that one object has another object as one of its
members. For example, in our restaurant example, the CustomerOrder class has a list of
MenuItem objects as one of its attributes. In OOP terminology, this type of relationship is
also called composition.

The third relationship is inheritance. Sometimes a class is based on another class. This
means that one class is a specialized case of the other. For example, consider a program
that uses classes representing cars, trucks, and jet planes. Although those three types of
classes in the real world are very different, they have many common characteristics: They
are all modes of transportation, and they all carry some number of passengers. So each of
the three classes could be based on a Vehicle class that has attributes and behaviors com-
mon to them all. This is illustrated in Figure 7-10.

458 Chapter 7 Introduction to Classes and Objects

In OOP terminology, the Vehicle class is the base class and the Car, Truck and Jet Plane
classes are derived classes. All of the attributes and behaviors of the Vehicle class are inher-
ited by the Car, Truck, and Jet Plane classes. The relationship implies that a car is a vehicle,
a truck is a vehicle and a jet plane is a vehicle.

In addition to inheriting the attributes and behaviors of the base class, derived classes add
their own. For example, the Car class might have attributes and behaviors that set and
indicate the number of passengers it can carry, whether it is a sedan or a coupe, and the
type of engine it has. The truck class might have attributes and behaviors that set and indi-
cate the maximum amount of weight it can carry, and how many miles it can travel
between refuelings. The Jet Plane class might have attributes and behaviors that set and
indicate its altitude and heading. These added components of the derived classes make
them more specialized than the base class.

These three types of relationships between classes, access, ownership, and inheritance, are
discussed further in Chapter 11.

Once an enterprise and its operations have been analyzed, each class can be designed, and
a set of programs can be developed to automate some of these operations.

Finding the Classes
Let’s look further at step 1 in the analysis process: identifying the classes. Over the years,
software professionals have developed numerous techniques for doing this, but they all
involve identifying the different types of real-world objects present in the problem, so that
classes can be created for them. One simple and popular technique involves the following
steps:

1. Get a written description of the problem domain.
2. Identify all the nouns (including pronouns and noun phrases) in the description. Each

of these is a potential class.
3. Refine the list to include only the classes that are relevant to the problem.

Let’s take a closer look at each of these steps.

Write a Description of the Problem Domain

The problem domain is the set of real-world objects, parties, and major events related to the
problem. If you adequately understand the nature of the problem you are trying to solve, you
can write a description of the problem domain yourself. If you do not thoroughly understand
the nature of the problem, you should have an expert write the description for you.

For example, suppose we are programming an application that the manager of Joe’s Auto-
motive Shop will use to print service quotes for customers. Here is a description that an
expert, perhaps Joe himself, might have written:

Figure 7-10

Vehicle

TruckCar Jet Plane

Introduction to Object-Oriented Analysis and Design 459

Joe’s Automotive Shop services foreign cars and specializes in servicing cars made by Mer-
cedes, Porsche, and BMW. When a customer brings a car to the shop, the manager gets the
customer’s name, address, and telephone number. The manager then determines the make,
model, and year of the car, and gives the customer a service quote. The service quote shows
the estimated parts charges, estimated labor charges, sales tax, and total estimated charges.

The problem domain description should include any of the following:

• Physical objects such as vehicles, machines, or products
• Any role played by a person, such as manager, employee, customer, teacher or student.
• The results of a business event, such as a customer order, or in this case a service

quote
• Record-keeping items, such as customer histories and payroll records.

Identify All of the Nouns

The next step is to identify all of the nouns and noun phrases. (If the description contains
pronouns, include them too.) Here’s another look at the previous problem domain descrip-
tion. This time the nouns and noun phrases appear in bold.

Joe’s Automotive Shop services foreign cars, and specializes in servicing cars made by
Mercedes, Porsche, and BMW. When a customer brings a car to the shop, the manager
gets the customer’s name, address, and telephone number. The manager then deter-
mines the make, model, and year of the car, and gives the customer a service quote.
The service quote shows the estimated parts charges, estimated labor charges, sales
tax, and total estimated charges.

Notice that some of the nouns are repeated. The following lists all of the nouns without
duplicating any of them.

Refine the List of Nouns

The nouns that appear in the problem description are merely candidates to become classes.
It might not be necessary to make classes for them all. The next step is to refine the list
to include only the classes that are necessary to solve the particular problem at hand.
We will look at the common reasons that a noun can be eliminated from the list of
potential classes.

Some of the nouns really mean the same thing.

In this example, the following sets of nouns refer to the same thing:

• cars and foreign cars both refer to the general concept of a car.
• Joe’s Automotive Shop and shop both refer to the same shop.

address
BMW
car
cars
customer
estimated labor charges
estimated parts charges

foreign cars
Joe’s Automotive Shop
make
manager
Mercedes
model
name

Porsche
sales tax
service quote
shop
telephone number
total estimated charges
year

460 Chapter 7 Introduction to Classes and Objects

We can settle on a single class for each of these. In this example we will arbitrarily eliminate
foreign cars from the list, and use the word cars. Likewise we will eliminate Joe’s Automotive
Shop from the list and use the word shop. The updated list of potential classes is:

Some nouns might represent items that we do not need to be concerned with in order
to solve the problem.

Next review the problem description and eliminate any unnecessary classes.

• We can cross shop off the list because our application only needs to be concerned
with individual service quotes. It doesn’t need to work with or determine any
company-wide information. If the problem description asked us to keep a total of all
the service quotes, then it would make sense to have a class for the shop.

• We will also not need a class for the manager because the problem statement does
not ask us to process any information about the manager. If there were multiple shop
managers, and the problem description asked us to record which manager wrote
each service quote, it would make sense to have a class for the manager.

The updated list of potential classes at this point is:

Some of the nouns might represent objects, not classes.

We can eliminate Mercedes, Porsche, and BMW as classes because, in this example, they
all represent specific cars, and can be considered instances of a cars class. Also, we can
eliminate the word car from the list. In the description it refers to a specific car brought to
the shop by a customer. Therefore, it would also represent an instance of a cars class. At
this point the updated list of potential classes is:

address
BMW
car
cars
customer
estimated labor charges
estimated parts charges

foreign cars
Joe’s Automotive Shop
make
manager
Mercedes
model
name

Porsche
sales tax
service quote
shop
telephone number
total estimated charges
year

address
BMW
car
cars
customer
estimated labor charges
estimated parts charges

foreign cars
Joe’s Automotive Shop
make
manager
Mercedes
model
name

Porsche
sales tax
service quote
shop
telephone number
total estimated charges
year

address
BMW
car
cars
customer
estimated labor charges
estimated parts charges

foreign cars
Joe’s Automotive Shop
make
manager
Mercedes
model
name

Porsche
sales tax
service quote
shop
telephone number
total estimated charges
year

Introduction to Object-Oriented Analysis and Design 461

Some of the nouns might represent simple values that can be stored in a variable
and do not require a class.

Remember, a class contains attributes and member functions. Attributes are related items,
stored within an object of the class, that define the object’s state. Member functions are
actions or behaviors that may be performed by an object of the class. If a noun represents a
type of item that would not have any identifiable attributes or member functions, then it can
probably be eliminated from the list. To help determine whether a noun represents an item
that would have attributes and member functions, ask the following questions about it:

• Would you use a group of related values to represent the item’s state?
• Are there any obvious actions to be performed by the item?

If the answers to both of these questions are no, then the noun probably represents a value
that can be stored in a simple variable. If we apply this test to each of the nouns that
remain in our list, we can conclude that the following are probably not classes: address,
estimated labor charges, estimated parts charges, make, model, name, sales tax, telephone
number, total estimated charges and year. These are all simple string or numeric values that
can be stored in variables. Here is the updated list of potential classes:

As you can see from the list, we have eliminated everything except cars, customer, and
service quote. This means that in our application, we will need classes to represent cars,
customers, and service quotes. Ultimately, we will write a Car class, a Customer class,
and a ServiceQuote class.

Identifying Class Responsibilities
Once the classes have been identified, the next task is to identify each class’s responsibilities.
Class responsibilities are

• the things that the class is responsible for knowing
• the actions that the class is responsible for doing

When you have identified the things that a class is responsible for knowing, then you have
identified the class’s attributes. Likewise, when you have identified the actions that a class
is responsible for doing, you have identified its member functions.

NOTE: Some object-oriented designers take note of whether a noun is plural or singular.
Sometimes a plural noun will indicate a class and a singular noun will indicate an object.

address
BMW
car
cars
customer
estimated labor charges
estimated parts charges

foreign cars
Joe’s Automotive Shop
make
manager
Mercedes
model
name

Porsche
sales tax
service quote
shop
telephone number
total estimated charges
year

462 Chapter 7 Introduction to Classes and Objects

It is often helpful to ask the questions “In the context of this problem, what must the class
know? What must the class do?” The first place to look for the answers is in the descrip-
tion of the problem domain. Many of the things that a class must know and do will be
mentioned. Some class responsibilities, however, might not be directly mentioned in the
problem domain, so additional analysis is often required. Let’s apply this methodology to
the classes we previously identified from our problem domain.

The Customer Class

In the context of our problem domain, what must the Customer class know? The descrip-
tion directly mentions the following items, which are all attributes of a customer:

• the customer’s name
• the customer’s address
• the customer’s telephone number.

These are all values that can be represented as strings and stored in the class’s member vari-
ables. The Customer class can potentially know many other things. One mistake that can
be made at this point is to identify too many things that an object is responsible for knowing.
In some applications, a Customer class might know the customer’s email address. This
particular problem domain does not mention that the customer’s email address is used for
any purpose, so we should not include it as an attribute.

Now let’s identify the class’s member functions. In the context of our problem domain,
what must the Customer class do? The only obvious actions are:

• create an object of the Customer class
• set and get the customer’s name
• set and get the customer’s address
• set and get the customer’s telephone number.

From this list we can see that the Customer class will need a constructor, as well as accessor
and mutator functions for each of its attributes.

The Car Class

In the context of our problem domain, what must an object of the Car class know? The
following items are all attributes of a car, and are mentioned in the problem domain:

• the car’s make
• the car’s model
• the car’s year.

Now let’s identify the class’s member functions. In the context of our problem domain,
what must the Car class do? Once again, the only obvious actions are the standard set of
member functions that we will find in most classes (constructors, accessors, and mutators).
Specifically, the actions are:

• create an object of the Car class
• set and get the car’s make
• set and get the car’s model
• set and get the car’s year.

Introduction to Object-Oriented Analysis and Design 463

The ServiceQuote Class

In the context of our problem domain, what must an object of the ServiceQuote class
know? The problem domain mentions the following items:

• the estimated parts charges
• the estimated labor charges
• the sales tax
• the total estimated charges.

Careful thought will reveal that two of these items are the results of calculations: sales tax
and total estimated charges. These items are dependent on the values of the estimated parts
and labor charges. In order to avoid the risk of holding stale data, we will not store these
values in member variables. Rather, we will provide member functions that calculate these
values and return them. The other member functions that we will need for this class are a
constructor and the accessors and mutators for the estimated parts charges and estimated
labor charges attributes.

Object Reusability
We have mentioned several advantages offered by object-oriented programming. Still
another is object reusability. A class is not a stand-alone program. It is a mechanism for
creating objects used by programs that need its service. Ideally, a class created for use in
one program can be made general enough to be used by other programs as well. For example,
the Customer class can be designed to create objects used by many different applications
that have customers. The Car class can be designed to create objects used by many different
programs that involve vehicles.

Object-Oriented vs. Object-Based Programming
Although classes and objects form the basis of object-oriented programming, by themselves
they are not sufficient to constitute true object-oriented programming. Using them might
more correctly be referred to as object-based programming. When we add the ability to
define relationships among different classes of objects, to create classes of objects from other
classes (inheritance) and to determine the behavior of a member function depending on
which object calls it (polymorphism), it becomes true object-oriented programming. You will
learn about these more advanced object-oriented programming features later in the book.

Checkpoint

7.35 What is a problem domain?

7.36 When designing an object-oriented application, who should write a description of
the problem domain?

7.37 How do you identify the potential classes in a problem domain description?

7.38 What two questions should you ask to determine a class’s responsibilities?

7.39 Look at the following description of a problem domain:

A doctor sees patients in her practice. When a patient comes to the practice, the
doctor performs one or more procedures on the patient. Each procedure that the
doctor performs has a description and a standard fee. As the patient leaves the prac-
tice, he or she receives a statement from the office manager. The statement shows
the patient’s name and address, as well as the procedures that were performed, and
the total charge for the procedures.

464 Chapter 7 Introduction to Classes and Objects

Assume that you are writing an application to generate a statement that can be
printed and given to the patient.

A) Identify all of the potential classes in this problem domain.
B) Refine the list to include only the necessary class or classes for this problem.
C) Identify the responsibilities of the class or classes that you identified in step B.

7.16 Screen Control

CONCEPT: Operating system functions allow you to control how output appears on
the console screen.

Positioning the Cursor on the Screen
In Chapter 5’s Tying It All Together section you learned that C++ compilers provide special
libraries for calling on operating system functions. So far, in Chapters 5 and 6, we have
used the Windows SetConsoleTextAttribute function to display screen output in color.
Now we will look at a Windows operating system function for positioning the cursor on
the screen. This function is SetConsoleCursorPosition.

Until now, all the programs you have created display output beginning on the top line of
the screen. They then move down the screen, one line at a time, when the user presses the
[Enter] key or when the program outputs an endl or "\n". But what if you are writing on
the fifth row of the screen and want to go back to the second row? Or what if you want to
display something in the very middle of the screen? You can do these things on a Windows
system by using the SetConsoleCursorPosition function to move the cursor to the
desired location before writing the output.

To use this function, you will need to do the same two things you did in Chapters 5 and 6
to use color. You must

• #include <windows.h> in your program.
• Create a handle to the standard output screen by including the following definition in

your program.

HANDLE screen = GetStdHandle(STD_OUTPUT_HANDLE);

A typical text screen has 25 rows, or lines, with 80 print positions per row. Each of these
positions is called a cell. A cell is a little block that can display a single character and it is
identified by its row number and its position on that row. The rows range from 0 to 24,
with 0 being the top row of the screen. The print positions on each row, usually referred to
as columns, range from 0 to 79, with 0 being at the far left-hand side. The row and column
of a cell, which identifies its location on the screen, are called its coordinates.

NOTE: Recall from Chapter 5 that operating system functions are tailored to specific
operating systems. So programs that use them will only run on the system for which they
were written. The functions described here work with Windows 2000, XP, Vista, and 7. If
you are using Linux or Mac OS, your instructor may be able to provide you with similar
functions that work on those systems.

Screen Control 465

To place the cursor in a specific screen cell, you must specify its cell coordinates by setting
two variables in a COORD structure that is already defined in Windows. This structure has
two member variables named X and Y, with X holding the column and Y holding the row.
Here is what the structure looks like.

struct COORD
{
 short int X; // Column position
 short int Y; // Row position
};

Here is how you use it. The following code segment writes the word Hello centered on the
standard output screen.

HANDLE screen = GetStdHandle(STD_OUTPUT_HANDLE);
COORD position; // position is a COORD structure

position.X = 38; // Set column near screen center
position.Y = 11; // Set row near screen center
 // Place cursor there, then print
SetConsoleCursorPosition(screen, position);
cout << "Hello" << endl;

Program 7.19 positions the cursor to display a set of nested boxes near the center of the
screen. Notice that it uses the Sleep function, previously seen in Chapter 5 and Chapter 6’s
Tying it All Together programs. This function pauses the program execution for part of a
second so things do not happen too fast for the user to see them. The argument passed to
the function tells it how many milliseconds it should pause. A millisecond is a thousandth
of a second. So, for example, to pause execution of a program for a half second the following
function call would work.

Sleep(500);

Program 7.19 uses the command Sleep(750) to pause the program execution for of a
second after each box displays.

NOTE: When you set a screen position, you must follow all output that your program
writes there with an endl. This is necessary to ensure that the output is actually displayed
at this location. If you do not use an endl, the output may be buffered and written to the
screen much later, after the cursor position has changed. Following your output with the
new line character '\n' does not work because it does not flush the screen buffer like
endl does.

Program 7-19

1 // This program demonstrates the use of Windows functions
2 // for positioning the cursor. It displays a series of nested
3 // boxes near the center of the screen.
4 #include <iostream>
5 #include <windows.h> // Needed to set cursor positions & call Sleep
6 using namespace std;
7

(program continues)

3
4

466 Chapter 7 Introduction to Classes and Objects

8 void placeCursor(HANDLE, int, int); // Function prototypes
9 void printStars(int);
10
11 int main()
12 {
13 const int midRow = 12,
14 midCol = 40,
15 numBoxes = 3;
16 int width, startRow, endRow;
17
18 // Get the handle to standard output device (the console)
19 HANDLE screen = GetStdHandle(STD_OUTPUT_HANDLE);
20
21 // Each loop prints one box
22 for (int box = 1, height = 1; box <= numBoxes; box++, height+=2)
23 { startRow = midRow - box;
24 endRow = midRow + box;
25 width = box*5 + (box+1)%2; // Adds 1 if box*5 is an even number
26
27 // Draw box top
28 placeCursor(screen, startRow, midCol-width/2);
29 printStars(width);
30
31 // Print box sides
32 for (int sideRow = 1; sideRow <= height; sideRow++)
33 { placeCursor(screen, startRow + sideRow, midCol-width/2);
34 cout << '*' << endl;
35 placeCursor(screen, startRow + sideRow, midCol+width/2);
36 cout << '*' << endl;
37 }
38 // Draw box bottom
39 placeCursor(screen, endRow, midCol-width/2);
40 printStars(width);
41
42 Sleep(750); // Pause 3/4 second between boxes displayed
43 }
44
45 placeCursor(screen, 20, 0); // Move cursor out of the way
46 return 0;
47 }
48
49 /**
50 * placeCursor *
51 **/
52 void placeCursor(HANDLE screen, int row, int col)
53 { // COORD is a defined C++ structure that
54 COORD position; // holds a pair of X and Y coordinates
55 position.Y = row;
56 position.X = col;
57 SetConsoleCursorPosition(screen, position);
58 }
59

(program continues)

Program 7-19 (continued)

Screen Control 467

Creating a Screen Input Form
Program 7-19 is fun to run, but Program 7-20 demonstrates a more practical application
of positioning the cursor on the screen. Instead of prompting the user to input a series of
entries one prompt at a time, we can design a screen input form. This more professional
looking way of getting input from the user involves creating and displaying a screen that
shows all the prompts at once. The cursor is then placed beside a particular prompt the
user is expected to respond to. When the user enters the data for this prompt and presses
[Enter], the cursor moves to the next prompt.

60 /**
61 * printStars *
62 **/
63 void printStars(int numStars)
64 {
65 for (int star = 1; star <= numStars; star++)
66 cout << '*';
67 cout << endl;
68 }

Program Output

 * *********** *
 * * ***** * *
 * * * * * *
 * * ***** * *
 * *********** *

Program 7-20

1 // This program uses a screen input form to get information
2 // from the user.
3 #include <iostream>
4 #include <windows.h> // Needed to set cursor positions
5 #include <string>
6 using namespace std;
7
8 struct UserInfo
9 { string name;
10 int age;
11 char gender;
12 };
13
14 void placeCursor(HANDLE, int, int); // Function prototypes
15 void displayPrompts(HANDLE);
16 void getUserInput(HANDLE, userInfo&);
17 void displayData (HANDLE, userInfo);
18

(program continues)

Program 7-19 (continued)

468 Chapter 7 Introduction to Classes and Objects

19 int main()
20 {
21 userInfo input; // input is a UserInfo structure
22 // that has 3 member variables
23
24 // Get the handle to standard output device (the console)
25 HANDLE screen = GetStdHandle(STD_OUTPUT_HANDLE);
26
27 displayPrompts(screen);
28 getUserInput(screen, input);
29 displayData (screen, input);
30
31 return 0;
32 }
33
34 /**
35 * placeCursor *
36 **/
37 void placeCursor(HANDLE screen, int row, int col)
38 { // COORD is a defined C++ structure that
39 COORD position; // holds a pair of X and Y coordinates
40 position.Y = row;
41 position.X = col;
42 SetConsoleCursorPosition(screen, position);
43 }
44
45 /**
46 * displayPrompts *
47 **/
48 void displayPrompts(HANDLE screen)
49 {
50 placeCursor(screen, 3, 25);
51 cout << "******* Data Entry Form *******" << endl;
52 placeCursor(screen, 5, 25);
53 cout << "Name: " << endl;
54 placeCursor(screen, 7, 25);
55 cout << "Age: Gender (M/F): " << endl;
56 }
57
58 /**
59 * getUserInput *
60 **/
61 void getUserInput(HANDLE screen, userInfo &input)
62 {
63 placeCursor(screen, 5, 31);
64 getline(cin, input.name);
65 placeCursor(screen, 7, 30);
66 cin >> input.age;
67 placeCursor(screen, 7, 55);
68 cin >> input.gender;
69 }

(program continues)

Program 7-20 (continued)

469

7.17 Tying It All Together: Yoyo Animation

With what you have learned in this chapter you can now create simple text-based graphics.
To do that, simply arrange characters in different patterns to form images on the screen.
Then animate those images, giving the illusion of motion, by erasing them from their old
position and redisplaying them somewhere else on the screen. To erase a character from the
screen simply write a blank " " on top of it.
Program 7-21 uses Windows operating system functions to simulate a yoyo unwinding and
then winding back up. The Sleep function is used to pause execution between moves, so
that the user can watch the motion taking place.

70
71 /**
72 * displayData *
73 **/
74 void displayData(HANDLE screen, userInfo input)
75 {
76 placeCursor(screen, 10, 0);
77 cout << "Here is the data you entered.\n";
78 cout << "Name : " << input.name << endl;
79 cout << "Age : " << input.age << endl;
80 cout << "Gender: " << input.gender << endl;
81 }

Initial Screen Display
 ******* Data Entry Form *******

 Name:

 Age: Gender (M/F):

Program Output with Example Input Shown in Bold

 ******* Data Entry Form *******

 Name: Mary Beth Jones[Enter]

 Age: 19[Enter] Gender (M/F): F[Enter]

Here is the data you entered.
Name : Mary Beth Jones
Age : 19
Gender: F

Program 7-20 (continued)

Tying It All Together: Yoyo Animation

470 Chapter 7 Introduction to Classes and Objects

You will need to run the program to see the animation as the yoyo unwinds and then winds
back up on its string.

:
:
:
:
0

Program 7-21

1 // This program creates a simple animation using Windows
2 // functions to simulate a yoyo moving down and up.
3 #include <iostream>
4 #include <windows.h> // Needed to set cursor positions
5 using namespace std;
6
7 int main()
8 {
9 HANDLE screen = GetStdHandle(STD_OUTPUT_HANDLE);
10 COORD pos = {40, 3}; // Start position
11 SetConsoleCursorPosition(screen, pos);
12 cout << "O" << endl;
13 Sleep(500);
14
15 // Watch the yoyo go down & back up 3 times
16 for (int tossIt = 1; tossIt <= 3; tossIt++)
17 {
18 // Yoyo unwinds
19 while (pos.Y <= 20) // pos.Y is the row
20 {
21 // Move the yoyo down 1 position and then pause
22 SetConsoleCursorPosition(screen, pos);
23 cout << "|" << endl;
24 pos.Y++;
25 SetConsoleCursorPosition(screen, pos);
26 cout << "O" << endl;
27 Sleep(100);
28 }
29
30 // Yoyo winds back up
31 while (pos.Y > 3)
32 {
33 // Erase character at current position
34 // Move yoyo up one position, then pause
35 SetConsoleCursorPosition(screen, pos);
36 cout << " " << endl;
37 pos.Y --;
38 SetConsoleCursorPosition(screen, pos);
39 cout << "O" << endl;
40 Sleep(100);
41 }
42 }
43 return 0;
44 }

Chapter 7 Introduction to Classes and Objects

Review Questions and Exercises 471

Review Questions and Exercises

Fill-in-the-Blank and Short Answer

1. What does ADT stand for?

2. Which of the following must a programmer know about an ADT to use it?

A) What values it can hold
B) What operations it can perform
C) How the operations are implemented

3. The two common programming methods in practice today are _________ and
_________.

4. ____________ programming is centered around functions, or procedures, whereas
___________ programming is centered around objects.

5. An object is a software entity that combines both __________ and ____________in a
single unit.

6. An object is a(n) ______________ of a class.

7. Creating a class object is often called the _____________ of a class.

8. Once a class is declared, how many objects can be created from it?

A) 1
B) 2
C) Many

9. An object’s data items are stored in its ___________________________________.

10. The procedures, or functions, an object performs are called its _________________.

11. Bundling together an object’s data and procedures is called ___________________.

12. An object’s members can be declared public or private.
A public member can be accessed by ____________________________________.
A private member can be accessed by ____________________________________.

13. Normally a class’s _______________________________ are declared to be private
and its ___ are declared to be public.

14. A class member function that uses, but does not change, the value of a member vari-
able is called a(n) ___________.

15. A class member function that changes the value of a member variable is called a(n)
____________.

16. When a member function’s body is written inside a class declaration, the function is
a(n) _________ function.

17. A class constructor is a member function with the same name as the _________.

18. A constructor is automatically called when an object is _________.

19. Constructors cannot have a(n) _________ type.

20. A(n) _________ constructor is one that requires no arguments.

472 Chapter 7 Introduction to Classes and Objects

21. A destructor is a member function that is automatically called when an object is
_________.

22. A destructor has the same name as the class, but is preceded by a(n) _________
character.

23. A constructor whose parameters all have default values is a(n) _________ constructor.

24. A class may have more than one constructor, as long as each has a different
_________.

25. A class may only have one default _________ and one _________.

26. In general it is considered good practice to have member functions avoid doing
_________.

27. When a member function forms part of the interface through which a client program
can use the class, the function must be _____________.

28. When a member function performs a task internal to the class and should not be
called by a client program, the function should be made ___________.

29. True or false: A class object can be passed to a function, but cannot be returned by a
function.

30. True or false: C++ class objects are always passed to functions by reference.

31. It is considered good programming practice to store the declaration for a class, its
function definitions, and the client program that uses the class in __________________
files.

32. If you were writing a class declaration for a class named Canine and wanted to place
it in its own file, what should you name the file? ___________________

33. If you were writing the definitions for the Canine class member functions and wanted
to place these in their own file, what should you name the file? ____________________

34. A structure is like a class, but normally only contains member variables and no
_______________________.

35. By default, are the members of a structure public or private? _____________________

36. Before a structure variable can be created, the structure must be __________________.

37. When a structure variable is created its members can be initialized with either a(n)
________________________ or a(n) __________________________.

38. The __________ operator is used to access structure members.

39. An Inventory structure is declared as follows:

struct Inventory
{

int itemCode;
int qtyOnHand;

};

Write a definition statement that creates an Inventory variable named trivet and
initializes it with an initialization list so that its code is 555 and its quantity is 110.

Review Questions and Exercises 473

40. A Car structure is declared as follows:

struct Car
{

string make,
 model;
int year;
double cost;

Car(string mk, string md, int y, double c)
{ make = mk; model = md; year = y; cost = c; }

};

Write a definition statement that defines a Car structure variable initialized with the
following information:

Make: Ford Model: Mustang
Year: 2010 Cost: $22,495

41. Declare a structure named TempScale, with the following members:

fahrenheit: a double
celsius: a double

Next, declare a structure named Reading, with the following members:

windSpeed: an int
humidity: a double
temperature: a TempScale structure variable

Next, define a Reading structure variable named today.

Now write statements that will store the following data in the Reading variable.

Wind speed: 37 mph
Humidity: 32%
Fahrenheit temperature: 32 degrees
Celsius temperature: 0 degrees

42. Write a function called showReading. It should have a parameter that accepts a
Reading structure variable (see question 41) and should display the values of the
structure’s member variables on the screen.

43. Write a function called inputReading that has a parameter to accept a Reading
structure reference variable (see question 41). The function should ask the user to
enter values for each member of the structure.

44. Write a function called getReading, which returns a Reading structure (see question 41).
The function should ask the user to enter values for each member of a Reading structure,
and then return the structure.

45. Write the declaration of a union called Items with the following members. Then
define an Items union variable named anItem.

alpha: a character // 1 byte
num: an integer // 4 bytes
bigNum: a long integer // 4 bytes
real: a double // 8 bytes

46. How many bytes of memory will be allocated for anItem?

474 Chapter 7 Introduction to Classes and Objects

Algorithm Workbench

47. Assume a class named Inventory keeps track of products in stock for a company. It
has member variables prodID, prodDescription, and qtyInStock. Write a con-
structor that initializes a new Inventory object with the values passed as arguments,
but which also includes a reasonable default value for each parameter.

48. Write a remove member function that accepts an argument for a number of units and
removes that number of units of an item from inventory. If the operation is completed
successfully it should return the number of units remaining in stock for that item.
However, if the number of units passed to the function is less than the number of units
in stock, it should not make the removal and should return –1 as an error signal.

Find the Errors

Each of the following declarations, programs, and program segments has errors. Locate as
many as you can.

49. A) struct
{ int x;

double y;
};

B) struct Values
{ string name;

int age;
}

50. A) struct TwoVals
{

int a, b;
};
int main()
{

TwoVals.a = 10;
TwoVals.b = 20;
return 0;

}

B) #include <iostream>
using namespace std;

struct ThreeVals
{

int a, b, c;
void ThreeVals()
{a = 1; b = 2; c = 3;}

};
int main()
{

ThreeVals vals;
cout << vals << endl;
return 0;

}

Review Questions and Exercises 475

51. A) struct Names
{ string first;

string last;
};
int main()
{

Names customer ("Smith", "Orley");
cout << Names.first << endl;
cout << Names.last << endl;
return 0;

}

B) struct TwoVals
{

int a = 5;
int b = 10;

};

int main()
{

TwoVals v;
cout << v.a << " " << v.b;
return 0;

}

52. A) class Circle:
{
private

double centerX;
double centerY;
double radius;

public
setCenter(double, double);
setRadius(double);

}

B) #include <iostream>
using namespace std;
Class Moon;
{
Private;

double earthWeight;
double moonWeight;

Public;
moonWeight(double ew);// Constructor

 { earthWeight = ew; moonWeight = earthWeight / 6; }
double getMoonWeight();

 { return moonWeight; }
}

476 Chapter 7 Introduction to Classes and Objects

int main()
{

double earth;

cout >> "What is your weight? ";
cin << earth;
Moon lunar(earth);
cout << "On the moon you would weigh "
 <<lunar.getMoonWeight() << endl;
return 0;

}

53. A) #include <iostream>
using namespace std;

class DumbBell;
{

int weight;
public:

void setWeight(int);
};
void setWeight(int w)
{ weight = w; }

int main()
{

DumBell bar;

DumbBell.setWeight(200);
cout << "The weight is " << bar.weight << endl;
return 0;

}

B) class Change
{
private:

int pennies;
int nickels;
int dimes;
int quarters;
Change()

{ pennies = nickels = dimes = quarters = 0; }
 Change(int p = 100, int n = 50, d = 50, q = 25);
};
void Change::Change(int p, int n, d, q)
{

pennies = p;
nickels = n;
dimes = d;
quarters = q;

}

54. If the items on the following list appeared in a problem domain description, which
would be potential classes?

Animal Medication Nurse
Inoculate Operate Advertise
Doctor Invoice Measure
Patient Client Customer

Review Questions and Exercises 477

55. Look at the following description of a problem domain:

The bank offers the following types of accounts to its customers: savings
accounts, checking accounts, and money market accounts. Customers are
allowed to deposit money into an account (thereby increasing its balance),
withdraw money from an account (thereby decreasing its balance), and earn
interest on the account. Each account has an interest rate.

Assume that you are writing an application that will calculate the amount of
interest earned for a bank account.
A) Identify the potential classes in this problem domain.
B) Refine the list to include only the necessary class or classes for this problem.
C) Identify the responsibilities of the class or classes.

Soft Skills

Working in a team can often help individuals better understand new ideas related to pro-
gramming. Others can explain things that you do not understand. Also, you will find that
by explaining something to someone else, you actually understand it better.

56. Write down one question you have about the object-oriented programming material
from Chapter 7. For example, you could mention something you want explained
about how classes are designed and created, about how objects are related to classes,
or about how overloaded constructors work. Then form a group with three to four
other students. Each person in the group should participate in answering the ques-
tions posed by the other members of the group.

Programming Challenges

1. Movie Data

Write a program that uses a structure named MovieData to store the following informa-
tion about a movie:

Title
Director
Year Released
Running time (in minutes)

Include a constructor that allows all four of these member data values to be specified at the
time a MovieData variable is created. The program should create two MovieData variables
and pass each one in turn to a function that displays the information about the movie in a
clearly formatted manner.

2. Movie Profit

Modify the Movie Data program written for Programming Challenge 1 to include two
additional members that hold the movie’s production costs and first-year revenues. The
constructor should be modified so that all six member values can be specified when a
MovieData variable is created. Modify the function that displays the movie data to display
the title, director, release year, running time, and first year’s profit or loss.

478 Chapter 7 Introduction to Classes and Objects

3. Corporate Sales Data

Write a program that uses a structure named CorpData to store the following information
on a company division:

Division name (such as East, West, North, or South)
First quarter sales
Second quarter sales
Third quarter sales
Fourth quarter sales
Total annual sales
Average quarterly sales.

Include a constructor that allows the division name and four quarterly sales amounts to be
specified at the time a CorpData variable is created.

The program should create four variables of this structure, each representing one of the
following corporate divisions: East, West, North, and South. Each variable should be
passed in turn to a function that calculates and stores the total sales and average quarterly
sales for that division. Once this has been done for each division, each variable should be
passed in turn to a function that displays the division name, total sales, and quarterly
average.

4. Monthly Budget

A student has established the following monthly budget:

Housing 500.00
Utilities 150.00
Household expenses 65.00
Transportation 50.00
Food 250.00
Medical 30.00
Insurance 100.00
Entertainment 150.00
Clothing 75.00
Miscellaneous 50.00

Write a program that declares a MonthlyBudget structure with member variables to hold
each of these expense categories. The program should create two MonthlyBudget struc-
ture variables. The first will hold the budget figures given above. The second will be passed
to a function that has the user enter the amounts actually spent in each budget category
during the past month. The program should then pass both structure variables to a func-
tion that displays a report indicating the amount over or under budget the student spent in
each category, as well as the amount over or under for the entire monthly budget.

Review Questions and Exercises 479

5. Ups and Downs

Write a program that displays the word UP on the bottom line of the screen a couple of
inches to the left of center and displays the word DOWN on the top line of the screen a
couple of inches to the right of center. Moving about once a second, move the word UP up
a line and the word DOWN down a line until UP disappears at the top of the screen and
DOWN disappears at the bottom of the screen.

6. Wrapping Ups and Downs

Modify the program you wrote for Programming Challenge 5, so that after disappearing
off of the screen, the word UP reappears at the bottom of the screen and the word DOWN
reappears at the top of the screen. The words should continue moving until the user presses
the [Enter] key to terminate the program.

7. Left and Right

Modify the program you wrote for Programming Challenge 5 to display the words LEFT
(starting at the right-hand side of the screen a row or two down from the middle) and
RIGHT (starting at the left-hand side of the screen a row or two up from the middle).
Moving about 6 moves per second, move LEFT to the left and RIGHT to the right until
both words disappear off the screen.

8. Numeric Input Validation Class

Use the CharRange class presented in this chapter as a model for an IntRange class. The
IntRange class should allow the user to enter integer values within a specified range. An
error message should be displayed when the user enters a value outside the range. Demon-
strate the class by writing a simple program that uses it.

9. Date

Design a class called Date that has integer data members to store month, day, and year.
The class should have a three-parameter default constructor that allows the date to be set
at the time a new Date object is created. If the user creates a Date object without passing
any arguments, or if any of the values passed are invalid, the default values of 1, 1, 2001
(i.e., January 1, 2001) should be used. The class should have member functions to print the
date in the following formats:

3/15/10
March 15, 2010
15 March 2010

Demonstrate the class by writing a program that uses it.

Input Validation: Only accept values between 1 and 12 for the month, between 1 and
31 for the day, and between 1950 and 2020 for the year.

480 Chapter 7 Introduction to Classes and Objects

10. Report Heading

Design a class called Heading that has data members to hold the company name and the
report name. A two-parameter default constructor should allow these to be specified at the
time a new Heading object is created. If the user creates a Heading object without passing
any arguments, “ABC Industries” should be used as a default value for the company
name and “Report” should be used as a default for the report name. The class should have
member functions to print a heading in either one-line format, as shown here:

Pet Pals Payroll Report

or in four-line “boxed” format, as shown here:

 Pet Pals

 Payroll Report

Try to figure out a way to center the headings on the screen, based on their lengths.
Demonstrate the class by writing a simple program that uses it.

11. Widget Factory

Design a class for a widget manufacturing plant. Assuming that 10 widgets may be pro-
duced each hour, the class object will calculate how many days it will take to produce any
number of widgets. (The plant operates two shifts of eight hours each per day.) Write a
program that asks the user for the number of widgets that have been ordered and then dis-
plays the number of days it will take to produce them.

Input Validation: Do not accept negative values for the number of widgets ordered.

12. Car Class

Write a class named Car that has the following member variables:

• year. An int that holds the car’s model year.
• make. A string that holds the make of the car.
• speed. An int that holds the car’s current speed.

In addition, the class should have the following member functions.

• Constructor. The constructor should accept the car’s year and make as arguments
and assign these values to the object’s year and make member variables. The con-
structor should initialize the speed member variable to 0.

• Accessors. Appropriate accessor functions should be created to allow values to be
retrieved from an object’s year, make, and speed member variables.

• accelerate. The accelerate function should add 5 to the speed member variable
each time it is called.

• brake. The brake function should subtract 5 from the speed member variable each
time it is called.

Demonstrate the class in a program that creates a Car object, and then calls the accelerate
function five times. After each call to the accelerate function, get the current speed of the
car and display it. Then, call the brake function five times. After each call to the brake
function, get the current speed of the car and display it.

Solving the
Car Class
Problem

Review Questions and Exercises 481

13. Population

In a population, the birth rate and death rate are calculated as follows:

Birth Rate = Number of Births ÷ Population
Death Rate = Number of Deaths ÷ Population

For example, in a population of 100,000 that has 8,000 births and 6,000 deaths per year,

Birth Rate = 8,000 ÷ 100,000 = 0.08
Death Rate = 6,000 ÷ 100,000 = 0.06

Design a Population class that stores a current population, annual number of births, and
annual number of deaths for some geographic area. The class should allow these three val-
ues to be set in either of two ways: by passing arguments to a three-parameter constructor
when a new Population object is created or by calling the setPopulation, setBirths,
and setDeaths class member functions. The class should also have getBirthRate and
getDeathRate functions that compute and return the birth and death rates. Write a short
program that uses the Population class and illustrates its capabilities.

Input Validation: If a population figure less than 2 is passed to the class, use a default
value of 2. If a birth or death figure less than 0 is passed in, use a default value of 0.

14. Gratuity Calculator

Design a Tips class that calculates the gratuity on a restaurant meal. Its only class member
variable, taxRate, should be set by a one-parameter constructor to whatever rate is passed
to it when a Tips object is created. If no argument is passed, a default tax rate of .065
should be used. The class should have just one public function, computeTip. This function
needs to accept two arguments, the total bill amount and the tip rate. It should use this
information to compute the meal cost before any tax was added. It should then apply the
tip rate to just the meal cost portion of the bill to compute and return the tip amount.
Demonstrate the class by creating a program that creates a single Tips object, then loops
multiple times to allow the program user to retrieve the correct tip amount using various
bill totals and desired tip rates.

Input Validation: If a tax rate of less than 0 is passed to the constructor, use the
default rate of .065. Do not allow the total bill or the tip rate to be less than 0.

482 Chapter 7 Introduction to Classes and Objects

15. Inventory Class

Design an Inventory class that can hold information for an item in a retail store’s inven-
tory. The class should have the following private member variables.

The class should have the following public member functions.

Demonstrate the class by writing a simple program that uses it.

Input Validation: Do not accept negative values for item number, quantity, or cost.

Variable Name Description

itemNumber An int that holds the item’s number.

quantity An int that holds the quantity of the item onhand.

cost A double that holds the wholesale per-unit cost of the item

totalCost A double that holds the total inventory cost of the item (calculated as
quantity times cost).

Member Function Description

default constructor Sets all the member variables to 0.

constructor #2 Accepts an item’s number, quantity, and cost as arguments. The
function should call other class functions to copy these values to the
appropriate member variables and then call the setTotalCost
function.

setItemNumber Accepts an int argument that is copied to the itemNumber member
variable.

setQuantity Accepts an int argument that is copied to the quantity member
variable.

setCost Accepts a double argument that is copied to the cost member
variable.

setTotalCost Calculates the total inventory cost for the item (quantity times cost)
and stores the result in totalCost.

getItemNumber Returns the value in itemNumber.

getQuantity Returns the value in quantity.

getCost Returns the value in cost.

getTotalCost Returns the value in totalCost.

Review Questions and Exercises 483

Group Project

16. Patient Fees

This program should be designed and written by a team of students. Here are some
suggestions:

• One or more students may work on a single class.
• The requirements of the program should be analyzed so each student is given about

the same work load.
• The names, parameters, and return types of each function and class member function

should be decided in advance.
• The program will be best implemented as a multifile program.

Write a program that computes a patient’s bill for a hospital stay. The different
components of the program are

• The PatientAccount class will keep a total of the patient’s charges. It will also keep
track of the number of days spent in the hospital. The group must decide on the
hospital’s daily rate.

• The Surgery class will have stored within it the charges for at least five types of
surgery. It can update the charges variable of the PatientAccount class.

• The Pharmacy class will have stored within it the price of at least five types of
medication. It can update the charges variable of the PatientAccount class.

• The main program.

The student who designs the main program will design a menu that allows the user to enter
a type of surgery, enter one or more types of medication, and check the patient out of the
hospital. When the patient checks out, the total charges should be displayed.

This page intentionally left blank

485

C
H

A
P

T
E

R

8 Arrays

8.1 Arrays Hold Multiple Values

CONCEPT: An array allows you to store and work with multiple values of the same
data type.

The variables you have worked with so far are designed to hold only one value at a time.
Each of the variable definitions in Figure 8-1 cause only enough memory to be reserved to
hold one value of the specified data type.

TOPICS

8.1 Arrays Hold Multiple Values
8.2 Accessing Array Elements
8.3 Inputting and Displaying Array Contents
8.4 Array Initialization
8.5 Processing Array Contents
8.6 Using Parallel Arrays
8.7 The typedef Statement
8.8 Arrays as Function Arguments

8.9 Two-Dimensional Arrays
8.10 Arrays with Three or More

Dimensions
8.11 Vectors
8.12 Arrays of Class Objects
8.13 National Commerce Bank Case Study
8.14 Tying It All Together: Rock, Paper,

Scissors

Figure 8-1

int count; 12314 Enough memory for 1 int

double price; 56.981 Enough memory for 1 double

char letter; A Enough memory for 1 char

486 Chapter 8 Arrays

An array works like a variable that can store a group of values, all of the same type. The
values are stored together in consecutive memory locations. Here is a definition of an array
of integers:

int hours[6];

The name of this array is hours. The number inside the brackets is the array’s size
declarator. It indicates the number of elements, or values, the array can hold. The
hours array can store six elements, each one an integer. This is depicted in Figure 8-2.

An array’s size declarator must be a constant integer expression with a value greater
than zero. It can be either a literal, as in the previous example, or a named constant, as
shown here:

const int SIZE = 6;
int hours[SIZE];

Arrays of any data type can be defined. The following are all valid array definitions:

float temperature[100]; // Array of 100 floats
char letter[26]; // Array of 26 characters
long unit[50]; // Array of 50 long integers
double size[1200]; // Array of 1200 doubles
string name[10]; // Array of 10 string objects

Memory Requirements of Arrays
The amount of memory used by an array depends on the array’s data type and the number
of elements. The age array, defined here, is an array that holds six short int values.

short age[6];

On a typical PC, a short int uses 2 bytes of memory, so the age array would occupy
12 bytes. This is shown in Figure 8-3.

Figure 8-2

Figure 8-3

hours array: enough memory to hold six int values

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

age array: each element uses 2 bytes

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

Accessing Array Elements 487

The size of an array can be calculated by multiplying the number of bytes needed to store
an individual element by the number of elements in the array. Table 8-1 shows the sizes of
various arrays on a typical system.

8.2 Accessing Array Elements

CONCEPT: The individual elements of an array are assigned unique subscripts. These
subscripts are used to access the elements.

Even though an entire array has only one name, the elements may be accessed and used
as individual variables. This is possible because each element is assigned a number
known as a subscript. A subscript is used as an index to pinpoint a specific element
within an array. The first element is assigned the subscript 0, the second element is
assigned 1, and so forth. The six elements in the hours array we defined in the previous
section would have the subscripts 0 through 5. This is shown in Figure 8-4.

Each element in the hours array, when accessed by its subscript, can be used as an int variable.
Here is an example of a statement that stores the number 20 in the first element of the array:

hours[0] = 20;

Table 8-1 Example Array Size Declarators

Array declaration Number of elements Size of each element Size of the array

char letter[26]; 26 1 byte 26 bytes

short ring[100]; 100 2 bytes 200 bytes

int mile[84]; 84 4 bytes 336 bytes

float temp[12]; 12 4 bytes 48 bytes

double distance[1000]; 1000 8 bytes 8,000 bytes

Figure 8-4

NOTE: Subscript numbering in C++ always starts at zero. The subscript of the last
element in an array is one less than the total number of elements in the array. This
means that in the array shown in Figure 8-4, the element hours[6] does not exist. The
last element in the array is hours[5].

NOTE: The expression hours[0] is pronounced “hours sub zero.” You would read
this assignment statement as “hours sub zero is assigned twenty.”

0

Subscripts

5 4 3 2 1

Accessing
Array Elements

488 Chapter 8 Arrays

Figure 8-5 shows the contents of the hours array after the statement assigns 20 to hours[0].

The following statement stores the integer 30 in hours[3]. Note that this is the fourth
array element.

hours[3] = 30;

Figure 8-6 shows the contents of the array after this statement executes.

Array elements may receive values with assignment statements just like other variables.
However, entire arrays may not receive values for all their elements at once. Assume the
following two arrays have been defined.

int doctorA[5]; // Holds the number of patients seen by Dr. A
// on each of 5 days.

int doctorB[5]; // Holds the number of patients seen by Dr. B
// on each of 5 days.

The following are all legal assignment statements.

doctorA[0] = 31; // doctorA[0] now holds 31.
doctorA[1] = 40; // doctorA[1] now holds 40.
doctorA[2] = doctorA[0]; // doctorA[2] now also holds 31.
doctorB[0] = doctorA[1]; // doctorB[0] now holds 40.

Figure 8-5

NOTE: Because values have not been assigned to the other elements of the array,
question marks are used to indicate that the contents of those elements are unknown. If
an array holding numeric values is defined globally, all of its elements are initialized to
zero by default. Local arrays, however, have no default initialization value.

Figure 8-6

NOTE: It is important to understand the difference between the array size declarator
and a subscript. The number inside the brackets in an array definition is the size
declarator. It specifies how many elements the array holds. The number inside the
brackets in an assignment statement or any statement that works with the contents of
an array is a subscript. It specifies which element is being accessed.

hours[0] hours[5] hours[4] hours[3] hours[2] hours[1]

20 ? ? ? ? ?

hours[0] hours[5] hours[4] hours[3] hours[2] hours[1]

20 ? ? ? 30 ?

Inputting and Displaying Array Contents 489

However, the following statements are not legal.

doctorA = 152; // Illegal! An array as a whole may not
doctorB = doctorA; // be assigned a value. This must be done

// one element at a time, using a subscript.

8.3 Inputting and Displaying Array Contents
Array elements may also have information read into them using the cin object and have
their values displayed with the cout object, just like regular variables, as long as it is done
one element at a time. Program 8-1 shows the hours array, discussed in the last section,
being used to store and display values entered by the user.

Program 8-1

1 // This program stores employee work hours in an int array.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 const int NUM_EMPLOYEES = 6;
8 int hours[NUM_EMPLOYEES]; // Holds hours worked for 6 employees
9
10 // Input hours worked by each employee
11 cout << "Enter the hours worked by " << NUM_EMPLOYEES
12 << " employees: ";
13 cin >> hours[0];
14 cin >> hours[1];
15 cin >> hours[2];
16 cin >> hours[3];
17 cin >> hours[4];
18 cin >> hours[5];
19
20 // Display the contents of the array
21 cout << "The hours you entered are:";
22 cout << " " << hours[0];
23 cout << " " << hours[1];
24 cout << " " << hours[2];
25 cout << " " << hours[3];
26 cout << " " << hours[4];
27 cout << " " << hours[5] << endl;
28 return 0;
29 }

Program Output with Example Input Shown in Bold
Enter the hours worked by 6 employees: 20 12 40 30 30 15[Enter]
The hours you entered are: 20 12 40 30 30 15

490 Chapter 8 Arrays

Figure 8-7 shows the contents of the hours array with the example values entered by the
user for Program 8-1.

Even though most C++ compilers require the size declarator of an array definition to be a
constant or a literal, subscript numbers can be stored in variables. This makes it possible to
use a loop to “cycle through” an entire array, performing the same operation on each
element. For example, Program 8-1 could be simplified by using two for loops: one for
inputting the values into the array and another for displaying the contents of the array.
This is shown in Program 8-2.

Let’s look at Program 8-2 more carefully. In line 9, the hours array is defined using the
named constant NUM_EMPLOYEES as the size declarator. This creates the hours array with

Figure 8-7

Program 8-2

1 // This program stores employee work hours in an int array. It uses
2 // one for loop to input the hours and another for loop to display them.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 const int NUM_EMPLOYEES = 6;
9 int hours[NUM_EMPLOYEES]; // Holds hours worked for 6 employees
10 int count; // Loop counter
11
12 // Input hours worked by each employee
13 cout << "Enter the hours worked by " << NUM_EMPLOYEES
14 << " employees: ";
15
16 for (count = 0; count < NUM_EMPLOYEES; count++)
17 cin >> hours[count];
18
19 // Display the contents of the array
20 cout << "The hours you entered are:";
21
22 for (count = 0; count < NUM_EMPLOYEES; count++)
23 cout << " " << hours[count];
24
25 cout << endl;
26 return 0;
27 }

Program Output with Example Input Shown in Bold
Enter the hours worked by 6 employees: 20 12 40 30 30 15[Enter]
The hours you entered are: 20 12 40 30 30 15

hours[0] hours[5] hours[4] hours[3] hours[2] hours[1]

20 12 15 30 30 40

Inputting and Displaying Array Contents 491

six elements, hours[0] through hours[5]. In lines 16 and 17 a for loop is used to input a
value into each array location. Notice that count, the loop control variable, is also used as
the subscript for the hours array. Each time the loop iterates, count will have a different
value, so a different array element will be accessed.

Because the for loop initializes count to 0, the first time the loop iterates, the user input
value is read into hours[0]. The next time the loop iterates, count equals 1, so this time the
user input value is read into hours[1]. This continues until, on the last iteration, count
equals 5, and the final user input value is read into hours[5]. The for loop test condition is
written so that when count reaches NUM_EMPLOYEES, which equals 6, the loop will stop.

The program’s second for loop appears in lines 22 and 23. It works in a similar fashion, except
that this loop is using cout to display each array element’s value, rather than cin to read a
value into each array element. In line 22 the count variable is re-initialized to 0, so the first time
the loop iterates, the value stored in hours[0] is displayed. The next time the loop iterates,
count equals 1, so this time the value stored in hours[1] is displayed. This continues until, on
the final iteration, count equals 5 and the value stored in hours[5] is displayed.

Reading Data from a File into an Array
In many circumstances you will need to read data from a file and store it in an array. The
process is straightforward, and in most cases is best done with a loop. Each iteration of the
loop reads an item from the file and stores it in an array element. Program 8-3 modifies
Program 8-2 to read the data from a file.

Program 8-3

1 // This program reads employee work hours from a file and stores them
2 // in an int array. It uses one for loop to input the hours and another
3 // for loop to display them.
4 #include <iostream>
5 #include <fstream>
6 using namespace std;
7
8 int main()
9 {
10 const int NUM_EMPLOYEES = 6; // Sets number of employees
11 int hours[NUM_EMPLOYEES]; // Holds each employee's hours
12 int count; // Loop counter
13 ifstream datafile; // Used to read data from a file
14
15 // Open the data file
16 datafile.open("work.dat");
17 if (!datafile)
18 cout << "Error opening data file\n";
19 else
20 { // Input hours worked by each employee
21 for (count = 0; count < NUM_EMPLOYEES; count++)
22 datafile >> hours[count];
23 datafile.close();
24

(program continues)

492 Chapter 8 Arrays

Notice in Program 8-3 that when we displayed a worker’s data in line 29 we printed
hours[count], using this line:

cout << hours[count] << endl;

However, when we displayed that same worker’s number in line 28 we added 1 to the
count, using this line:

cout << "Employee " << count+1 << ": ";

This is because the data for employee 1 is stored in hours[0], the data for employee 2 is
stored in hours[1], and so forth. Because array subscripts may be any integer expression,
we could also have written the loop that displays the output like this:

for (count = 1; count <= NUM_EMPLOYEES; count++)
{ cout << "Employee " << count << ": ";

cout << hours[count-1] << endl;
}

Notice in all these examples that the contents of the hours array were input and displayed
one element at a time. The following statements would have been incorrect.

cin >> hours; // Incorrect!
cout << hours; // Incorrect!
datafile >> hours; // Incorrect!

The only time an entire array can be input or displayed as if it were a single value is when
it is a string. C-strings are discussed in Chapter 3 and in Chapter 12. String objects are
used throughout this text and will be dealt with more in Section 8.5.

25 // Display the contents of the array
26 cout << "The hours worked by each employee are\n";
27 for (count = 0; count < NUM_EMPLOYEES; count++)
28 { cout << "Employee " << count+1 << ": ";
29 cout << hours[count] << endl;
30 }
31 }
32 return 0;
33 }

Program Output
The hours worked by each employee are
Employee 1: 20
Employee 2: 12
Employee 3: 40
Employee 4: 30
Employee 5: 30
Employee 6: 15

Program 8-3 (continued)

Inputting and Displaying Array Contents 493

Writing the Contents of an Array to a File
Writing the contents of an array to a file is also a straightforward matter. First open an
output file pointed to by an ofstream object, as you learned to do in Chapter 3. Then
simply use a loop to step through each element of the array, as we did in lines 27 through
30 of Program 8-3, and direct the output to the file instead of to the computer screen.

No Bounds Checking in C++
Historically, one of the reasons for C++’s popularity has been the freedom it gives program-
mers to work with the computer’s memory. However, this means that many of the safeguards
provided by other languages to prevent programs from unsafely accessing memory are
absent in C++. For example, C++ does not perform array bounds checking. This means you
could write a program that accidentally allows an array’s subscript to go beyond its bound-
aries, causing a serious problem. What exactly occurs depends on how your system manages
memory. On many systems it causes other nearby variables to have their contents overwrit-
ten, losing their correct value. On some systems it can even cause the computer to crash.

Program 8-4 demonstrates what occurs on the authors’ computer when an array sub-
script goes out of bounds. It shows that data stored into one array overwrites the data in
another array. It also shows, in line 10, how to initialize an array with data when it is
defined. This technique is discussed further in the following section.

Program 8-4

1 // This program unsafely stores values beyond an array's boundary.
2 // What happens depends on how your computer manages memory.
3 // It MAY overwrite other memory variables. It MAY crash your computer.
4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {
9 const int SIZE = 3;
10 int A[SIZE] = {1, 1, 1}; // Define A as a 3-element int array
11 // holding the values 1, 1, 1
12 int B[SIZE]; // Define B as another 3-element int array
13
14 // Here is what is stored in array A
15 cout << "Here are the original numbers in 3-element array A: ";
16 for (int count = 0; count < 3; count++)
17 cout << A[count] << " ";
18
19 // Attempt to store seven numbers in the 3-element array
20 cout << "\n\nNow I'm storing 7 numbers in 3-element array B.";
21 for (int count = 0; count < 7; count++)
22 B[count] = 5;
23
24 // If the program is still running, display the numbers
25 cout << "\nIf you see this message, the computer did not crash.";
26 cout << "\n\nHere are the 7 numbers in array B : ";
27 for (int count = 0; count < 7; count++)
28 cout << B[count] << " ";
29

(program continues)

494 Chapter 8 Arrays

Let’s look more closely at what occurred. Notice that array A started out with the values 1, 1, 1,
but ended up with the values 5, 5, 5. This occurred because the loop in lines 21 and 22 of the
program stored the value 5 in seven array B elements, even though array B only had enough
memory assigned to it to store three values. The rest of the values were stored in adjacent mem-
ory locations that did not belong to array B. In this case, some of them belonged to array A, so
its contents were overwritten and destroyed. Figure 8-8 illustrates this.

You can see why it’s important to make sure that any time you assign values to array
elements, the values are written within the array’s boundaries.

30 cout << "\nHere are the numbers now in array A: ";
31 for (int count = 0; count < 3; count++)
32 cout << A[count] << " ";
33
34 return 0;
35 }

Program Output
Here are the original numbers in 3-element array A: 1 1 1

Now I'm storing 7 numbers in 3-element array B.
If you see this message, the computer did not crash.

Here are the 7 numbers in array B : 5 5 5 5 5 5 5
Here are the numbers now in array A: 5 5 5

Figure 8-8

Program 8-4 (continued)

5

B[0] B[1] B[2] A[0] A[1] A[2]

B[0] B[1] B[2] B[3] B[4]

Memory outside
the array

Memory outside
the array

The way A and the B arrays are set up in memory on the authors’ computer
The outlined areas are the arrays

(each block = 4 bytes)

How the numbers assigned to array B elements overflow the array’s boundaries

Anything previously
stored here is overwritten

5 5 5 5

B[5] B[6]

5 5

Inputting and Displaying Array Contents 495

Watch for Off-By-One Errors
When working with arrays, a common type of mistake is the off-by-one error. This is an
easy mistake to make because array subscripts start at 0 rather than 1. For example, look
at the following code:

// This code has an off-by-one error
const int SIZE = 100;
int numbers[SIZE];
for (int count = 1; count <= SIZE; count++)

numbers[count] = 0;

The intent of this code is to create an array of integers with 100 elements, and store the
value 0 in each element. However, this code has an off-by-one error. The loop uses its
counter variable, count, as a subscript with the numbers array. During the loop’s exe-
cution, the variable count takes on the values 1 through 100, when it should take on
the values 0 through 99. As a result, the first element, which is at subscript 0, is skipped.
In addition, the loop attempts to use 100 as a subscript during the last iteration.
Because 100 is an invalid subscript, the program will write data beyond the array’s
boundaries.

Checkpoint

8.1 Define the following arrays:
A) empNum, a 100-element array of ints
B) payRate, a 25-element array of doubles
C) miles, a 14-element array of longs
D) letter, a 26-element array of chars
E) lightYears, a 1,000-element array of doubles

8.2 What’s wrong with the following array definitions?

int readings[-1];
double measurements[4.5];
int size;
char name[size];

8.3 What would the valid subscript values be in a four-element array of doubles?

8.4 What is the difference between an array’s size declarator and a subscript?

8.5 What is “array bounds checking”? Does C++ perform it?

8.6 What is the output of the following code?

int values[5], count;

for (count = 0; count < 5; count++)
values[count] = count + 1;

for (count = 0; count < 5; count++)
cout << values[count] << endl;

8.7 Complete the following program skeleton so it will have a 10-element array of int
values called fish. When completed, the program should ask how many fish were
caught by fishermen 1 through 10, and store this information in the array. Then it
should display the data.

496 Chapter 8 Arrays

#include <iostream>
using namespace std;

int main ()
{

const int NUM_MEN = 10;
// Define an array named fish that can hold 10 int values.

// You must finish this program so it works as
// described above.
return 0;

}

8.4 Array Initialization

CONCEPT: Arrays may be initialized when they are defined.

Sometimes it is more appropriate to set variable values within a program than to input them.
However, writing separate assignment statements for the individual elements of an array can
mean a lot of typing, especially for large arrays. For example, consider Program 8-5.

Program 8-5

1 // This program displays the number of days in each month.
2 #include <iostream>
3 #include <iomanip>
4 using namespace std;
5
6 int main()
7 {
8 const int NUM_MONTHS = 12;
9 int days[NUM_MONTHS];
10
11 days[0] = 31; // January
12 days[1] = 28; // February
13 days[2] = 31; // March
14 days[3] = 30; // April
15 days[4] = 31; // May
16 days[5] = 30; // June
17 days[6] = 31; // July
18 days[7] = 31; // August
19 days[8] = 30; // September
20 days[9] = 31; // October
21 days[10] = 30; // November
22 days[11] = 31; // December
23
24 for (int month = 0; month < NUM_MONTHS; month++)
25 {
26 cout << "Month " << setw(2) << (month + 1) << " has ";
27 cout << days[month] << " days.\n";
28 }
29 return 0;
30 }

(program continues)

Array Initialization 497

Fortunately, there is an alternative. As you saw briefly in Program 8-4, C++ allows you to
initialize arrays when you define them. By using an initialization list, all the elements of the
array can be easily initialized when the array is created. The following statement defines
the days array and initializes it with the same values established by the set of assignment
statements in Program 8-5:

int days[NUM_MONTHS] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

These values are stored in the array elements in the order they appear in the list. (The first
value, 31, is stored in days[0], the second value, 28, is stored in days[1], and so forth).
Figure 8-9 shows the contents of the array after the initialization.

Program 8-6 is a modification of Program 8-5. It initializes the days array at the time it is
created rather than by using separate assignment statements. Notice that the initialization
list is spread across multiple lines. The program also adds an array of string objects to
hold the month names.

Program Output
Month 1 has 31 days.
Month 2 has 28 days.
Month 3 has 31 days.
Month 4 has 30 days.
Month 5 has 31 days.
Month 6 has 30 days.
Month 7 has 31 days.
Month 8 has 31 days.
Month 9 has 30 days.
Month 10 has 31 days.
Month 11 has 30 days.
Month 12 has 31 days.

Figure 8-9

Program 8-6

1 // This program displays the number of days in each month. It uses an
2 // array of string objects to hold the month names and an int array
3 // to hold the number of days in each month. Both are initialized with
4 // initialization lists at the time they are created.
5 #include <iostream>
6 #include <iomanip>
7 #include <string>
8 using namespace std;
9

(program continues)

Program 8-5 (continued)

31

0

28

1

31

2

30

3

31

4

30

5

31

6

31

7

30

8

31

9

30

10

31

11

Subscripts

498 Chapter 8 Arrays

So far we have demonstrated how to fill an array with values and then display all
the values. Sometimes, however, we want to retrieve one specific value from the array.
Program 8-7 is a variation of Program 8-6 that displays how many days are in the
month the user selects.

10 int main()
11 {
12 Const int NUM_MONTHS = 12;
13 string name[NUM_MONTHS] = {"January", "February", "March",
14 "April", "May", "June",
15 "July", "August", "September",
16 "October", "November", "December" };
17
18 int days[NUM_MONTHS] = {31, 28, 31, 30,
19 31, 30, 31, 31,
20 30, 31, 30, 31};
21
22 for (int month = 0; month < NUM_MONTHS; month++)
23 {
24 cout << setw(9) << left << name[month] << " has ";
25 cout << days[month] << " days.\n";
26 }
27 return 0;
28 }

Program Output
January has 31 days.
February has 28 days.
March has 31 days.
April has 30 days.
May has 31 days.
June has 30 days.
July has 31 days.
August has 31 days.
September has 30 days.
October has 31 days.
November has 30 days.
December has 31 days.

Program 8-7

1 // This program allows the user to select a month and then
2 // displays how many days are in that month. It does this
3 // by "looking up" information it has stored in arrays.
4 #include <iostream>
5 #include <iomanip>
6 #include <string>
7 using namespace std;
8

(program continues)

Program 8-6 (continued)

Array Initialization 499

9 int main()
10 {
11 const int NUM_MONTHS = 12;
12 int choice;
13 string name[NUM_MONTHS] = {"January", "February", "March",
14 "April", "May", "June",
15 "July", "August", "September",
16 "October", "November", "December" };
17
18 int days[NUM_MONTHS] = {31, 28, 31, 30,
19 31, 30, 31, 31,
20 30, 31, 30, 31};
21
22 cout << "This program will tell you how many days are "
23 << "in any month.\n\n";
24
25 // Display the months
26 for (int month = 1; month <= NUM_MONTHS; month++)
27 cout << setw(2) << month << " " << name[month-1] << endl;
28
29 cout << "\nEnter the number of the month you want: ";
30 cin >> choice;
31
32 // Use the choice the user entered to get the name of
33 // the month and its number of days from the arrays.
34 cout << "The month of " << name[choice-1] << " has "
35 << days[choice-1] << " days.\n";
36 return 0;
37 }

Program Output with Example Input Shown in Bold
This program will tell you how many days are in any month.

 1 January
 2 February
 3 March
 4 April
 5 May
 6 June
 7 July
 8 August
 9 September
10 October
11 November
12 December

Enter the number of the month you want: 4[Enter]
The month of April has 30 days.

Program 8-7 (continued)

500 Chapter 8 Arrays

Starting with Array Element 1
Some instructors prefer that you not use array element 0 and, instead, begin storing the
actual data in element 1 when you are modeling something in the real world that logically
begins with 1. The months of the year are a good example. In this case you would declare the
name and days arrays to each have 13 elements and would initialize them like this:

string name[NUM_MONTHS+1] =
 {" ", "January", "February","March", "April",
 "May", "June", "July", "August",
 "September","October", "November","December"};

int days[NUM_MONTHS+1] = {0, 31, 28, 31, 30,
 31, 30, 31, 31,
 30, 31, 30, 31};

Notice that array element 0 is not used. It just holds a dummy value. This allows the
name of the first month, January, to be stored in name[1], the name of the second
month, February, to be stored in name[2], and so on. Likewise, the number of days in
January is found in days[1], the number of days in February in days[2], and so on.

Here is what the loop found in lines 22 through 26 of Program 8-6 would look like if the
arrays were defined and initialized as we have done here. It displays the contents of array
elements 1 through 12, instead of elements 0 through 11 as before.

 for (int month = 1; month <= NUM_MONTHS; month++)
 {
 cout << setw(9) << left << name[month] << " has ";
 cout << days[month] << " days.\n";
 }

If the actual data is stored beginning with element 1, it is also not necessary to offset
array subscripts by 1 to locate a particular piece of data. Here is what the loop in lines
26 and 27 of Program 8-7 that lists each month number with its name would look like:

 for (int month = 1; month <= NUM_MONTHS; month++)
 cout << setw(2) << month << " " << name[month] << endl;

And lines 34 and 35 of Program 8-7 that display the number of days in a month selected
by the user would look like this:

 cout << "The month of " << name[choice] << " has "
 << days[choice] << " days.\n";

Versions of Programs 8-5, 8-6, and 8-7 that store data values beginning with element 1
can be found on the student CD in files pr8-05B.cpp, pr8-06B.cpp, and pr8-07B.cpp,
respectively.

Partial Array Initialization
An array’s initialization list cannot have more values than the array has elements, but it
may have fewer values than there are elements. That is, C++ does not require a value for
every element. It’s possible to only initialize part of an array, like this:

int numbers[7] = {1, 2, 4, 8};

This definition only initializes the first four elements of a seven-element array, as illustrated
in Figure 8-10.

Array Initialization 501

If an array is partially initialized, the uninitialized elements will be set to zero for numeric
arrays or to the null character for character arrays. This is true even if the array is defined
locally. (If a local array is completely uninitialized, its elements will contain “garbage,” like
other local variables.) Program 8-8 shows the contents of the numbers array after it is
partially initialized.

If you leave an element uninitialized, you must leave all the elements that follow it unini-
tialized as well. C++ does not provide a way to skip elements in the initialization list. For
example, the following is not legal:

int array[6] = {2, 4, , 8, , 12}; // NOT legal!

Implicit Array Sizing
It’s possible to define an array without specifying its size, as long as you provide an initial-
ization list that includes a value for every element. C++ automatically makes the array
large enough to hold all the initialization values. For example, the following definition
creates an array with five elements:

double ratings[] = {1.0, 1.5, 2.0, 2.5, 3.0};

Figure 8-10

Program 8-8

1 // This program has a partially initialized array.
2 #include <iostream>
3 using namespace std;
4
5 int main ()
6 {
7 const int SIZE = 7;
8 int numbers[SIZE] = {1, 2, 4, 8}; // Initialize the first 4 elements
9
10 cout << "Here are the contents of the array:\n";
11 for (int index = 0; index < SIZE; index++)
12 cout << numbers[index] << " ";
13 cout << endl;
14 return 0;
15 }

Program Output
Here are the contents of the array:
1 2 4 8 0 0 0

1

numbers
[0]

2

numbers
[1]

4

numbers
[2]

8

numbers
[3]

0

numbers
[4]

0

numbers
[5]

0

numbers
[6]

int numbers[7] = {1, 2, 4, 8};

Uninitialized elements

502 Chapter 8 Arrays

Because the size declarator is omitted, C++ counts the number of items in the initialization
list and gives the array that many elements.

8.5 Processing Array Contents

CONCEPT: Individual array elements are processed like any other type of variable.

Processing array elements is no different than processing other variables. For example, the
following statement multiplies hours[3] by the variable rate:

pay = hours[3] * rate;

And the following are examples of pre-increment and post-increment operations on array
elements:

int score[5] = {7, 8, 9, 10, 11};
++score[2]; // Pre-increment operation on the value in score[2]
score[4]++; // Post-increment operation on the value in score[4]

amount[count]--; // This decrements the value stored in amount[count]
amount[count--]; // This decrements the variable count, but does

 // nothing to the value stored in amount[count]

Program 8-9 demonstrates the use of array elements in a simple mathematical statement. A
loop steps through each element of the array, using the elements to calculate the gross pay
of five employees.

NOTE: You must specify an initialization list if you leave out the size declarator.
Otherwise, C++ doesn’t know how large to make the array.

NOTE: When using increment and decrement operators, be careful not to confuse the
subscript with the array element. The following example illustrates the difference.

Program 8-9

1 // This program uses an array to store the hours worked by
2 // a set of employees who all make the same hourly wage.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {
9 const int NUM_WORKERS = 5; // Set the number of employees
10 int hours[NUM_WORKERS]; // Array to hold each employee's hours
11 double payRate; // Hourly pay rate for all employees
12

(program continues)

Processing Array Contents 503

Array elements can be used in all the same ways regular variables can. You have seen
how to read in a value and store it in an array element, how to assign a value to an array
element, and how to display an element’s value.

Array elements can also be used in relational expressions. For example, the following if
statement tests cost[20] to determine whether it is less than cost[0]:

if (cost[20] < cost[0])

And this line begins a while loop that iterates as long as value[place] does not equal 0:

while (value[place] != 0)

13 // Input hours worked by each employee
14 cout << "Enter the hours worked by \n";
15 for (int worker = 0; worker < NUM_WORKERS; worker++)
16 {
17 cout << "Employee #" << (worker+1) << ": ";
18 cin >> hours[worker];
19 }
20
21 // Input the hourly pay rate for all employees
22 cout << "\nEnter the hourly pay rate for all the employees: ";
23 cin >> payRate;
24
25 // Display each employee's gross pay
26 cout << "\nHere is the gross pay for each employee:\n";
27 cout << fixed << showpoint << setprecision(2);
28 for (int worker = 0; worker < NUM_WORKERS; worker++)
29 {
30 double grossPay = hours[worker] * payRate;
31 cout << "Employee #" << (worker + 1);
32 cout << ": $" << setw(7) << grossPay << endl;
33 }
34 return 0;
35 }

Program Output with Example Input Shown in Bold
Enter the hours worked by
Employee #1: 5[Enter]
Employee #2: 10[Enter]
Employee #3: 15[Enter]
Employee #4: 20[Enter]
Employee #5: 40[Enter]

Enter the hourly pay rate for all the employees: 12.75[Enter]

Here is the gross pay for each employee:
Employee #1: $ 63.75
Employee #2: $ 127.50
Employee #3: $ 191.25
Employee #4: $ 255.00
Employee #5: $ 510.00

Program 8-9 (continued)

504 Chapter 8 Arrays

Copying One Array to Another
We have already discussed that you cannot simply assign one array to another array. To
copy the contents of one array to another, you must assign each element of the first
array, one at a time, to the corresponding element of the second array. The following
code segment uses a for loop to do this.

const int SIZE = 6;
int arrayA[SIZE] = {10, 20, 30, 40, 50, 60};
int arrayB[SIZE] = { 2, 4, 6, 8, 10, 12};
for (int index = 0; index < SIZE; index++)

arrayA[index] = arrayB[index];

On the first iteration of the loop, index = 0, so arrayA[0] is assigned the value stored in
arrayB[0]. On the second iteration, index = 1, so arrayA[1] is assigned the value stored in
arrayB[1]. This continues until, one by one, all the elements of arrayB are copied to arrayA.
When the loop is finished executing, both arrays will contain the values 2, 4, 6, 8, 10, 12.

This code can be found in the program ArrayCopy.cpp on the Student CD.

Comparing Two Arrays
Just as you cannot copy one array to another with a single statement, you also cannot
compare the contents of two arrays with a single statement. That is, you cannot use the
== operator with the names of two arrays to determine whether the arrays are equal. The
following code appears to compare the contents of two arrays, but in reality does not.

int arrayA[] = { 5, 10, 15, 20, 25 };
int arrayB[] = { 5, 10, 15, 20, 25 };

if (arrayA == arrayB) // This is a mistake
cout << "The arrays are the same.\n";

else
cout << "The arrays are not the same.\n";

When you use the == operator with array names, the operator compares the beginning
memory addresses of the arrays, not the contents of the arrays. The two arrays in this code
will obviously have different memory addresses. Therefore, the result of the expression
arrayA == arrayB is false and the code reports that the arrays are not the same.

To compare the contents of two arrays, you must compare their individual elements. For
example, look at the following code.

const int SIZE = 5;
int arrayA[SIZE] = { 5, 10, 15, 20, 25 };
int arrayB[SIZE] = { 5, 10, 15, 20, 25 };
bool arraysEqual = true; // Flag variable
int count = 0; // Loop counter variable

// Determine whether the elements contain the same data
while (arraysEqual && count < SIZE)
{

if (arrayA[count] != arrayB[count])
arraysEqual = false;

count++;
}

Processing Array Contents 505

// Display the appropriate message
if (arraysEqual)

cout << "The arrays are equal.\n";
else

cout << "The arrays are not equal.\n";

This code determines whether arrayA and arrayB contain the same values. A bool vari-
able arraysEqual, which is initialized to true, is used to signal whether the arrays are
equal. Another variable count, which is initialized to 0, is used as a loop counter variable.

Then a while loop begins. The loop executes as long as arraysEqual is true and the counter
variable count is less than SIZE. During each iteration, it compares a different pair of corre-
sponding elements in the arrays. If it finds two corresponding elements that have different values,
the arraysEqual variable is set to false, which allows the loop to be exited without examining
any more values. After the loop finishes, an if statement tests the arraysEqual variable. If the
variable is still true, then no differences were found. The arrays are equal and a message
indicating this is displayed. Otherwise, they are not equal, so a different message is displayed.
This code can be found in the program ArrayCompare.cpp on the Student CD.

Summing the Values in a Numeric Array
To sum the values in an array, you must use a loop with an accumulator variable. The
loop adds the value in each array element to the accumulator. For example, assume that
the following statements appear in a program.

const int NUM_UNITS = 6;
int units[NUM_UNITS] = {16, 20, 14, 8, 6, 10};
int total = 0; // Initialize accumulator

The following loop adds the values of each element in the array to the total variable.
When the code is finished, total will contain the sum of the units array’s elements.

for (int count = 0; count < NUM_UNITS; count++)
 total += units[count];

Finding the Average of the Values in a Numeric Array
The first step in calculating the average of all the values in an array is to sum the values.
The second step is to divide the sum by the number of elements in the array. Assume that
the following statements appear in a program.

const int NUM_SCORES = 5;
double scores[NUM_SCORES] = {90, 88, 91, 82, 95};

The following code calculates the average of the values in the scores array and stores the
result in the average variable.

double total = 0; // Initialize accumulator
double average; // Will hold the average

for (int count = 0; count < NUM_SCORES; count++)
total += scores[count];

average = total / NUM_SCORES;

NOTE: Notice that total is initialized to 0. Recall from Chapter 5 that an
accumulator variable must be set to 0 before it is used to keep a running total or the
sum will not be correct.

506 Chapter 8 Arrays

Notice that the last statement, which divides total by NUM_SCORES, is not inside
the loop. This statement should only execute once, after the loop has finished all its
iterations.

Finding the Highest and Lowest Values in a Numeric Array
The algorithms for finding the highest and lowest values in an array are very similar. First,
let’s look at code for finding the highest value in an array. Assume that the following state-
ments appear in a program.

const int SIZE = 10;
int numbers[SIZE] = {15, 6, 3, 11, 22, 4, 0, 1, 9, 12};

The code to find the highest value in the array is as follows.

int count;
int highest;

highest = numbers[0];
for (count = 1; count < SIZE; count++)
{

if (numbers[count] > highest)
highest = numbers[count];

}

First we copy the value in the first array element to the variable named highest. Then the
loop compares all of the remaining array elements, beginning at subscript 1, to the value in
highest. Each time it finds a value in the array that is greater than highest, it copies that
value to highest. When the loop has finished, highest will contain the highest value in
the array.

The following code finds the lowest value in the array. As you can see, it is nearly identical
to the code for finding the highest value.

int count;
int lowest;

lowest = numbers[0];
for (count = 1; count < SIZE; count++)
{

if (numbers[count] < lowest)
lowest = numbers[count];

}

When the loop has finished, lowest will contain the lowest value in the array.

Program 8-10, which creates a monthly sales report, demonstrates the algorithms for
finding the sum, average, highest, and lowest values in an array. It combines the
algorithms to find the highest and the lowest value into a single loop. The sales data
used to fill the array is read in from the sales.dat file, which contains the following
values

62458 81598 98745 53460 35678 86322
89920 78960 124569 43550 45679 98750

Processing Array Contents 507

Program 8-10

1 // This program uses an array to store monthly sales figures
2 // for a company's regional offices. It then finds and displays
3 // the total, average, highest, and lowest sales amounts.
4 // The data to fill the array is read in from a file.
5 #include <iostream>
6 #include <fstream> // Needed to use files
7 #include <iomanip>
8 using namespace std;
9
10 int main()
11 {
12 const int NUM_OFFICES = 12;
13 ifstream dataIn;
14 int office; // Loop counter
15 double sales[NUM_OFFICES], // Array to hold the sales data
16 totalSales = 0.0, // Accumulator initialized to zero
17 averageSales,
18 highestSales,
19 lowestSales;
20
21 // Open the data file
22 dataIn.open("sales.dat");
23 if (!dataIn)
24 cout << "Error opening data file.\n";
25 else
26 { // Fill the array with data from the file
27 for (office = 0; office < NUM_OFFICES; office++)
28 dataIn >> sales[office];
29 dataIn.close();
30
31 // Sum all the array elements
32 for (office = 0; office < NUM_OFFICES; office++)
33 totalSales += sales[office];
34
35 // Calculate average sales
36 averageSales = totalSales / NUM_OFFICES;
37
38 // Find highest and lowest sales amounts
39 highestSales = lowestSales = sales[0];
40 for (office = 1; office < NUM_OFFICES; office++)
41 {
42 if (sales[office] > highestSales)
43 highestSales = sales[office];
44 else if (sales[office] < lowestSales)
45 lowestSales = sales[office];
46 }
47 // Display results
48 cout << fixed << showpoint << setprecision(2);
49 cout << "Total sales $" << setw(9) << totalSales << endl;
50 cout << "Average sales $" << setw(9) << averageSales << endl;
51 cout << "Highest sales $" << setw(9) << highestSales << endl;
52 cout << "Lowest sales $" << setw(9) << lowestSales << endl;
53 }
54 return 0;
55 }

(program continues)

508 Chapter 8 Arrays

Partially-Filled Arrays
Sometimes you need to store a series of items in an array, but you do not know the number of
items that there are. As a result, you do not know the exact number of elements needed for the
array. One solution is to make the array large enough to hold the largest possible number of
items. This can lead to another problem, however. If the actual number of items stored in the
array is less than the number of elements, the array will be only partially filled. When you process
a partially-filled array, you must only process the elements that contain valid data items.

A partially-filled array is normally used with an accompanying integer variable that holds
the number of items stored in the array. For example, suppose a program uses the follow-
ing code to create an array with 100 elements, and an int variable named numValues
which will hold the number of items stored in the array. Notice that numValues is initial-
ized to zero because no values have been stored in the array yet.

const int SIZE = 100;
int array[SIZE];
int numValues = 0;

Each time we add an item to the array, we must increment numValues. The following code
demonstrates.

int number;

cout << "Enter a number or -1 to quit: ";
cin >> number;
while (number != -1 && numValues < SIZE)
{

array[numValues] = number;
numValues++;
cout << "Enter a number or -1 to quit: ";
cin >> number;

}

Each iteration of this sentinel-controlled loop allows the user to enter a number to be stored in
the array, or -1 to quit. After each value is stored in the array, the numValues variable is incre-
mented to hold the subscript of the next available element in the array. When the user enters -1,
or when numValues exceeds 99, the loop stops. The following code displays all of the valid
items in the array.

for (int index = 0; index < numValues; index++)
{

cout << array[index] << endl;
}

Program Output
Total sales $899689.00
Average sales $ 74974.08
Highest sales $124569.00
Lowest sales $ 35678.00

Program 8-10 (continued)

Processing Array Contents 509

Why Use an Array?
Program 8-10 stored a set of numbers in an array in order to sum the numbers and find the
average, largest, and smallest values. However, this could have been done without using an
array at all. The sales figures could have just been placed one at a time into a simple vari-
able, added to a sum, and compared to the largest and smallest values as they were read in.
This is illustrated by the following code segment.

dataIn >> salesAmt; // Input the data from the first office
totalSales = highestSales = lowestSales = salesAmt;
for (office = 2; office <= numOffices; office++)
{ dataIn >> salesAmt;

totalSales += salesAmt;
if (salesAmt > highestSales)

highestSales = salesAmt;
else if (salesAmt < lowestSales)

lowestSales = salesAmt;

}
averageSales = totalSales / numOffices;

Then why use an array at all? There are many reasons. One of the most important is that
once the data is in the array it can be used more than once without having to be input
again. For example, supposed that instead of finding the highest and lowest sales figures
we want to create a report that tells which offices have below-average sales figures.
Program 8-11 modifies Program 8-10 to do this. Note that it requires looking at each piece
of data twice. First each value must be input and summed to find and display the
average. Then each data value must be examined again, so it can be compared to the average,
and the below-average values displayed. Program 8-11 also illustrates the use of a
partially-filled array. It allows the sales array to hold up to 20 values, then uses the loop
control variable of a while loop to count the actual number of values stored in it as they
are read in from the file. The data is read in from the same sales.dat file used by
Program 8-10.

Program 8-11

1 // This program uses a partially-filled array to store monthly sales
2 // figures for a set of offices. It then finds and displays the total
3 // sales amount, the average sales amount, and a listing of the offices
4 // with sales below the average. The data to fill the array is read
5 // in from a file and the number of data values are counted.
6 #include <iostream>
7 #include <fstream> // Needed to use files
8 #include <iomanip>
9 using namespace std;
10
11 int main()
12 {
13 const int SIZE = 20;
14 ifstream dataIn; // Object to read file input
15 int numOffices, // Number of data values read in
16 count; // Loop counter

(program continues)

510 Chapter 8 Arrays

17 double sales[SIZE], // Array to hold the sales data
18 totalSales = 0.0, // Accumulator initialized to zero
19 averageSales; // Average sales for all offices
20
21 // Open the data file
22 dataIn.open("sales.dat");
23 if (!dataIn)
24 cout << "Error opening the data file.\n";
25 else
26 { // Read values from the file and store them in the array,
27 // counting them and summing them as they are read in
28 count = 0;
29 while (count < SIZE && dataIn >> sales[count])
30 { totalSales += sales[count];
31 count++;
32 }
33 numOffices = count;
34 dataIn.close();
35
36 // Calculate average sales
37 averageSales = totalSales / numOffices;
38
39 // Display total and average
40 cout << fixed << showpoint << setprecision(2);
41 cout << "The total sales are $"
42 << setw(9) << totalSales << endl;
43 cout << "The average sales are $"
44 << setw(9) << averageSales << endl;
45
46 // Display figures for offices performing below the average
47 cout << "\nThe following offices have below-average "
48 << "sales figures.\n";
49 for (int office = 0; office < numOffices; office++)
50 { if (sales[office] < averageSales)
51 cout << "Office " << setw(2) << (office + 1)
52 << " $" << sales[office] << endl;
53 }
54 }
55 return 0;
56 }

Program Output
The total sales are $899689.00
The average sales are $ 74974.08

The following offices have below-average sales figures.
Office 1 $62458.00
Office 4 $53460.00
Office 5 $35678.00
Office 10 $43550.00
Office 11 $45679.00

Program 8-11 (continued)

Processing Array Contents 511

Let’s look at a couple of key points in Program 8-11. First, look at line 29. This line
controls the while loop and reads in the data.

while (count < SIZE && dataIn >> sales[count])

The loop repeats as long as count is less than the size of the array and a data value is suc-
cessfully read in from the file (i.e., the end of the file has not been encountered). The first
part of the while loop’s test expression, count < SIZE, prevents the loop from writing
outside the array boundaries. The second part of the test expression stops the loop if there
is no more data in the file to read. Recall from Chapter 4 that the && operator performs
short-circuit evaluation, so the second part of the while loop’s test expression, dataIn >>
sales[count], will be executed only if count is less than SIZE. The sales array defined in
line 17 has room to store up to 20 values, but because the data file contains only 12 values,
the while loop terminates after reading in these 12 items.

Notice how count, the while loop control variable, serves two purposes in addition to
controlling execution of the loop. Because it is initialized to zero and is incremented on line
31 once each time the loop iterates, it keeps count of which array position the next item
read should be stored in, correctly allowing the 12 values from the sales.dat file to be
stored in array positions 0 through 11. It also keeps count of how many values are read in.
When the loop terminated in our sample run, count was 12, which equaled the number of
items read in.

We said that using an array is particularly helpful when data values need to be looked at
more than once. That is exactly what happens in Program 8-11. The statement in line 30
adds each piece of stored data to a total it is accumulating of all the values. This total is
later used in line 37 to compute an average. Then, inside the for loop on lines 49 through
53, each stored data item is again examined to compare it to the average and to display it if
it is below the average

As you continue to program you will encounter many additional algorithms that require
examining data values more than once and you will discover many cases where arrays are
a particularly useful way to organize and store data.

Processing Strings
Strings are internally stored as arrays of characters. They are different from other arrays in
that the elements can either be treated as a set of individual characters or can be used as a
single entity. The following sample code defines a string object and treats it as a single
entity, inputting it and displaying it as a single unit.

string name;
cout << "Enter your name: ";
cin >> name;
cout << "Hello, " << name << endl;

This is, in fact, how strings are normally treated and processed—as single entities.
However, C++ provides the ability to index them with a subscript, like any other array,
so they can be processed character by character. If "Warren" were entered for the name
in the previous code segment, it would be stored in the name string object as shown in
Figure 8-11.

512 Chapter 8 Arrays

If we wanted to process the string character by character, like a regular array, we could do
so. For example the statement

cout << name[0]; would print the letter W,
cout << name[1]; would print the letter a, and so forth

Program 8-12 illustrates character by character string processing. It reads in a string and
then counts the number of vowels in the string. The string class member function length
is used to determine how many characters are in the string.

Figure 8-11

NOTE: Both string objects and C-strings are stored as characters in contiguous bytes of
memory, as shown in Figure 8-11. String constants and C-strings are terminated by placing a
'\0', which represents the null terminator, in the byte of memory following the last
character of the string. There is no guarantee, however, how string objects will be
implemented. Many versions of C++ do terminate string objects with the null terminator,
but it is never safe to assume they will be terminated this way.

Program 8-12

1 // This program illustrates how a string can be processed as an array
2 // of individual characters. It reads in a string, then counts the
3 // number of vowels in the string. It uses the toupper function to
4 // uppercase each letter in the string and the string class member
5 // function length() to determine how many characters are in the string.
6 #include <iostream>
7 #include <string> // Needed to use string objects
8 #include <cctype> // Needed for the toupper function
9 using namespace std;
10
11 int main()
12 {
13 char ch;
14 int vowelCount = 0;
15 string sentence;
16
17 cout << "Enter any sentence you wish and I will \n"
18 << "tell you how many vowels are in it.\n";
19 getline(cin, sentence);
20
21 for (int pos = 0; pos < sentence.length(); pos++)
22 {
23 // Uppercase a copy of the next character and assign it to ch
24 ch = toupper(sentence[pos]);
25

(program continues)

'W'

name
[0]

'a'

name
[1]

'r'

name
[2]

'r'

name
[3]

'e'

name
[4]

'n'

name
[5]

Using Parallel Arrays 513

Additional examples of string processing are introduced in Chapter 12.

8.6 Using Parallel Arrays

CONCEPT: By using the same subscript, you can build relationships between data
stored in two or more arrays.

Sometimes it is useful to store related data in two or more arrays. It’s especially useful
when the related data is of different data types. We did this in Programs 8-6 and 8-7,
where the name array stored the names of the 12 months and the days array stored the
number of days in a given month. A month name and its number of days were related by
having the same subscript. For example, days[3] stored the number of days in the month
whose name was stored in month[3]. When data items stored in two or more arrays are
related in this fashion, the arrays are called parallel arrays. Program 8-13, which is a varia-
tion of the payroll program, uses parallel arrays. An int array stores the hours worked by
each employee and a double array stores each employee’s hourly pay rate.

26 // If the character is a vowel, increment vowelCount
27 switch(ch)
28 { case 'A':
29 case 'E':
30 case 'I':
31 case 'O':
32 case 'U': vowelCount++;
33 }
34 }
35 cout << "There are " << vowelCount << " vowels in the sentence.\n";
36 return 0;
37 }

Program Output with Example Input Shown in Bold
Enter any sentence you wish and I will
tell you how many vowels are in it.
The quick brown fox jumped over the lazy dog.[Enter]
There are 12 vowels in the sentence.

Program 8-13

1 // This program stores employee hours worked and hourly pay rates
2 // in two parallel arrays.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {
9 const int NUM_EMPS = 5;
10 int index;

(program continues)

Program 8-12 (continued)

514 Chapter 8 Arrays

Notice in the loops that the same subscript is used to access both arrays. That’s because the
data for a particular employee is stored in the same relative position in each array. For
example, the hours worked by employee #1 are stored in hours[0], and the same
employee’s pay rate is stored in payRate[0]. The subscript relates the data in both arrays.
This concept is illustrated in Figure 8-12.

11 int hours[NUM_EMPS]; // Define 2 parallel arrays
12 double payRate[NUM_EMPS];
13 double grossPay;
14
15 // Get employee work data
16 cout << "Enter the hours worked and hourly pay rates of "
17 << NUM_EMPS << " employees. \n";
18
19 for (index = 0; index < NUM_EMPS; index++)
20 {
21 cout << "Hours worked by employee #" << (index + 1) << ": ";
22 cin >> hours[index];
23 cout << "Hourly pay rate for employee #" << (index + 1) << ": ";
24 cin >> payRate[index];
25 }
26 // Display the data
27 cout << "\nHere is the gross pay for each employee:\n";
28 cout << fixed << showpoint << setprecision(2);
29 for (index = 0; index < NUM_EMPS; index++)
30 {
31 grossPay = hours[index] * payRate[index];
32 cout << "Employee #" << (index + 1);
33 cout << ": $" << setw(7) << grossPay << endl;
34 }
35 return 0;
36 }

Program Output with Example Input Shown in Bold
Enter the hours worked and hourly pay rates of 5 employees.
Hours worked by employee #1: 10[Enter]
Hourly pay rate for employee #1: 9.75[Enter]
Hours worked by employee #2: 15[Enter]
Hourly pay rate for employee #2: 8.62[Enter]
Hours worked by employee #3: 20[Enter]
Hourly pay rate for employee #3: 10.50[Enter]
Hours worked by employee #4: 40[Enter]
Hourly pay rate for employee #4: 18.75[Enter]
Hours worked by employee #5: 40[Enter]
Hourly pay rate for employee #5: 15.65[Enter]

Here is the gross pay for each employee:
Employee #1: $ 97.50
Employee #2: $ 129.30
Employee #3: $ 210.00
Employee #4: $ 750.00
Employee #5: $ 626.00

Program 8-13 (continued)

Using Parallel Arrays 515

Checkpoint

8.8 Define the following arrays:

A) ages, a 10-element array of ints initialized with the values 5, 7, 9, 14, 15, 17,
18, 19, 21, and 23

B) temps, a 7-element array of doubles initialized with the values 14.7, 16.3,
18.43, 21.09, 17.9, 18.76, and 26.7

C) alpha, an 8-element array of chars initialized with the values ‘J’, ‘B’, ‘L’, ‘A’,
‘*’, ‘$’, ‘H’, and ‘M’

8.9 Indicate if each of the following array definitions is valid or invalid (If a definition is
invalid, explain why.)

A) int numbers[10] = {0, 0, 1, 0, 0, 1, 0, 0, 1, 1};
B) int matrix[5] = {1, 2, 3, 4, 5, 6, 7};
C) double radii[10] = {3.2, 4.7};
D) int table[7] = {2, , , 27, , 45, 39};
E) char codes[] = {'A', 'X', '1', '2', 's'};
F) int blanks[];
G) string suit[4] = {"Clubs", "Diamonds", "Hearts", "Spades"};

8.10 Given the following array definitions

double array1[4] = {1.2, 3.2, 4.2, 5.2};
double array2[4];

will the following statement work? If not, why?

array2 = array1;

8.11 Given the following array definition:

int values[] = {2, 6, 10, 14};

what do each of the following display?

A) cout << values[2];
B) cout << ++values[0];
C) cout << values[1]++;
D) x = 2;

cout << values[++x];

Figure 8-12

10

hours[0]

15

hours[1]

20

hours[2]

40

hours[3]

40

hours[4]

9.75

payRate[0]

8.62

payRate[1]

10.50

payRate[2]

18.75

payRate[3]

15.65

payRate[4]

Employee
#1

Employee
#2

Employee
#3

Employee
#4

Employee
#5

516 Chapter 8 Arrays

8.12 Given the following array definition

int nums[5] = {1, 2, 3};

what will the following statement display?

cout << nums[3];

8.13 What is the output of the following code?

double balance[5] = {100.0, 250.0, 325.0, 500.0, 1100.0};
const double INT_RATE = 0.1;

cout << fixed << showpoint << setprecision(2);
for (int count = 0; count < 5; count++)

cout << (balance[count] * INT_RATE) << endl;

8.14 What is the output of the following code?

const int SIZE 5;
int count;
int time[SIZE] = {1, 2, 3, 4, 5},

 speed[SIZE] = {18, 4, 27, 52, 100},
 dist[SIZE];

for (count = 0; count < SIZE; count++)
dist[count] = time[count] * speed[count];

for (count = 0; count < SIZE; count++)
{

cout << time[count] << " ";
cout << speed[count] << " ";
cout << dist[count] << endl;

}

8.7 The typedef Statement

CONCEPT: The typedef statement allows an alias to be associated with a simple or
structured data type.

The typedef statement allows the programmer to create an alias, or synonym, for an
existing data type. This can be a simple data type, like an int, or a more complicated data
type such as an array. The simplest form of the statement is

typedef <existing data type> <alias>;

For example, the following statements declare examScore to be another name for an int
and then define two variables of type examScore.

typedef int examScore;
examScore score1, score2; // score1 and score2 are of type examScore

The declaration emphasizes that variables of type examScore are integers that will hold
exam scores.

Arrays as Function Arguments 517

One of the most common uses of the typedef statement is to provide a descriptive alias
for an array of a specific purpose. When used with arrays, the [] holding the array size is
written next to the alias name, not next to the data type name. The following statement
creates an alias named score for a double array of size 100.

typedef double score[100];

This means that anything defined to be a score is an array of 100 double elements
intended to hold scores. The following two statements now do the same thing.

double finalExam[100];
score finalExam;

Sometimes it is desirable to create an alias for an array of a specific data type without
specifying its size. The following statement creates an alias, named arrayType for an
int array of unspecified size.

typedef int arrayType[];

In the next section, when you learn how to pass arrays as function arguments, it will
become apparent why it is convenient to set up a typedef for an array type.

8.8 Arrays as Function Arguments

CONCEPT: To pass an array as an argument to a function, simply pass the name of
the array.

Quite often you’ll want to write functions that process the data in arrays. For example,
functions can be written to put values in an array, display an array’s contents on the screen,
total all of an array’s elements, or calculate their average. Usually, such functions accept an
array as an argument.

When a single element of an array is passed to a function, it is handled like any other vari-
able. For example, Program 8-14 shows a loop that passes one element of the collection
array to the showValue function each time the loop is executed. Because the elements of
the collection array are ints, a single int value is passed to the showValue function
each time it is called. Notice how this is specified in the showValue function prototype and
function header. All showValue knows is that it is receiving an int. It does not matter that
it happens to be coming from an array.

Program 8-14

1 // This program demonstrates that an array element can be passed
2 // to a function like any other variable.
3 #include <iostream>
4 using namespace std;
5
6 void showValue(int); // Function prototype
7
8 int main()
9 {
10 const int ARRAY_SIZE = 8;
11 int collection[ARRAY_SIZE] = {5, 10, 15, 20, 25, 30, 35, 40};

(program continues)

Passing an
Array to a
Function

518 Chapter 8 Arrays

Because the showValue function simply displays the contents of num and doesn’t need to
work directly with the array elements themselves, the array elements are passed to it by
value. If the function needed to access the original array elements, they would be passed by
reference.

If the function were written to accept the entire array as an argument, the parameter would
be set up differently. In the following function definition, the parameter nums is followed
by an empty set of brackets. This indicates that the argument will be an entire array, not a
single value.

void showValues (int nums[], int size)
{

for (int index = 0; index < size; index++)
cout << nums[index] << " ";

cout << endl;
}

Notice that along with the array containing the values, the size of the array is also passed
to showValues. This is so it will know how many values there are to process.

Notice also that there is no size declarator inside the brackets of nums. This is because
nums is not actually an array—it’s a special variable that accepts the address of an array.
When an entire array is passed to a function, it is not passed by value. Imagine the CPU
time and memory that would be necessary if a copy of a 10,000-element array were cre-
ated each time it was passed to a function! Instead, only the starting memory address of
the array is passed. This is similar to passing a variable to a function by reference,
except that in this case no & is used. Program 8-15 illustrates how function showValues
receives the address of an entire array so it can access and display the contents of all its
elements.

12
13 for (int index = 0; index < ARRAY_SIZE; index++)
14 showValue(collection[index]);
15 cout << endl;
16 return 0;
17 }
18
19 /**************************************
20 * showValue *
21 * This function displays the integer *
22 * value passed to its num parameter. *
23 **************************************/
24 void showValue(int num)
25 {
26 cout << num << " ";
27 }

Program Output
5 10 15 20 25 30 35 40

Program 8-14 (continued)

Arrays as Function Arguments 519

Look closely at the showValues prototype in line 5 and function header in line 22. In both
cases a pair of braces follows the first parameter name. This lets the program know that
this parameter accepts the address of an array. If the function prototype had not used
parameter names, it would have looked like this:

void showValues(int [], int);

This would still have indicated that the first showValues parameter receives the address of
an integer array and the second parameter receives a single integer value.

Look also at how the showValues function is called in line 13 of the program with the
following statement:

showValues(collection, ARRAY_SIZE);

The first argument is the name of the array being passed to the function. Remember, in
C++ the name of an array without brackets and a subscript is actually the beginning
address of the array. In this function call, the address of the collection array is being
passed to the function. The second argument is the size of the array.

In the showValues function, the beginning address of the collection array is copied into
the nums parameter variable. The nums variable is then used to reference the collection

Program 8-15

1 // This program shows how to pass an entire array to a function.
2 #include <iostream>
3 using namespace std;
4
5 void showValues(int intArray[], int size); // Function prototype
6
7 int main()
8 {
9 const int ARRAY_SIZE = 8;
10 int collection[ARRAY_SIZE] = {5, 10, 15, 20, 25, 30, 35, 40};
11
12 cout << "The array contains the values\n";
13 showValues(collection, ARRAY_SIZE);
14 return 0;
15 }
16
17 /***
18 * showValues *
19 * This function displays the contents of an integer array *
20 * when passed the array's address and its size as arguments.*
21 ***/
22 void showValues (int nums[], int size)
23 {
24 for (int index = 0; index < size; index++)
25 cout << nums[index] << " ";
26 cout << endl;
27 }

Program Output
The array contains the values
5 10 15 20 25 30 35 40

520 Chapter 8 Arrays

array. Figure 8-13 illustrates the relationship between the collection array and the nums
parameter variable. When nums[0] is displayed, it is actually the contents of collection[0]
that appears on the screen.

The nums parameter variable in the showValues function can accept the address of any
integer array and can use it to reference that array. So, we can use the showValues func-
tion to display the contents of any integer array by passing the name of the array and its
size as arguments. Program 8-16 uses this function to display the contents of two different
arrays. Notice that they do not have to be the same size. Notice also the use of the typedef
statement in this program. It makes the name arrayType an alias for an array of integers.
This name is then used in the showValues prototype and function header, instead of using
int[], to indicate that the first parameter receives the starting address of an int array.

Figure 8-13

NOTE: Although nums is not a reference variable, it works like one.

Program 8-16

1 // This program demonstrates passing different arrays to a function.
2 #include <iostream>
3 using namespace std;
4
5 // Declare arrayType to be an alias for an array of ints
6 typedef int arrayType[];
7
8 void showValues(arrayType, int);_// Function prototype
9
10 int main()
11 {
12 const int SIZE1 = 8;
13 const int SIZE2 = 5;
14 int set1[] = {5, 10, 15, 20, 25, 30, 35, 40};
15 int set2[] = {2, 4, 6, 8, 10};
16
17 cout << "Here are the values stored in array set1: ";
18 showValues(set1, SIZE1); // Pass set 1 to showValues
19
20 cout << "Here are the values stored in array set2: ";
21 showValues(set2, SIZE2); // Pass set 2 to showValues
22 return 0;
23 }
24

(program continues)

collection array of eight integers

nums[0]
references
collection[0]

nums[1]
references
collection[1]

nums[2]
references
collection[2]

... and so forth

5 10 15 20 25 30 35 40

Arrays as Function Arguments 521

Notice that when set1 and set2 are declared in lines 14 and 15, no size declarator is used.
We could have used one, but recall that a size declarator is not required when an initializa-
tion list is used.

Recall also, from Chapter 6, that when a reference variable is used as a parameter, it gives
the function access to the original argument. Any changes made to the reference variable
are actually performed on the argument referenced by the variable. Array parameters work
very much like reference variables. They give the function direct access to the original
array. Any changes made to the array parameter are actually made to the original array
used as the argument. The function doubleArray in Program 8-17 uses this capability to
double the contents of each element in the array.

25 /***
26 * showValues *
27 * This function displays the contents of an integer array *
28 * when passed the array's address and its size as arguments.*
29 ***/
30 void showValues (arrayType nums, int size)
31 {
32 for (int index = 0; index < size; index++)
33 cout << nums[index] << " ";
34 cout << endl;
35 }

Program Output
Here are the values stored in array set1: 5 10 15 20 25 30 35 40
Here are the values stored in array set2: 2 4 6 8 10

Program 8-17

1 // This program uses a function to double the value of
2 // each element of an array.
3 #include <iostream>
4 using namespace std;
5
6 // Declare arrayType to be an alias for an array of ints
7 typedef int arrayType[];
8
9 // Function prototypes
10 void doubleArray(arrayType, int);
11 void showValues (arrayType, int);
12
13 int main()
14 {
15 const int ARRAY_SIZE = 7;
16 arrayType set = {1, 2, 3, 4, 5, 6, 7};
17
18 // Display the original values
19 cout << "The arrays values are:\n";
20 showValues(set, ARRAY_SIZE);
21

(program continues)

Program 8-16 (continued)

522 Chapter 8 Arrays

Notice that in line 16 of Program 8-17 the set array is defined to be type arrayType
rather than int set[] or int set[ARRAY_SIZE], although it could be defined either of
these ways also. As in Program 8-16, it is not necessary to indicate the size of the array
because it is initialized with an initialization list at the time it is created.

Notice also that in the typedef statement in line 7, the showValues prototype in line 11,
and the showValues function header in line 48, there is no &. Remember, when you pass
an array to a function you do not use an &.

22 // Double the values in the array
23 doubleArray(set, ARRAY_SIZE);
24
25 // Display the new values
26 cout << "\nAfter calling doubleArray, the values are:\n";
27 showValues(set, ARRAY_SIZE);
28 cout << endl;
29 return 0;
30 }
31
32 /***
33 * doubleArray *
34 * This function doubles the value of each element *
35 * in the array whose address is passed to it. *
36 ***/
37 void doubleArray(arrayType nums, int size)
38 {
39 for (int index = 0; index < size; index++)
40 nums[index] *= 2;
41 }
42
43 /***
44 * showValues *
45 * This function displays the contents of an int array *
46 * when passed the array's address and size as arguments.*
47 ***/
48 void showValues (arrayType nums, int size)
49 {
50 for (int index = 0; index < size; index++)
51 cout << nums[index] << " ";
52 cout << endl;
53 }

Program Output
The array values are:
1 2 3 4 5 6 7

After calling doubleArray, the values are:
2 4 6 8 10 12 14

Program 8-17 (continued)

Arrays as Function Arguments 523

Some Useful Array Functions
Section 8.5 introduced you to algorithms such as summing an array and finding the highest
and lowest values in an array. Now we can write general-purpose functions that perform
these operations. Program 8-18, which is a modification of Program 8-10, uses the func-
tions sumArray, getHighest, and getLowest.

NOTE: In C++ when a regular variable is passed to a function and an & precedes its
name, it means that the function is receiving a reference to the memory address where a
variable is stored. An array name, however, is already a memory address. That is, instead
of holding a value, it holds the starting address of where the array is located in memory.
Therefore, an & should not be used with it.

Program 8-18

1 // This program gets a set of sales data from the user
2 // and displays the total, average, highest, and lowest amounts.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 // Function prototypes
8 double sumArray (double[], int);
9 double getHighest(double[], int);
10 double getLowest (double[], int);
11
12 int main()
13 {
14 const int NUM_DAYS = 5; // Number of days
15 double sales[NUM_DAYS], // Holds the daily sales amounts
16 total, // Holds the week’s total sales
17 average, // Holds the average daily sales
18 highest, // Holds the highest daily sales
19 lowest; // Holds the lowest daily sales
20
21 // Get the sales data
22 cout << "Enter the sales for this week.\n";
23 for (int day = 0; day < NUM_DAYS; day++)
24 { cout << "Day " << (day + 1) <<": ";
25 cin >> sales[day];
26 }
27
28 // Get total sales and compute average sales
29 total = sumArray(sales, NUM_DAYS);
30 average = total / NUM_DAYS;
31
32 // Get highest and lowest sales amounts
33 highest = getHighest(sales, NUM_DAYS);
34 lowest = getLowest(sales, NUM_DAYS);
35

(program continues)

524 Chapter 8 Arrays

36 // Display results
37 cout << fixed << showpoint << setprecision(2) << endl;
38 cout << "The total sales are $"
39 << setw(9) << total << endl;
40 cout << "The average sales amount is $"
41 << setw(9) << average << endl;
42 cout << "The highest sales amount is $"
43 << setw(9) << highest << endl;
44 cout << "The lowest sales amount is $"
45 << setw(9) << lowest << endl;
46 return 0;
47 }
48
49 /**
50 * sumArray *
51 * This function computes and returns the sum of the *
52 * values in the array whose address is passed to it. *
53 **/
54 double sumArray(double array[], int size)
55 {
56 double total = 0; // Accumulator
57
58 for (int count = 0; count < size; count++)
59 total += array[count];
60 return total;
61 }
62
63 /**
64 * getHighest *
65 * This function finds and returns the largest value *
66 * in the array whose address is passed to it. *
67 **/
68 double getHighest(double array[], int size)
69 {
70 double highest = array[0];
71
72 for (int count = 1; count < size; count++)
73 { if (array[count] > highest)
74 highest = array[count];
75 }
76 return highest;
77 }
78
79 /**
80 * getLowest *
81 * This function finds and returns the smallest value *
82 * in the array whose address is passed to it. *
83 **/

(program continues)

Program 8-18 (continued)

Arrays as Function Arguments 525

Checkpoint

8.15 Write a typedef statement that makes the name TenInts an alias for an array that
holds 10 integers.

8.16 When an array name is passed to a function, what is actually being passed?

8.17 What is the output of the following program? (You may need to consult the ASCII
table in Appendix A.)

#include <iostream>
using namespace std;

// Function prototypes
void fillArray(char [], int)
void showArray(char [], int)

int main ()
{ char prodCode[8] = {'0', '0', '0', '0', '0', '0', '0', '0'};

fillArray(prodCode,8);
showArray(prodCode,8);
return 0;

}

// Definition of function fillArray
// (Hint: 65 is the ASCII code for 'A'.)
void fillArray(char arr[], int size)
{ char code = 65;

for (int k = 0; k < size; code++, k++)
arr[k] = code;

}

84 double getLowest(double array[], int size)
85 {
86 double lowest = array[0];
87
88 for (int count = 1; count < size; count++)
89 { if (array[count] < lowest)
90 lowest = array[count];
91 }
92 return lowest;
93 }

Program Output with Example Input Shown in Bold
Enter the sales for this week.
Day 1: 2698.72[Enter]
Day 2: 3757.29[Enter]
Day 3: 1109.67[Enter]
Day 4: 2498.65[Enter]
Day 5: 1489.87[Enter]
The total sales are $ 11554.20
The average sales amount is $ 2310.84
The highest sales amount is $ 3757.29
The lowest sales amount is $ 1109.67

Program 8-18 (continued)

526 Chapter 8 Arrays

// Definition of function showArray
void showArray(char codes[], int size)
{ for (int k = 0; k < size; k++)

cout << codes[k];
}

8.18 The following program skeleton, when completed, will ask the user to enter 10
integers which are stored in an array. The function avgArray, which you must
write, should calculate and return the average of the numbers entered.

#include <iostream>
using namespace std;

// Write the avgArray function prototype here.

int main ()
{

const int SIZE = 10;
int userNums[SIZE];

cout << "Enter 10 numbers: ";
for (int count = 0; count < SIZE; count++)
{

cout << "#" << (count + 1) << " ";
cin >> userNums[count];

}
cout << "The average of those numbers is ";
cout << avgArray(userNums, SIZE) << endl;
return 0;

}

// Write the avgArray function here.

8.9 Two-Dimensional Arrays

CONCEPT: A two-dimensional array is like several identical arrays put together. It is
useful for storing multiple sets of data.

An array is useful for storing and working with a set of data. Sometimes, though, it’s necessary
to work with multiple sets of data. For example, in a grade-averaging program a teacher might
record all of one student’s test scores in an array of doubles. If the teacher has 30 students,
that means 30 arrays of doubles will be needed to record the scores for the entire class. Instead
of defining 30 individual arrays, however, it would be better to define a two-dimensional array.

The arrays that you have studied so far are called one-dimensional arrays because they can
only hold one set of data. Two-dimensional arrays, which are also called 2D arrays, can
hold multiple sets of data. It’s best to think of a two-dimensional array as a table having
rows and columns of elements, as shown in Figure 8-14. This figure shows an array of test
scores that has three rows and four columns.

Notice that the three rows are numbered 0 through 2 and the four columns are numbered
0 through 3. There are a total of 12 elements in the array.

Two-
Dimensional
Arrays

Two-Dimensional Arrays 527

To define a two-dimensional array, two size declarators are required: the first one is for the
number of rows and the second one is for the number of columns. Here is an example def-
inition of a two-dimensional array with three rows and four columns:

Notice that each number is enclosed in its own set of brackets.

For processing the information in a two-dimensional array, each element has two sub-
scripts: one for its row and another for its column. In the score array, the elements in row
0 are referenced as

score[0][0]
score[0][1]
score[0][2]
score[0][3]

The elements in row 1 are

score[1][0]
score[1][1]
score[1][2]
score[1][3]

And the elements in row 2 are

score[2][0]
score[2][1]
score[2][2]
score[2][3]

The subscripted references are used in a program just like the references to elements in a
one-dimensional array. For example, the following statement assigns the value 92.25 to the
element at row 2, column 1 of the score array:

score[2][1] = 92.25;

And the following statement displays the element at row 0, column 2:

cout << score[0][2];

Programs that cycle through each element of a two-dimensional array usually do so with
nested loops. Program 8-19 shows an example.

Figure 8-14

Column 0

Row 0

Row 1

Row 2

Column 1

score[0][0]

score[1][0]

score[2][0]

score[0][1]

score[1][1]

score[2][1]

Column 2

score[0][2]

score[1][2]

score[2][2]

Column 3

score[0][3]

score[1][3]

score[2][3]

Rows Columns

double score[3][4];

528 Chapter 8 Arrays

Program 8-19

1 // This program uses a two-dimensional array. The
2 // data stored in the array is read in from a file.
3 #include <iostream>
4 #include <fstream>
5 #include <iomanip>
6 using namespace std;
7
8 int main()
9 {
10 const int NUM_DIVS = 3: // Number of divisions
11 const int NUM_QTRS = 4: // Number of quarters
12 double sales[NUM_DIVS][NUM_QTRS];// 2D array with 3 rows & 4 columns
13 double totalSales = 0; // Accumulates total sales
14 int div, qtr; // Loop counters
15 ifstream datafile; // Used to read data from a file
16
17 datafile.open("sales2.dat");
18 if (!datafile)
19 cout << "Error opening data file.\n";
20 else
21 {
22 cout << fixed << showpoint << setprecision(2);
23 cout << "Quarterly Sales by Division\n\n";
24
25 // Nested loops are used to fill the array with quarterly
26 // sales figures for each division and to display the data
27 for (div = 0; div < NUM_DIVS; div++)
28 { for (qtr = 0; qtr < NUM_QTRS; qtr++)
29 {
30 cout << "Division " << (div + 1)
31 << ", Quarter " << (qtr + 1) << ": $";
32 datafile >> sales[div][qtr];
33 cout << sales[div][qtr] << endl;
34 }
35 cout << endl; // Print blank line
36 }
37 datafile.close();
38
39 // Nested loops are used to add all the elements
40 for (div = 0; div < NUM_DIVS; div++)
41 { for (qtr = 0; qtr < NUM_QTRS; qtr++)
42 totalSales += sales[div][qtr];
43 }
44 // Display the total
45 cout << "The total sales for the company are: $";
46 cout << totalSales << endl;
47 }
48 return 0;
49 }

(program continues)

Two-Dimensional Arrays 529

As with one-dimensional arrays, two-dimensional arrays can be initialized when they are
created. When initializing a two-dimensional array, it helps to enclose each row’s initializa-
tion list in a set of braces. Here is an example:

int hours[3][2] = {{8, 5}, {7, 9}, {6, 3}};

The same statement could also be written as

int hours[3][2] = {{8, 5},
 {7, 9},
 {6, 3}};

In either case, the values are assigned to hours in the following manner:

hours[0][0] is set to 8
hours[0][1] is set to 5
hours[1][0] is set to 7
hours[1][1] is set to 9
hours[2][0] is set to 6
hours[2][1] is set to 3

Figure 8-15 illustrates the initialization.

Program Output
Quarterly Sales by Division

Division 1, Quarter 1: $31569.45
Division 1, Quarter 2: $29654.23
Division 1, Quarter 3: $32982.54
Division 1, Quarter 4: $39651.21

Division 2, Quarter 1: $56321.02
Division 2, Quarter 2: $54128.63
Division 2, Quarter 3: $41235.85
Division 2, Quarter 4: $54652.33

Division 3, Quarter 1: $29654.35
Division 3, Quarter 2: $28963.32
Division 3, Quarter 3: $25353.55
Division 3, Quarter 4: $32615.88

The total sales for the company are: $456782.34

Figure 8-15

Program 8-19 (continued)

Column 0

Row 0

Row 1

Row 2

Column 1

8

7

6

5

9

3

530 Chapter 8 Arrays

The extra braces that enclose each row’s initialization list are optional. Both of the follow-
ing statements perform the same initialization:

int hours[3][2] = {{8, 5}, {7, 9}, {6, 3}};
int hours[3][2] = {8, 5, 7, 9, 6, 3};

Because the extra braces visually separate each row, however, it’s a good idea to use them.
In addition, the braces give you the ability to leave out initializers within a row without
omitting the initializers for the rows that follow it. For instance, look at the following
array definition:

int table[3][2] = {{1}, {3, 4}, {5}};

table[0][0] is initialized to 1, table[1][0] is initialized to 3, table[1][1] is initialized
to 4, and table[2][0] is initialized to 5. The uninitialized elements (in this case
table[0][1] and table[2][1]) are automatically set to zero.

Passing Two-Dimensional Arrays to Functions
Program 8-20 illustrates how to pass a two-dimensional array to a function. When a
two-dimensional array is passed to a function, the parameter type must contain a size
declarator for the number of columns. C++ needs this information to correctly trans-
late a subscripted array reference, such as table[2][1], to the address in memory
where that element is stored. Here is the header for the function showArray, from
Program 8-20:

void showArray(int array[][NUM_COLS], int numRows)

The showArray function can accept any two-dimensional integer array, as long as it has
four columns. In Program 8-20, the contents of two separate arrays are displayed by this
function.

Program 8-20

1 // This program demonstrates how to pass a two-dimensional array
2 // to a function.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 const int NUM_COLS = 4; // Number of columns in each array
8 const int TBL1_ROWS = 3; // Number of rows in table1
9 const int TBL2_ROWS = 4; // Number of rows in table2
10
11 void showArray(int [][NUM_COLS], int); // Function prototype
12
13 int main()
14 {
15 int table1[TBL1_ROWS][NUM_COLS] = {{1, 2, 3, 4},
16 {5, 6, 7, 8},
17 {9, 10, 11, 12}};
18

(program continues)

Two-Dimensional Arrays 531

C++ requires the columns to be specified in the function prototype and header because of
the way two-dimensional arrays are stored in memory. One row actually follows another,
as shown in Figure 8-16.

19 int table2[TBL2_ROWS][NUM_COLS] = {{ 10, 20, 30, 40},
20 { 50, 60, 70, 80},
21 { 90, 100, 110, 120},
22 {130, 140, 150, 160}};
23
24 cout << "The contents of table1 are:\n";
25 showArray(table1, TBL1_Rows);
26 cout << "\nThe contents of table2 are:\n";
27 showArray(table2, TBL2_Rows);
28 return 0;
29 }
30 /***
31 * showArray *
32 * This function displays the contents of a 2-D integer array. *
33 * The first parameter is passed the address of the array, *
34 * which has NUM_COLS columns. The second parameter, numRows, *
35 * is passed the number of rows in the array. *
36 ***/
37 void showArray(int array[][NUM_COLS], int numRows)
38 {
39 for (int row = 0; row < numRows; row++)
40 { for (int col = 0; col < NUM_COLS; col++)
41 {
42 cout << setw(5) << array[row][col] << " ";
43 }
44 cout << endl;
45 }
46 }

Program Output
The contents of table1 are:
 1 2 3 4
 5 6 7 8
 9 10 11 12

The contents of table2 are:
 10 20 30 40
 50 60 70 80
 90 100 110 120
 130 140 150 160

Figure 8-16

Program 8-20 (continued)

row 1 row 2 row 3

532 Chapter 8 Arrays

When the compiler generates code for accessing the elements of a two-dimensional array, it
needs to know how many bytes separate the rows in memory. The number of columns is a
critical factor in this calculation.

This required column information can also be provided with a typedef statement. Here is
how a typedef declaration for a two-dimensional array might look:

typedef int intTable[][4];

This statement makes intTable an alias for a two-dimensional array with any number of
rows and four columns. If this typedef statement had been included in Program 8-20, the
prototype for the showArray function could then have been written as

void showArray(intTable, int);

and its function header could have been written as

void showArray(intTable array, int numRows)

Summing All the Elements of a Two-Dimensional Array
To sum all the elements of a two-dimensional array, you can use a pair of nested loops to add
the contents of each element to an accumulator. The following code shows an example.

const int NUM_ROWS = 3; // Number of rows
const int NUM_COLS = 5; // Number of columns
int total = 0; // Accumulator
int numbers[NUM_ROWS][NUM_COLS] = {{2, 7, 9, 6, 4},

{6, 1, 8, 9, 4},
{4, 3, 7, 2, 9}};

// Sum the array elements
for (int row = 0; row < NUM_ROWS; row++)
{ for (int col = 0; col < NUM_COLS; col++)

 total += numbers[row][col];
}
// Display the sum
cout << "The total is " << total << endl;

Summing the Rows of a Two-Dimensional Array
Sometimes you need to calculate the sum of each row in a two-dimensional array. For
example, suppose a two-dimensional array is used to hold a set of test scores for a group of
students. Each row in the array is a set of scores for one student. To sum the scores for
each student, you again use a pair of nested loops. The inner loop is used to add all the
scores in a row, that is, all the scores for one student. The outer loop is executed once for
each student. The following code shows an example.

const int NUM_STUDENTS = 3; // Number of students
const int NUM_SCORES = 5; // Number of test scores
double total; // Accumulator
double average; // Holds a given student's average
double scores[NUM_STUDENTS][NUM_SCORES] = {{88, 97, 79, 86, 94},

 {86, 91, 78, 79, 84},
 {82, 73, 77, 82, 89}};

Two-Dimensional Arrays 533

// Sum each student’s test scores so his or her
// average can be calculated and displayed
for (int row = 0; row < NUM_STUDENTS; row ++)
{

// Reset accumulator to 0 for this student
total = 0;

// Sum a row
for (int col = 0; col < NUM_SCORES; col++)

total += scores[row][col];

// Compute and display the average for this student
average = total / NUM_SCORES;
cout << "Score average for student "

<< (row + 1) << " is " << average << endl;
}

Summing the Columns of a Two-Dimensional Array
Sometimes you may need to calculate the sum of each column in a two-dimensional array.
Using the array of test scores from the previous example, suppose you wish to calculate the
class average for each of the tests. To do this, you must calculate the average of each col-
umn in the array. As in the previous example, this is accomplished with a set of nested
loops. However, now the order of the two loops is reversed. The inner loop is used to add
all the scores in a column, that is, all the scores for one test. The outer loop is executed
once for each test. The following code illustrates this.

const int NUM_STUDENTS = 3; // Number of students
const int NUM_SCORES = 5; // Number of test scores
double total; // Accumulator
double average; // Holds average score on a given test
double scores[NUM_STUDENTS][NUM_SCORES] = {{88, 97, 79, 86, 94},

 {86, 91, 78, 79, 84},
 {82, 73, 77, 82, 89}};

// Calculate and display the class
// average for each test
for (int col = 0; col < NUM_SCORES; col++)
{

// Reset accumulator to 0 for this test
total = 0;

// Sum a column
for (int row = 0; row < NUM_STUDENTS; row++)

 total += scores[row][col];
// Compute and display the class average for this test
average = total / NUM_STUDENTS;
cout << "Class average for test " << (col + 1)
 << " is " << average << endl;

}

534 Chapter 8 Arrays

8.10 Arrays with Three or More Dimensions

CONCEPT: C++ permits arrays to have multiple dimensions.

C++ allows you to create arrays with virtually any number of dimensions. Here is an
example of a three-dimensional (3D) array definition:

double seat[3][5][8];

This array can be thought of as three sets of five rows, with each row containing eight ele-
ments. The array might be used, for example, to store the price of seats in an auditorium
that has three sections of seats, with five rows of eight seats in each section.

Figure 8-17 illustrates the concept of a three-dimensional array as “pages” of two-
dimensional arrays.

Arrays with more than three dimensions are difficult to visualize but can be useful in some
programming problems.

When writing functions that accept multidimensional arrays as arguments, you must
explicitely state all but the first dimension in the parameter list. If the seat array, defined
here, were passed to a displaySeats function, its prototype and function header might
look like the following:

// Function prototype
void displaySeats(double [][5][8], int);

// Function header
void displaySeats(double array[][5][8], int numGroups);

As with one-dimensional and two-dimensional arrays, the parameter lists can be simplified
if a typedef statement is used to create an alias for the array type. This is demonstrated in
Program 8-21, which uses the seat array to store theater seat prices. The information to
populate the array is read in from a file. The information on number of sections, number of
rows in a section, and number of seats in a row is stored in global constants, rather than
being passed to the functions.

Figure 8-17

0

1

2

3

4

0 1 2 3 4 5 6 7 0

1

2

Arrays with Three or More Dimensions 535

Program 8-21

1 // This program stores and displays theater seat prices.
2 // It demonstrates how to pass a 3-dimensional array to a function.
3 // The data is read in from a file.
4 #include <iostream>
5 #include <fstream>
6 #include <iomanip>
7 using namespace std;
8
9 const int NUM_SECTIONS = 3,
10 ROWS_IN_SECTION = 5,
11 SEATS_IN_ROW = 8;
12
13 typedef double seatTable[][ROWS_IN_SECTION][SEATS_IN_ROW];
14
15 // Function prototypes
16 void fillArray(seatTable);
17 void showArray(seatTable);
18
19 int main()
20 {
21 // Define 3-D array to hold seat prices
22 double seats[NUM_SECTIONS][ROWS_IN_SECTION][SEATS_IN_ROW];
23
24 fillArray(seats);
25 showArray(seats);
26 return 0;
27 }
28
29 /***
30 * fillArray *
31 * This function receives the address of a 3-D array *
32 * and fills it with data read in from a file. *
33 ***/
34 void fillArray(seatTable array)
35 {
36 ifstream dataIn;
37 dataIn.open("seats.dat");
38
39 if (!dataIn)
40 cout << "Error opening file.\n";
41 else
42 { for (int section = 0; section < NUM_SECTIONS; section++)
43 for (int row = 0; row < ROWS_IN_SECTION; row++)
44 for (int seat = 0; seat < SEATS_IN_ROW; seat++)
45 dataIn >> array[section][row][seat];
46
47 dataIn.close();
48 }
49 }
50

(program continues)

536 Chapter 8 Arrays

Checkpoint

8.19 Define a two-dimensional array of ints named grades. It should have 30 rows and
10 columns.

8.20 How many elements are in the following array?

double sales[6][4];

51 /***
52 * showArray *
53 * This function displays the contents of the 3-D *
54 * array of doubles whose address is passed to it. *
55 ***/
56 void showArray(seatTable array)
57 {
58 cout << fixed << showpoint << setprecision(2);
59
60 for (int section = 0; section < NUM_SECTIONS; section++)
61 {
62 cout << "\n\nSection" << (section+1);
63 for (int row = 0; row < ROWS_IN_SECTION; row++)
64 {
65 cout << "\nRow " << (row+1) << ": ";
66 for (int seat = 0; seat < SEATS_IN_ROW; seat++)
67 cout << setw(7) << array[section][row][seat];
68 }
69 }
70 cout << endl;
71 }

Program Output
Section1
Row 1: 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00
Row 2: 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00
Row 3: 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00
Row 4: 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00
Row 5: 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00

Section2
Row 1: 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
Row 2: 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
Row 3: 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
Row 4: 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
Row 5: 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Section3
Row 1: 8.00 8.00 10.00 10.00 10.00 10.00 8.00 8.00
Row 2: 8.00 8.00 10.00 10.00 10.00 10.00 8.00 8.00
Row 3: 5.00 5.00 8.00 8.00 8.00 8.00 5.00 5.00
Row 4: 5.00 5.00 8.00 8.00 8.00 8.00 5.00 5.00
Row 5: 5.00 5.00 8.00 8.00 8.00 8.00 5.00 5.00

Program 8-21 (continued)

Vectors 537

8.21 Write a statement that assigns the value 56893.12 to the first column of the first
row of the sales array defined in question 8.20.

8.22 Write a statement that displays the contents of the last column of the last row of the
sales array defined in question 8.20.

8.23 Define a two-dimensional array named settings large enough to hold the table of
information below. Initialize the array with the values in the table.

8.24 Fill in the empty table below so it shows the contents of the following array:

int table[3][4] = {{2, 3}, {7, 9, 2}, {1}};

8.25 Write a function called displayArray7. The function should accept a two-
dimensional array as an argument and display its contents on the screen. The
function should work with any of the following arrays:

int hours[5][7];
int stamps[8][7];
int autos[12][7];

8.26 A DVD rental store keeps DVDs on 50 racks with 10 shelves each. Each shelf
holds 25 DVDs. Define a 3D array to represent this storage system.

8.11 Vectors

CONCEPT: The Standard Template Library offers a vector data type, which in many
ways is superior to standard arrays.

The Standard Template Library (STL) is a collection of data types and algorithms that you
may use in your C++ programs. These data types and algorithms are programmer-defined.
They are not part of the C++ language but were created in addition to the built-in data types.
If you plan to continue your studies in the field of computer science, you should become
familiar with the STL. This section introduces one of the STL data types.

NOTE: To use vectors your program header must indicate that you are using
namespace std, since vectors are contained within that namespace. Many older
compilers do not allow namespaces or support the STL.

 12 24 32 21 42

 14 67 87 65 90

 19 1 24 12 8

538 Chapter 8 Arrays

The data types that are defined in the STL are commonly called containers. They are called
containers because they store and organize data. There are two types of containers in the
STL: sequence containers and associative containers. A sequence container organizes data
in a sequential fashion, similar to an array. Associative containers organize data with keys,
which allow rapid, random access to elements stored in the container.

In this section you will learn to use the vector data type, which is a sequence container. A
vector is like a one-dimensional array in the following ways:

• A vector holds a sequence of values, or elements.
• A vector stores its elements in contiguous memory locations.
• You can use the array subscript operator [] to access individual elements in the vector.

However, a vector offers several advantages over arrays. Here are just a few:

• You do not have to declare the number of elements that the vector will have.
• If you add a value to a vector that is already full, the vector will automatically

increase its size to accommodate the new value.
• Vectors can report the number of elements they contain.

Defining a Vector
To use vectors in your program, you must include the vector header file with the follow-
ing statement:

#include <vector>

To create a vector object you must use a statement whose syntax is somewhat different
from the syntax used in defining a regular variable or array. Here is an example:

vector<int> numbers;

This statement defines numbers as a vector of ints. Notice that the data type is enclosed in
angled brackets, immediately after the word vector. Because a vector expands in size as
you add values to it, there is no need to declare a size. However, you can declare a starting
size, if you prefer. Here is an example:

vector<int> numbers(10);

This statement defines numbers as a vector of 10 ints, but this is only a starting size. Its
size will expand if you add more than 10 values to it.

When you specify a starting size for a vector, you may also specify an initialization value.
The initialization value is copied to each element. Here is an example:

vector<int> numbers(10, 2);

In this statement, numbers is defined as a vector of 10 ints. Each element in numbers is
initialized to the value 2.

NOTE: Notice that if you specify a starting size for a vector, the size declarator is
enclosed in parentheses, not square brackets.

Vectors 539

You may also initialize a vector with the values in another vector. For example, if set1 is
a vector of ints that already has values in it, the following statement will create a new
vector, named set2, which is an exact copy of set1.

vector<int> set2(set1);

After this statement executes, the vector set2 will have the same number of elements and
hold the same set of values as set1.

Table 8-2 summarizes the vector definition procedures we have discussed.

Storing and Retrieving Values in a Vector
To store a value in an element that already exists in a vector, you may use the array sub-
script operator []. Program 8-22, which is a modification of Program 8-13, illustrates this.

Table 8-2 Example Vector Definitions

Definition Format Description

vector<float> amounts; Defines amounts as an empty vector of floats.

vector<int> scores(15); Defines scores as a vector of 15 ints.

vector<char> letters(25, 'A'); Defines letters as a vector of 25 characters. Each
element is initialized with 'A'.

vector<double> values2(values1); Defines values2 as a vector of doubles. All the
elements of values1, which is also a vector of doubles,
are copied to value2.

Program 8-22

1 // This program stores employee hours worked and hourly pay rates
2 // in vectors.
3 #include <iostream>
4 #include <iomanip>
5 #include <vector> // Needed to use vectors
6 using namespace std;
7
8 int main()
9 {
10 const int NUM_EMPS = 5; // Number of employees
11 vector <int> hours(NUM_EMPS); // Define a vector of integers
12 vector <double> payRate(NUM_EMPS); // Define a vector of doubles
13 double grossPay;
14 int index; // Loop counter
15
16 // Get employee work data
17 cout << "Enter the hours worked and hourly pay rates of "
18 << NUM_EMPS << " employees. \n";
19

(program continues)

540 Chapter 8 Arrays

Notice that Program 8-22 uses the following statements in lines 11 and 12 to define two
vectors:

vector<int> hours(NUM_EMPS); // Define a vector of integers
vector<double> payRate(NUM_EMPS); // Define a vector of doubles

Because the named constant NUM_EMPS equals 5, both vectors are defined with the start-
ing size 5. The program uses the following loop in lines 20 through 26 to store a value in
each element of both vectors:

20 for (index = 0; index < NUM_EMPS; index++)
21 {
22 cout << "Hours worked by employee #" << (index + 1) << ": ";
23 cin >> hours[index];
24 cout << "Hourly pay rate for employee #" << (index + 1) << ": ";
25 cin >> payRate[index];
26 }
27 // Display each employee’s gross pay
28 cout << "\nHere is the gross pay for each employee:\n";
29 cout << fixed << showpoint << setprecision(2);
30 for (index = 0; index < NUM_EMPS; index++)
31 {
32 grossPay = hours[index] * payRate[index];
33 cout << "Employee #" << (index + 1);
34 cout << ": $" << setw(7) << grossPay << endl;
35 }
36 return 0;
37 }

Program Output with Example Input Shown in Bold
Enter the hours worked and hourly pay rates of 5 employees.
Hours worked by employee #1: 10[Enter]
Hourly pay rate for employee #1: 9.75[Enter]
Hours worked by employee #2: 15[Enter]
Hourly pay rate for employee #2: 8.62[Enter]
Hours worked by employee #3: 20[Enter]

Hourly pay rate for employee #3: 10.50[Enter]
Hours worked by employee #4: 40[Enter]
Hourly pay rate for employee #4: 18.75[Enter]
Hours worked by employee #5: 40[Enter]
Hourly pay rate for employee #5: 15.65[Enter]

Here is the gross pay for each employee:
Employee #1: $ 97.50
Employee #2: $ 129.30
Employee #3: $ 210.00
Employee #4: $ 750.00
Employee #5: $ 626.00

Program 8-22 (continued)

Vectors 541

for (index = 0; index < NUM_EMPS; index++)
{

cout << "Hours worked by employee #" << (index + 1) << ": ";
cin >> hours[index];
cout << "Hourly pay rate for employee #" << (index + 1) << ": ";
cin >> payRate[index];

}

Because the values entered by the user are being stored in vector elements that already
exist, the program uses the array subscript operator [], as shown in the following state-
ments which appear in lines 23 and 25:

cin >> hours[index];
cin >> payRate[index];

Using the push_back Member Function
You cannot, however, use the [] operator to access a vector element that does not yet exist.
To store a value in a vector that does not have a starting size, or that is already full, you
should use the push_back member function. This function accepts a value as an argument,
and stores it in a new element placed at the end of the vector. (It “pushes” the value at the
“back” of the vector.) Here is an example that uses the push_back function to add an ele-
ment to a vector of ints named numbers.

numbers.push_back(25);

This statement creates a new element holding 25 and places it at the end of numbers. If
numbers previously had no elements, the new element becomes its single element.

Program 8-23 is a modification of Program 8-22. This version, however, allows the user to
specify the number of employees. The two vectors, hours and payRate, are defined with-
out starting sizes. Because these vectors have no starting elements, the push_back member
function is used to store values in the vectors.

Program 8-23

1 // This program stores employee hours worked and hourly pay rates
2 // in two vectors. It demonstrates the use of the push_back member
3 // function to add new elements to the vectors.
4 #include <iostream>
5 #include <iomanip>
6 #include <vector> // Needed to use vectors
7 using namespace std;
8
9 int main()
10 {
11 vector<int> hours; // hours is an empty integer vector
12 vector<double> payRate; // payRate is an empty double vector
13 double grossPay;
14 int numEmployees; // Number of employees
15 int index; // Loop counter
16
17 // Get the number of employees
18 cout << "How many employees do you have? ";
19 cin >> numEmployees;
20

(program continues)

542 Chapter 8 Arrays

Notice that the Program 8-23 loop in lines 40 through 45 which calculates and displays
each employee’s gross pay uses the [] operator to access the elements of the hours and
payRate vectors. This is possible because the first loop in lines 25 through 36 already used
the push_back member function to create the elements in the two vectors.

21 // Input the payroll data
22 cout << "Enter the hours worked and hourly pay rates of the "
23 << numEmployees << " employees. \n";
24
25 for (index = 0; index < numEmployees; index++)
26 {
27 int tempHours; // Number of hours entered
28 double tempRate; // Pay rate entered
29
30 cout << "Hours worked by employee #" << (index + 1) << ": ";
31 cin >> tempHours;
32 hours.push_back(tempHours); // Add an element to hours
33 cout << "Hourly pay rate for employee #" << (index + 1) << ": ";
34 cin >> tempRate;
35 payRate.push_back(tempRate); // Add an element to payRate
36 }
37 // Display each employee's gross pay
38 cout << "\nHere is the gross pay for each employee:\n";
39 cout << fixed << showpoint << setprecision(2);
40 for (index = 0; index < numEmployees; index++)
41 {
42 grossPay = hours[index] * payRate[index];
43 cout << "Employee #" << (index + 1);
44 cout << ": $" << setw(7) << grossPay << endl;
45 }
46 return 0;
47 }

Program Output with Example Input Shown in Bold
How many employees do you have? 3[Enter]
Enter the hours worked by 3 employees and their hourly rates.
Hours worked by employee #1: 40[Enter]
Hourly pay rate for employee #1: 12.63[Enter]
Hours worked by employee #2: 25[Enter]
Hourly pay rate for employee #2: 10.35[Enter]
Hours worked by employee #3: 45[Enter]
Hourly pay rate for employee #3: 22.65[Enter]

Here is the gross pay for each employee:
Employee #1: $ 505.20
Employee #2: $ 258.75
Employee #3: $1019.25

Program 8-23 (continued)

Vectors 543

Determining the Size of a Vector
Unlike arrays, vectors can report the number of elements they contain. This is accom-
plished with the size member function. Here is an example of a statement that uses the
size member function:

numValues = set.size();

In this statement, assume that numValues is an int and set is a vector. After the statement
executes, numValues will contain the number of elements in set.

The size member function is especially useful when you are writing functions that accept
vectors as arguments. For example, look at the following code for the showValues function:

void showValues(vector<int> vect)
{

for (int count = 0; count < vect.size(); count++)
cout << vect[count] << endl;

}

Because the vector can report its size, this function does not need a second argument
indicating the number of elements in the vector. Program 8-24 demonstrates this function.

Program 8-24

1 // This program demonstrates the vector size member function.
2 #include <iostream>
3 #include <vector>
4 using namespace std;
5
6 // Function prototype
7 void showValues(vector<int>);
8
9 int main()
10 {
11 vector<int> values;
12
13 // Store a series of numbers in the vector
14 for (int count = 0; count < 7; count++)
15 values.push_back(count * 2);
16
17 // Display the numbers
18 showValues(values);
19
20 return 0;
21 }
22

(program continues)

544 Chapter 8 Arrays

Removing Elements from a Vector
To remove the last element from a vector you can use the pop_back member function. The
following statement removes the last element from a vector named collection.

collection.pop_back();

Program 8-25 demonstrates the pop_back function.

23 /***
24 * showValues *
25 * This function accepts an int vector as its sole argument, and *
26 * displays the value stored in each of the vector's elements. *
27 ***/
28 void showValues(vector<int> vect)
29 {
30 for (int count = 0; count < vect.size(); count++)
31 cout << vect[count] << " ";
32 cout << endl;
33 }

Program Output
0 2 4 6 8 10 12

Program 8-25

1 // This program demonstrates the vector size, push_back,
2 // and pop_back member functions.
3 #include <iostream>
4 #include <vector>
5 using namespace std;
6
7 int main()
8 {
9 vector<int> values;
10
11 // Store values in the vector
12 values.push_back(1);
13 values.push_back(2);
14 values.push_back(3);
15 cout << "The size of values is " << values.size() << endl;
16
17 // Remove a value from the vector
18 cout << "Popping a value from the vector...\n";
19 values.pop_back();
20 cout << "The size of values is now " << values.size() << endl;
21

(program continues)

Program 8-24 (continued)

Vectors 545

Clearing a Vector
To completely clear the contents of a vector, use the clear member function, as shown in
the following example:

numbers.clear();

After this statement executes, numbers will be cleared of all its elements. Program 8-26
demonstrates the function.

22 // Now remove another value from the vector
23 cout << "Popping a value from the vector...\n";
24 values.pop_back();
25 cout << "The size of values is now " << values.size() << endl;
26
27 // Remove the last value from the vector
28 cout << "Popping a value from the vector...\n";
29 values.pop_back();
30 cout << "The size of values is now " << values.size() << endl;
31 return 0;
32 }

Program Output
The size of values is 3
Popping a value from the vector...
The size of values is now 2
Popping a value from the vector...
The size of values is now 1
Popping a value from the vector...
The size of values is now 0

NOTE: The pop_back function is a void function that does not return the value being
removed from the vector. The following line of code will not work:

cout << "The value being removed from the vector is "
 << values.pop_back() << endl; // Error!

Program 8-26

1 // This program demonstrates the vector clear member function.
2 #include <iostream>
3 #include <vector>
4 using namespace std;
5

(program continues)

Program 8-25 (continued)

546 Chapter 8 Arrays

Detecting an Empty Vector
To determine if a vector is empty, use the empty member function. The function returns
true if the vector is empty, and false if the vector has elements stored in it. Assuming set
is a vector, here is an example of its use:

if (set.empty())
cout << "No values in set.\n";

Program 8-27 uses a function named avgVector, which demonstrates the empty member
function.

6 int main()
7 {
8 vector<int> values(100);
9
10 cout << "The values vector has "
11 << values.size() << " elements.\n";
12 cout << "I will call the clear member function...\n";
13 values.clear();
14 cout << "Now the values vector has "
15 << values.size() << " elements.\n";
16 return 0;
17 }

Program Output
The values vector has 100 elements.
I will call the clear member function...
Now the values vector has 0 elements.

Program 8-27

1 // This program demonstrates the vector empty member function.
2 #include <iostream>
3 #include <vector>
4 using namespace std;
5
6 // Function prototype
7 double avgVector(vector<int>);
8
9 int main()
10 {
11 vector<int> values; // Define a vector to hold int values
12 int numValues; // Number of values to be averaged
13 double average; // Average of the stored values
14
15 // Get the number of values to average
16 cout << "How many values do you wish to average? ";
17 cin >> numValues;
18

(program continues)

Program 8-26 (continued)

Vectors 547

19 // Get the values and store them in a vector
20 for (int count = 0; count < numValues; count++)
21 { int tempValue;
22
23 cout << "Enter an integer value: ";
24 cin >> tempValue;
25 values.push_back(tempValue);
26 }
27 // Get the average of the values and display it
28 average = avgVector(values);
29 cout << "Average: " << average << endl;
30 return 0;
31 }
32
33 /**
34 * avgVector *
35 * This function accepts an int vector as its argument. If *
36 * the vector contains values, the function returns the *
37 * average of those values. Otherwise, an error message is *
38 * displayed and the function returns 0.0. *
39 **/
40 double avgVector(vector<int> vect)
41 {
42 int total = 0; // Accumulator
43 double avg = 0.0;
44
45 if (vect.empty()) // Determine if the vector is empty
46 cout << "No values to average.\n";
47 else
48 { for (int count = 0; count < vect.size(); count++)
49 total += vect[count];
50 avg = static_cast<double>(total)/vect.size();
51 }
52 return avg;
53 }

Program Output with Example Input Shown in Bold
How many values do you wish to average? 4[Enter]
Enter an integer value: 12[Enter]
Enter an integer value: 3[Enter]
Enter an integer value: 7[Enter]
Enter an integer value: 9[Enter]
Average: 7.75

Program Output with Different Example Input Shown in Bold
How many values do you wish to average? 0[Enter]
No values to average.
Average: 0

Program 8-27 (continued)

548 Chapter 8 Arrays

Summary of Vector Member Functions
Table 8-3 provides a summary of the vector member functions we have discussed, as well
as some additional ones.

Table 8-3 Vector Member Functions

Member Function Description

at(position) Returns the value of the element located at position in the vector.
Example:

x = vect.at(5); // Assigns the value of vect[5] to x.

capacity() Returns the maximum number of elements that may be stored in the
vector without additional memory being allocated. (This is not the same
value as returned by the size member function).
Example:

x = vect.capacity(); // Assigns the capacity of vect to x.

clear() Clears a vector of all its elements.
Example:

vect.clear(); // Removes all the elements from vect.

empty() Returns true if the vector is empty. Otherwise, it returns false.
Example:

if (vect.empty(); // If the vector is empty
cout << "The vector is empty."; // the message is displayed.

pop_back() Removes the last element from the vector.
Example:

vect.pop_back(); // Removes the last element of vect, thus
 // reducing its size by 1.

push_back(value) Stores a value in the last element of the vector. If the vector is full or
empty, a new element is created.
Example:

vect.push_back(7); // Stores 7 in the last element of vect.

reverse() Reverses the order of the elements in the vector (the last element becomes
the first element, and the first element becomes the last element).
Example:

vect.reverse(); // Reverses the order of the element in vect.

resize(n)

resize(n, value)

Resizes a vector to have n elements, where n is greater than the vector’s
current size. If the optional value argument is included, each of the new
elements will be initialized with that value.
Example where vect currently has 4 elements:

vect.resize(6,99); // Adds two elements to the end of the vector,
 // each initialized to 99.

size() Returns the number of elements in the vector.
Example:

numElements = vect.size();

swap(vector2) Swaps the contents of the vector with the contents of vector2.
Example:

vect1.swap(vect2); // Swaps the contents of vect1 and vect2.

Arrays of Class Objects 549

Checkpoint

8.27 What header file must you #include in order to define vector objects?

8.28 Write definition statements for the following three vector objects:
frogs (an empty vector of ints), lizards (a vector of 20 doubles), and
toads (a vector of 100 chars, with each element initialized to 'Z').

8.29 Define gators to be an empty vector of ints and snakes to be a 10-element vector
of doubles. Then write a statement that stores the value 27 in gators and a state-
ment that stores the value 12.897 in element 4 of snakes.

8.12 Arrays of Class Objects*

CONCEPT: Elements of arrays can be class objects.

Earlier in this chapter you learned that all the elements in an array must be of the same
data type. So far we have only used arrays of simple data types, like int arrays and
string arrays. However, arrays can also hold more complex data types, such as structures
or objects. All that is required is that each element hold a structure of the same type or an
object of the same class.

Let’s look at arrays of objects. You define an array of objects the same way you define any
array. If, for example, a class named Circle has been defined, here is how you would
create an array that can hold four Circle objects:

 Circle circle[4];

The four objects are circle[0], circle[1], circle[2], and circle[3].

Notice that the name of the class is Circle, with a capital C. The name of the array is
circle, with a lowercase c. You will recall from Chapter 7, that the convention is to begin
the name of a class with a capital letter and the name of a variable or object with a lowercase
letter. Calling a class function for one of these objects is just like calling a class function for
any other object, except that a subscript must be included to identify which of the objects in
the array is being referenced. For example, the following statement would call the findArea
function of circle[2].

circle[2].findArea();

Program 8-28 illustrates these ideas by creating and using an array of Circle class objects.
Here is the definition of the Circle class it uses. It is a variation of the Circle class
introduced in Chapter 7.

* This section should be skipped if Chapter 7 has not yet been covered.

550 Chapter 8 Arrays

Program 8-28 creates an array of four Circle objects in line 12, then uses a loop in lines
15 through 20 to call the setRadius method for each object. A second loop is used in lines
26 through 29 to call the findArea method for each object and display the result.

Circle.h

1 // This header file contains the Circle class declaration.
2 #ifndef CIRCLE_H
3 #define CIRCLE_H
4 #include <cmath>
5
6 class Circle
7 { private:
8 double radius; // Circle radius
9 int centerX, centerY; // Center coordinates
10
11 public:
12 Circle() // Default constructor
13 { radius = 1.0; // accepts no arguments
14 centerX = centerY = 0;
15 }
16
17 Circle(double r) // Constructor 2
18 { radius = r; // accepts 1 argument
19 centerX = centerY = 0;
20 }
21
22 Circle(double r, int x, int y) // Constructor 3
23 { radius = r; // accepts 3 arguments
24 centerX = x;
25 centerY = y;
26 }
27
28 void setRadius(double r)
29 { radius = r;
30 }
31
32 int getXcoord()
33 { return centerX;
34 }
35
36 int getYcoord()
37 { return centerY;
38 }
39
40 double findArea()
41 { return 3.14 * pow(radius, 2);
42 }
43 }; // End Circle class declaration
44 #endif

Arrays of Class Objects 551

When the array of Circle objects was first created, the default constructor executed for
each object in the array and assigned its radius the value 1.0. We never saw this because
the call made to the setRadius member function of each object replaced its 1.0 with the

Program 8-28

1 // This program uses an array of objects.
2 // The objects are instances of the Circle class.
3 #include <iostream>
4 #include <iomanip>
5 #include "Circle.h" // Needed to create Circle objects
6 using namespace std;
7
8 const int NUM_CIRCLES = 4;
9
10 int main()
11 {
12 Circle circle[NUM_CIRCLES]; // Define an array of Circle objects
13
14 // Use a loop to initialize the radius of each object
15 for (int index = 0; index < NUM_CIRCLES; index++)
16 { double r;
17 cout << "Enter the radius for circle " << (index+1) << ": ";
18 cin >> r;
19 circle[index].setRadius(r);
20 }
21
22 // Use a loop to get and print out the area of each object
23 cout << fixed << showpoint << setprecision(2);
24 cout << "\nHere are the areas of the " << NUM_CIRCLES
25 << " circles.\n";
26 for (int index = 0; index < NUM_CIRCLES; index++)
27 { cout << "circle " << (index+1) << setw(8)
28 << circle[index].findArea() << endl;
29 }
30 return 0;
31 }

Program Output with Example Input Shown in Bold
Enter the radius for circle 1: 0[Enter]
Enter the radius for circle 2: 2[Enter]
Enter the radius for circle 3: 2.5[Enter]
Enter the radius for circle 4: 10[Enter]

Here are the areas of the 4 circles.
circle 1 0.00
circle 2 12.56
circle 3 19.63
circle 4 314.00

NOTE: Whenever an array of objects is created with no constructor arguments, the
default constructor, if one exists, runs for every object in the array. This occurred in
Program 8-28.

552 Chapter 8 Arrays

new value passed to setRadius. If we commented out lines 15 through 20 of Program 8-30,
no calls would be made to setRadius. So every object in the array would still have a
radius of 1.0 when the loop on lines 26 through 29 gets and prints the area. The output
would look like this:

Here are the areas of the 4 circles.
circle 1 3.14
circle 2 3.14
circle 3 3.14
circle 4 3.14

This version of Program 8-28 can be found on the student CD with the name pr8-28B.cpp.

It is also possible to create an array of objects and have another constructor called for
each object. To do this you must use an initialization list. The following array definition
and initialization list creates four Circle objects and initializes them to the same four
values that were input in the original Program 8-28 sample run.

Circle circle[NUM_CIRCLES] = {0.0, 2.0, 2.5, 10.0};

This invokes the constructor that accepts one double argument and sets the radii shown here.

Object radius

circle[0] 0.0
circle[1] 2.0
circle[2] 2.5
circle[3] 10.0

If the initialization list had been shorter than the number of objects, any remaining objects
would have been initialized by the default constructor. For example, the following state-
ment invokes the constructor that accepts one double argument for the first three objects
and causes the default constructor to run for the fourth object. The fourth object is
assigned a default radius of 1.0.

Circle circle[NUM_CIRCLES] = {0.0, 2.0, 2.5};

This is illustrated in Program 8-29.

Program 8-29

1 // This program demonstrates how an overloaded constructor
2 // that accepts an argument can be invoked for multiple objects
3 // when an array of objects is created.
4 #include <iostream>
5 #include <iomanip>
6 #include "Circle.h" // Needed to create Circle objects
7 using namespace std;
8
9 const int NUM_CIRCLES = 4;
10

(program continues)

Arrays of Class Objects 553

To use a constructor that requires more than one argument, the initializer must take the
form of a function call. For example, look at the following definition statement. It invokes
the 3-argument constructor for each of three Circle objects.

Circle circle[3] = { Circle(4.0, 2, 1),
Circle(2.0, 1, 3),
Circle(2.5, 5, -1) };

circle[0] will have its radius variable set to 4.0, its centerX variable set to 2, and its
centerY variable set to 1. circle[1] will have its radius variable set to 2.0, its centerX
variable set to 1, and its centerY variable set to 3. circle[2] will have its radius variable
set to 2.5, its centerX variable set to 5, and its centerY variable set to -1.

It isn’t necessary to call the same constructor for each object in an array. For example, look
at the following statement:

Circle circle[3] = { 4.0,
Circle(2.0, 1, 3),
2.5 };

This statement invokes the 1-argument constructor for circle[0] and circle[2] and the
3-argument constructor for circle[1].

11 int main()
12 {
13 // Define an array of 4 Circle objects. Use an initialization list
14 // to call the 1-argument constructor for the first 3 objects.
15 // The default constructor will be called for the final object.
16 Circle circle[NUM_CIRCLES] = {0.0, 2.0, 2.5};
17
18 // Display the area of each object
19 cout << fixed << showpoint << setprecision(2);
20 cout << "\nHere are the areas of the " << NUM_CIRCLES
21 << " circles.\n";
22
23 for (int index = 0; index < NUM_CIRCLES; index++)
24 { cout << "circle " << (index+1) << setw(8)
25 << circle[index].findArea() << endl;
26 }
27 return 0;
28 }

Program Output
Here are the areas of the 4 circles.
circle 1 0.00
circle 2 12.56
circle 3 19.63
circle 4 3.14

Program 8-29 (continued)

554 Chapter 8 Arrays

In summary, there are seven key points to remember about arrays of objects.

1. The elements of arrays can be objects.
2. If you do not use an initialization list when an array of objects is created, the default

constructor will be invoked for each object in the array.
3. It is not necessary that all objects in the array use the same constructor.
4. If you do use an initialization list when an array of objects is created, the correct

constructor will be called for each object, depending on the number and type of
arguments used.

5. If a constructor requires more than one argument, the initializer must take the form
of a constructor function call.

6. If there are fewer initializer calls in the list than there are objects in the array, the
default constructor will be called for all the remaining objects.

7. It is best to always provide a default constructor; but if there is none you must be
sure to furnish an initializer for every object in the array.

These seven statements also apply to arrays of structures, which we will look at more
closely in the next few pages.

Checkpoint

8.30 True or false: The default constructor is the only constructor that may be called for
objects in an array of objects.

8.31 True or false: All elements in an array of objects must use the same constructor.

8.32 What will the following program display on the screen?

#include <iostream>
using namespace std;

class Tank
{
private:

int gallons;
public:

Tank()
 { gallons = 50; }
Tank(int gal)
 { gallons = gal; }
int getGallons()
 { return gallons; }

};

int main ()
{

Tank storage[3] = { 10, 20 };

for (int index = 0; index < 3; index++)
cout << storage[index].getGallons() << endl;

return 0;
}

8.33 Complete the following program so it defines an array of 10 Yard objects. The pro-
gram should use a loop to ask the user for the length and width of each yard. Then
it should loop and display the length and width of each yard. To do this you will
need to add two member functions to the Yard class.

Arrays of Class Objects 555

#include <iostream>
using namespace std;

class Yard
{
private:

int length, width;
public:

Yard()
{ length = 0; width = 0; }

void setLength(int l)
 { length = l; }
void setWidth(int w)
 { width = w; }

};

int main ()
{

// Finish this program.
}

Arrays of Structures
As mentioned earlier in this section, array elements can also be structures. This is use-
ful when you want to store a collection of records that hold multiple data fields, but
you aren’t using objects. Program 8-13, which we saw earlier in this chapter, showed
how related information of different data types can be stored in parallel arrays. These
are two or more arrays with a relationship established between them through their
subscripts. Because structures can hold multiple items of varying data types, a single
array of structures can be used in place of several arrays of regular variables.

An array of structures is defined like any other array. Assume the following structure
declaration exists in a program:

struct BookInfo
{

string title;
string author;
string publisher;
double price;

};

The following statement defines an array, bookList, which has 20 elements. Each element
is a BookInfo structure.

BookInfo bookList[20];

Each element of the array may be accessed through a subscript. For example, bookList[0]
is the first structure in the array, bookList[1] is the second, and so forth. Because members
of structures are public by default, you do not need to use a function, as you do with class
objects, to access them. You can access a member of any element by simply placing the dot
operator and member name after the subscript. For example, the following expression refers
to the title member of bookList[5]:

bookList[5].title

556 Chapter 8 Arrays

The following loop steps through the array, displaying the information stored in each
element:

for (int index = 0; index < 20; index++)
{

cout << bookList[index].title << endl;
cout << bookList[index].author << endl;
cout << bookList[index].publisher << endl;
cout << bookList[index].price << endl << endl;

}

Because the members title, author, and publisher are string objects their individual
elements can be accessed as well. The following statement displays the first character of the
title member of bookList[10]:

cout << bookList[10].title[0];

And the following statement stores the character ‘t’ in the fourth position of the publisher
member of bookList[2]:

bookList[2].publisher[3] = 't';

Program 8-30 is a modification of Program 8-13 which calculates and displays payroll infor-
mation for a set of employees. The original program used two parallel arrays to hold the
hours and pay rates of the employees. This modified version uses a single array of structures.

Program 8-30

1 // This program uses an array of structures to hold payroll data.
2 #include <iostream>
3 #include <iomanip>
4 using namespace std;
5
6 struct PayInfo
7 {
8 int hours; // Hours worked
9 double payRate; // Hourly pay rate
10 };
11
12 int main ()
13 {
14 const int NUM_EMPS = 3; // Number of employees
15 int index;
16 PayInfo workers[NUM_EMPS]; // Define an array of structures
17 double grossPay;
18
19 // Get payroll data
20 cout << "Enter the hours worked and hourly pay rates of "
21 << NUM_EMPS << " employees.";

(program continues)

Arrays of Class Objects 557

You can initialize an array of structures the same way you initialize an array of class
objects, with a constructor. Here is the structure declaration from Program 8-30 modified
to include a constructor. It accepts two arguments, but also has default values in case a
structure variable is created without passing any values to the constructor.

struct PayInfo
{

int hours; // Hours worked
double payRate; // Hourly pay rate

PayInfo(int h = 0, double p = 0.0) // Constructor
{ hours = h;

payRate = p;
}

};

22 for (index = 0; index < NUM_EMPS; index++)
23 {
24 cout << "\n Hours worked by employee #" << (index + 1);
25 cout << ": ";
26 cin >> workers[index].hours;
27 cout << "Hourly pay rate for employee #";
28 cout << (index + 1) << ": ";
29 cin >> workers[index].payRate;
30 }
31
32 // Display each employee’s gross pay
33 cout << "\nHere is the gross pay for each employee:\n";
34 cout << fixed << showpoint << setprecision(2);
35 for (index = 0; index < NUM_EMPS; index++)
36 {
37 grossPay = workers[index].hours * workers[index].payRate;
38 cout << "Employee #" << (index + 1);
39 cout << ": $" << setw(7) << grossPay << endl;
40 }
41 return 0;
42 }

Program Output with Example Input Shown in Bold
Enter the hours worked and hourly pay rates of 3 employees.
Hours worked by employee #1: 10[Enter]
Hourly pay rate for employee #1: 9.75[Enter]

Hours worked by employee #2: 20[Enter]
Hourly pay rate for employee #2: 10.00[Enter]

Hours worked by employee #3: 40[Enter]
Hourly pay rate for employee #3: 20.00[Enter]

Here is the gross pay for each employee:
Employee #1: $ 97.50
Employee #2: $ 200.00
Employee #3: $ 800.00

Program 8-30 (continued)

558 Chapter 8 Arrays

Using this structure declaration, the array in Program 8-30 could now be initialized as follows:

PayInfo workers[NUM_EMPS] = { PayInfo(10, 9.75),
PayInfo(20, 10.00),
PayInfo(40, 20.00) };

Notice that the syntax for initializing members in an array of structures is the same as for ini-
tializing members in an array of objects. It is different from the syntax presented in Chapter 7
for initializing a single structure.

Checkpoint

For questions 8.34–8.38, assume the Product structure is declared as follows:

struct Product
{

string description; // Product description
int partNum; // Part number
double cost; // Product cost

};

8.34 Add two constructors to the Product structure declaration. The first should be a
default constructor that sets the description member to the null string and the
partNum and cost members to zero. The second constructor should have three
parameters: a string, an int, and a double. It should copy the values of the
arguments into the description, partNum, and cost members.

8.35 Write a definition for an array named items that can hold 100 Product structures.

8.36 Write statements that store the following information in the first element of the
items array you defined in question 8.35.

Description: Claw Hammer
Part Number: 547
Part Cost: $8.29

8.37 Write a loop that displays the contents of the entire items array you created in
question 8.35.

8.38 Write the definition for an array of five Product structures, initializing the first
three elements with the following information:

Description Part Number Cost
————————————————————————————
Screwdriver 621 $ 1.72
Socket set 892 18.97
Claw hammer 547 8.29

8.39 Write a structure declaration called Measurement, with the following members:

miles, an integer
meters, a long integer

8.40 Write a structure declaration called Destination, with the following members:

city, a string object
distance, a Measurement structure (declared in Checkpoint 8.39)

National Commerce Bank Case Study 559

8.41 Define an array of 20 Destination structures (see Checkpoint 8.40). Write statements
that store the following information in the fifth array element:

City: Tupelo
Miles: 375
Meters: 603,375

8.13 National Commerce Bank Case Study
The National Commerce Bank has hired you as a contract programmer. Your first assign-
ment is to write a function that will be used by the bank’s automated teller machines
(ATMs) to validate a customer’s personal identification number (PIN).

Your function will be incorporated into a larger program that asks the customer to input
his or her PIN on the ATM’s numeric keypad. (PINs are four-digit numbers. The program
stores each digit in an element of an int array.) The program also retrieves a copy of the
customer’s actual PIN from a database. (The PINs are also stored in the database as four
element arrays.) If these two numbers match, then the customer’s identity is validated.
Your function should compare the two arrays and determine whether they contain the
same numbers.

Here are the specifications your function must meet.

Parameters The function should accept three arguments. The first is an array holding
the digits entered by the customer. The second is an array holding the digits
of the customer’s correct PIN, retrieved from the bank’s database. The final
argument indicates the number of digits in a PIN. This is set in the pro-
gram to 4. However, by passing this argument to the function it makes the
program easier to update in the future if the bank decides to change the
PIN size.

Return value The function should return a Boolean true value if the two arrays are
identical. Otherwise, it should return false.

Here is the pseudocode for the function:

For each element in the first array
 Compare the element with the corresponding one in the 2nd array
 If the two elements contain different values

 Return false
 End If

End For // If we made it this far the values are the same
Return true

You have only been asked to write a function that performs the comparison between the
customer’s input and the PIN that was retrieved from the database, however, code must
also be written to test it. Program 8-31 is a complete program that includes both the func-
tion and a test driver.

560 Chapter 8 Arrays

Program 8-31

1 // This program tests a function that compares the contents of two arrays.
2 #include <iostream>
3 using namespace std;
4
5 // Function prototype
6 bool testPIN(int set1[], int set2[], int size);
7
8 int main()
9 {
10 const int NUM_DIGITS = 4;
11 int pin1[NUM_DIGITS] = {2, 4, 1, 8}; // Base set of values
12
13 int pin2[NUM_DIGITS] = {2, 4, 6, 8}; // One element is
14 // different from PIN1.
15 int pin3[NUM_DIGITS] = {1, 2, 3, 4}; // All elements are
16 // different from PIN1.
17 if (testPIN(pin1, pin2, NUM_DIGITS))
18 cout << "ERROR: pin1 and pin2 are reported to be the same.\n";
19 else
20 cout << "SUCCESS: pin1 and pin2 are correctly identified "
21 << "as different.\n";
22
23 if (testPIN(pin1, pin3, NUM_DIGITS))
24 cout << "ERROR: pin1 and pin3 are reported to be the same.\n";
25 else
26 cout << "SUCCESS: pin1 and pin3 are correctly identified "
27 << "as different.\n";
28
29 if (testPIN(pin1, pin1, NUM_DIGITS))
30 cout << "SUCCESS: pin1 and pin1 are correctly reported "
31 << "to be the same.\n";
32 else
33 cout << "ERROR: pin1 and pin1 are erroneously identified "
34 << "as different.\n";
35 return 0;
36 }
37
38 /***
39 * testPIN *
40 * This Boolean function accepts and compares the values stored in *
41 * two int arrays. If they both have exactly the same set of values, *
42 * true is returned. If there are any differences, false is returned.*
43 ***/
44 bool testPIN(int custPIN[], int databasePIN[], int size)
45 {
46 for (int index = 0; index < size; index++)
47 {
48 if (custPIN[index] != databasePIN[index])
49 return false; // We've found two different values
50 }
51 return true; // If we make it this far,
52 // all values are the same
53 }

(program continues)

561

Additional Case Studies
The following additional case studies, which contain applications of material introduced in
Chapter 8, can be found on the student CD.

Set Intersection Case Study
In algebra, the intersection of two sets is defined as a new set that contains those values
common to the two original sets. This case study, which utilizes three one-dimensional
arrays, finds and displays the intersection of two sets.

Creating an Abstract Array Data Type—Part 1
The absence of bounds checking in C++ is a source of potential hazard. This object-oriented
case study develops a simple integer list class with array-like characteristics that provides
bounds checking.

8.14 Tying It All Together: Rock, Paper, Scissors

Now that you have learned to use arrays, you can create more advanced computer games,
like Rock, Paper, Scissors. You have probably played this game before. Here is how it
works. Simultaneously, two players form their hand to represent one of three objects. A fist
represents a rock. A flat palm represents a sheet of paper. Two extended fingers represent a
pair of scissors. If the two players choose the same object, the round is a tie. Otherwise,
someone wins the round. Rock beats scissors because it can break a pair of scissors. Scis-
sors beats paper because it can cut a sheet of paper. Paper beats rock because it can wrap
itself around the rock.

In this section we will create a program that lets a user play a game of Rock, Paper, Scissors
with the computer. Notice how in line 9 of the Rock, Paper, Scissors program shown here,
the strings holding the names of the choices are stored in an array. In line 28 the program
randomly generates a 1, 2, or 3 for the computer’s choice. Then, in lines 31 and 32, the
human player’s choice is entered:

cout << "Pick 1 (rock), 2 (paper), or 3 (scissors): ";
cin >> playerChoice;

Notice how, for both the computer and the player, the choice number matches the array
element holding the name of the object they chose. Therefore, the choice number can be
used as a subscript to get the string to be displayed. With this ability, the program can eas-
ily display information for each round of the game about who chose what, what beats
what, and who wins that round.

Try running the program to see if you can beat the computer.

Program Output
SUCCESS: pin1 and pin2 are correctly identified as different.
SUCCESS: pin1 and pin3 are correctly identified as different.
SUCCESS: pin1 and pin1 are correctly reported to be the same.

Program 8-31 (continued)

Tying It All Together: Rock, Paper, Scissors

562 Chapter 8 Arrays

Program 8-32

1 // This program lets the user play a game of rock, paper, scissors
2 // with the computer. The computer's choices are randomly generated.
3 #include <iostream>
4 #include <ctime>
5 #include <cstdlib>
6 #include <string>
7 using namespace std;
8
9 const string name[4] = {" ", "rock", "paper", "scissors"};
10
11 int main()
12 {
13 int computerChoice,
14 playerChoice,
15 computerPoints = 0, // Point accumulators
16 playerPoints = 0;
17
18 srand(time(NULL)); // Give the random generator
19 // a seed to start with
20 playerPoints = 0;
21 computerPoints = 0;
22
23 cout << "Let's play Rock-Paper-Scissors!\n";
24 cout << "The first player to score 5 points wins.\n\n";
25
26 do
27 { // Generate a random number 1 to 3 to simulate computer choice
28 computerChoice = 1 + rand() % 3;
29
30 // Get player's choice
31 cout << "Pick 1 (rock), 2 (paper), or 3 (scissors): ";
32 cin >> playerChoice;
33
34 if (computerChoice == playerChoice) // Tie
35 { cout << "I chose " << name[computerChoice]
36 << " too, so we tied.\n\n";
37 }
38 else if ((playerChoice == 1 && computerChoice == 2) || // Computer
39 (playerChoice == 2 && computerChoice == 3) || // wins
40 (playerChoice == 3 && computerChoice == 1))
41 { cout << "I chose " << name[computerChoice] << ", so I win! "
42 << name[computerChoice] << " beats "
43 << name[playerChoice] << ".\n\n";
44 computerPoints++;
45 } // Player
46 else // wins
47 { cout << "I chose " << name[computerChoice] << ", so you win! "
48 << name[playerChoice] << " beats "
49 << name[computerChoice] << ".\n\n";
50 playerPoints++;
51 }
52 } while (playerPoints < 5 && computerPoints < 5);
53

(program continues)

563

Review Questions and Exercises

Fill-in-the-Blank and Short Answer

1. The _________ indicates the number of elements, or values, an array can hold.

2. The size declarator must be a(n) _________ with a value greater than _________.

3. Each element of an array is accessed and indexed by a number known as a(n)
_________.

4. Subscript numbering in C++ always starts at _________.

5. The number inside the brackets of an array definition is the _________, but the
number inside an array’s brackets in an assignment statement, or any other statement
that works with the contents of the array, is the _________.

6. C++ has no array _________ checking, which means you can inadvertently store data
past the end of an array.

7. Starting values for the elements of an array may be specified with a(n) _________ list.

8. If a numeric array is partially initialized, the uninitialized elements will bet set to
_________.

9. If the size declarator of an array definition is omitted, C++ counts the number of items
in the _________ to determine how large the array should be.

10. To allow an array of structures or an array of objects to be initialized, the struct or
class declaration should include a(n) _________.

11. By using the same _________ for multiple arrays, you can build relationships between
the data stored in the arrays. These arrays are referred to as parallel arrays.

12. You cannot use the _________ operator to copy data from one array to another in a
single statement.

13. Arrays are never passed to functions by _________ because there would be too much
overhead in copying all the elements.

14. To pass an array to a function, pass the _________ of the array.

15. A(n) _________ array is like several arrays of the same type put together.

54 cout << "Let's see how you did :\n"
55 << "You won " << playerPoints << " points and I won "
56 << computerPoints << " points.\n";
57
58 if (playerPoints == 5)
59 cout << "Congratulations! You're the champ!\n";
60 else
61 cout << "Hurray for me! I'm the champ!\n";
62
63 return 0;
64 }

Program 8-32 (continued)

Review Questions and Exercises

564 Chapter 8 Arrays

16. It’s best to think of a two-dimensional array as having _________ and _________.

17. To define a two-dimensional array, _________ size declarators are required.

18. When initializing a two-dimensional array, it helps to enclose each row’s initialization
list in _________.

19. When a two-dimensional array is passed to a function, the number of _________ must
be specified.

20. To print out all elements of a two-dimensional array you would normally use a
_________ loop.

21. Look at the following array definition.

int values[10];

A) How many elements does the array have?
B) What is the subscript of the first element in the array?
C) What is the subscript of the last element in the array?
D) If an int uses four bytes of memory, how much memory does the array use?

22. Given the following array definition:

int values[5] = { 4, 7, 6, 8, 2 };

What does the following statement display?

cout << values[4] << " " << (values[2] + values[3])
 << " " << ++values[1] << endl;

23. Look at the following array definition.

int numbers[5] = { 1, 2, 3 };

A) What value is stored in numbers[2]?
B) What value is stored in numbers[4]?

24. Assume that array1 and array2 are both 25-element integer arrays. Indicate whether
each of the following statements is legal or illegal.

A) array1 = array2;
B) cout << array1;
C) cin >> array2;

25. When you pass an array name as an argument to a function, what is actually being
passed?

26. How do you establish a parallel relationship between two or more arrays?

27. Look at the following array definition.

double sales[8][10];

A) How many rows does the array have?
B) How many columns does the array have?
C) How many elements does the array have?
D) Write a statement that stores 3.52 in the last column of the last row in the array.

Review Questions and Exercises 565

Use the following Car structure declaration to answer questions 28–30.

struct Car
{

string make,
 model;
int year;
double cost;

// Constructors
Car()
{ make = model = ""; year = cost = 0; }

Car(string mk, string md, int yr, double c)
{ make = mk; model = md; year = yr; cost = c; }

};

28. Define an array named collection that holds 25 Car structures.

29. Define an array named forSale that holds 35 Car structures. Initialize the first three
elements with the following data:

Make Model Year Cost
Ford Taurus 2006 $21,000
Honda Accord 2004 $11,000
Jeep Wrangler 2007 $24,000

30. Write a loop that will step through the array you defined in question 29, displaying
the contents of each element.

Algorithm Workbench

31. The arrays array1 and array2 each hold 25 integer elements. Write code that copies
the values in array1 to array2.

32. The following code totals the values in each of two arrays described in question 31.
Will the code print the correct total for both arrays? Why or why not?

int total = 0; // Accumulator
int count; // Loop counter

// Calculate and display the total of the first array.
for (count = 0; count <= 25; count++)

total += array1[count];

cout << "The total for array1 is " << total << endl;

// Calculate and display the total of the second array.
for (count = 0; count <= 25; count++)

total += array2[count];

cout << "The total for array2 is " << total << endl;

33. In a program you need to store the identification numbers of 10 employees (as ints)
and their weekly gross pay (as doubles).

A) Define two arrays that may be used in parallel to store the 10 employee identifica-
tion numbers and 10 weekly gross pay amounts.

B) Write a loop that uses these arrays to print each employee’s identification number
and weekly gross pay.

566 Chapter 8 Arrays

34. Revise your answer for question 33 to define and use an array of Payroll structures,
instead of two parallel arrays. A Payroll structure should hold an employee identifi-
cation number and weekly gross pay amount.

35. In a program you need to store the names and populations of 12 countries. Create an
appropriate array to store this information and then write the code needed to read the
information into the array from a file named pop.dat.

36. A weather analysis program uses the following array to store the temperature for each
hour of the day on each day of a week.

int temp[7][24];

Each row represents a day (0 = Sunday, 1 = Monday, etc.) and each column represents
a time (0 = midnight, 1 = 1 a.m., … , 12 = noon, 13 = 1 p.m., etc.).

A) Write code to find Tuesday’s average temperature.
B) Write code to find the average weekly noon temperature.

Find the Errors

37. Each of the following definitions has errors. Locate as many as you can.

A) int size;
double values[size];

B) int collection[-20];
C) int hours[3] = 8, 12, 16;

38. Each of the following definitions has errors. Locate as many as you can.

A) int numbers[8] = {1, 2, , 4, , 5};
B) double ratings[];
C) values[3] = {6, 8.2, 'A'};

39. Each of the following functions contains errors. Locate as many as you can.

A) void showValues(int nums)
{

for (int count = 0; count < 8; count++)
cout << nums[count];

}
B) void showValues(int nums[4][])

{
for (rows = 0; rows < 4; rows++)

for (cols = 0; cols < 5; cols++)
cout << nums[rows][cols];

}

Soft Skills

Diagrams are an important means of clarifying many programming concepts. You have
seen them used throughout this book to illustrate such things as how the flow of control
works for various programming constructs, how a program is broken into modules and
those modules related, how data is stored in memory, and how data is organized.

Review Questions and Exercises 567

40. Here is a set of declarations that define how the data for a set of poker hands is
organized. Create a neat diagram that illustrates this organization. The diagram in
Section 7.4 of Chapter 7 on nested structures might give you an idea of how to begin.

struct CardStruct
{ int face;

char suit; // ‘s’, ‘h’, ‘d’, or ‘c’
};

struct PlayerStruct
{ int playerNum;

CardStruct card[5];
}

PlayerStruct player[4];

Programming Challenges
Programming Challenges 1–7 allow you to practice working with arrays without using
classes or structures. Most of the problems beginning with Programming Challenge 8 use
arrays with classes or structures.

1. Perfect Scores

Write a modular program that accepts at least 10 integer test scores from the user and
stores them in an array. Then main should display how many perfect scores were entered
(i.e., scores of 100), using a value-returning countPerfect function to help it.

Input validation: Do not accept scores less than 0 or greater than 100.

2. Roman Numeral Converter

Write a program that displays the roman numeral equivalent of any decimal number
between 1 and 20 that the user enters. The roman numerals should be stored in an array of
strings and the decimal number that the user enters should be used to locate the array ele-
ment holding the roman numeral equivalent. The program should have a loop that allows
the user to continue entering numbers until an end sentinel of 0 is entered.

Input validation: Do not accept scores less than 0 or greater than 20.

3. Chips and Salsa

Write a program that lets a maker of chips and salsa keep track of their sales for five
different types of salsa they produce: mild, medium, sweet, hot, and zesty. It should use
two parallel five-element arrays: an array of strings that holds the five salsa names and
an array of integers that holds the number of jars sold during the past month for each
salsa type. The salsa names should be stored using an initialization list at the time the
name array is created. The program should prompt the user to enter the number of jars
sold for each type. Once this sales data has been entered, the program should produce
a report that displays sales for each salsa type, total sales, and the names of the highest
selling and lowest selling products.

Input Validation: Do not accept negative values for number of jars sold.

Solving the
Chips and Salsa
Problem

568 Chapter 8 Arrays

4. Monkey Business

A local zoo wants to keep track of how many pounds of food each of its three monkeys eats
each day during a typical week. Write a program that stores this information in a two-
dimensional 3 × 7 array, where each row represents a different monkey and each column
represents a different day of the week. The program should first have the user input the data
for each monkey. Then it should create a report that includes the following information:

• Average amount of food eaten per day by the whole family of monkeys.
• The least amount of food eaten during the week by any one monkey.
• The greatest amount of food eaten during the week by any one monkey.

Input Validation: Do not accept negative numbers for pounds of food eaten.

5. Rain or Shine

An amateur meteorologist wants to keep track of weather conditions during the past year’s
three month summer season and has designated each day as either rainy (‘R’), cloudy (‘C’),
or sunny (‘S’). Write a program that stores this information in a 3 × 30 array of characters,
where the row indicates the month (0 = June, 1 = July, 2 = August) and the column indi-
cates the day of the month. Note that data is not being collected for the 31st of any month.
The program should begin by reading the weather data in from a file. Then it should create
a report that displays for each month and for the whole three-month period, how many
days were rainy, how many were cloudy, and how many were sunny. It should also report
which of the three months had the largest number of rainy days. Data for the program can
be found in the RainOrShine.dat file.

6. Lottery

Write a program that simulates a lottery. The program should have an array of 5 integers
named winningDigits, with a randomly generated number in the range of 0 through 9
for each element in the array. The program should ask the user to enter 5 digits and should
store them in a second integer array named player. The program must compare the corre-
sponding elements in the two arrays and count how many digits match. For example, the
following shows the winningDigits array and the Player array with sample numbers
stored in each. There are two matching digits, elements 2 and 4.

WinningDigits 7 4 9 1 3

 player 4 2 9 7 3

Once the user has entered a set of numbers, the program should display the winning digits
and the player’s digits and tell how many digits matched.

Input validation: Do not accept player inputs less than 0 or greater than 9.

7. Rainfall Statistics

Write a modular program that analyzes a year’s worth of rainfall data. In addition to main,
the program should have a getData function that accepts the total rainfall for each of 12
months from the user, and stores it in a double array. It should also have four value-
returning functions that compute and return to main the totalRainfall, averageRainfall,
driestMonth, and wettestMonth. These last two functions return the number of the

Review Questions and Exercises 569

month with the lowest and highest rainfall amounts, not the amount of rain that fell those
months. Notice that this month number can be used to obtain the amount of rain that fell
those months. This information should be used either by main or by a displayReport
function called by main to print a summary rainfall report similar to the following:

 2010 Rain Report for Neversnows County

Total rainfall: 23.19 inches
Average monthly rainfall: 1.93 inches
The least rain fell in January with 0.24 inches.
The most rain fell in April with 4.29 inches.

Input validation: Do not accept rainfall amounts less than 0.

8. Stats Class and Rainfall Statistics

Create a stats class whose member data includes an array capable of storing 30 double
data values, and whose member functions include total, average, lowest, and highest
functions for returning information about the data to the client program. These are general
versions of the same functions you created for Programming Challenge 7, but now they
belong to the stats class, not the application program. In addition to these functions, the
stats class should have a Boolean storeValue function that accepts a double value from
the client program and stores it in the array. It is the job of this function to keep track of
how many values are currently in the array, so it will know where to put the next value it
receives and will know how many values there are to process when it is carrying out its
other functions. It is also the job of this function to make sure that no more than 30 values
are accepted. If the storeValue function is able to successfully store the value sent to it, it
should return true to the client program. However, if the client program tries to store a
thirty-first value, the function should not store the value and should return false to the
client program.

The client program should create and use a stats object to carry out the same rainfall
analysis requested by Programming Challenge 7. Notice that the stats object does no I/O.
All input and output is done by the client program.

9. Stats Class and Track Statistics

Write a client program that uses the stats class you created for Programming Challenge 8
to store and analyze “best” 100-yard dash times for each of the 15 runners on a track
team. As in Programming Challenge 8, all I/O is done by the client program. In addition to
main, the client program should have two other functions: a getData function to accept
input from the user and send it to the stats object and a createReport function that cre-
ates and displays a report similar to the one shown here,

 Tulsa Tigers Track Team

Average 100 yard-dash time: 11.16 seconds
Slowest runner: Jack 13.09 seconds
Fastest runner: Will 10.82 seconds

Input validation: Do not accept times less than 0.

570 Chapter 8 Arrays

10. Character Converter Class

Create a CharConverter class that performs various operations on strings. It should have
the following two public member functions:

• The uppercase member function accepts a string object and returns the string with
all lowercase letters converted to uppercase. If a character is already uppercase, or is
not a letter, it should be left alone.

• The properWords member function accepts a string object consisting of words
separated by spaces and returns it with the first letter of each word converted to
uppercase.

Write a simple program that uses the class. It should prompt the user to input a string, dis-
play it, call one or the other of the class functions to convert it, then display the converted
string. The program should loop to allow additional strings to be converted and displayed
until the user chooses to quit.

11. Driver’s License Exam

The State Department of Motor Vehicles (DMV) has asked you to write a program that
grades the written portion of the driver’s license exam, which has 20 multiple choice ques-
tions. Here are the correct answers:

To do this you should create a TestGrader class. The class will have an answers array of 20
characters, which holds the correct test answers. It will have two public member functions
that enable user programs to interact with the class: setKey and grade. The setKey
function receives a 20-character string holding the correct answers, and copies this information
into its answers array. The grade function receives a 20-character array holding the test
taker’s answers and compares each of their answers to the correct one. After “grading” the
exam, the function should display a message indicating whether the applicant passed or
failed the exam. An applicant must correctly answer 15 or more of the 20 questions to pass
the exam. The function should then display the total number of correctly answered
questions, the total number of incorrectly answered questions, and a list of the question
numbers for all incorrectly answered questions.

The client program that creates and uses a TestGrader object should first make a single
call to setKey, passing it a string containing the 20 correct answers. Once this is done it
should allow a test taker’s 20 answers to be entered, store them in a 20-character array,
and then call the grade function to grade the exam. The program should loop to allow
additional tests to be entered and graded until the user indicates a desire to quit.

Input Validation: Only accept the letters A,B,C, and D for the test answers.

1. B 5. C 9. C 13. D 17. C

2. D 6. A 10. D 14. A 18. B

3. A 7. B 11. B 15. D 19. D

4. A 8. A 12. C 16. C 20. A

Review Questions and Exercises 571

12. Array of Payroll Objects

Design a PayRoll class that has data members for an employee’s hourly pay rate and
number of hours worked. Write a program with an array of seven PayRoll objects. The
program should read the number of hours each employee worked and their hourly pay
rate from a file and call class functions to store this information in the appropriate
objects. It should then call a class function, once for each object, to return the employee’s
gross pay, so this information can be displayed. Sample data to test this program can be
found in the payroll.dat file.

13. Drink Machine Simulator

Create a class that simulates and manages a soft drink machine. Information on each drink
type should be stored in a structure that has data members to hold the drink name, the
drink price, and the number of drinks of that type currently in the machine.

The class should have an array of five of these structures, initialized with the following data.

The class should have two public member functions, displayChoices (which displays a
menu of drink names and prices) and buyDrink (which handles a sale). The class should
also have at least two private member functions, inputMoney, which is called by buyDrink
to accept, validate, and return (to buyDrink) the amount of money input, and dailyReport,
which is called by the destructor to report how many of each drink type remain in the
machine at the end of the day and how much money was collected. You may want to use
additional functions to make the program more modular.

The client program that uses the class should have a main processing loop which calls the
displayChoices class member function and allows the patron to either pick a drink or
quit the program. If the patron selects a drink, the buyDrink class member function is
called to handle the actual sale. This function should be passed the patron’s drink choice.
Here is what the buyDrink function should do:

• Call the inputMoney function, passing it the patron’s drink choice.
• If the patron no longer wishes to make the purchase, return all input money.
• If the machine is out of the requested soda, display an appropriate “sold out”

message and return all input money.
• If the machine has the soda and enough money was entered, complete the sale by

updating the quantity on hand and money collected information, calculating any
change due to be returned to the patron, and delivering the soda. This last action can
be simulated by printing an appropriate “here is your beverage” message.

Input Validation: Only accept valid menu choices. Do not deliver a beverage if the
money inserted is less than the price of the selected drink.

Drink Name Cost Number in Machine

Cola .75 20

Root beer .75 20

Orange Soda .75 20

Grape Soda .75 20

Bottled water 1.00 20

572 Chapter 8 Arrays

14. Bin Manager Class

Design and write an object-oriented program for managing inventory bins in a warehouse.
To do this you will use two classes: InvBin and BinManager. The InvBin class holds
information about a single bin. The BinManager class will own and manage an array of
InvBin objects. Here is a skeleton of what the InvBin and BinManager class declarations
should look like:

class InvBin
{
private:
 string description; // Item name
 int qty; // Quantity of items
 // in this bin

public:
InvBin (string d = "empty", int q = 0) // 2-parameter constructor
{ description = d; qty = q; } // with default values

 // It will also have the following public member functions. They will
 // be used by the BinManager class, not the client program.
 void setDescription(string d)
 string getDescription()
 void setQty(int q)
 int getQty()
};

class BinManager
{
private:
 InvBin bin[30]; // Array of InvBin objects
 int numBins; // Number of bins
 // currently in use

public:
 BinManager() // Default constructor
 { numBins = 0; }

 BinManager(int size, string d[], int q[]) // 3-parameter constructor
 { // Receives number of bins in use and parallel arrays of item names
 // and quantities. Uses this info. to store values in the elements
 // of the bin array. Remember, these elements are InvBin objects.
 }

 // The class will also have the following public member functions:
 string getDescription(int index) // Returns name of one item
 int getQuantity(int index) // Returns qty of one item
 string displayAllBins() // Returns string having one line
 // for each item
 bool addParts(int binIndex, int q) // These return true if the
 bool removeParts(int binIndex, int q) // action was done and false
 // if it could not be done—
 // see validation information
};

Review Questions and Exercises 573

Client Program

Once you have created these two classes, write a menu-driven client program that uses a
BinManager object to manage its warehouse bins. It should initialize it to use 9 of the
bins, holding the following data. The bin index where the item will be stored is also
show here.

Using the BinManager object to help it, the modular client program should display the
current bin data, then call functions to display a menu, get and validate the user’s choice,
and carry out the necessary activities to handle that choice. From looking at the public
member functions that the BinManager class provides, it should be clear what options to
include in the menu. When the user chooses the “Quit” option from the menu, the
program should display the day’s final bin information. All I/O should be done in the client
class. The BinManager class only accepts information, keeps the array of InvBin objects
up to date, and returns information to the client program.

Input Validation in the client class: The entered menu choice must be valid.

Input Validation in the BinManager class: Do not accept numbers less than 1 for the
number of parts being added or removed from a bin. Do not allow the user to remove
more items from a bin than it currently holds.

Group Projects

15. Tic-Tac-Toe Game

Write a modular program that allows two players to play a game of tic-tac-toe. Use a two-
dimensional char array with 3 rows and 3 columns as the game board. Each element of
the array should be initialized with an asterisk (*). The program should display the initial
board configuration and then start a loop that does the following:

• Allow player 1 to select a location on the board for an X by entering a row and column
number. Then redisplay the board with an X replacing the * in the chosen location.

• If there is no winner yet and the board is not yet full, allow player 2 to select a loca-
tion on the board for an O by entering a row and column number. Then redisplay the
board with an O replacing the * in the chosen location.

The loop should continue until a player has won or a tie has occurred, then display a mes-
sage indicating who won, or reporting that a tie occurred.

• Player 1 wins when there are three Xs in a row, a column, or a diagonal on the game
board.

• Player 2 wins when there are three Os in a row, a column, or a diagonal on the game
board.

• A tie occurs when all of the locations on the board are full, but there is no winner.

Input Validation: Only allow legal moves to be entered. The row must be 1, 2, or 3.
The column must be 1, 2, or 3. The (row, column) position entered must currently be
empty (i.e., still have an asterisk in it).

1. Regular pliers 25 2. N. nose pliers 5 3. screwdriver 25

4. P. head screw driver 6 5. Wrench-large 7 6. Wrench-small 18

7. Drill 51 8. Cordless drill 16 9. Hand saw 12

574 Chapter 8 Arrays

16. Theater Ticket Sales

Create a TicketManager class and a program that uses it to sell tickets for a single perfor-
mance theater production. This project is intended to be designed and written by a team of
2-4 students. Here are some suggestions:

• One student might design and write the client program that uses the class. The Ticket-
Manager class and all of its functions can be designed and written by other team members.

• The program requirements should be analyzed and each student given about the
same work load.

• The class design and the names, parameters, and return types of each function should
be decided in advance.

• The project can be implemented either as a multi-file program, or all the functions
can be cut and pasted into a single file.

Here are the specifications:

• The theater’s auditorium has 15 rows, with 30 seats in each row. To represent the seats,
the TicketManager class should have a two-dimensional array of SeatStructures.
Each of these structures should have data members to keep track of the seat’s price
and whether or not it is available or already sold.

• The seat prices should be read in from the SeatPrices.dat file. This file contains 15
pieces of data representing the price for each row. All seats in a given row are the
same price, but different rows have different prices. The seat availability information
should be read in from the SeatAvailability.dat file. This file contains 450 char-
acters (15 rows with 30 characters each), indicating which seats have been sold ('*')
and which are available ('#'). Initially all seats are available. However, once the pro-
gram runs and the file is updated, some of the seats will have been sold. The obvious
function to read in the data from these files and set up the array is the constructor
that runs when a TicketManager object is created at the beginning of the program.

• The client program should be a menu-driven program that provides the user with a menu
of box office options, accepts and validates user inputs, and calls appropriate class func-
tions to carry out desired tasks. The menu should include options to display the seating
chart, to request tickets, to print a theater sales report, and to exit the program.

• When the user selects the display seats menu option, a TicketManager function should
be called that displays a chart, similar to the one shown on the following page. It should
indicate which seats are already sold (*) and which are still available for purchase (#).

Seats
123456789012345678901234567890

Row 1 ***###***###*########*****####
Row 2 ####*************####*******##
Row 3 **###**********########****###
Row 4 **######**************##******
Row 5 ********#####*********########
Row 6 ##############************####
Row 7 #######************###########
Row 8 ************##****############
Row 9 #########*****############****
Row 10 #####*************############
Row 11 #**********#################**
Row 12 #############********########*
Row 13 ###***********########**######
Row 14 ##############################
Row 15 ##############################

Review Questions and Exercises 575

• When the user selects the request tickets menu option, the program should prompt
for the number of seats the patron wants, the desired row number, and the desired
starting seat number. A TicketManager ticket request function should then be called
and passed this information so that it can handle the ticket request. If any of the
requested seats do not exist, or are not available, an appropriate message should be dis-
played. If the seats exist and are available, a bill should be printed that lists the number
of requested seats, the price per seat in the requested row, and the total price for the
seats. Then the user program should ask if the patron wishes to purchase these seats.

• If the patron indicates they do want to buy the requested seats, a TicketManager
purchase tickets module should be called to handle the actual sale. This module must
be able to accept money, ensure that it is sufficient to continue with the sale, print a
ticket for each seat sold (with the correct row, seat number, and price on it), mark
the seat as sold, and give the patron any change due.

• When the user selects the sales report menu option, a TicketManager report module
should be called. This module must display a report that tells how many seats have
been sold, how many are still available, and how much money has been collected so
far for the sold seats. Think about how your team will either calculate or collect and
store this information so that it will be available when it is needed for the report.

• When the day of ticket sales is over and the quit menu choice is selected, the program
needs to be able to write the updated seat availability data back out to the file. The
obvious place to do this is in the TicketManager destructor.

This page intentionally left blank

577

C
H

A
P

T
E

R

9 Searching, Sorting, and
Algorithm Analysis

9.1 Introduction to Search Algorithms

CONCEPT: A search algorithm is a method of locating a specific item in a collection
of data.

It’s very common for programs not only to store and process data stored in arrays, but to
search arrays for specific items. This section will show you two methods of searching an
array: the linear search and the binary search. Each has its advantages and disadvantages.

The Linear Search
The linear search is a very simple algorithm. Sometimes called a sequential search, it uses a
loop to sequentially step through an array, starting with the first element. It compares each
element with the value being searched for, and stops when either the value is found or the
end of the array is encountered. If the value being searched for is not in the array, the algo-
rithm will search to the end of the array.

TOPICS

9.1 Introduction to Search Algorithms
9.2 Searching an Array of Objects
9.3 Introduction to Sorting Algorithms
9.4 Sorting an Array of Objects

9.5 Sorting and Searching Vectors
9.6 Introduction to Analysis of Algorithms
9.7 Case Studies
9.8 Tying It All Together: Secret Messages

578 Chapter 9 Searching, Sorting, and Algorithm Analysis

Here is the pseudocode for a function that performs the linear search:

Set found to false
Set position to -1
Set index to 0
While index < number of elements and found is false

If list[index] is equal to search value
found = true
position = index

End If
Add 1 to index

End While
Return position

The function searchList, which follows, is an example of C++ code used to perform a linear
search on an integer array. The array list, which has a maximum of size elements, is
searched for an occurrence of the number stored in value. If the number is found, its array
subscript is returned. Otherwise, –1 is returned, indicating the value did not appear in the
array.

int searchList(int list[], int size, int value)
{

int index = 0; // Used as a subscript to search array
int position = -1; // Used to record position of search value
bool found = false; // Flag to indicate if the value was found

while (index < size && !found)
{

if (list[index] == value) // If the value is found
{

 found = true; // Set the flag
 position = index; // Record the value's subscript

}
index++; // Go to the next element

}
return position; // Return the position, or -1

}

Program 9-1 is a complete program that uses the searchList function. It searches the five-
element tests array to find a score of 100.

NOTE: The reason –1 is chosen to indicate that the search value was not found in the
array is that –1 is not a valid subscript. Any other nonvalid subscript value could also
have been used to signal this.

Program 9-1

1 // This program demonstrates the searchList function,
2 // which performs a linear search on an integer array.
3 #include <iostream>
4 using namespace std;
5

(program continues)

Introduction to Search Algorithms 579

6 // Function prototype
7 int searchList(int [], int, int);
8
9 const int SIZE = 5;
10
11 int main()
12 {
13 int tests[SIZE] = {87, 75, 98, 100, 82};
14 int results; // Holds the search results
15
16 // Search the array for the value 100
17 results = searchList(tests, SIZE, 100);
18
19 // If searchList returned -1, 100 was not found
20 if (results == -1)
21 cout << "You did not earn 100 points on any test.\n";
22 else
23 { // Otherwise results contains the subscript of
24 // the first 100 found in the array
25 cout << "You earned 100 points on test ";
26 cout << (results + 1) << ".\n";
27 }
28 return 0;
29 }
30
31 /***
32 * searchList *
33 * This function performs a linear search on an integer array. *
34 * The list array, which has size elements, is searched for *
35 * the number stored in value. If the number is found, its array *
36 * subscript is returned. Otherwise, -1 is returned. *
37 ***/
38 int searchList(int list[], int size, int value)
39 {
40 int index = 0; // Used as a subscript to search array
41 int position = -1; // Used to record position of search value
42 bool found = false; // Flag to indicate if the value was found
43
44 while (index < size && !found)
45 {
46 if (list[index] == value) // If the value is found
47 {
48 found = true; // Set the flag
49 position = index; // Record the value's subscript
50 }
51 index++; // Go to the next element
52 }
53 return position; // Return the position, or -1
54 }

Program Output
You earned 100 points on test 4.

Program 9-1 (continued)

580 Chapter 9 Searching, Sorting, and Algorithm Analysis

Inefficiency of the Linear Search

The advantage of the linear search is its simplicity. It is very easy to understand and imple-
ment. Furthermore, it doesn’t require the data in the array to be stored in any particular
order. Its disadvantage, however, is its inefficiency. If the array being searched contained
20,000 elements, the algorithm would have to look at all 20,000 elements in order to find
a value stored in the last element or to determine that a desired element was not in the
array.

In a typical case, an item is just as likely to be found near the beginning of the array as near
the end. On average, for an array of N items, the linear search will locate an item in N/2
attempts. If an array has 20,000 elements, the linear search will make a comparison with
10,000 of them on average. This is assuming, of course, that the search item is consistently
found in the array. (N/2 is the average number of comparisons. The maximum number of
comparisons is always N.)

When the linear search fails to locate an item, it must make a comparison with every ele-
ment in the array. As the number of failed search attempts increases, so does the average
number of comparisons. When it can be avoided the linear search should not be used on
large arrays if speed is important.

The Binary Search
The binary search is a clever algorithm that is much more efficient than the linear search.
Its only requirement is that the values in the array be in order. Instead of testing the array’s
first element, this algorithm starts with the element in the middle. If that element happens
to contain the desired value, then the search is over. Otherwise, the value in the middle ele-
ment is either greater than or less than the value being searched for. If it is greater than the
desired value then the value (if it is in the list) will be found somewhere in the first half of
the array. If it is less than the desired value then the value (again, if it is in the list) will be
found somewhere in the last half of the array. In either case, half of the array’s elements
have been eliminated from further searching.

If the desired value wasn’t found in the middle element, the procedure is repeated for the
half of the array that potentially contains the value. For instance, if the last half of the
array is to be searched, the algorithm immediately tests its middle element. If the desired
value isn’t found there, the search is narrowed to the quarter of the array that resides
before or after that element. This process continues until the value being searched for is
either found or there are no more elements to test.

Here is the pseudocode for a function that performs a binary search on an array whose
elements are stored in ascending order.

Set first to 0
Set last to the last subscript in the array
Set found to false
Set position to -1

Performing a
Binary Search

Introduction to Search Algorithms 581

While found is not true and first is less than or equal to last
Set middle to the subscript halfway between first and last
If array[middle] equals the desired value

 Set found to true
 Set position to middle

Else If array[middle] is greater than the desired value
 Set last to middle - 1

Else
 Set first to middle + 1

End If
End While
Return position

This algorithm uses three index variables: first, last, and middle. The first and last
variables mark the boundaries of the portion of the array currently being searched. They
are initialized with the subscripts of the array’s first and last elements. The subscript of the
element approximately halfway between first and last is calculated and stored in the
middle variable. If there is no precisely central element, the integer division used to calcu-
late middle will select the element immediately preceding the midpoint. If the element in
the middle of the array does not contain the search value, the first or last variables are
adjusted so that only the top or bottom half of the array is searched during the next
iteration. This cuts the portion of the array being searched in half each time the loop fails
to locate the search value.

The function binarySearch in the following example C++ code is used to perform a binary
search on an integer array. The first parameter, array, which has size elements, is searched
for an occurrence of the number stored in value. If the number is found, its array subscript
is returned. Otherwise, –1 is returned indicating the value did not appear in the array.

int binarySearch(int array[], int size, int value)
{

int first = 0, // First array element
 last = size - 1, // Last array element
 middle, // Midpoint of search
 position = -1; // Position of search value
bool found = false; // Flag

while (!found && first <= last)
{
 middle = (first + last) / 2; // Calculate midpoint
 if (array[middle] == value) // If value is found at mid
 {

 found = true;
 position = middle;

 }
 else if (array[middle] > value) // If value is in lower half

 last = middle - 1;
 else

first = middle + 1; // If value is in upper half
}
return position;

}

582 Chapter 9 Searching, Sorting, and Algorithm Analysis

Program 9-2 is a complete program using the binarySearch function. It searches an array
of employee ID numbers for a specific value.

Program 9-2

1 // This program performs a binary search on an integer
2 // array whose elements are in ascending order.
3 #include <iostream>
4 using namespace std;
5
6 // Function prototype
7 int binarySearch(int [], int, int);
8
9 const int SIZE = 20;
10
11 int main()
12 {
13 // Create an array of ID numbers sorted in ascending order
14 int IDnums[SIZE] = {101, 142, 147, 189, 199, 207, 222,
15 234, 289, 296, 310, 319, 388, 394,
16 417, 429, 447, 521, 536, 600 };
17
18 int empID, // Holds the ID to search for
19 results; // Holds the search results
20
21 // Get an employee ID to search for
22 cout << "Enter the employee ID you wish to search for: ";
23 cin >> empID;
24
25 // Search for the ID
26 results = binarySearch(IDnums, SIZE, empID);
27
28 // If binarySearch returned -1, the ID was not found
29 if (results == -1)
30 cout << "That number does not exist in the array.\n";
31 else
32 { // Otherwise results contains the subscript of
33 // the specified employee ID in the array
34 cout << "ID " << empID << " was found in element "
35 << results << " of the array.\n";
36 }
37 return 0;
38 }
39

(program continues)

Introduction to Search Algorithms 583

The Efficiency of the Binary Search

Obviously, the binary search is much more efficient than the linear search. Every time it
makes a comparison and fails to find the desired item, it eliminates half of the remaining
portion of the array that must be searched. For example, consider an array with 20,000
elements. If the binary search fails to find an item on the first attempt, the number of ele-
ments that remains to be searched is 10,000. If the item is not found on the second
attempt, the number of elements that remains to be searched is 5,000. This process contin-
ues until the binary search locates the desired value or determines that it is not in the array.
With 20,000 elements in the array, this takes a maximum of 15 comparisons. (Compare
this to the linear search, which would make an average of 10,000 comparisons!)

Powers of 2 are used to calculate the maximum number of comparisons the binary search
will make on an array of any size. (A power of 2 is 2 raised to some integer exponent.)

40 /***
41 * binarySearch *
42 * This function performs a binary search on an integer array *
43 * with size elements whose values are stored in ascending *
44 * order. The array is searched for the number stored in the *
45 * value parameter. If the number is found, its array subscript *
46 * is returned. Otherwise, -1 is returned. *
47 ***/
48 int binarySearch(int array[], int size, int value)
49 {
50 int first = 0, // First array element
51 last = size - 1, // Last array element
52 middle, // Midpoint of search
53 position = -1; // Position of search value
54 bool found = false; // Flag
55
56 while (!found && first <= last)
57 {
58 middle = (first + last) / 2; // Calculate midpoint
59 if (array[middle] == value) // If value is found at mid
60 {
61 found = true;
62 position = middle;
63 }
64 else if (array[middle] > value) // If value is in lower half
65 last = middle - 1;
66 else
67 first = middle + 1; // If value is in upper half
68 }
69 return position;
70 }

Program Output with Example Input Shown in Bold
Enter the employee ID you wish to search for: 199[Enter]
ID 199 was found in element 4 of the array.

Program 9-2 (continued)

584 Chapter 9 Searching, Sorting, and Algorithm Analysis

Simply find the smallest power of 2 that is greater than the number of elements in the
array. That will tell you the maximum number of comparisons needed to find an element,
or to determine that it is not present. For example, a maximum of 16 comparisons will
be made to find an item in an array of 50,000 elements (216 = 65,536), and a maximum
of 20 comparisons will be made to find an item in an array of 1,000,000 elements
(220 = 1,048,576).

9.2 Searching an Array of Objects

CONCEPT: Linear and binary searches can also be used to search for a specific entry
in an array of objects or structures.

In Programs 9-1 and 9-2 we searched for a particular value in an array of integers. We
could just as easily search through an array holding values of some other data type, such as
double or string. We could even search an array of objects or structures. In this case,
however, the search value would not be the entire object or structure we are looking for,
but rather a value in a particular member variable of that object or structure. The member
variable being examined by the search is sometimes called the key field and the particular
value being looked for is called the search key.

Assume we have a class named Inventory that includes the following member variables

string itemCode;
string description;
double price;

as well as methods to set and get the value of each of these. Assume also that we have set up
an array of Inventory objects. We might want to search for a particular object in the array,
say the object whose itemCode is K33, so that we can then call the getPrice method for
that object. Program 9-3 illustrates how to do this. It searches the array of Inventory
objects using a search function similar to the searchList function we used earlier in this
chapter. However, it has been modified to work with an array of Inventory objects.

Program 9-3

1 // This program searches an array of Inventory objects to get
2 // the price of a particular object. It demonstrates how to
3 // perform a linear search using an array of objects.
4 #include <iostream>
5 #include <string>
6 using namespace std;
7
8 // Inventory class declaration
9 class Inventory
10 { private:
11 string itemCode;
12 string description;
13 double price;
14

(program continues)

Searching an Array of Objects 585

15 public:
16 Inventory() // Default constructor
17 { itemCode = "XXX"; description = " "; price = 0.0; }
18
19 Inventory(string c, string d, double p) // 3 argument constructor
20 { itemCode = c;
21 description = d;
22 price = p;
23 }
24
25 // Add methods setCode, setDescription, and setPrice here.
26
27 // Get functions to retrieve member variable values
28 string getCode()
29 { string code = itemCode;
30 return code;
31 }
32
33 string getDescription()
34 { string d = description;
35 return d;
36 }
37
38 double getPrice()
39 { return price;
40 }
41
42 }; // End Inventory class declaration
43
44 // Program that uses the Inventory class
45
46 // Function prototype
47 int search(Inventory[], int , string);
48
49 /***
50 * main *
51 ***/
52 int main()
53 {
54 const int SIZE = 6;
55
56 // Create and initialize the array of Inventory objects
57 Inventory silverware[SIZE] =
58 { Inventory("S15", "soup spoon", 2.35),
59 Inventory("S12", "teaspoon", 2.19),
60 Inventory("F15", "dinner fork", 3.19),
61 Inventory("F09", "salad fork" , 2.25),
62 Inventory("K33", "knife", 2.35),
63 Inventory("K41", "steak knife", 4.15) };
64
65 string desiredCode; // The itemCode to search for
66 int pos; // Position of desired object in the array
67 char doAgain; // Look up another price (Y/N)?
68

(program continues)

Program 9-3 (continued)

586 Chapter 9 Searching, Sorting, and Algorithm Analysis

69 do
70 { // Get the itemCode to search for
71 cout << "\nEnter an item code: ";
72 cin >> desiredCode;
73
74 // Search for the object
75 pos = search(silverware, SIZE, desiredCode);
76
77 // If pos = -1, the code was not found
78 if (pos == -1)
79 cout << "That code does not exist in the array\n";
80 else
81 { // The object was found, so use pos to get the
82 // description and price
83 cout << "This " << silverware[pos].getDescription()
84 << " costs $" << silverware[pos].getPrice() << endl;
85 }
86
87 // Does the user want to look up another price?
88 cout << "\nLook up another price (Y/N)? ";
89 cin >> doAgain;
90
91 } while (doAgain == 'Y' || doAgain == 'y');
92 return 0;
93 }// End main
94
95 /**
96 * search *
97 * This function performs a linear search on an array of *
98 * Inventory objects, using itemCode as the key field. *
99 * If the desired code is found, its array subscript is *
100 * returned. Otherwise, -1 is returned. *
101 **/
102 int search(Inventory object[], int size, string value)
103 {
104 int index = 0; // Used as a subscript to search array
105 int position = -1; // Used to record position of search value
106 bool found = false; // Flag to indicate if the value was found
107
108 while (index < size && !found)
109 {
110 if (object[index].getCode() == value) // If the value is found
111 {
112 found = true; // Set the flag
113 position = index; // Record the value's subscript
114 }
115 index++; // Go to the next element
116 }
117 return position; // Return the position, or -1
118 }// End search

(program continues)

Program 9-3 (continued)

Introduction to Sorting Algorithms 587

Checkpoint

9.1 Describe the difference between the linear search and the binary search.

9.2 On average, with an array of 20,000 elements, how many comparisons will the
linear search perform? (Assume the items being search for are consistently found
in the array.)

9.3 With an array of 20,000 elements, what is the maximum number of comparisons
the binary search will perform?

9.4 If a linear search is performed on an array, and it is known that some items are
searched for more frequently than others, how can the contents of the array be
reordered to improve the average performance of the search?

9.3 Introduction to Sorting Algorithms

CONCEPT: Sorting algorithms are used to arrange data into some order.

Often the data in an array must be sorted in some order. Customer lists, for instance, are
commonly sorted in alphabetical order. Student grades might be sorted from highest to
lowest. Mailing label records could be sorted by ZIP code. To sort the data in an array,
the programmer must use an appropriate sorting algorithm. A sorting algorithm is a
technique for scanning through an array and rearranging its contents in some specific
order. This section will introduce two simple sorting algorithms: the bubble sort and the
selection sort.

The Bubble Sort
The bubble sort is an easy way to arrange data in ascending or descending order. If an
array is sorted in ascending order, it means the values in the array are stored from lowest to
highest. If the values are sorted in descending order, they are stored from highest to lowest.
Bubble sort works by comparing each element with its neighbor and swapping them if they
are not in the desired order. Let’s see how it arranges the following array’s elements in
ascending order:

Program Output with Example Input Shown in Bold
Enter an item code: F15[Enter]
This dinner fork costs $3.19

Look up another price (Y/N)? n[Enter]

 7 2 3 8 9 1

 Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

Program 9-3 (continued)

Sorting a Set
of Data

588 Chapter 9 Searching, Sorting, and Algorithm Analysis

The bubble sort starts by comparing the first two elements in the array. If element 0 is
greater than element 1, they are exchanged. After the exchange, the array appears as

This process is repeated with elements 1 and 2. If element 1 is greater than element 2, they
are exchanged. The array now appears as

Next, elements 2 and 3 are compared. However, in this array, these two elements are
already in the proper order (element 2 is less than element 3), so no exchange takes place.

As the cycle continues, elements 3 and 4 are compared. Once again, no exchange is neces-
sary because they are already in the proper order. When elements 4 and 5 are compared,
however, an exchange must take place because element 4 is greater than element 5. The
array now appears as

At this point, the entire array has been scanned. This is called the first pass of the sort.
Notice that the largest value is now correctly placed in the last array element. However, the
rest of the array is not yet sorted. So the sort starts over again with elements 0 and 1.
Because they are in the proper order, no exchange takes place. Elements 1 and 2 are com-
pared next, but once again, no exchange takes place. This continues until elements 3 and 4
are compared. Because element 3 is greater than element 4, they are exchanged. The array
now appears as

Notice that this second pass over the array elements has placed the second largest number
in the next to the last array element. This process will continue, with the sort repeatedly
passing through the array and placing at least one number in order on each pass, until the
array is fully sorted. Ultimately, the array will appear as

Here is the bubble sort in pseudocode. Notice that it uses a pair of nested loops. The
outer loop, a do-while loop, iterates once for each pass of the sort. The inner loop, a
for loop, holds the code that does all the comparisons and needed swaps during a pass.
If two elements are exchanged, the swap flag variable is set to true. The outer loop continues
iterating, causing additional passes to be made, until it finds the swap flag false, meaning
that no elements were swapped on the previous pass. This indicates that the array is now
fully sorted.

 2 7 3 8 9 1

 Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

 2 3 7 8 9 1

 Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

 2 3 7 8 1 9

 Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

 2 3 7 1 8 9

 Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

 1 2 3 7 8 9

 Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

Introduction to Sorting Algorithms 589

Do
Set swap flag to false
For count = 0 to the next-to-last array subscript
 If array[count] is greater than array[count + 1]

 Swap the contents of array[count] and array[count + 1]
 Set swap flag to true

 End If
End For

While the swap flag is true // a swap ocurred on the previous pass

The following C++ code implements the bubble sort as a function. The parameter array
references an integer array to be sorted. The parameter size contains the number of ele-
ments in array.

void sortArray(int array[], int size)
{

int temp;
bool swap;

do
{ swap = false;

for (int count = 0; count < (size - 1); count++)
{

if (array[count] > array[count + 1])
{

temp = array[count];
array[count] = array[count + 1];
array[count + 1] = temp;
swap = true;

}
}

} while (swap);
}

Let’s look more closely at the for loop that handles the comparisons and exchanges during
a pass. Here is its starting line:

for (int count = 0; count < (size - 1); count++)

The variable count holds the array subscripts. It starts at zero and is incremented as long
as it is less than size - 1. The value of size is the number of elements in the array, and
count stops just short of reaching this value because the following line compares each ele-
ment with the one after it:

if (array[count] > array[count + 1])

When array[count] is the next-to-last element, it will be compared to the last element. If
the for loop were allowed to increment count past size - 1, the last element in the array
would be compared to a value outside the array.

590 Chapter 9 Searching, Sorting, and Algorithm Analysis

Here is the if statement in its entirety:

if (array[count] > array[count + 1])
{

temp = array[count];
array[count] = array[count + 1];
array[count + 1] = temp;
swap = true;

}

If array[count] is greater than array[count + 1], the two elements must be exchanged.
First, the contents of array[count] is copied into the variable temp. Then the contents
of array[count + 1] is copied into array[count]. The exchange is made complete when
temp (which holds the previous contents of array[count]) is copied to array[count + 1].
Last, the swap flag variable is set to true. This indicates that an exchange has been
made.

Program 9-4 demonstrates the bubble sort function in a complete program.

Program 9-4

1 // This program uses the bubble sort algorithm to sort an array
2 // of integers in ascending order.
3 #include <iostream>
4 using namespace std;
5
6 // Function prototypes
7 void sortArray(int [], int);
8 void showArray(int [], int);
9
10 int main()
11 {
12 const int SIZE = 6;
13
14 // Array of unsorted values
15 int values[SIZE] = {7, 2, 3, 8, 9, 1};
16
17 // Display the values
18 cout << "The unsorted values are:\n";
19 showArray(values, SIZE);
20
21 // Sort the values
22 sortArray(values, SIZE);
23
24 // Display them again
25 cout << "The sorted values are:\n";
26 showArray(values, SIZE);
27 return 0;
28 }
29

(program continues)

Introduction to Sorting Algorithms 591

The Selection Sort
The bubble sort is inefficient for large arrays because repeated data swaps are often
required to place a single item in its correct position. The selection sort, like the bubble
sort, places just one item in its correct position on each pass. However, it usually performs
fewer exchanges because it moves items immediately to their correct position in the array.
Like any sort, it can be modified to sort in either ascending or descending order. An ascending

30 /**
31 * sortArray *
32 * This function performs an ascending-order bubble sort on *
33 * array. The parameter size holds the number of elements *
34 * in the array. *
35 **/
36 void sortArray(int array[], int size)
37 {
38 int temp;
39 bool swap;
40
41 do
42 { swap = false;
43 for (int count = 0; count < (size - 1); count++)
44 {
45 if (array[count] > array[count + 1])
46 {
47 temp = array[count];
48 array[count] = array[count + 1];
49 array[count + 1] = temp;
50 swap = true;
51 }
52 }
53 } while (swap);
54 }
55
56 /***
57 * showArray *
58 * This function displays the contents of array. The *
59 * parameter size holds the number of elements in the array. *
60 ***/
61 void showArray(int array[], int size)
62 {
63 for (int count = 0; count < size; count++)
64 cout << array[count] << " ";
65 cout << endl;
66 }

Program Output
The unsorted values are:
7 2 3 8 9 1
The sorted values are:
1 2 3 7 8 9

Program 9-4 (continued)

592 Chapter 9 Searching, Sorting, and Algorithm Analysis

sort works like this: The smallest value in the array is located and moved to element 0.
Then the next smallest value is located and moved to element 1. This process continues
until all of the elements have been placed in their proper order.

Let’s see how the selection sort works when arranging the elements of the following array:

The selection sort scans the array, starting at element 0, and locates the element with the
smallest value. The contents of this element are then swapped with the contents of element
0. In this example, the 1 stored in element 5 is the smallest value, so it is swapped with the
5 stored in element 0. This completes the first pass and the array now appears as

The algorithm then repeats the process, but because element 0 already contains the small-
est value in the array, it can be left out of the procedure. For the second pass, the algorithm
begins the scan at element 1. It locates the smallest value in the unsorted part of the array,
which is the 2 in element 2. Therefore, element 2 is exchanged with element 1. The array
now appears as

Once again the process is repeated, but this time the scan begins at element 2. The algo-
rithm will find that element 5 contains the next smallest value and will exchange this
element’s contents with that of element 2, causing the array to appear as

Next, the scanning begins at element 3. Its contents is exchanged with that of element 5,
causing the array to appear as

At this point there are only two elements left to sort. The algorithm finds that the value in
element 5 is smaller than that of element 4, so the two are swapped. This puts the array in
its final arrangement:

 5 7 2 8 9 1

 Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

 1 7 2 8 9 5

 Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

 1 2 7 8 9 5

 Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

 1 2 5 8 9 7

 Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

 1 2 5 7 9 8

 Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

 1 2 5 7 8 9

 Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

Introduction to Sorting Algorithms 593

Here is the selection sort algorithm in pseudocode:

For startScan = 0 to the next-to-last array subscript
 Set index to startScan
 Set minIndex to startScan
 Set minValue to array[startScan]
 For index = (startScan + 1) to the last subscript in the array
 If array[index] is less than minValue
 Set minValue to array[index]
 Set minIndex to index
 End If
 Increment index
 End For
 Set array[minIndex] to array[startScan]
 Set array[startScan] to minValue
End For

The following C++ code implements the selection sort in a function. It accepts two argu-
ments: array and size. The parameter array is an integer array and size is the number of
elements in the array. The function uses the selection sort to arrange the values in the array in
ascending order.

void selectionSort(int array[], int size)
{

 int startScan, minIndex, minValue;

 for (startScan = 0; startScan < (size - 1); startScan++)
 {

 minIndex = startScan;
 minValue = array[startScan];
 for (int index = startScan + 1; index < size; index++)
 {

 if (array[index] < minValue)
 {

 minValue = array[index];
 minIndex = index;

 }
 }
 array[minIndex] = array[startScan];
 array[startScan] = minValue;

 }
}

As with bubble sort, selection sort uses a pair of nested loops, in this case two for loops.
The inner loop sequences through the array, starting at array[startScan + 1], searching
for the element with the smallest value. When the element is found, its subscript is stored in
the variable minIndex and its value is stored in minValue. The outer loop then exchanges
the contents of this element with array[startScan] and increments startScan. This
procedure repeats until the contents of every element have been moved to their proper
location. For N pieces of data this requires N-1 passes.

594 Chapter 9 Searching, Sorting, and Algorithm Analysis

Program 9-5 demonstrates the selection sort function in a complete program.

Program 9-5

1 // This program uses the selection sort algorithm to sort
2 // an array in ascending order.
3 #include <iostream>
4 using namespace std;
5
6 // Function prototypes
7 void selectionSort(int [], int);
8 void showArray(int [], int);
9
10 int main()
11 {
12 const int SIZE = 6;
13
14 // Array of unsorted values
15 int values[SIZE] = {5, 7, 2, 8, 9, 1};
16
17 // Display the values
18 cout << "The unsorted values are\n";
19 showArray(values, SIZE);
20
21 // Sort the array
22 selectionSort(values, SIZE);
23
24 // Display the values again
25 cout << "The sorted values are\n";
26 showArray(values, SIZE);
27 return 0;
28 }
29
30 /**
31 * selectionSort *
32 * This function performs an ascending-order selection sort *
33 * on array. The parameter size holds the number of elements *
34 * in the array. *
35 **/
36 void selectionSort(int array[], int size)
37 {
38 int startScan, minIndex, minValue;
39

(program continues)

Introduction to Sorting Algorithms 595

Checkpoint

9.5 True or false: Any sort can be modified to sort in either ascending or descending
order.

9.6 What one line of code would need to be modified in the bubble sort to make it sort
in descending, rather than ascending order? How would the revised line be written?

9.7 After one pass of bubble sort, which value is in order?

9.8 After one pass of selection sort, which value is in order?

9.9 Which sort usually requires fewer data values to be swapped, bubble sort or selec-
tion sort?

40 for (startScan = 0; startScan < (size - 1); startScan++)
41 {
42 minIndex = startScan;
43 minValue = array[startScan];
44 for(int index = startScan + 1; index < size; index++)
45 {
46 if (array[index] < minValue)
47 {
48 minValue = array[index];
49 minIndex = index;
50 }
51 }
52 array[minIndex] = array[startScan];
53 array[startScan] = minValue;
54 }
55 }
56
57 /***
58 * showArray *
59 * This function displays the contents of array. The *
60 * parameter size holds the number of elements in the array. *
61 ***/
62 void showArray(int array[], int size)
63 {
64 for (int count = 0; count < size; count++)
65 cout << array[count] << " ";
66 cout << endl;
67 }

Program Output
The unsorted values are
5 7 2 8 9 1
The sorted values are
1 2 5 7 8 9

Program 9-5 (continued)

596 Chapter 9 Searching, Sorting, and Algorithm Analysis

9.4 Sorting an Array of Objects

CONCEPT: Sorting algorithms can also be used to order elements in an array of
objects or structures.

Programs 9-4 and 9-5 illustrated how to sort an array of integers using bubble sort and
selection sort. These sorts could just as easily be used to sort array elements of any other
data type. Program 9-6 uses a bubble sort to sort Inventory objects, using the Inventory
class introduced earlier in this chapter. When sorting objects or structures, one must decide
which data item to sort on. For example, we could arrange Inventory objects in order by
itemCode, by description, or by price. To determine if two elements are out of order
and should be swapped, we compare only the values in the data member we are sorting on.
However, if the two array elements are found to be out of order, we swap the entire two
elements. This is illustrated in Program 9-6.

Program 9-6

1 // This program uses bubble sort to sort an array of objects.
2 // It places Inventory objects in ascending order by their itemCode.
3 #include <iostream>
4 #include <iomanip>
5 #include <string>
6 using namespace std;
7
8 // Inventory class declaration
9 class Inventory
10 { private:
11 string itemCode;
12 string description;
13 double price;
14
15 public:
16 Inventory() // Default constructor
17 { itemCode = "XXX"; description = " "; price = 0.0; }
18
19 Inventory(string c, string d, double p) // 3 argument constructor
20 { itemCode = c;
21 description = d;
22 price = p;
23 }
24
25 // Add methods setCode, setDescription, and setPrice here.
26
27 // Get functions to retrieve member variable values
28 string getCode()
29 { string code = itemCode;
30 return code;
31 }
32

(program continues)

Sorting an Array of Objects 597

33 string getDescription()
34 { string d = description;
35 return d;
36 }
37
38 double getPrice()
39 { return price;
40 }
41
42 }; // End Inventory class declaration
43
44 // Program that uses the Inventory class
45
46 // Function prototype
47 void displayInventory(Inventory[], int);
48 void bubbleSort(Inventory[], int);
49
50 /***
51 * main *
52 ***/
53 int main()
54 {
55 const int SIZE = 6;
56
57 // Create and initialize the array of Inventory objects
58 Inventory silverware[SIZE] =
59 { Inventory("S15", "soup spoon", 2.35),
60 Inventory("S12", "teaspoon", 2.19),
61 Inventory("F15", "dinner fork", 3.19),
62 Inventory("F09", "salad fork" , 2.25),
63 Inventory("K33", "knife", 2.35),
64 Inventory("K41", "steak knife", 4.15) };
65
66 // Display the inventory
67 cout << "Here is the original data\n";
68 displayInventory(silverware, SIZE);
69
70 // Sort the objects by their itemCode
71 bubbleSort(silverware, SIZE);
72
73 // Display the inventory again
74 cout << "\nHere is the sorted data\n";
75 displayInventory(silverware, SIZE);
76
77 return 0;
78 } //End main
79

(program continues)

Program 9-6 (continued)

598 Chapter 9 Searching, Sorting, and Algorithm Analysis

80 /***
81 * displayInventory *
82 * This function displays the entire array. *
83 ***/
84 void displayInventory(Inventory object[], int size)
85 {
86 for (int index = 0; index < size; index++)
87 { cout << setw(5) << left << object[index].getCode()
88 << setw(13) << left << object[index].getDescription()
89 << "$" << right << object[index].getPrice() << endl;
90 }
91 }// End displayInventory
92
93 /**
94 * bubbleSort *
95 * This function performs a bubble sort on Inventory *
96 * objects, arranging them in ascending itemCode order. *
97 **/
98 void bubbleSort(Inventory array[], int size)
99 {
100 Inventory temp; // Holds an Inventory object
101 bool swap;
102
103 do
104 { swap = false;
105 for (int count = 0; count < (size - 1); count++)
106 {
107 if (array[count].getCode() > array[count + 1].getCode())
108 {
109 temp = array[count];
110 array[count] = array[count + 1];
111 array[count + 1] = temp;
112 swap = true;
113 }
114 }
115 } while (swap);
116 }// End bubbleSort

Program Output
Here is the original data
S15 soup spoon $2.35
S12 teaspoon $2.19
F15 dinner fork $3.19
F09 salad fork $2.25
K33 knife $2.35
K41 steak knife $4.15

Here is the sorted data
F09 salad fork $2.25
F15 dinner fork $3.19
K33 knife $2.35
K41 steak knife $4.15
S12 teaspoon $2.19
S15 soup spoon $2.35

Program 9-6 (continued)

Sorting and Searching Vectors 599

Let’s take a closer look at the bubbleSort function. Line 107 contains the code to com-
pare the objects stored in two array elements. Notice that only the itemCode values of the
objects are compared and that these values are retrieved by using each object’s getCode
method.

Next look at lines 109 through 111 where the actual swap takes place when two objects
are out of order. Notice that the entire objects are swapped and that an entire object can be
moved in a single statement. It is not necessary to move the member variables one by one.

Finally, notice in line 100 that temp is defined as an Inventory object. Because it will be
used to temporarily hold an array element during each swap, and because the array elements
in this case are Inventory objects, temp must also be defined as an Inventory object.

9.5 Sorting and Searching Vectors

CONCEPT: The sorting and searching algorithms you have studied in this chapter can
be applied to STL vectors as well as to arrays.

In the previous chapter you learned about the vector class that is part of the Standard
Template Library (STL). Once you have properly defined an STL vector and populated it
with values, you may sort and search the vector with the algorithms presented in this
chapter. Simply substitute the vector syntax for the array syntax when necessary.

Program 9-7 modifies program 9-4 to use a STL vector instead of an array.

Program 9-7

1 // This program uses the bubble sort algorithm to sort
2 // a vector of integers in ascending order.
3 #include <iostream>
4 #include <vector> // Needed to use vectors
5 using namespace std;
6
7 // Function prototypes
8 void displayVector(vector<int>);
9 void sortVector(vector<int> &);
10
11 int main()
12 {
13 const int SIZE = 6;
14
15 // Create a vector to hold a set of unsorted integers
16 vector<int> values(SIZE);
17
18 // Prompt the user to enter the values to be stored.
19 cout << "Please enter " << SIZE << " integers separated by spaces.\n";
20
21 for (int i = 0; i < SIZE; i++)
22 cin >> values[i];
23

(program continues)

600 Chapter 9 Searching, Sorting, and Algorithm Analysis

24 // Display the values
25 cout << "\nThe unsorted values entered are:\n";
26 displayVector(values);
27
28 // Sort the values
29 sortVector(values);
30
31 // Display them again
32 cout << "The sorted values are:\n";
33 displayVector(values);
34 return 0;
35 }
36
37 /**
38 * sortVector *
39 * This function performs an ascending-order bubble sort on *
40 * numbers, a vector of integers. *
41 **/
42 void sortVector(vector<int> &numbers)
43 { int temp;
44 bool swap;
45
46 do
47 { swap = false;
48 for (unsigned count = 0; count < numbers.size()-1; count++)
49 {
50 if (numbers[count] > numbers[count + 1])
51 {
52 temp = numbers[count];
53 numbers[count] = numbers[count + 1];
54 numbers[count + 1] = temp;
55 swap = true;
56 }
57 }
58 } while (swap);
59 }
60
61 /***
62 * displayVector *
63 * This function displays the contents of numbers, a *
64 * vector of integers. *
65 ***/
66 void displayVector(vector<int> numbers)
67 {
68 for (unsigned count = 0; count < numbers.size(); count++)
69 cout << numbers[count] << " ";
70 cout << endl;
71 }

(program continues)

Program 9-7 (continued)

Introduction to Analysis of Algorithms 601

Notice the similarities and differences between Program 9-7 and Program 9-4. The code in
Program 9-7 that sorts vectors is almost identical to the code in Program 9-4 that sorts
arrays. The differences lie in some details of initialization and argument passing.

First, notice that in Program 9-4 the array data is provided in an initialization list when the
array is created, but in Program 9-7 the data to be stored in the vector is input by the user.
This is done because vectors do not accept initialization lists. Second, notice that in Pro-
gram 9-7 the vector is passed by reference to the sortVector function. This is necessary
because, unlike arrays, vectors are passed by value unless the programmer uses a reference
variable as a parameter. Finally, notice that in Program 9-7 it is not necessary to pass the
size of the vector to the functions that work with it. This is because vectors have the size
member function to return the number of elements in the vector.

9.6 Introduction to Analysis of Algorithms

CONCEPT: We can estimate the efficiency of an algorithm by counting the number of
steps it requires to solve a problem.

An algorithm is a mechanical step-by-step procedure for solving a problem and is the basic
strategy used in designing a program. There is often more than one algorithm that can be
used to solve a given problem. For example, we saw earlier in this chapter that the problem
of searching a sorted array can be solved by two different methods: sequential search and
binary search.

How can we decide which of two algorithms for solving a problem is better? To answer
this question, we need to establish criteria for judging the “goodness” or efficiency of an
algorithm. The two criteria most often used are space and time. The space criterion refers to
the amount of memory the algorithm requires to solve the problem, while the time criterion
refers to the length of execution time. In this chapter, we will use the time criterion to
evaluate the efficiency of algorithms.

One possibility for comparing two algorithms is to code them and then time the execution
of the resulting C++ programs. This experimental approach can yield useful information,
but it has the following shortcomings:

• It measures the efficiency of programs rather than algorithms.
• The results obtained depend on the programming language used to code the algorithms,

and on the quality of the compiler used to generate machine code. The programs may run
faster or slower if they are coded in a different language, or compiled by a different
compiler.

Program Output With Example Input Shown in Bold
Please enter 6 integers separated by spaces.
9 4 8 6 3 1[Enter]

The unsorted values entered are:
9 4 8 6 3 1
The sorted values are:
1 3 4 6 8 9

Program 9-7 (continued)

602 Chapter 9 Searching, Sorting, and Algorithm Analysis

• The results obtained depend on how the operating system executes programs, and on
the nature of the hardware on which the programs are executing. The execution
times may be different if we run the programs on a different computer and a different
operating system.

• The results obtained apply only to those inputs that were part of the execution runs
and may not be representative of the performance of the algorithms using a different
set of inputs.

A better approach is to count the number of basic steps an algorithm requires to process an
input of a given size. To make sense of this approach, we need more precise definitions of
what we mean by computational problem, problem input, input size, and basic step.

Computational Problems and Basic Steps
A computational problem is a problem to be solved using an algorithm. Such a problem
is a collection of instances, with each instance specified by input data given in some
prescribed format. For example, if the problem P is to sort an array of integers, then an
instance of P is just a specific integer array to be sorted. The size of an instance refers to the
amount of memory needed to hold the input data. The input size is usually given as a number
that allows us to infer the total number of bits occupied by the input data. If the number of
bits occupied by each entry of the array is fixed, say at 64 bits, then the length of the array
is a good measure of input size. In contrast, the length of the array is not a good measure
of input size if the size of array elements can vary and there is no fixed upper bound on the
size of these elements.

A step executed by an algorithm is a basic step (also called a basic operation) if the algo-
rithm can execute the step in time bounded by a constant regardless of the size of the input.
In sorting an array of integers, the step

Swap the elements in positions k and k+1

is basic because the time required to swap two array elements remains constant even if the
length of the array increases. In contrast, a step such as

Find the largest element of the array

is not basic because the time required to complete the step depends on the length of the
array. Intuitively, a basic step is one that could conceivably be built into the hardware of
some physical computer.

The definition of a basic step does not specify the size of the constant that bounds the time
required to execute the step. Ignoring the exact value of these constants reflects the reality
that the same operation may be executed with different speeds on different hardware, and
that an operation that can be executed with one hardware instruction on one computer
may require several hardware instructions on another computer. A consequence of this
definition is that we can count any constant number of basic steps as one basic step. For
example, an algorithm that executes 5n basic steps can accurately be described as execut-
ing n basic steps.

It is important to realize that ordinary arithmetic and logic operations such as addition and
comparison are not basic unless a constant bound is put on the size of the numbers being

Introduction to Analysis of Algorithms 603

added or compared. The size of the bound does not matter as long as the bound is con-
stant. It may be 32, 64, 128, 1024 bits, or even larger, and these operations will still be
basic. In the following discussion, we assume that all the numbers used in our algorithms
as inputs, outputs, or computed intermediate results are bounded in size. This allows us to
consider operations on them as basic.

It only makes sense to describe an algorithm after we have described the problem the algo-
rithm is supposed to solve. A computational problem is described by stating what the input
will look like, how big it is, and what output the algorithm solving the problem is sup-
posed to produce. These must be described clearly, so there is no ambiguity, and generally,
so the algorithm can work with any data set that fits the description.

Let’s look at an example. Suppose the problem P is to sum all the integer values in a one-
dimensional array. We could describe the problem by saying that the input data is an array
of n integer values and that the output to be produced is the integer sum of these values.
Formally, this is written as follows:

INPUT: an integer array a[] of size n
SIZE OF INPUT: The number n of array entries
OUTPUT: An integer sum representing the sum total of the values stored in the array

Notice that the word INPUT used this way does not mean a set of data entered by the user,
but rather means the form of the data used by the algorithm solving the problem. Likewise,
the word OUTPUT used this way does not mean something displayed on the computer
screen by a program. It means the result created by the algorithm that solves the problem.
Because we have assumed all the array entries are of some fixed size, such as 32 or 64 bits,
the number n of elements in the array is a good measure of input size.

Once a computational problem has been described, there can be many different algorithms
designed to solve it. Some, of course, are better than others, as we will soon see. Here is one
possible algorithm for solving the computational problem just described. Notice that it is
expressed in pseudocode, rather than in C++ or any other particular programming language.

Algorithm 1:
1: sum = 0
2: k = 0 //array index
3: While k < n do
4: sum = sum + a[k]
5: k = k + 1
6: End While

Complexity of Algorithms
We can measure the complexity of an algorithm that solves a computational problem by
determining the number of basic steps it requires for an input of size n. Let’s count the
number of steps required by Algorithm 1. The algorithm consists of two statements on
lines 1 and 2 that are each executed once and two statements inside a loop on lines 4 and 5
that will execute once each time the loop iterates. Recall that because the statements on
lines 1 and 2 perform basic operations they can be grouped together and counted as one
basic operation. Let’s call this operation A. Also, because both statements in the loop execute
in constant time, independently of the size of n, they are also basic operations. Since the

604 Chapter 9 Searching, Sorting, and Algorithm Analysis

loop body contains only basic operations, the amount of time the algorithm takes to execute
a single iteration of the loop is also constant, and not dependent on the size of n. This allows
us to count each loop iteration as a single basic operation. Let’s call this operation B.

Operation A executes only one time, regardless of how big n is. Operation B executes
once each time the loop iterates. Because the loop iterates n times, operation B is executed
n times. Thus, the total number of operations performed is 1 + n. When n = 10, for exam-
ple, 11 operations are performed. When n = 1000, 1001 operations are performed. When
n = 10,000 the number of operations performed is 10,001. Notice that as n becomes
large, the 1 becomes insignificant and the number of operations performed is approxi-
mately n. We therefore say that the algorithm requires execution time proportional to n to
process an input set of size n.

There is another way we could look at Algorithm 1 and determine how many operations it
requires. The crucial operation in summing the values in an array is the addition of each
value to the variable accumulating the sum. This occurs in line 4, and there are as many
additions of array values as there are loop iterations.

Thus, we could get the same result by just counting additions of array elements. It turns
out that for most algorithms, it is sufficient to identify and count only one or two basic
operations that are in some way crucial to the problem being solved. For example, in many
array searching and sorting algorithms, it is sufficient to just count the number of compar-
isons between array elements.

The array-summing algorithm just considered is particularly simple to analyze because it
performs the same amount of work for all input sets of a given size.

This is not the case with all algorithms. Consider the linear search algorithm introduced
earlier in this chapter. It searches through an array of values, looking for one that matches
a search key. Let’s call the key X. The input to the algorithm is the array of n values and the
key value X. The output of the algorithm is the subscript of the array location where the
value was located or, if it is not found, the determination that the loop control variable has
become larger than the subscript of the last array element. Formally, the problem can be
stated like this:

INPUT: An integer array a[] of size n, and an integer X
SIZE OF INPUT: The number n of array entries
OUTPUT: An integer k in the range 0 � k ≤ n – 1 such that a[k] = X, or k = n

Algorithm 2, shown here, uses the linear search algorithm to solve the problem.

Algorithm 2:
1: k = 0
2: While k < n and a[k] ≠ X do
3: k = k + 1
4: End While

This algorithm starts at one end and searches sequentially through the array. The algo-
rithm stops as soon as it encounters X, but will search the entire array if X is not in the
array. The algorithm may stop after making only one comparison (X is found in the first
entry examined), or it may not stop until it has made n comparisons (X is found in the last
place examined or is not in the array). In fact, the algorithm may perform m comparisons

Introduction to Analysis of Algorithms 605

where m is any value from 1 to n. In cases where an algorithm may perform different
amounts of work for different inputs of the same size, it is common to measure the
efficiency of the algorithm by the work done on an input of size n that requires the most
work. This is called measuring the algorithm by its worst-case complexity function.

Worst Case Complexity of Algorithms
The worst-case complexity function f(n) of an algorithm is the number of steps it performs
on an input of size n that requires the most work. It gives an indication of the longest time
the algorithm will ever take to solve an instance of size n, and is a good measure of
efficiency to use when we are looking for a performance guarantee.

Let’s determine the worst-case complexity of binary search, which was introduced earlier
in this chapter. This algorithm is used to locate an item X in an array sorted in ascending
order. The worst case occurs when X is not found in the array. In this case, as we will see,
the algorithm performs L + 1 steps, where L is the number of loop iterations.

Here is the binary search algorithm to search an array of n elements.

Algorithm 3:
 1: first = 0
 2: last = n - 1 // n - 1 is the subscript of the last element.
 3: found = false
 4: position = -1
 5: While found is not true and first <= last
 6: middle = (first + last) / 2
 7: If a[middle] = X
 8: found = true
 9: position = middle
10: Else if a[middle] > X
11: last = middle - 1
12: Else
13: first = middle + 1
14: End If
15: End While
16: // When the loop terminates, position holds the subscript
17: // where the value matching X was found, or holds –1 if
18: // the value was not found.

The algorithm consists of some initialization of variables followed by a loop. The initializa-
tion requires constant time, and can therefore be considered to be one basic operation.
Likewise, each iteration of the loop is a basic step because increasing the number of entries in
the array does not increase the amount of time required by a single iteration of the loop. This
shows that the number of steps required by binary search is L + 1. Now L is approximately
equal to the integer part of log2n, the logarithm of n to the base 2. To see this, notice that
the size of the array to be searched is initially n, and each iteration reduces the size of the
remaining portion of the array by approximately one half. Because each loop iteration
performs at most two comparisons, binary search performs a total of 2 log2n comparisons.
We can summarize our findings as follows:

In the worst case, binary search requires time proportional to log2n.

606 Chapter 9 Searching, Sorting, and Algorithm Analysis

Let’s look at one more algorithm to determine its worst case complexity. The computa-
tional problem to be solved is to arrange a set of n integers into ascending order.

INPUT: An array a[] of n integers
SIZE OF INPUT: The number n of array entries
OUTPUT: The array a[] rearranged so that a[0] � a[1] � . . . � a[n �1]

The algorithm we will use is a modification of the selection sort algorithm introduced ear-
lier in this chapter. This version scans for the largest element (instead of the smallest) and
moves it to the end in each pass.

Algorithm 4:
1: For (k = n-1; k ≥ 1; k --)
2: // a[0..k] is what remains to be sorted
3: Determine position p of largest entry in a[0..k]
4: Swap a[p] with a[k]
5: End For

To analyze the complexity of this algorithm, let’s begin by determining the number of array
entry comparisons it makes when sorting an array of n entries. These comparisons occur in
step 3. Step 3 is clearly not a basic step, as it requires time proportional to k, and k varies
with each iteration of the loop. To better see what is going on, let’s restate step 3 using
operations that are basic.

INPUT: array a[0..k] of k + 1 entries
SIZE OF INPUT: number k + 1 of array entries
3.0: p = 0 //Position of largest value in unsorted part of the array
3.1: For (m = 1; m ≤ k; m ++)
3.2: If a[m] > a[p] Then
3.3: p = m
3.4: End if
3.5: End For

We can see that the loop in line 3.1 through 3.5 iterates k times and on line 3.2 makes one
comparison each time it iterates. Therefore this algorithm requires k comparisons between
array entries.

Now returning to the main sorting algorithm, we observe that there will be n �1 iterations
of the loop that starts at line 1 and ends at line 5, one iteration for each value of k in the
range n �1 to 1. On the first iteration, k equals n �1, so step 3, as we learned from the
analysis of lines 3.0 through 3.5, performs n �1 comparisons between array elements. On
the second iteration, k equals n �2, so step 3 performs n �2 comparisons. This continues
until, on the final iteration, k equals 1, and step 3 performs 1 comparison. Here is what it
looks like:

k = n �1: step 3 performs n �1 comparisons
k = n �2: step 3 performs n �2 comparisons
.
.
k = 1: step 3 performs 1 comparison

Generalizing, we can thus say that for every value of k from n �1 to 1, on the kth itera-
tion, the step on line 3 will perform k comparisons.

Introduction to Analysis of Algorithms 607

Thus the total number of comparisons performed by this simple sorting algorithm is given
by the expression

1 + 2 + 3 + . . . + (n �1) = (n �1)n/2

For large n, this expression is very close to n2 / 2. So we say that:

In the worst case, selection sort requires time proportional to n2.

Average Case Complexity
The worst-case complexity does not, however, give a good indication of how an algorithm
will perform in practical situations where inputs that yield worst case performance are
rare. Often we are more interested in determining the complexity of the typical, or average
case. The average-case complexity function can be used when we know the relative fre-
quencies with which different inputs are likely to occur in practice. The average case
complexity function uses these frequencies to form a weighted average of the number of
steps performed on each input. Unfortunately, although it yields a good measure of the
expected performance of an algorithm, accurate estimates of input frequencies may be
difficult to obtain.

Asymptotic Complexity and the Big O Notation
We can compare two algorithms F and G for solving a problem by comparing their
complexity functions. More specifically, if f(n) and g(n) are the complexity functions for
the two algorithms, we can compare the algorithms against each other by looking at
what happens to the ratio f(n)/g(n) when n gets large. This is easiest to understand if
this ratio tends to some limit. Let us consider some specific examples. Throughout, we
assume that f(n) � 1 and g(n) � 1 for all (n) � 1.

• f(n) = 3n2+ 5n and g(n) = n2. In this case

 → 3 as n → ∞

That is, the value of f(n)/g(n) gets closer and closer to 3 as n gets large. What this means is
that for very large input sizes F performs three times as many basic operations as G.
However, because the two algorithms differ in performance only by a constant factor, we
consider them to be equivalent in efficiency.

• f(n) = 3n2+ 5n and g(n) = 100n. In this case

 → ∞ as n → ∞

Here, the ratio f(n)/g(n) gets larger and larger as n gets large. This means F does a lot more
work than G on large input sizes. This makes G the better algorithm for large inputs.

f n()
g n()
----------- 3n2 5n+

n2
--------------------- 3 5

n
---+= =

f n()
g n()
----------- 3n2 5n+

100n
--------------------- 3n

100
--------- 5

100
---------+= =

608 Chapter 9 Searching, Sorting, and Algorithm Analysis

• f(n) = 3n2+ 5n and g(n) = n3. In this case

 → 0 as n → ∞

This means that for large inputs the algorithm G is doing a lot more work than F, making
F the more efficient algorithm.

In general, we can compare two complexity functions f(n) and g(n) by looking at what
happens to f(n)/g(n) as n gets large. Although thinking in terms of a limit of this ratio is
helpful in comparing the two algorithms, we cannot assume that such a limit will always
exist. It turns out that a limit does not have to exist for us to gain useful information from
this ratio. We can usefully compare the two complexity functions if we can find a positive
constant K such that

 � K for all n � 1

If this can be done, it means that the algorithm F is no worse than K times G for large
problems. In this case, we say that f(n) is in O(g(n)), pronounced “f is in Big O of g.” The
condition that defines f(n) is in O(g(n)) is often written like this

f(n) � Kg(n) whenever n � 1.

Showing that f(n) is in O(g(n)) is usually straightforward. You look at the ratio f(n)/g(n)
and try to find a positive constant K that makes f(n)/g(n) � K for all n � 1. For example,
to show that 3n2 + 5n is in O(n2), look at the ratio

and notice that 5/n will be at most 5 for all n � 1. So 3 + 5/n � 8. Therefore for K = 8,
f(n) / g(n) � K .

To show that f(n) is not in O(g(n)), you have to show that there is no way to find a positive
K that will satisfy f(n) / g(n) � K for all n � 1. For example, the function 3n2 + 5n is not in
O(n) because there is no constant K that satisfies

 = 3n + 5 � K for all n � 1.

Although defined for functions, the “Big O” notation and terminology is also used to char-
acterize algorithms and computational problems. Thus, we say that an algorithm F is in
O(g(n)) for some function g(n) if the worst case complexity function f(n) of F is in Big O of
g(n). Accordingly, sequential search of an array is in O(n) whereas binary search is in O(log2 n).

Similarly, a computational problem is said to be in O(g(n)) if there exists an algorithm for
the problem whose worst case complexity function is in O(g(n)). Thus, the problem of
sorting an array is in O(n2), whereas the problem of searching a sorted array is in O(log2 n).

If g(n) is a function, O(g(n)) can be regarded as a family of functions that grow no faster
than g(n). These families are called complexity classes, and a few of them are important
enough to merit specific names. We list them here in order of their rate of growth:

f n()
g n()
----------- 3n2 5n+

n3
--------------------- 3

n2
----- 5

n2
-----+= =

f n()
g n()

3n2 5n+

n2
--------------------- 3 5

n
---+=

3n2 5n+
n

Case Studies 609

1. O(1): A function f(n) is in this class if there is a constant K 	 0 such that f(n) � K for
all n � 1. An algorithm whose worst case complexity function is in this class is said
to run in constant time.

2. O(log2 n): Algorithms in this class run in logarithmic time. Because log n grows much
slower than n, a huge increase in the size of the problem results in only a small
increase in the running time of the algorithm. This complexity is characteristic of
search problems that eliminate half of the search space with each basic operation.
The binary search algorithm is in this class.

3. O(n): Algorithms in this class run in linear time. Any increase in the size of the prob-
lem results in a proportionate increase in the running time of the algorithm. This
complexity is characteristic of algorithms like sequential search that make a single
pass, or a constant number of passes, over their input.

4. O(n log2 n): This class is called “n log n” time. An increase in the size of the problem
results in a slight increase in the running time of the algorithm. The average case
complexity of Quicksort, a sorting algorithm you will learn about in Chapter 14, is
in this class.

5. O(n2): This class is called quadratic time. This performance is characteristic of algo-
rithms that make multiple passes over the input data using two nested loops. An
increase in the size of the problem causes a much greater increase in the running time
of the algorithm. The worst case complexity functions of bubble sort, selection sort,
and Quicksort all lie in this class.

Checkpoint

9.10 What is a basic operation?

9.11 What is the worst case complexity function of an algorithm?

9.12 One algorithm needs 10n basic operations to process an input of size n, and another
algorithm needs 25n basic operations to process the same input. Which of the two
algorithms is more efficient? Or are they equally efficient?

9.13 What does it mean to say that f(n) is in O(g(n))?

9.14 Show that 100n3 + 50n2 + 75 is in O(20n3) by finding a positive K that satisfies the
equation (100n3 + 50n2 + 75) / 20n3 ≤ K.

9.15 Assuming g(n) ≥ 1 for all n ≥ 1, show that every function in O(g(n) + 100) is also in
O(g(n)).

9.7 Case Studies
The following case studies, which contain applications of material introduced in Chapter 9,
can be found on the student CD.

Demetris Leadership Center—Parts 1 & 2
Chapter 9 included programs illustrating how to search and sort arrays, including arrays
of objects. These two case studies illustrate how to search and sort arrays of structures.
Both studies develop programs for DLC, Inc., a fictional company that publishes books,
DVDs, and audio CDs. DLC’s inventory data, used by both programs, is stored in an array
of structures.

Creating an Abstract Array Data Type—Part 2
The IntList class, begun as a case study in Chapter 8, is extended to include array search-
ing and sorting capabilities.

610 Chapter 9 Searching, Sorting, and Algorithm Analysis

9.8 Tying It All Together: Secret Messages

Now that you know how to search through an array to locate a desired item, we can write
a program to encode and decode secret messages. We will use a simple substitution cipher.
This means that for each character in a message, a different character will be substituted.
For example, if we substitute f for c, t for a, and x for t, then the word cat would be
written ftx. Can you guess what this message says?

*>P;HMAyJHyJH9|[3Lf

You’ll know if you run the message through the program decoder.

For this program we’ll create a CodeMaker class that has encode and decode functions.
When a CodeMaker object is created, the constructor will open the code.dat file that
contains the character substitutions to be used. This file is located, along with the program
source code file, on the student CD. Be sure to place it in the project directory so the
program can open and use it. There is one substitution character for each of the printable
ASCII characters, which are represented by the decimal numbers 32 through 126. The program
will read in these characters and store them in a one-dimensional array of characters, using the
ASCII code of the original character, minus 32, as the index for the stored substitution
character. So, for example, the substitution for ASCII character 32, a blank, will be stored
in array element 0. The substitution for ASCII character 33, an exclamation point, will be
in array element 1, and so forth.

The code will be hard to break because even the blank space will be represented by another
character. So someone trying to read the code will not know where one word ends and the
next one begins.

When the encode method is called, it is passed a string holding the message to be encoded.
The method simply uses the ASCII code of each character in the string to compute the
array index where its replacement character is located. Once each character in the string
has been replaced, the string is returned.

When the decode method is called, it is passed a string holding an encoded message to be
turned back into its original, or plain text, form. However, this method cannot compute an
index to reverse the code. Instead, for each character in the string, it must do a search of
the array to locate it. When the character is found, its array subscript can be used to com-
pute the ASCII value of the original character. Once each character in the encoded string
has been translated back to its original form, the string is returned.

In addition to creating the CodeMaker class, we will also write a client program that does
the following:

• Create a CodeMaker object.
• Have the user input a message and store it as a string.
• Call the encode function, passing it the string.
• Display the returned encoded string.
• Call the decode function, passing it the encoded string.
• Display the returned decoded string. This should equal the original message.

611Tying It All Together: Secret Messages

Program 9-8 does all of this.

Program 9-8

1 // This program encodes and decodes secret messages.
2 #include <iostream>
3 #include <fstream>
4 #include <string>
5 using namespace std;
6
7 class CodeMaker
8 {
9 private:
10 int size;
11 char codeChar[94]; // Array to hold the substitutions
12 // for the 94 printable ASCII chars
13 int findIt(char[], int, char);
14
15 public:
16 CodeMaker();
17 string encode(string);
18 string decode(string);
19 };
20
21 // Member function implementation section
22
23 /***
24 * CodeMaker::CodeMaker - the Constructor *
25 * This method reads the substitution characters in *
26 * from a file and stores them it the codeChar array.*
27 * It also sets member variable size. *
28 ***/
29 CodeMaker::CodeMaker()
30 {
31 size = 94;
32 ifstream inFile;
33 inFile.open("code.dat"); // Open the file
34
35 for (int ascii = 32; ascii < 127; ascii++) // Read in data
36 inFile >> codeChar[ascii - 32];
37 inFile.close(); // Close the file
38 }
39
40 /***
41 * CodeMaker::encode *
42 * This method encodes and returns a clear text string.*
43 ***/
44 string CodeMaker::encode(string s)
45 {
46 int ascii;
47 char newChar;
48 string newString = ""; // Will hold the encoded string
49

(program continues)

612 Chapter 9 Searching, Sorting, and Algorithm Analysis

50 for (unsigned pos = 0; pos < s.length(); pos++)
51 {
52 // Get the original character's ASCII code
53 ascii = s[pos];
54
55 // Get the new replacement character
56 newChar = codeChar[ascii - 32];
57
58 // Concatenate it onto the end of the new string
59 newString += newChar;
60 }
61 return newString;
62 }
63
64 /***
65 * CodeMaker::decode *
66 * This method converts an encoded string back to *
67 * clear text and returns it. *
68 ***/
69 string CodeMaker::decode(string s)
70 {
71 int index;
72 char nextChar;
73 char originalChar;
74 string decodedText = "";
75
76 for (unsigned pos = 0; pos < s.length(); pos++)
77 {
78 // Get the next character from the string
79 nextChar = s[pos];
80
81 // Call findIt to find it in the array and return its index
82 index = findIt(codeChar, size, nextChar);
83
84 // Get the original character by computing its ASCII code
85 originalChar = index + 32;
86
87 // Concatenate this character onto the end of the
88 // decoded text string being constructed
89 decodedText += originalChar;
90 }
91 return decodedText;
92 }
93
94 /**
95 * CodeMaker::findIt *
96 * This method performs a linear search on *
97 * a character array looking for value. *
98 **/

(program continues)

Program 9-8 (continued)

613Tying It All Together: Secret Messages

99 int CodeMaker::findIt (char A[], int size, char value)
100 {
101 int index = 0;
102 int position = -1;
103 bool found = false;
104
105 while (index < size && !found)
106 {
107 if (A[index] == value) // If the value is found
108 { found = true; // Set the flag
109 position = index; // Record the value's subscript
110 }
111 index++; // Go to the next element
112 }
113 return position; // Return the position, or -1
114 }
115
116 /**
117 * main *
118 * The client "program" that uses the CodeMaker class.*
119 **/
120 int main()
121 {
122 string originalText, secretCode, finalText;
123 CodeMaker myCoder;
124
125 // Get text from the user
126 cout << "Enter the message to be encoded.\n";
127 getline(cin, originalText);
128
129 // Send the text to be encoded and display the result
130 secretCode = myCoder.encode(originalText);
131 cout << "\nHere is the encoded message\n" << secretCode << endl;
132
133 // Send the encoded text back to be decoded
134 // and display the result
135 finalText = myCoder.decode(secretCode);
136 cout << "\nHere is the decoded message\n" << finalText << endl;
137
138 return 0;
139 }

Program Output with Example Input Shown in Bold
Enter the message to be encoded.
I can write a secret message.[Enter]

Here is the encoded message.
xH43DHP|yL[H3HJ[4|[LH=[JJ39[f

Here is the decoded message.
I can write a secret message.

Program 9-8 (continued)

614 Chapter 9 Searching, Sorting, and Algorithm Analysis

Review Questions and Exercises

Fill-in-the-Blank and Short Answer

1. The _________ search algorithm steps sequentially through an array, comparing each
item with the search value.

2. The _________ search algorithm repeatedly divides the portion of an array being
searched in half.

3. The _________ search algorithm is adequate for small arrays but not large arrays.

4. The _________ search algorithm requires that the array’s contents be sorted.

5. The average number of comparisons performed by linear search to find an item in an
array of N elements is _________.

6. The maximum number of comparisons performed by linear search to find an item in
an array of N elements is _________.

7. A linear search will find the value it is looking for with just one comparison if that
value is stored in the _________ array element.

8. A binary search will find the value it is looking for with just one comparison if that
value is stored in the _________ array element.

9. In a binary search, after three comparisons have been made, only ________ of the
array will be left to search.

10. The maximum number of comparisons that a binary search function will make when
searching for a value in a 2,000-element array is ________.

11. If an array is sorted in ________ order, the values are stored from lowest to highest.

12. If an array is sorted in ________ order, the values are stored from highest to lowest.

13. Bubble sort places ________ number(s) in place on each pass through the data.

14. Selection sort places ________ number(s) in place on each pass through the data.

15. To sort N numbers, bubble sort continues making passes through the array until
________.

16. To sort N numbers, selection sort makes ________ passes through the data.

17. Why is selection sort more efficient than bubble sort on large arrays?

18. Which sort, bubble sort or selection sort, would require fewer passes to sort a set of
data that is already in the desired order?

19. Complete the following table by calculating the average and maximum number of
comparisons the linear search will perform, and the maximum number of compari-
sons the binary search will perform.

Array Size
50
Elements

500
Elements

10,000
Elements

100,000
Elements

10,000,000
Elements

Linear Search
(Average Comparisons)

Linear Search
(Maximum Comparisons)

Binary Search
(Maximum Comparisons)

Review Questions and Exercises 615

Algorithm Workbench

20. Assume that empName and empID are two parallel arrays of size numEmp that hold
employee data. Write a pseudocode algorithm that sorts the empID array in ascending
ID number order (using any sort you wish), such that the two arrays remain parallel.
That is, after sorting, for all indexes in the arrays, empName[index] must still be the
name of the employee whose ID is in empID[index].

21. Assume an array of structures is in order by the customerID field of the record, where
customer IDs go from 101 to 500.

A) Write the most efficient pseudocode algorithm you can to find the record with a
specific customerID if every single customer ID from 101 to 500 is used and the
array has 400 elements.

B) Write the most efficient pseudocode algorithm you can to find a record with a
customer ID near the end of the IDs, say 494, if not every single customer ID in
the range of 101 to 500 is used and the array size is only 300.

Soft Skills

Deciding how to organize and access data is an important part of designing a program.
You are already familiar with many structures and methods that allow you to organize
data. These include one-dimensional arrays, vectors, multidimensional arrays, parallel
arrays, structures, classes, arrays of structures, and arrays of class objects. You are also
now familiar with some techniques for arranging (i.e., sorting) data and for locating (i.e.,
searching for) data items.

22. Team up with two to three other students and jointly decide how you would organize,
order, and locate the data used in the following application. Be prepared to present
your group’s design to the rest of the class.
The program to be developed is a menu-driven program that will keep track of park-
ing tickets issued by the village that is hiring you. When a ticket is issued the program
must be able to accept and store the following information: ticket number, officer
number, vehicle license plate state and number, location, violation code (this indicates
which parking law was violated), and date and time written. The program must store
information on the amount of the fine associated with each violation code. When a
ticket is paid the program must be able to accept and store the information that it has
been paid, the amount of the payment, and the date the payment was received. The
program must be able to accept inquiries such as displaying the entire ticket record
when a ticket number is entered. The program must also be able to produce the fol-
lowing reports:

• A list of all tickets issued on a specific date, ordered by ticket number
• A list of all tickets for which payment was received on a specific date and the total

amount of money collected that day
• A report of all tickets issued in a one-month period, ordered by officer number,

with a count of how many tickets each officer wrote
• A report of all tickets that have not yet been paid, or for which payment received

was less than payment due, ordered by vehicle license number

616 Chapter 9 Searching, Sorting, and Algorithm Analysis

Programming Challenges
These programming challenges can all be written either with or without the use of classes.
Your instructor will tell you which approach you should use.

1. Charge Account Validation

Write a program that lets the user enter a charge account number. The program should
determine if the number is valid by checking for it in the following list:

5658845 4520125 7895122 8777541 8451277 1302850
8080152 4562555 5552012 5050552 7825877 1250255
1005231 6545231 3852085 7576651 7881200 4581002

Initialize a one-dimensional array with these values. Then use a simple linear search to
locate the number entered by the user. If the user enters a number that is in the array, the
program should display a message saying the number is valid. If the user enters a number
not in the array, the program should display a message indicating it is invalid.

2. Lottery Winners

A lottery ticket buyer purchases ten tickets a week, always playing the same ten five-digit
“lucky” combinations. Write a program that initializes an array with these numbers and
then lets the player enter this week’s winning five-digit number. The program should per-
form a linear search through the list of the player’s numbers and report whether or not one
of the tickets is a winner this week. Here are the numbers:

13579 26791 26792 33445 55555
62483 77777 79422 85647 93121

3. Lottery Winners Modification

Modify the program you wrote for Programming Challenge 2 (Lottery Winners) so it per-
forms a binary search instead of a linear search.

4. Annual Rainfall Report

Write a program that displays the name of each month in a year and its rainfall amount,
sorted in order of rainfall from highest to lowest. The program should use an array of
structures, where each structure holds the name of a month and its rainfall amount. Use a
constructor to set the month names. Make the program modular by calling on different
functions to input the rainfall amounts, to sort the data, and to display the data.

5. Hit the Slopes

Write a program that can be used by a ski resort to keep track of local snow conditions for
one week. It should have a seven-element array of structures, where each structure holds a
date and the number of inches of snow in the base on that date. The program should have
the user input the name of the month, the starting and ending date of the seven-day period
being measured, and then the seven base snow depths. The program should then sort the
data in ascending order by base depth and display the results. Here is a sample report.

Solving the
Lottery Winners
Problem

Review Questions and Exercises 617

Snow Report December 12 – 18
Date Base
 13 42.3
 12 42.5
 14 42.8
 15 43.1
 18 43.1
 16 43.4
 17 43.8

6. String Selection Sort

Modify the selectionSort function presented in this chapter so it sorts an array of
strings instead of an array of ints. Test the function with a driver program. Use Program 9-9
as a skeleton to complete.

7. Binary String Search

Modify the binarySearch function presented in this chapter so it searches an array of
strings instead of an array of ints. Test the function with a driver program. Use Program 9-8
as a skeleton to complete. (The array must be sorted before the binary search will work.)

8. Search Benchmarks

Write a program that has an array of at least 20 integers. It should call a function that uses
the linear search algorithm to locate one of the values. The function should keep a count of
the number of comparisons it makes until it finds the value. The program then should call
a function that uses the binary search algorithm to locate the same value. It should also
keep count of the number of comparisons it makes. Display these values on the screen.

9. Sorting Benchmarks

Write a program that uses two identical arrays of at least 20 integers. It should call a func-
tion that uses the bubble sort algorithm to sort one of the arrays in ascending order. The
function should count the number of exchanges it makes. The program should then call a
function that uses the selection sort algorithm to sort the other array. It should also count
the number of exchanges it makes. Display these values on the screen.

Program 9-9

 // Include needed header files here.

 int main()
 {
 const int SIZE = 20;

 string name[SIZE] =
 {"Collins, Bill", "Smith, Bart", "Michalski, Joe", "Griffin, Jim",
 "Sanchez, Manny", "Rubin, Sarah", "Taylor, Tyrone", "Johnson, Jill",
 "Allison, Jeff", "Moreno, Juan", "Wolfe, Bill", "Whitman, Jean",
 "Moretti, Bella", "Wu, Hong", "Patel, Renee", "Harrison, Rose",
 "Smith, Cathy", "Conroy, Pat", "Kelly, Sean", "Holland, Beth"};

 // Insert your code to complete this program.
 }

618 Chapter 9 Searching, Sorting, and Algorithm Analysis

10. Sorting Orders

Write a program that uses two identical arrays of eight integers. It should display the contents
of the first array, then call a function to sort the array using an ascending order bubble sort
modified to print out the array contents after each pass of the sort. Next the program should
display the contents of the second array, then call a function to sort the array using an ascend-
ing order selection sort modified to print out the array contents after each pass of the sort.

11. Ascending Circles

Program 8-31 from Chapter 8 creates an array of four Circle objects, then displays the area
of each object. Using a copy of that program as a starting point, modify it to create an
array of eight Circle objects initialized with the following radii: 2.5, 4.0, 1.0, 3.0, 6.0, 5.5,
3.5, 2.0. Then use a bubble sort to arrange the objects in ascending order of radius size
before displaying the area of each object.

12. Modified Bin Manager Class

Modify the BinManager class you wrote for Programming Challenge 14 in Chapter 8 to
overload its getQuantity, addParts, and removeParts functions as shown here:

bool addParts(string itemDescription, int q);
bool removeParts(string itemDescription, int q)
int getQuantity(string itemDescription);

These new functions allow parts to be added, parts to be removed, and the quantity in
stock for a particular item to be retrieved by using an item description, rather than a bin
number, as an argument. In addition to writing the three overloaded functions, you will
need to create a private BinManager class function that uses the item description as a
search key to locate the index of the desired bin.

Test the new class functions with the same client program you wrote for Programming
Challenge 14 in Chapter 8, modifying it to call the new functions. Be sure to use some
descriptions that match bins in the array and some that do not.

As you did in the previous Bin Manager program, if an add or remove operation is success-
fully carried out, make the function return true. If it cannot be done—for example,
because the string passed to it does not match any item description in the array—make the
function return false. If the getQuantity function cannot locate any item whose descrip-
tion matches the one passed to it, make it return −1.

13. Using Files—String Selection Sort Modification

Modify the program you wrote for Programming Challenge 6 so it reads in the 20 strings
from a file. The data can be found in the names.dat file.

14. Using Vectors—String Selection Sort Modification

Modify the program you wrote for Programming Challenge 13 so it stores the names in a
vector of strings, rather than in an array of strings. Create the vector without specifying a
size and then use the push_back member function to add an element holding each string to
the vector as it is read in from a file. Instead of assuming there are always 20 strings, read
in the strings and add them to the vector until there is no data left in the file. The data can
be found in the names.dat file.

619

C
H

A
P

T
E

R

10 Pointers

10.1 Pointers and the Address Operator

CONCEPT: Every variable is assigned a memory location whose address can be
retrieved using the address operator &. The address of a memory location
is called a pointer.

Every variable in an executing program is allocated a section of memory large enough to
hold a value of that variable’s type. Current C++ compilers that run on PCs usually allo-
cate a single byte to variables of type char, two bytes to variables of type short, four bytes
to variables of type float and long, and 8 bytes to variables of type double.

TOPICS

10.1 Pointers and the Address Operator
10.2 Pointer Variables
10.3 The Relationship Between Arrays

and Pointers
10.4 Pointer Arithmetic
10.5 Initializing Pointers
10.6 Comparing Pointers
10.7 Pointers as Function Parameters
10.8 Pointers to Constants and Constant

Pointers
10.9 Focus on Software Engineering:

Dynamic Memory Allocation

10.10 Focus on Software Engineering:
Returning Pointers from Functions

10.11 Pointers to Class Objects and
Structures

10.12 Focus on Software Engineering:
Selecting Members of Objects

10.13 United Cause Relief Agency
Case Study

10.14 Tying It All Together: Pardon Me, Do
You Have the Time?

620 Chapter 10 Pointers

Each byte of memory has a unique address. A variable’s address is the address of the
first byte allocated to that variable. Suppose that the following variables are defined in a
program:

char letter;
short number;
float amount;

Figure 10-1 illustrates how they might be arranged in memory and shows their addresses.

In Figure 10-1, the variable letter is shown at address 1200, number is at address 1201,
and amount is at address 1203.

The addresses of the variables shown in Figure 10.1 are somewhat arbitrary, and are used
for illustrative purposes only. In fact, most compilers allocate space in such a way that indi-
vidual variables are always assigned even addresses. This is because current computer
hardware can access data that resides at even addresses faster than data that resides at odd
addresses.

C++ has an address operator & that can be used to retrieve the address of any variable. To
use it, place it before the variable whose address you want. Here is an expression that
returns the address of the variable amount:

&amount

And here is a statement that displays the variable’s address to the screen:

cout << long(&amount);

By default, C++ prints addresses in hexadecimal. Here we have used a function-style cast to
long to make the address print in the usual decimal format. Program 10-1 demonstrates
the use of the address operator to display addresses of variables.

Figure 10-1

Program 10-1

1 // This program uses the & operator to determine a
2 // variable's address.
3 #include <iostream>
4 using namespace std;
5
6 char letter;
7 short number;
8 float amount

(program continues)

letter

1200

number

1201

amount

1203

Pointer Variables 621

The value &amount specifies the location of the variable amount in the computer’s mem-
ory: in a sense, it points to amount. A value that represents the address of a memory loca-
tion, or holds the address of some variable, is called a pointer.

10.2 Pointer Variables

CONCEPT: A pointer variable is a variable that holds addresses of memory locations.

Like other data values, memory addresses, or pointer values, can be stored in variables of
the appropriate type. A variable that stores an address is called a pointer variable, but is
often simply referred to as just a pointer. The definition of a pointer variable, say ptr, must
specify the type of data that ptr will point to. Here is an example:

int *ptr;

The asterisk before the variable name indicates that ptr is a pointer variable, and the int
data type indicates that ptr can only be used to point to, or hold addresses of, integer vari-
ables. This definition is read as “ptr is a pointer to int.” It is also useful to think of *ptr
as the “variable that ptr points to.” With this view, the definition of ptr just given can be
read as “the variable that ptr points to has type int.” Because the asterisk (*) allows you
to pass from a pointer to the variable being pointed to, it is called the indirection operator.

9 double profit;
10 char ch;
11
12 int main()
13 {
14 // Print address of each variable.
15 // The cast to long makes addresses print in decimal
16 // rather than in hexadecimal.
17 cout << "Address of letter is: "
18 << long(&letter) << endl;
19 cout << "Address of number is: "
20 << long(&number) << endl;
21 cout << "Address of amount is: "
22 << long(&amount) << endl;
23 cout << "Address of profit is: "
24 << long(&profit) << endl;
25 cout << "Address of ch is: "
26 << long(&ch) << endl;
27 return 0;
28 }

Program Output
Address of letter is: 4468752
Address of number is: 4468754
Address of amount is: 4468756
Address of profit is: 4468760
Address of ch is: 4468768

Program 10-1 (continued)

Pointer
Variables

622 Chapter 10 Pointers

Some programmers prefer to declare pointers with the asterisk next to the type name,
rather than the variable name. For example, the declaration shown above could be
written as:

int* ptr;

This style of declaration might visually reinforce the fact that ptr’s data type is not int,
but pointer-to-int. Both declaration styles are correct.

Program 10-2 demonstrates a very simple usage of a pointer: storing and printing the
address of another variable.

In Program 10-2, two variables are defined: x and ptr. The variable x is an int, while ptr
is a pointer to an int. The variable x is initialized with 25, while ptr is assigned the
address of x with the following statement:

ptr = &x;

Figure 10-2 illustrates the relationship between ptr and x.

As shown in Figure 10-2, the variable x is located at memory address 0x7e00 and contains
the number 25, while the pointer ptr contains the address 0x7e00. In essence, ptr
“points” to the variable x.

Program 10-2

1 // This program stores the address of a variable in a pointer.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int x = 25; // int variable
8 int *ptr; // Pointer variable, can point to an int
9
10 ptr = &x; // Store the address of x in ptr
11 cout << "The value in x is " << x << endl;
12 cout << "The address of x is " << ptr << endl;
13 return 0;
14 }

Program Output
The value in x is 25
The address of x is 0x7e00

Figure 10-2

x

25
ptr

0x7e00 Address of x: 0x7e00

Pointer Variables 623

You can use a pointer to indirectly access and modify the variable being pointed to.
In Program 10-2, for instance, ptr could be used to change the contents of the vari-
able x. When the indirection operator is placed in front of a pointer variable name, it
dereferences the pointer. When you are working with a dereferenced pointer, you are
actually working with the value the pointer is pointing to. This is demonstrated in
Program 10-3.

Every time the expression *ptr appears in Program 10-3, the program indirectly uses the
variable x. The following cout statement displays the value in x twice:

cout << x << " " << *ptr << endl;

And the following statement stores 100 in x:

*ptr = 100;

With the indirection operator, ptr can be used to indirectly access the variable it
is pointing to. Program 10-4 demonstrates that pointers can point to different variables.

Program 10-3

1 // This program demonstrates the use of the indirection
2 // operator.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int x = 25; // int variable
9 int *ptr; // Pointer variable, can point to an int
10
11 ptr = &x; // Store the address of x in ptr
12
13 // Use both x and ptr to display the value in x.
14 cout << "Here is the value in x, printed twice:\n";
15 cout << x << " " << *ptr << endl;
16
17 // Assign 100 to the location pointed to by ptr.
18 // This will actually assign 100 to x.
19 *ptr = 100;
20
21 // Use both x and ptr to display the value in x.
22 cout << "Once again, here is the value in x:\n";
23 cout << x << " " << *ptr << endl;
24 return 0;
25 }

Program Output
Here is the value in x, printed twice:
25 25
Once again, here is the value in x:
100 100

624 Chapter 10 Pointers

Program 10-4

1 // This program demonstrates the ability of a pointer to
2 // point to different variables.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int x = 25, y = 50, z = 75; // Three int variables
9 int *ptr; // Pointer variable
10
11 // Display the contents of x, y, and z.
12 cout << "Here are the values of x, y, and z:\n";
13 cout << x << " " << y << " " << z << endl;
14
15 // Use the pointer to manipulate x, y, and z.
16
17 ptr = &x; // Store the address of x in ptr
18 *ptr *= 2; // Multiply value in x by 2
19
20 ptr = &y; // Store the address of y in ptr
21 *ptr *= 2; // Multiply value in y by 2
22
23 ptr = &z; // Store the address of z in ptr
24 *ptr *= 2; // Multiply value in z by 2
25
26 //Display the contents of x, y, and z.
27 cout << "Once again, here are the values "
28 << "of x, y, and z:\n";
29 cout << x << " " << y << " " << z << endl;
30 return 0;
31 }

Program Output
Here are the values of x, y, and z:
25 50 75
Once again, here are the values of x, y, and z:
50 100 150

NOTE: So far you’ve seen three different uses of the asterisk in C++:

• As the multiplication operator, in statements such as

distance = speed * time;

• In the definition of a pointer variable, such as

int *ptr;

• As the indirection operator, in statements such as

*ptr = 100;

The Relationship Between Arrays and Pointers 625

10.3 The Relationship Between Arrays and Pointers

CONCEPT: Array names can be used as pointer constants, and pointers can be used as
array names.

You learned earlier that an array name, without brackets and a subscript, actually repre-
sents the starting address of the array. This means that an array name is really a pointer.
Program 10-5 illustrates this by showing an array name being used with the indirection
operator.

Because numbers works like a pointer to the starting address of the array in Program 10-5,
the first element is retrieved when numbers is dereferenced. So, how could the entire con-
tents of an array be retrieved using the indirection operator? Remember, array elements are
stored together in memory, as illustrated in Figure 10-3.

It makes sense that if numbers is the address of numbers[0], values could be added to
numbers to get the addresses of the other elements in the array. It’s important to know,
however, that pointers do not work like regular variables when used in mathematical state-
ments. In C++, when you add a value to a pointer, you are actually adding that value times
the size of the data type being referenced by the pointer. In other words, if you add one to

Program 10-5

1 // This program shows an array name being dereferenced with the *
2 // operator.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 short numbers[] = {10, 20, 30, 40, 50};
9
10 cout << "The first element of the array is ";
11 cout << *numbers << endl;
12 return 0;
13 }

Program Output
The first element of the array is 10

Figure 10-3

numbers[0] numbers[1] numbers[2] numbers[3] numbers[4]

numbers

626 Chapter 10 Pointers

numbers, you are actually adding 1 * sizeof(short) to numbers. If you add two to
numbers, the result is numbers + 2 * sizeof(short), and so forth. On a PC, this means
the following are true, because short integers typically use 2 bytes:

*(numbers + 1) is the value at address numbers + 1 * 2
*(numbers + 2) is the value at address numbers + 2 * 2
*(numbers + 3) is the value at address numbers + 3 * 2

and so forth.

This automatic conversion means that an element in an array can be retrieved by using its
subscript or by adding its subscript to a pointer to the array. If the expression *numbers,
which is the same as *(numbers + 0), retrieves the first element in the array, then
*(numbers + 1) retrieves the second element. Likewise, *(numbers + 2) retrieves the third
element, and so forth. Figure 10-4 shows the equivalence of subscript notation and pointer
notation.

Program 10-6 shows the entire contents of the array being accessed, using pointer notation.

Figure 10-4

NOTE: The parentheses are critical when adding values to pointers. The * operator
has precedence over the + operator, so the expression *numbers + 1 is not equivalent to
*(numbers + 1). The expression *numbers + 1 adds one to the contents of the first
element of the array, while *(numbers + 1) adds one to the address in numbers, then
dereferences it.

Program 10-6

1 // This program processes an array using pointer notation.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 const int SIZE = 5; // Size of the array
8 int numbers[SIZE]; // Array of integers
9
10 // Get values to store in the array.
11 // Use pointer notation instead of subscripts.
12 cout << "Enter " << SIZE << " numbers: ";
13 for (int count = 0; count < SIZE; count++)
14 cin >> *(numbers + count);
15

(program continues)

numbers[0] numbers[1] numbers[2] numbers[3] numbers[4]

*numbers *(numbers+1) *(numbers+2) *(numbers+3) *(numbers+4)

The Relationship Between Arrays and Pointers 627

When working with arrays, remember the following rule:

array[index] is equivalent to *(array + index)

To demonstrate just how close the relationship is between array names and pointers, look
at Program 10-7. It defines an array of doubles and a double pointer, which is assigned
the starting address of the array. Not only is pointer notation then used with the array
name, but subscript notation is used with the pointer!

16 // Display the values in the array.
17 // Use pointer notation instead of subscripts.
18 cout << "Here are the numbers you entered:\n";
19 for (int count = 0; count < SIZE; count++)
20 cout << *(numbers + count) << " ";
21 cout << endl;
22 return 0;
23 }

Program Output with Example Input Shown in Bold
Enter 5 numbers: 5 10 15 20 25[Enter]
Here are the numbers you entered:
5 10 15 20 25

WARNING! Remember that C++ performs no bounds checking with arrays. When
stepping through an array with a pointer, it’s possible to give the pointer an address
outside of the array.

Program 10-7

1 // This program uses subscript notation with a pointer
2 // variable and pointer notation with an array name.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {
9 const int NUM_COINS = 5;
10 double coins[NUM_COINS] = {0.05, 0.1, 0.25, 0.5, 1.0};
11 double *doublePtr; // Pointer to a double
12
13 // Assign the address of the coins array to doublePtr.
14 doublePtr = coins;
15
16 // Display the contents of the coins array.
17 // Use subscripts with the pointer!
18 cout << setprecision(2);
19 cout << "Here are the values in the coins array:\n";
20 for (int count = 0; count < NUM_COINS; count++)
21 cout << doublePtr[count] << " ";
22

(program continues)

Program 10-6 (continued)

628 Chapter 10 Pointers

Notice that the address operator is not needed when an array’s address is assigned to a
pointer. Since the name of an array is already an address, use of the & operator would be
incorrect. You can, however, use the address operator to get the address of an individual
element in an array. For instance, &numbers[1] gets the address of numbers[1]. This tech-
nique is used in Program 10-8.

23 // Display the contents of the coins array again, but
24 // this time use pointer notation with the array name!
25 cout << "\nAnd here they are again:\n";
26 for (int count = 0; count < NUM_COINS; count++)
27 cout << *(coins + count) << " ";
28 cout << endl;
29 return 0;
30 }

Program Output
Here are the values in the coins array:
0.05 0.1 0.25 0.5 1
And here they are again:
0.05 0.1 0.25 0.5 1

Program 10-8

1 // This program uses the address of each element in the array.
2 #include <iostream>
3 #include <iomanip>
4 using namespace std;
5
6 int main()
7 {
8 const int NUM_COINS = 5;
9 double coins[NUM_COINS] = {0.05, 0.1, 0.25, 0.5, 1.0};
10 double *doublePtr; // Pointer to a double
11
12 // Use the pointer to display the values in the array.
13 cout << setprecision(2);
14 cout << "Here are the values in the coins array:\n";
15 for (int count = 0; count < NUM_COINS; count++)
16 {
17 doublePtr = &coins[count];
18 cout << *doublePtr << " ";
19 }
20 cout << endl;
21 return 0;
22 }

Program Output
Here are the values in the coins array:
0.05 0.1 0.25 0.5 1

Program 10-7 (continued)

Pointer Arithmetic 629

The only difference between array names and pointer variables is that you cannot change
the address an array name points to. For example, given the following definitions:

double readings[20], totals[20];
double *dptr;

These statements are legal:

dptr = readings; // Make dptr point to readings.
dptr = totals; // Make dptr point to totals.

But these are illegal:

readings = totals; // ILLEGAL! Cannot change readings
totals = dptr; // ILLEGAL! Cannot change totals

Array names are pointer constants. You can’t make them point to anything but the array
they represent.

10.4 Pointer Arithmetic

CONCEPT: Some mathematical operations may be performed on pointers.

The contents of pointer variables may be changed with mathematical statements that per-
form addition or subtraction. This is demonstrated in Program 10-9. The first loop incre-
ments the pointer variable, stepping it through each element of the array. The second loop
decrements the pointer, stepping it through the array backwards.

Program 10-9

1 // This program uses a pointer to display
2 // the contents of an array.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 const int SIZE = 8;
9 int set[] = {5, 10, 15, 20, 25, 30, 35, 40};
10 int *numPtr; // Pointer
11
12 // Make numPtr point to the set array.
13 numPtr = set;
14
15 // Use the pointer to display the array elements.
16 cout << "The numbers in set are:\n";
17 for (int index = 0; index < SIZE; index++)
18 {
19 cout << *numPtr << " ";
20 numPtr++;
21 }
22

(program continues)

630 Chapter 10 Pointers

Not all arithmetic operations may be performed on pointers. For example, you cannot use
multipication or division with pointers. The following operations are allowable:

• The ++ and -- operators may be used to increment or decrement a pointer variable.
• An integer may be added to or subtracted from a pointer variable. This may be per-

formed with the + and - operators, or the += and -= operators.
• A pointer may be subtracted from another pointer.

10.5 Initializing Pointers

CONCEPT: Pointers may be initialized with the address of an existing object.

Remember that a pointer is designed to point to an object of a specific data type. When a
pointer is initialized with an address, it must be the address of an object the pointer can
point to. For instance, the following definition of pint is legal because myValue is an
integer:

int myValue;
int *pint = &myValue;

The following is also legal because ages is an array of integers:

int ages[20];
int *pint = ages;

But the following definition of pint is illegal because myFloat is not an int:

float myFloat;
int *pint = &myFloat; // Illegal!

23 // Display the array elements in reverse order.
24 cout << "\nThe numbers in set backwards are:\n";
25 for (int index = 0; index < SIZE; index++)
26 {
27 numPtr--;
28 cout << *numPtr << " ";
29 }
30 return 0;
31 }

Program Output
The numbers in set are:
5 10 15 20 25 30 35 40
The numbers in set backwards are:
40 35 30 25 20 15 10 5

NOTE: Because numPtr is a pointer, the increment operator adds the size of one
integer to numPtr, so it points to the next element in the array. Likewise, the decrement
operator subtracts the size of one integer from the pointer.

Program 10-9 (continued)

Initializing Pointers 631

Pointers may be defined in the same statement as other variables of the same type. The fol-
lowing declaration defines an integer variable, myValue, and then defines a pointer, pint,
which is initialized with the address of myValue:

int myValue, *pint = &myValue;

And the following definition defines an array, readings, and a pointer, marker, which is
initialized with the address of the first element in the array:

double readings[50], *marker = readings;

Of course, a pointer can only be initialized with the address of an object that has already
been defined. The following is illegal because pint is being initialized with the address of
an object that does not exist yet:

int *pint = &myValue; // Illegal!
int myValue;

In most computers, memory at address 0 is inaccessible to user programs because it is
occupied by operating system data structures. This fact allows programmers to signify that
a pointer variable does not point to a memory location accessible to the program by initial-
izing the pointer to 0. For example, if ptrToint is a pointer to int, and ptrTofloat is a
pointer to float, we can indicate that neither of them points to a legitimate address by
assigning 0 to both:

int *ptrToint = 0;
float *ptrTofloat = 0;

Many header files, including iostream, fstream, and cstdlib, define a constant named
NULL whose value is zero. Thus, assuming one of these header files has been included, the
code can be written as

int *ptrToint = NULL;
float *ptrTofloat = NULL;

A pointer whose value is the address 0 is often called a null pointer.

Checkpoint

10.1 Write a statement that displays the address of the variable count.

10.2 Write a statement defining a variable dPtr. The variable should be a pointer to a
double.

10.3 List three uses of the * symbol in C++.

10.4 What is the output of the following program?

#include <iostream>
using namespace std;
int main()
{

int x = 50, y = 60, z = 70;
int *ptr;

cout << x << " " << y << " " << z << endl;
ptr = &x;

632 Chapter 10 Pointers

*ptr *= 10;
ptr = &y;
*ptr *= 5;
ptr = &z;
*ptr *= 2;
cout << x << " " << y << " " << z << endl;
return 0;

}

10.5 Rewrite the following loop so it uses pointer notation (with the indirection opera-
tor) instead of subscript notation.

for (int x = 0; x < 100; x++)
 cout << array[x] << endl;

10.6 Assume ptr is a pointer to an int and holds the address 12000. On a system with
4-byte integers, what address will be in ptr after the following statement?

ptr += 10;

10.7 Assume pint is a pointer variable. For each of the following statements, deter-
mine whether the statement is valid or invalid. For those that are invalid,
explain why.

A) pint++;
B) --pint;
C) pint /= 2;
D) pint *= 4;
E) pint += x; // Assume x is an int.

10.8 For each of the following variable definitions, determine whether the statement is
valid or invalid. For those that are invalid, explain why.

A) int ivar;
int *iptr = &ivar;

B) int ivar, *iptr = &ivar;
C) float fvar;

int *iptr = &fvar;
D) int nums[50], *iptr = nums;
E) int *iptr = &ivar;

int ivar;

10.6 Comparing Pointers

CONCEPT: C++’s relational operators may be used to compare pointer values.

Pointers may be compared by using any of C++’s relational operators:

> < == != >= <=

If one address comes before another address in memory, the first address is considered “less
than” the second. In an array, all the elements are stored in consecutive memory locations,

Comparing Pointers 633

so the address of element 1 is greater than the address of element 0. This is illustrated in
Figure 10-5.

Because the addresses grow larger for each subsequent element in the array, the following
boolean expressions are all true:

&array[1] > &array[0]
array < &array[4]
array == &array[0]
&array[2] != &array[3]

The capability of comparing addresses gives you another way to be sure a pointer does not
go beyond the boundaries of an array. Program 10-10 initializes the pointer numPtr with
the starting address of the array set. The pointer numPtr is then stepped through the array
set until the address it contains is equal to the address of the last element of the array.
Then the pointer is stepped backwards through the array until it points to the first element.

Figure 10-5

NOTE: Comparing two pointers is not the same as comparing the values the two
pointers point to. For example, the following if statement compares the addresses
stored in the pointer variables ptr1 and ptr2:

if (ptr1 < ptr2)

The following statement, however, compares the values that ptr1 and ptr2 point to:

if (*ptr1 < *ptr2)

Program 10-10

1 // This program uses a pointer to display the contents
2 // of an integer array. It illustrates the comparison of
3 // pointers.
4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {
9 const int SIZE = 8;
10 int set[] = {5, 10, 15, 20, 25, 30, 35, 40};
11 int *numPtr = set; // Make numPtr point to set
12
13 cout << "The numbers in set are:\n";
14 cout << *numPtr << " "; // Display first element

(program continues)

array[0] array[1] array[2] array[3] array[4]

0x5A00
(Addresses)

0x5A04 0x5A08 0x5A0C 0x5A10

An array of five integers

634 Chapter 10 Pointers

Most comparisons involving pointers compare a pointer to 0 (NULL) to determine whether
the pointer points to a legitimate address. For example, assuming that ptrToInt has been
defined as a pointer to int, the code

if (ptrToInt != 0)
cout << *ptrToInt;

else
cout << "null pointer";

prints the integer pointed to by the pointer only after checking that the pointer is not 0.
Many programmers, when checking to see if the value of a pointer such as ptrToInt is dif-
ferent from 0, omit the comparison to 0 and simply write

if (ptrToInt)
cout << *ptrToInt;

else
cout << "null pointer";

The two ways of writing the test turn out to be equivalent because when

ptrToInt != 0

is true, ptrToInt is nonzero and, as you learned in Chapter 4, nonzero values are interpreted
as being true. This means that the expressions ptrToInt != 0 and ptrToInt have the same
truth value.

15 while (numPtr < &set[SIZE-1])
16 {
17 // Advance numPtr to the next element.
18 numPtr++;
19 // Display the value pointed to by numPtr.
20 cout << *numPtr << " ";
21 }
22
23 // Display the numbers in reverse order
24 cout << "\nThe numbers in set backwards are:\n";
25 cout << *numPtr << " "; // Display last element
26 while (numPtr > set)
27 {
28 // Move backward to the previous element.
29 numPtr--;
30 // Display the value pointed to by numPtr.
31 cout << *numPtr << " ";
32 }
33 return 0;
34 }

Program Output
The numbers in set are:
5 10 15 20 25 30 35 40
The numbers in set backwards are:
40 35 30 25 20 15 10 5

Program 10-10 (continued)

Pointers as Function Parameters 635

10.7 Pointers as Function Parameters

CONCEPT: A pointer can be used as a function parameter. It gives the function access
to the original argument, much like a reference parameter does.

In Chapter 6 you were introduced to the concept of reference variables being used as func-
tion parameters. A reference variable acts as an alias to the original variable used as an
argument. This gives the function access to the original argument variable, allowing it to
change the variable’s contents. When a variable is passed into a reference parameter, the
argument is said to be passed by reference.

An alternative to passing an argument by reference is to use a pointer variable as the
parameter. Admittedly, reference variables are much easier to work with than pointers.
Reference variables hide all the “mechanics” of dereferencing and indirection. You should
still learn to use pointers as function arguments, however, because some tasks, especially
when dealing with C-strings, are best done with pointers.* Also, the C++ library has many
functions that use pointers as parameters.

Here is the definition of a function that uses a pointer parameter:

void doubleValue(int *val)
{

*val *= 2;
}

The purpose of this function is to double the variable pointed to by val with the following
statement:

*val *= 2;

When val is dereferenced, the *= operator works on the variable pointed to by val. This
statement multiplies the original variable, whose address is stored in val, by two. Of
course, when the function is called, the address of the variable that is to be doubled must
be used as the argument, not the variable itself.

Here is an example of a call to the doubleValue function:

doubleValue(&number);

This statement uses the address operator (&) to pass the address of number into the val param-
eter. After the function executes, the contents of number will have been multiplied by two.

The use of this function is illustrated in Program 10-11.

* It is also important to learn the technique in case you ever have to write a C program. In C, the only way to get the effect of
pass by reference is to use a pointer.

636 Chapter 10 Pointers

Program 10-11

1 // This program uses two functions that accept
2 // addresses of variables as arguments.
3 #include <iostream>
4 using namespace std;
5
6 // Function prototypes
7 void getNumber(int *);
8 void doubleValue(int *);
9
10 int main()
11 {
12 int number;
13
14 // Call getNumber and pass the address of number.
15 getNumber(&number);
16
17 // Call doubleValue and pass the address of number.
18 doubleValue(&number);
19
20 // Display the value in number.
21 cout << "That value doubled is " << number << endl;
22 return 0;
23 }
24
25 //**
26 // Definition of getNumber. The parameter, input, is a *
27 // pointer. This function asks the user for a number. *
28 // The value entered is stored in the variable *
29 // pointed to by input. *
30 //**
31
32 void getNumber(int *input)
33 {
34 cout << "Enter an integer number: ";
35 cin >> *input;
36 }
37
38 //**
39 // Definition of doubleValue. The parameter, val, is a *
40 // pointer. This function multiplies the variable *
41 // pointed to by val by two. *
42 //**
43
44 void doubleValue(int *val)
45 {
46 *val *= 2;
47 }

Program Output with Example Input Shown in Bold
Enter an integer number: 10[Enter]
That value doubled is 20

Pointers as Function Parameters 637

Program 10-11 has two functions that use pointers as parameters. Notice the function
prototypes:

void getNumber(int *);
void doubleValue(int *);

Each one uses the notation int * to indicate the parameter is a pointer to an int. As with
all other types of parameters, it isn’t necessary to specify the name of the variable in the
prototype. The * is required, though.

The getNumber function asks the user to enter an integer value. The following cin state-
ment stores the value entered by the user in memory:

cin >> *input;

The indirection operator causes the value entered by the user to be stored, not in input,
but in the variable pointed to by input.

When the getNumber function is called, the address of the number variable in function
main is passed as the argument. After the function executes, the value entered by the user is
stored in number. Next, the doubleValue function is called, with the address of number
passed as the argument. This causes number to be multiplied by two.

Pointer variables can also be used to accept array addresses as arguments. Either subscript
or pointer notation may then be used to work with the contents of the array. This is dem-
onstrated in Program 10-12.

WARNING! It’s critical that the indirection operator be used in the previous
statement. Without it, cin would store the value entered by the user in input, as if the
value were an address. If this happens, input will no longer point to the number
variable in function main. Subsequent use of the pointer will result in erroneous, if not
disastrous, results.

Program 10-12

1 // This program demonstrates that a pointer may be used as a
2 // parameter to accept the address of an array. Either subscript
3 // or pointer notation may be used.
4 #include <iostream>
5 #include <iomanip>
6 using namespace std;
7
8 // Function prototypes
9 void getSales(double *, int);
10 double totalSales(double *, int);
11
12 int main()
13 {
14 const int QUARTERS = 4;
15 double sales[QUARTERS];
16

(program continues)

638 Chapter 10 Pointers

17 getSales(sales, QUARTERS);
18 cout << setprecision(2);
19 cout << fixed << showpoint;
20 cout << "The total sales for the year are $";
21 cout << totalSales(sales, QUARTERS) << endl;
22 return 0;
23 }
24
25 //***
26 // Definition of getSales. This function uses a pointer to accept *
27 // the address of an array of doubles. The number of elements in *
28 // in the array is passed as a separate integer parameter. The *
29 // The function asks the user to enter the sales figures for *
30 // four quarters, then stores those figures in the array using *
31 // subscript notation. *
32 //***
33 void getSales(double *array, int size)
34 {
35 for (int count = 0; count < size; count++)
36 {
37 cout << "Enter the sales figure for quarter ";
38 cout << (count + 1) << ": ";
39 cin >> array[count];
40 }
41 }
42
43 //***
44 // Definition of totalSales. This function uses a pointer to *
45 // accept the address of an array of doubles whose size is *
46 // is passed as a separate parameter. The function uses pointer *
47 // notation to sum the elements of the array. *
48 //***
49 double totalSales(double *array, int size)
50 {
51 double sum = 0.0;
52
53 for (int count = 0; count < size; count++)
54 {
55 sum += *array;
56 array++;
57 }
58 return sum;
59 }

Program Output with Example Input Shown in Bold
Enter the sales figure for quarter 1: 10263.98[Enter]
Enter the sales figure for quarter 2: 12369.69[Enter]
Enter the sales figure for quarter 3: 11542.13[Enter]
Enter the sales figure for quarter 4: 14792.06[Enter]
The total sales for the year are $48967.86

Program 10-12 (continued)

Pointers to Constants and Constant Pointers 639

Notice that in the getSales function in Program 10-12, even though the parameter array
is defined as a pointer, subscript notation is used in the cin statement:

cin >> array[count];

In the totalSales function, array is used with the indirection operator in the following
statement:

sum += *array;

And in the next statement, the address in array is incremented to point to the next element:

array++;

10.8 Pointers to Constants and Constant Pointers

CONCEPT: A pointer to a constant may not be used to change the value it points to; a
constant pointer may not be changed after it has been initialized.

Pointers to Constants
You have seen how an item’s address can be passed into a pointer parameter, and the pointer
can be used to modify the item that was passed as an argument. Sometimes it is necessary to
pass the address of a const item into a pointer. When this is the case, the pointer must be
defined as a pointer to a const item. For example, consider the following array definition:

const int SIZE = 6;
const double payRates[SIZE] = { 18.55, 17.45,

 12.85, 14.97,
 10.35, 18.89 };

In this code, payRates is an array of const doubles. This means that each element in the array
is a const double, and the compiler will not allow us to write code that changes the array’s con-
tents. If we want to pass the payRates array into a pointer parameter, the parameter must be
declared as a pointer to const double. The following function shows such an example:

void displayPayRates(const double *rates, int size)
{

// Set numeric output formatting.
cout << setprecision(2) << fixed << showpoint;

// Display all the pay rates.
for (int count = 0; count < size; count++)
{

cout << "Pay rate for employee " << (count + 1)
 << " is $" << *(rates + count) << endl;

}
}

NOTE: The two previous statements could be combined into the following statement:

sum += *array++;

The * operator will first dereference array, then the ++ operator will increment the
address in array.

640 Chapter 10 Pointers

In the function header, notice that the rates parameter is defined as a pointer to const
double. It should be noted that the word const is applied to the thing that rates points to,
not rates itself. This is illustrated in Figure 10-6.

Because rates is a pointer to a const, the compiler will not allow us to write code that
changes the thing that rates points to.

When passing the address of a constant into a pointer variable, the variable must be
defined as a pointer to a constant. If the word const has been left out of the definition of
the rates parameter, a compiler error would have resulted.

Passing a Non-Constant Argument into a Pointer
to a Constant
Although a constant’s address can be passed only to a pointer to const, a pointer to const
can also receive the address of a non-constant item. For example, look at Program 10-13.

Figure 10-6

Program 10-13

1 // This program demonstrates a pointer to const parameter
2 #include <iostream>
3 using namespace std;
4
5 void displayValues(const int *, int);
6
7 int main()
8 {
9 // Array sizes
10 const int SIZE = 6;
11
12 // Define an array of const ints.
13 const int array1[SIZE] = { 1, 2, 3, 4, 5, 6 };
14
15 // Define an array of non-const ints.
16 int array2[SIZE] = { 2, 4, 6, 8, 10, 12 };
17
18 // Display the contents of the const array.
19 displayValues(array1, SIZE);
20

(program continues)

const double *rates

The asterisk indicates that
rates is a pointer.

This is what rates points to.

Pointers to Constants and Constant Pointers 641

Constant Pointers
In the previous section we discussed pointers to const. That is, pointers that point to
const data. You can also use the const key word to define a constant pointer. Here is the
difference between a pointer to const and a const pointer:

• A pointer to const points to a constant item. The data that the pointer points to can-
not change, but the pointer itself can change.

• With a const pointer, it is the pointer itself that is constant. Once the pointer is ini-
tialized with an address, it cannot point to anything else.

The following code shows an example of a const pointer.

int value = 22;
int * const ptr = &value;

Notice in the definition of ptr the word const appears after the asterisk. This means that
ptr is a const pointer. This is illustrated in Figure 10-7. In the code, ptr is initialized with
the address of the value variable. Because ptr is a constant pointer, a compiler error will

21 // Display the contents of the non-const array.
22 displayValues(array2, SIZE);
23 return 0;
24 }
25
26 //***
27 // The displayValues function uses a pointer to *
28 // parameter to display the contents of an array. *
29 //***
30
31 void displayValues(const int *numbers, int size)
32 {
33 // Display all the values.
34 for (int count = 0; count < size; count++)
35 {
36 cout << *(numbers + count) << " ";
37 }
38 cout << endl;
39 }

Program Output
1 2 3 4 5 6
2 4 6 8 10 12

NOTE: When writing a function that uses a pointer parameter, and the function is not
intended to change the data the parameter points to, it is always a good idea to make
the parameter a pointer to const. Not only will this protect you from writing code in
the function that accidentally changes the argument, but the function will be able to
accept the addresses of both constant and non-constant arguments.

Program 10-13 (continued)

642 Chapter 10 Pointers

result if we write code that makes ptr point to anything else. An error will not result,
however, if we use ptr to change the contents of value. This is because value is not con-
stant, and ptr is not a pointer to const.

Constant pointers must be initialized with a starting value, as shown in the previous example
code. If a constant pointer is used as a function parameter, the parameter will be initialized
with the address that is passed as an argument into it, and cannot be changed to point to any-
thing else while the function is executing. Here is an example that attempts to violate this rule:

void setToZero(int * const ptr)
{

ptr = 0; // ERROR!! Cannot change the contents of ptr.
}

This function’s parameter, ptr, is a const pointer. It will not compile because we cannot
have code in the function that changes the contents of ptr. However, ptr does not point to
a const, so we can have code that changes the data that ptr points to. Here is an example
of the function that will compile:

void setToZero(int * const ptr)
{

*ptr = 0;
}

Although the parameter is const pointer, we can call the function multiple times with dif-
ferent arguments. The following code will successfully pass the addresses of x, y, and z to
the setToZero function:

int x, y, z;
// Set x, y, and z to 0.
setToZero(&x);
setToZero(&y);
setToZero(&z);

Constant Pointers to Constants
So far, when using const with pointers we’ve seen pointers to constants and we’ve seen
constant pointers. You can also have constant pointers to constants. For example, look at
the following code:

Figure 10-7

int * const ptr

* const indicates that
ptr is a constant pointer.

This is what ptr points to.

643

int value = 22;
const int * const ptr = &value;

In this code ptr is a const pointer to a const int. Notice the word const appears before
int, indicating that ptr points to a const int, and it appears after the asterisk, indicating
that ptr is a constant pointer. This is illustrated in Figure 10-8.

In the code, ptr is initialized with the address of value. Because ptr is a const pointer, we
cannot write code that makes ptr point to anything else. Because ptr is a pointer to const,
we cannot use it to change the contents of value. The following code shows one more
example of a const pointer to a const. This is another version of the displayValues
function in Program 10-13.

void displayValues(const int * const numbers, int size)
{

// Display all the values.
for (int count = 0; count < size; count++)
{

cout << *(numbers + count) << " ";
}
cout << endl;

}

In this code, the parameter numbers is a const pointer to a const int. Although we can
call the function with different arguments, the function itself cannot change what numbers
points to, and it cannot use numbers to change the contents of an argument.

10.9 Focus on Software Engineering:
Dynamic Memory Allocation

CONCEPT: Variables may be created and destroyed while a program is running.

As long as you know how many variables you will need during the execution of a pro-
gram, you can define those variables up front. For example, a program to calculate the
area of a rectangle will need three variables: one for the rectangle’s length, one for the rect-
angle’s width, and one to hold the area. If you are writing a program to compute the

Figure 10-8

const int * const ptr

* const indicates that
ptr is a constant pointer.

This is what ptr points to.

Focus on Software Engineering: Dynamic Memory Allocation

644 Chapter 10 Pointers

payroll for 30 employees, you’ll probably create an array of 30 elements to hold the
amount of pay for each person.

But what about those times when you don’t know how many variables you need? For
instance, suppose you want to write a test-averaging program that will average any number
of tests. Obviously the program would be very versatile, but how do you store the individual
test scores in memory if you don’t know how many variables to define? Quite simply, you
allow the program to create its own variables “on the fly.” This is called dynamic memory
allocation and is only possible through the use of pointers.

To dynamically allocate memory means that a program, while running, asks the computer
to set aside a chunk of unused memory large enough to hold a variable of a specific data
type. Let’s say a program needs to create an integer variable. It will make a request to the
computer that it allocate enough bytes to store an int. When the computer fills this
request, it finds and sets aside a chunk of unused memory large enough for the variable. It
then gives the program the starting address of the chunk of memory. The program can only
access the newly allocated memory through its address, so a pointer is required to use
those bytes.

The way a C++ program requests dynamically allocated memory is through the new oper-
ator. Assume a program has a pointer to an int defined as

int *iptr;

Here is an example of how this pointer may be used with the new operator:

iptr = new int;

This statement is requesting that the computer allocate enough memory for a new int
variable. The operand of the new operator is the data type of the variable being created.
This is illustrated in Figure 10-9. Once the statement executes, iptr will contain the
address of the newly allocated memory. A value may be stored in this new variable by
dereferencing the pointer:

*iptr = 25;

Figure 10-9

Pool of unused memory

This chunk of memory starts
at address 0xA654

0xA654

iptr variable

645

Any other operation may be performed on the new variable by simply using the derefer-
enced pointer. Here are some example statements:

cout << *iptr; // Display the contents of the new variable.
cin >> *iptr; // Let the user input a value.
total += *iptr; // Use the new variable in a computation.

Although these statements illustrate the use of the new operator, there’s little purpose in
dynamically allocating a single variable. A more practical use of the new operator is to
dynamically create an array. Here is an example of how a 100-element array of integers
may be allocated:

iptr = new int[100];

Once the array is created, the pointer may be used with subscript notation to access it. For
instance, the following loop could be used to store the value 1 in each element:

for (int count = 0; count < 100; count++)
iptr[count] = 1;

Every call to new allocates storage from a special area of the program’s memory called the
heap. If a program makes a lot of requests for dynamic memory, the heap will eventually
become depleted and additional calls to new will fail. When this happens, the C++ runtime
system will throw a bad_alloc exception to notify the calling program that the requested
memory cannot be allocated. An exception is a mechanism for notifying a program that
something has gone drastically wrong with the operation that was being executed and that
the results of the operation cannot be trusted. The default action of an exception is to force
the executing program to terminate.

Older C++ compilers do not throw bad_alloc. Instead, they indicate memory-allocation
failure by returning the address 0 (NULL) from the call to new. Memory-allocation code writ-
ten for these compilers should check the returned address to make sure it is not 0 before
using it, as in the following code fragment:

// For older versions of C++
iptr = new int[100];
if (iptr == NULL)
{

cout << "Memory allocation error.";
exit(1);

}
// Rest of code to use the allocated array

A program that has finished using a dynamically allocated block of memory should free the
memory and return it to the heap to make it available for future use. This is accomplished
by calling the delete operator and passing it the address of the memory to be deallocated.
Here is an example of how delete is used to free up a single variable pointed to by iptr:

delete iptr;
iptr = 0;

If iptr points to a dynamically allocated array, a pair of square brackets must be placed
between delete and iptr:

delete [] iptr;
iptr = 0;

Dynamically
Allocating an
Array

Focus on Software Engineering: Dynamic Memory Allocation

646 Chapter 10 Pointers

Dangling Pointers and Memory Leaks
A pointer is said to be dangling if it is pointing to a memory location that has been freed by
a call to delete. When you access a dangling pointer, you are trying to use memory that
has already been freed and returned to the heap. In fact, such memory may already be real-
located by another call to new. The use of dangling pointers can cause errors in your pro-
gram that are difficult to trace. You can avoid the use of dangling pointers by setting
pointers to 0 as soon as they are freed, as shown in the examples above.

A memory leak is said to occur in your program if after you have finished using a block of
memory allocated by new, you forget to free it via delete. The leaked block of memory
remains unavailable for use until the program terminates. Memory leaks are especially seri-
ous when they occur in loops. They are even more serious in programs such as Web servers
and other network programs that are expected to run for months or even years without
being shut down. Over time, a Web server with a memory leak will exhaust all memory in
the computer on which it is running, requiring both it and the computer to be shut down
and restarted.

Program 10-14 demonstrates the use of new and delete. It asks for sales figures for any
number of days. The figures are stored in a dynamically allocated array, and then totaled
and averaged.

WARNING! Only use pointers with delete that were previously used with new. If
you use a pointer with delete that does not reference dynamically allocated memory,
unexpected problems could result!

Program 10-14

1 // This program totals and averages the sales figures for
2 // any number of days. The figures are stored in a
3 // dynamically allocated array.
4 #include <iostream>
5 #include <iomanip>
6 using namespace std;
7
8 int main()
9 {
10 double *sales, // To dynamically allocate an array
11 total = 0.0, // Accumulator
12 average; // To hold average sales
13 int numDays; // To hold number of days of sales
14
15 // Get number of days of sales.
16 cout << "How many days of sales figures do you wish ";
17 cout << "to process? ";
18 cin >> numDays;
19
20 // Dynamically allocate an array large enough
21 // to hold that many days of sales amounts.
22 sales = new double[numDays]; // Allocate memory
23

(program continues)

647

The statement in line 23 dynamically allocates memory for an array of doubles, using the
value in numDays as the number of elements. The new operator returns the starting address
of the memory allocated, and this address is assigned to the sales pointer variable. The
sales variable is then used throughout the program to store the sales amounts in the array
and perform the necessary calculations. In line 48 the delete operator is used to free the
allocated memory.

Notice that in line 49 the value 0 is assigned to the sales pointer. It is good practice to
store 0 in a pointer variable after using delete on it. First, it prevents code from inadvert-
ently using the pointer to access the area of memory that was freed. Second, it prevents

24 // Get the sales figures for each day.
25 cout << "Enter the sales figures below.\n";
26 for (int count = 0; count < numDays; count++)
27 {
28 cout << "Day " << (count + 1) << ": ";
29 cin >> sales[count];
30 }
31
32 // Calculate the total sales.
33 for (int count = 0; count < numDays; count++)
34 {
35 total += sales[count];
36 }
37
38 // Calculate the average sales per day.
39 average = total / numDays;
40
41 // Display the results.
42 cout << setprecision(2) << fixed << showpoint;
43 cout << "\n\nTotal Sales: $" << total << endl;
44 cout << "Average Sales: $" << average << endl;
45
46 // Free dynamically allocated memory.
47 delete [] sales;
48 sales = 0;
49 return 0;
50 }

Program Output with Example Input Shown in Bold
How many days of sales figures do you wish to process? 5[Enter]
Enter the sales figures below.
Day 1: 898.63[Enter]
Day 2: 652.32[Enter]
Day 3: 741.85[Enter]
Day 4: 852.96[Enter]
Day 5: 921.37[Enter]

Total Sales: $4067.13
Average Sales: $813.43

Program 10-14 (continued)

Focus on Software Engineering: Dynamic Memory Allocation

648 Chapter 10 Pointers

errors from occurring if delete is accidentally called on the pointer again. The delete
operator is designed to have no effect when used on a null pointer.

10.10 Focus on Software Engineering:
Returning Pointers from Functions

CONCEPT: Functions can return pointers, but you must be sure the item the pointer
references still exists.

A function may return a pointer to any data type. For example, the following function
locates the null terminator in a string and returns a pointer to it.

char *findNull(char *str)
{

char *ptr = str;

while (*ptr != '\0')
 ptr++;

return ptr;
}

The char * return type in the function header indicates the function returns a pointer to
a char:

char *findNull(char *str)

When writing functions that return pointers, however, you should take care not to create elu-
sive bugs. For instance, see if you can determine what’s wrong with the following function.

char *getName()
{

char name[81];
cout << "Enter your name: ";
cin.getline(name, 81);
return name;

}

The problem, of course, is that the function returns a pointer to an array that no longer
exists. Because name is local to the function, it is destroyed when the function returns.
Attempting to use the pointer will result in erroneous and unpredictable results.

You should only return a pointer from a function if it is

• A pointer to an item that was passed into the function as an argument
• A pointer to dynamically allocated memory

For instance, the following function is acceptable:

char *getName(char *name)
{

649

cout << "Enter your name: ";
cin.getline(name, 81);
return name;

}

This function accepts a pointer to the memory location where the user’s input is to be stored.
Since the pointer references a memory location that was valid prior to the function being
called, it is safe to return a pointer to the same location. Here is another acceptable function:

char *getName()
{

char *name;

name = new char[81];
cout << "Enter your name: ";
cin.getline(name, 81);
return name;

}

This function uses the new operator to allocate a section of memory. This memory will
remain allocated until the delete operator is used or the program ends, so it’s safe to
return a pointer to it.

Program 10-15 shows another example. This program uses a function, getRandomNumbers,
to get a pointer to an array of random numbers. The function accepts an integer argument
that is the number of random numbers in the array. The function dynamically allocates an
array, uses the system clock to seed the random number generator, populates the array
with random values, and then returns a pointer to the array.

Program 10-15

1 // This program demonstrates a function that returns
2 // a pointer.
3 #include <iostream>
4 #include <cstdlib> // For rand and srand
5 #include <ctime> // For the time function
6 using namespace std;
7
8 // Function prototype
9 int *getRandomNumbers(int);
10
11 int main()
12 {
13 int *numbers; // To point to the numbers
14
15 // Get an array of five random numbers.
16 numbers = getRandomNumbers(5);
17
18 // Display the numbers.
19 for (int count = 0; count < 5; count++)
20 cout << numbers[count] << endl;
21

(program continues)

Focus on Software Engineering: Returning Pointers from Functions

650 Chapter 10 Pointers

Checkpoint

10.9 Assuming array is an array of ints, which of the following program segments will
display “True” and which will display “False”?
A) if (array < &array[1])

cout << "True";
else

cout << "False";

22 // Free the memory.
23 delete [] numbers;
24 numbers = 0;
25 return 0;
26 }
27
28 //**
29 // The getRandomNumbers function returns a pointer *
30 // to an array of random integers. The parameter *
31 // indicates the number of numbers requested. *
32 //**
33
34 int *getRandomNumbers(int num)
35 {
36 int *array; // Array to hold the numbers
37
38 // Return null if num is zero or negative.
39 if (num <= 0)
40 return NULL;
41
42 // Dynamically allocate the array.
43 array = new int[num];
44
45 // Seed the random number generator by passing
46 // the return value of time(0) to srand.
47 srand(time(0));
48
49 // Populate the array with random numbers.
50 for (int count = 0; count < num; count++)
51 array[count] = rand();
52
53 // Return a pointer to the array.
54 return array;
55 }

Program Output with Example Input Shown in Bold
2712
9656
24493
12483
7633

Program 10-15 (continued)

651

B) if (&array[4] < &array[1])
cout << "True";

else
cout << "False";

C) if (array != &array[2])
cout << "True";

else
cout << "False";

D) if (array != &array[0])
cout << "True";

else
cout << "False";

10.10 Give an example of the proper way to call the following function in order to negate
the variable int num = 7;

void makeNegative(int *val)
{

if (*val > 0)
 *val = -(*val);

}

10.11 Complete the following program skeleton. When finished, the program should ask
the user for a length (in inches), convert that value to centimeters, and display the
result. You are to write the function convert. (Note: 1 inch = 2.54 cm. Do not
modify function main.)

#include <iostream>
#include <iomanip>
using namespace std;

// Write your function prototype here.

int main()
{

double measurement;

cout << "Enter a length in inches, and I will convert\n";
cout << "it to centimeters: ";
cin >> measurement;
convert(&measurement);
cout << setprecision(4);
cout << fixed << showpoint;
cout << "Value in centimeters: " << measurement << endl;
return 0;

}
//
// Write the function convert here.
//

10.12 Look at the following array definition:

const int numbers[SIZE] = { 18, 17, 12, 14 };

Suppose we want to pass the array to the function processArray in the following
manner:

processArray(numbers, SIZE);

Focus on Software Engineering: Returning Pointers from Functions

652 Chapter 10 Pointers

Which of the following function headers is the correct one for the processArray
function?
A) void processArray(const int *array, int size)
B) void processArray(int * const array, int size)

10.13 Assume ip is a pointer to an int. Write a statement that will dynamically allocate
an integer variable and store its address in ip, then write a statement that will free
the memory allocated in the statement you just wrote.

10.14 Assume ip is a pointer to an int. Write a statement that will dynamically allocate
an array of 500 integers and store its address in ip, then write a statement that will
free the memory allocated in the statement you just wrote.

10.15 What is a null pointer?

10.16 Give an example of a function that correctly returns a pointer.

10.17 Give an example of a function that incorrectly returns a pointer.

10.11 Pointers to Class Objects and Structures

CONCEPT: Pointers and dynamic memory allocation can be used with class objects
and structures.

Declaring a pointer to a class is the same as declaring any other pointer type. For example,
if Rectangle is defined as

class Rectangle
{

int width, height;
};

you can declare a pointer to Rectangle and create a Rectangle object by writing

Rectangle *pRect; // Pointer to Rectangle
Rectangle rect; // Rectangle object

and you can assign the address of rect to pRect as follows:

pRect = ▭

Now suppose that you want to access the members of the Rectangle object through the
pointer pRect. Because *pRect is just another way of accessing rect, you might think
that the expression

*pRect.width

will access rect.width, but this is not so. The reason is that the dot selector has higher
priority than the * operator, so *pRect.width is equivalent to *(pRrect.width). This
last expression is a type error. To get it right, you must use parentheses to force the indirec-
tion operator * to be applied first, as shown here:

(*pRect).width

Pointers to Class Objects and Structures 653

The following statements will correctly set the dimensions of the rectangle to 10 and 20.

(*pRect).width = 10;
(*pRect).height = 20;

The combined use of parentheses, the indirection operator, and the dot selector to access
members of class objects via pointers can result in expressions that are hard to read. To solve
this problem, C++ provides the structure pointer operator -> to use when you want to access
a member of a class object through a pointer. It consists of a hyphen -- and a greater-than
symbol > written next to each other to look like an arrow. Using this operator, you can set
the dimensions of the rectangle with these statements:

pRect->width = 10;
pRect->height = 20;

Member functions of class objects can be called through a pointer. In particular, if ptr is a
pointer to an object that has a member function fun(), then the function can be called
with either one of these two (equivalent) expressions:

(*ptr).fun();
ptr->fun();

Dynamic Allocation of Class Objects
Dynamically allocated class objects are used in programs that build and manage advanced
data structures such as lists (studied in Chapter 17) and binary trees (studied in Chapter 19).
The new operator is used to allocate such objects in the same way that it is used to allocate
variables of other types. For example, the following statements allocate a single Rectan-
gle object and set its dimensions

pRect = new Rectangle;
pRect->width = 10;
pRect->height = 3;

If Rectangle has a constructor that takes two integer parameters, then you can simulta-
neously allocate the object and invoke the constructor like this:

pRect = new Rectangle(10, 30);

Program 10-16 illustrates these concepts.

Program 10-16

1 // This program uses pointers to dynamically allocate
2 // structures and class objects.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6

(program continues)

654 Chapter 10 Pointers

7 // Person class
8 class Person
9 {
10 private:
11 string name;
12 int age;
13 public:
14 Person(string name1, int age1)
15 {
16 name = name1;
17 age = age1;
18 }
19 int getAge() { return age; }
20 string getName(){ return name; }
21 };
22
23 // Rectangle structure
24 struct Rectangle
25 {
26 int width, height;
27 };
28
29 int main()
30 {
31 Rectangle *pRect; // Pointer to Rectangle
32 Person *pPerson; // Pointer to Person
33
34 // Create a rectangle object and access it through a pointer
35 Rectangle rect;
36 pRect = ▭
37 (*pRect).height = 12;
38 pRect->width = 10;
39 cout << "Area of the first rectangle is "
40 << pRect->width * pRect->height;
41
42 // Allocate a Rectangle object and access it through a pointer
43 pRect = new Rectangle;
44 pRect->height = 6;
45 pRect->width = 5;
46 cout << "\nArea of the second rectangle is "
47 << pRect->width * pRect->height;
48
49 // Allocate a Person object and call its methods through a pointer
50 pPerson = new Person("Miguel E. Gonzalez", 23);
51 cout << "\n\nThe person's name is " << pPerson->getName();
52 cout << "\nThe person's age is " << pPerson->getAge() << endl;
53
54 return 0;
55 }

(program continues)

Program 10-16 (continued)

Pointers to Class Objects and Structures 655

Pointers to Class Objects as Function Parameters
Pointers to structures and class variables can be passed to functions as parameters. The
function receiving the pointer can then use it to access or modify members of the structure.
This is shown in Program 10-17.

Program Output
Area of the first rectangle is 120
Area of the second rectangle is 30

The person's name is Miguel E. Gonzalez
The person's age is 23

Program 10-17

1 // This program illustrates pointers to class objects
2 // and structures as parameters of functions.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 // Person class
8 class Person
9 {
10 private:
11 string name;
12 int age;
13 public:
14 Person(string name1, int age1)
15 {
16 name = name1;
17 age = age1;
18 }
19 int getAge() { return age; }
20 string getName(){ return name; }
21 };
22
23 // Rectangle structure
24 struct Rectangle
25 {
26 int width, height;
27 };
28
29 // Prototypes
30 void magnify(Rectangle *pRect, int mfactor);
31 int lengthOfName(Person *p);
32 void output(Rectangle *pRect);
33

(program continues)

Program 10-16 (continued)

656 Chapter 10 Pointers

34 int main()
35 {
36 // Create, then magnify a Rectangle by a factor of 3
37 Rectangle rect;
38 rect.width = 4;
39 rect.height = 2;
40 cout << "Initial size of rectangle is ";
41 output(&rect);
42 magnify(&rect, 3);
43 cout << "Size of Rectangle after magnification is ";
44 output(&rect);
45
46 // Create a Person and find the length of the person's name
47 Person *pPerson = new Person("Susan Wu", 32);
48 cout << "The name " << pPerson->getName()
49 << " has length " << lengthOfName(pPerson) << endl;
50
51 return 0;
52 }
53
54 //***
55 // Output the dimensions of a rectangle *
56 //***
57 void output(Rectangle *pRect)
58 {
59 cout << "width: " << pRect->width << " height: "
60 << pRect->height << endl;
61 }
62
63 //**
64 // Returns the number of characters in a person's name *
65 //**
66 int lengthOfName(Person *p)
67 {
68 string name = p->getName();
69 return name.length();
70 }
71
72 //**
73 // Stretch the width and height of a rectangle by *
74 // a specified factor *
75 //**
76 void magnify(Rectangle *pRect, int factor)
77 {
78 pRect->width = pRect->width * factor;
79 pRect->height = pRect->height * factor;
80 }
81

(program continues)

Program 10-17 (continued)

Pointers to Class Objects and Structures 657

Stopping Memory Leaks
It is important for programs that use dynamically allocated memory to ensure that each
call to new is eventually followed by a call to delete that frees the allocated memory and
returns it to the heap. A program that fails to do this will suffer from memory leaks, a con-
dition in which the program loses track of dynamically allocated storage and therefore
never calls delete to free the memory. There are two rules of the thumb that can be used
to avoid memory leaks:

• The function that invokes new to allocate storage should also be the function that
invokes delete to deallocate the storage.

• A class that needs to dynamically allocate storage should invoke new in its construc-
tors and invoke the corresponding delete in its destructor. Because the destructor is
automatically called by the system whenever an object is deleted or goes out of scope,
a delete statement placed in a destructor will always be called.

By following these rules, you will always be able to find the delete operation that corre-
sponds to a given call to new, thereby verifying that a particular call to new does not result
in a memory leak. Program 10-18 is an example of a program that follows these rules.
Note that the Squares class allocates dynamic memory in its constructor and has a
delete statement in its destructor. The program is garnished with output statements in
strategic places to show when the new and delete operators in constructors and destruc-
tors are called.

Program Output
Initial size of rectangle is width: 4 height: 2
Size of Rectangle after magnification is width: 12 height: 6
The name Susan Wu has length 8

Program 10-18

1 // This program illustrates the use of constructors
2 // and destructors in the allocation and deallocation of memory.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 class Squares
8 {
9 private:
10 int length; // How long is the sequence
11 int *sq; // Dynamically allocated array
12 public:
13 // Constructor allocates storage for sequence
14 // of squares and creates the sequence
15 Squares(int len)

(program continues)

Program 10-17 (continued)

658 Chapter 10 Pointers

16 {
17 length = len;
18 sq = new int[length];
19 for (int k = 0; k < length; k++)
20 {
21 sq[k] = (k+1)*(k+1);
22 }
23 // Trace
24 cout << "Construct an object of size " << length << endl;
25 }
26 // Print the sequence
27 void print()
28 {
29 for (int k = 0; k < length; k++)
30 cout << sq[k] << " ";
31 cout << endl;
32 }
33 // Destructor deallocates storage
34 ~Squares()
35 {
36 delete [] sq;
37 // Trace
38 cout << "Destructor for object of size " << length << endl;
39 }
40 };
41
42 //***
43 // Outputs the sequence of squares in a *
44 // Squares object *
45 //***
46 void outputSquares(Squares *sqPtr)
47 {
48 cout << "The list of squares is: ";
49 sqPtr->print();
50
51 }
52 int main()
53 {
54 Squares sqs(5);
55 cout << "The first 5 squares are: ";
56 sqs.print();
57
58 // Main allocates a Squares object
59 Squares *sqPtr = new Squares(3);
60 outputSquares(sqPtr);
61 // Main deallocates the Squares object
62 delete sqPtr;
63
64 return 0;
65 }

(program continues)

Program 10-18 (continued)

659

Everything we have said in this section applies to structures as well.

10.12 Focus on Software Engineering:
Selecting Members of Objects

Sometimes structures and classes contain pointers as members. For example, the following
structure declaration has an int pointer member:

struct GradeInfo
{

char name[25]; // Student name
int *testScores;// Dynamically allocated array
double average; // Test average

};

It’s important to remember that the structure pointer operator (->) is used to dereference
a pointer to a structure or class object, not a pointer that is a member of a structure or
class. If a program dereferences the testScores pointer in the structure in the example,
the indirection operator must be used. For example, assuming the following variable has
been defined:

GradeInfo student1;

The following statement will display the value pointed to by the testScores member:

cout << *student1.testScores;

It’s still possible to define a pointer to a structure that contains a pointer member. For
instance, the following statement defines stPtr as a pointer to a GradeInfo structure:

GradeInfo *stPtr;

Assuming stPtr points to a valid GradeInfo variable, the following statement will display
the value pointed to by its testScores member:

cout << *stPtr->testScores;

In this statement, the * operator dereferences stPtr->testScores, while the -> operator
dereferences stPtr. It might help to remember that the expression

stPtr->testScores

Program Output
Construct an object of size 5
The first 5 squares are: 1 4 9 16 25
Construct an object of size 3
The list of squares is: 1 4 9
Destructor for object of size 3
Destructor for object of size 5

Program 10-18 (continued)

Focus on Software Engineering: Selecting Members of Objects

660 Chapter 10 Pointers

is equivalent to

(*stPtr).testScores

So, the expression

*stPtr->testScores

is the same as

*(*stPtr).testScores

The awkwardness of this expression shows the necessity of the -> operator. Table 10-1 lists
some expressions using the *, ->, and . operators, and describes what each references. The
table is easier to understand if you remember that the operators -> and . for selecting
members of structures have higher precedence than the dereferencing operator *.

Checkpoint

Assume the following structure declaration exists for questions 10.17 through 10.19:

struct Rectangle
{

int length;
int width;

};

10.18 Write the definition of a pointer to a Rectangle structure.

10.19 Assume the pointer you defined in question 10.17 points to a valid Rectangle
structure. Write the statement that displays the structure’s members through the
pointer.

10.20 Assume rptr is a pointer to a Rectangle structure. Which of the expressions, A, B,
or C, is equivalent to the expression:

Table 10-1 Dereferencing Pointers to Structures

Expression Description

s->m s is a pointer to a structure variable or class object, and m is a member. This
expression accesses the m member of the structure or class object pointed to by s.

*a.p a is a structure variable or class object and p, a pointer, is a member of a. This
expression accesses the value pointed to by a.p.

(*s).m s is a pointer to a structure variable or class object, and m is a member. The *
operator dereferences s, causing the expression to access the m member of the object
*s. This expression is the same as
s->m.

*s->p s is a pointer to a structure variable or class object and p, a pointer, is a member of
the object pointed to by s. This expression accesses the value pointed to by s->p.

*(*s).p s is a pointer to a structure variable or class object and p, a pointer, is a member of
the object pointed to by s. This expression accesses the value pointed to by (*s).p.
This expression is the same as *s->p.

United Cause Relief Agency Case Study 661

rptr->width

A) *rptr.width
B) (*rptr).width
C) rptr.(*width)

10.13 United Cause Relief Agency Case Study

CONCEPT: This case study demonstrates how an array of pointers can be used to
display the contents of a second array in sorted order, without sorting the
second array.

The United Cause, a charitable relief agency, solicits donations from businesses. The
local United Cause office received the following donations from the employees of CK
Graphics, Inc:

$5, $100, $5, $25, $10, $5, $25, $5, $5, $100, $10, $15, $10, $5, $10

The donations were received in the order they appear. The United Cause manager has
asked you to write a program that displays the donations in ascending order, as well as in
their original order.

You decide to create a class, DonationList, that will hold and process the donation data.
The class declaration is

class DonationList
{
private:

int numDonations;
double *donations;
double **arrPtr;
void selectSort();

public:
DonationList(int num, double gifts[]);
~DonationList();
void show();
void showSorted();

};

Table 10-2 lists and describes the class’s member variables

Table 10-2 Description of Member Variables

Member Variable Description

numDonations An integer that will hold the number of donations received. This value will be
used to dynamically allocate arrays for holding and processing the donation
values.

donations A pointer that will point to a dynamically allocated array of doubles
containing the donation amounts.

arrPtr A pointer that will point to an array of pointers. The array of pointers will be
dynamically allocated. Each element of the array will point to an element of
the donations array.

662 Chapter 10 Pointers

In this class, the donation values will be stored in their original order in a dynamically allo-
cated array of doubles. The donations member will point to the array. We will refer to
this array as the donations array. The following statement shows how the donations
member will be defined.

double *donations;

The arrPtr member will also point to a dynamically allocated array. Its array, however,
will be an array of pointers. The elements of the array are pointers to doubles. The following
statement shows how the arrPtr member will be declared.

double **arrPtr;

Since the arrPtr member will point to an array of pointers, it is a pointer-to-a-pointer.
That is why two asterisks appear in the declaration statement. The pointer that arrPtr
points to is a pointer to a double. Figure 10-10 illustrates arrPtr as a pointer to an array
of pointers-to-doubles.

We will refer to the array of pointers as the arrPtr array. Once the arrPtr array is
allocated in memory, its elements will be initialized so they point to the elements of the
donations array, as illustrated in Figure 10-11.

The elements of the arrPtr array will initially point to the elements of the donations array
in their natural order (as shown in Figure 10-11). In other words, arrPtr[0] will point to

Figure 10-10

Figure 10-11

arrPtr double

double

double

double

double

[0]

[1]

[2]

[3]

[4]

[5]

[6]

arrPtr Array

[0]

[1]

[2]

[3]

[4]

[5]

[6]

donations Array

United Cause Relief Agency Case Study 663

donations[0], arrPtr[1] will point to donations[1], and so forth. In that arrangement,
the following statement would cause the contents of donations[5] to be displayed:

cout << *(arrPtr[5]) << endl;

After the arrPtr array is sorted, however, arrPtr[0] will point to the smallest value in
the donations array, arrPtr[1] will point to the next-to-smallest value in the donations
array, and so forth. This is illustrated in Figure 10-12.

This technique gives us access to the elements of the donations array in a sorted order
without actually disturbing the contents of the donations array itself.

Table 10-3 lists the class’s member functions.

Let’s look at each member function in more detail.

Figure 10-12

Table 10-3 Description of Member Functions

Member Function Description

Constructor The constructor accepts as arguments an integer, which indicates the number
of donations received, and an array of doubles, which holds the list of
donation values. When the constructor is finished, the donations member
will point to a dynamically allocated array holding the list of donation values
(in their original order), and the arrPtr member will point to a dynamically
allocated array of pointers. The elements of the arrPtr array will point, in
ascending order, to the elements of the donations array.

Destructor Deletes the storage that was allocated by the constructor.

selectSort This function, which performs an ascending-order selection sort on arrPtr,
is called by the constructor. Before the sort, arrPtr [0]points to donations [0],
arrPtr [1] points to donations [1], and so forth. After the sort, arrPtr will
point to the elements of the donations array in ascending order.

show Displays the contents of the donations array. (This function displays the
donations in their original order.)

showSorted Displays the contents of what each element of the arrPtr array points to.
(This function displays the contents of the donations array in sorted order.)

[0]

[1]

[2]

[3]

[4]

[5]

[6]

arrPtr Array

[0]

[1]

[2]

[3]

[4]

[5]

[6]

donations Array

664 Chapter 10 Pointers

The Constructor
The constructor’s code is as follows:

DonationList::DonationList(int num, double gifts[])
{

numDonations = num;
if (num > 0)
{

// Allocate an array of doubles.
donations = new double[num];
// Allocate an array of pointers-to-doubles.
arrPtr = new double*[num];
// Initialize the arrays.
for (int count = 0; count < numDonations; count++)
{

donations[count] = gifts[count];
arrPtr[count] = &donations[count];

}
// Now sort the array of pointers.
selectSort();

}
}

The num argument (which is copied to numDonations) holds the number of donations, and
the gifts array contains the list of donation values.

If the value in num is greater than 0, the constructor allocates and initializes the elements of
the donations and arrPtr arrays. The elements of the gifts array are copied to the ele-
ments of the donations array, and the elements of the arrPtr array are set to point to the
elements of the donations array.

The selectSort Member Function
The selectSort function is a modified version of the selection sort algorithm. The only
difference is that this function sorts an array of pointers. Instead of sorting on the contents
of the array’s elements, the array is sorted on the contents of what its elements point to.
Here is the pseudocode.

For scan is set to the values 0 up to (but not including) the next-
to-last subscript in arrPtr

Set minIndex variable to scan
Set minElem pointer to arrPtr[scan]
For index variable is set to the values from (scan + 1) through
the next-to-last subscript in arrPtr

If *(arrPtr[index]) is less than *minElem
Set minElem to arrPtr[index]
Set minIndex to index

End If
End For
Set arrPtr[minIndex] to arrPtr[scan]
Set arrPtr[scan] to minElem

End For

United Cause Relief Agency Case Study 665

Here is the C++ code for the function:

void DonationList::selectSort()
{

int minIndex;
double *minElem;

for (int scan = 0; scan < (numDonations - 1); scan++)
{

minIndex = scan;
minElem = arrPtr[scan];
for(int index = scan + 1; index < numDonations; index++)
{

if (*(arrPtr[index]) < *minElem)
{

minElem = arrPtr[index];
minIndex = index;

}
}
arrPtr[minIndex] = arrPtr[scan];
arrPtr[scan] = minElem;

 }
}

The show Member Function
The show member function simply displays the contents of the donations array sequen-
tially. Here is its pseudocode:

For every element in donations Array
Display the element's contents

End For

Here is the function’s actual C++ code:

void DonationList::show()
{

for (int count = 0; count < numDonations; count++)
cout << donations[count] << " ";

cout << endl;
}

The showSorted Member Function
The showSorted function displays the values pointed to by the elements of the arrPtr
array. Here is its pseudocode:

For every element in the arrPtr array
Dereference the element and display what it points to

End For

666 Chapter 10 Pointers

Here is the function’s C++ code:

void DonationList::showSorted()
{

for (int count = 0; count < numDonations; count++)
cout << *(arrPtr[count]) << " ";

cout << endl;
}

The Entire Class Listing
The class in its entirety is shown here.

Contents of donlist.h
1 #ifndef DONLIST_H
2 #define DONLIST_H
3
4 class DonationList
5 {
6 private:
7 int numDonations;
8 double *donations;
9 double **arrPtr;
10 void selectSort();
11 public:
12 DonationList(int num, double gifts[]);
13 ~DonationList();
14 void show();
15 void showSorted();
16 };
17 #endif

Contents of donlist.cpp
1 #include <iostream> //needed for cout
2 #include "donlist.h"
3 using namespace std;
4
5 //**
6 // Constructor. *
7 // The argument passed to num indicates the number of *
8 // elements in array passed to gifts. The gifts array *
9 // holds the list of donation values. The constructor *
10 // allocates the donations and arrPtr arrays. The gifts *
11 // array is copied to the donations array. The elements *
12 // of the arrPtr array are made to point to the elements *
13 // of the donations array, and then sorted in ascending *
14 // order by the selectSort function. *
15 //**
16 DonationList::DonationList(int num, double gifts[])
17 {
18 numDonations = num;
19 if (num > 0)
20 {
21 // Allocate an array of doubles.

United Cause Relief Agency Case Study 667

22 donations = new double[num];
23 // Allocate an array of pointers-to-doubles.
24 arrPtr = new double*[num];
25 // Initialize the arrays.
26 for (int count = 0; count < numDonations; count++)
27 {
28 donations[count] = gifts[count];
29 arrPtr[count] = &donations[count];
30 }
31 // Now, sort the array of pointers.
32 selectSort();
33 }
34 }
35
36 //**
37 // Destructor frees the memory allocated by the constructor*
38 //**
39 DonationList::~DonationList()
40 {
41 if (numDonations > 0)
42 {
43 delete [] donations;
44 donations = 0;
45 delete [] arrPtr;
46 arrPtr = 0;
47 }
48 }
49
50 //**
51 // The selecSort function performs a selection sort on the *
52 // arrPtr array of pointers. The array is sorted on the *
53 // values its elements point to. *
54 //**
55 void DonationList::selectSort()
56 {
57 int minIndex;
58 double *minElem;
59
60 for (int scan = 0; scan < (numDonations - 1); scan++)
61 {
62 minIndex = scan;
63 minElem = arrPtr[scan];
64 for(int index = scan + 1; index < numDonations; index++)
65 {
66 if (*(arrPtr[index]) < *minElem)
67 {
68 minElem = arrPtr[index];
69 minIndex = index;
70 }
71 }
72 arrPtr[minIndex] = arrPtr[scan];
73 arrPtr[scan] = minElem;
74 }
75 }
76

668 Chapter 10 Pointers

Implementing the Class
Program 10-19 shows how the class is used. The funds array is initialized with the 15
donation values.

77 //***
78 // The show function uses cout to display the donations *
79 // array in sequential order. *
80 //***
81 void DonationList::show()
82 {
83 for (int count = 0; count < numDonations; count++)
84 cout << donations[count] << " ";
85 cout << endl;
86 }
87
88 //***
89 // The showSorted function uses cout to display the values*
90 // pointed to by the elements of the arrPtr array. Since *
91 // arrPtr is sorted, this function displays the elements *
92 // of the donations array in ascending order. *
93 //***
94 void DonationList::showSorted()
95 {
96 for (int count = 0; count < numDonations; count++)
97 cout << *(arrPtr[count]) << " ";
98 cout << endl;
99 }

Program 10-19

1 // This program shows the donations made to the United Cause
2 // by the employees of CK Graphics, Inc. It displays
3 // the donations in order from lowest to highest
4 // and in the original order they were received.
5 #include <iostream>
6 #include "donlist.h"
7 using namespace std;
8
9 int main()
10 {
11 double funds[] = {5, 100, 5, 25, 10,
12 5, 25, 5, 5, 100,
13 10, 15, 10, 5, 10 };
14 DonationList ckGraphics(15, funds);
15 cout << "The donations sorted in ascending order are:\n";
16 ckGraphics.showSorted();
17 cout << "The donations in their original order are:\n";
18 ckGraphics.show();
19 return 0;
20 }

(program continues)

669

When the ckGraphics object is defined, the value 15 is passed to the constructor’s num
parameter, and the funds array is passed to the gifts parameter. The showSorted mem-
ber function is called to display the donation values in ascending order (by using the
arrPtr array to display them), and the show member function is called to display the val-
ues in their original order.

10.14 Tying It All Together: Pardon Me, Do You Have the Time?

Professor Susan Gonzalez wants to have her students take some of their tests online and
has asked you to write a program to administer the tests. For each student, the program
must record the student’s starting time, the student’s answer for each question, and the stu-
dent’s ending time. Before you write the program, you want to make sure that you can
write code to accurately capture a student’s start and end time. You decide to write a short
program that experiments with the C++ library functions for telling time.

C++ libraries provide a number of data types and functions that can be used to determine the
current calendar time. By convention, many computers mark calendar time by the number of
seconds that have elapsed since a point in time that has come to be known among computer
scientists as the epoch. In case you want to know, the epoch is midnight January 1, 1970.

The C++ data type time_t is used to represent the number of seconds since the epoch. The
library function

time_t time (time_t * epSecs);

takes as parameter a pointer to a time_t object that will hold the value representing the
current time. Program 10-20 illustrates the use of this function.

Program Output
The donations sorted in ascending order are:
5 5 5 5 5 5 10 10 10 10 15 25 25 100 100
The donations in their original order are:
5 100 5 25 10 5 25 5 5 100 10 15 10 5 10

Program 10-20

1 // This program illustrates the use of the time function.
2 #include <iostream>
3 #include <ctime> // Needed to use the time functions and types
4 using namespace std;
5
6 int main()
7 {
8 time_t epSeconds;
9 time(&epSeconds);
10 cout << "The number of seconds since the epoch is "
11 << epSeconds << endl;
12 return 0;
13 }

(program continues)

Program 10-19 (continued)

Tying It All Together: Pardon Me, Do You Have the Time?

670 Chapter 10 Pointers

Somewhat redundantly, the value stored in the parameter epSecs is also returned by the
time function. This allows the programmer to pass NULL for the parameter to time() and
use the returned value instead. The following program is equivalent to Program 10-20.

As useful as time() is, it does not solve all time-related problems. First, Professor Gonzalez
would much prefer that chronological times be stated in a form such as

Friday June 6, 2009, 4:29PM

instead of as so many seconds after the epoch. Second, she wants the program to take
differences in time zones into account and always give the correct local time. The C++
function

tm * localtime(const time_t *eps)

is exactly what is needed: it takes a time_t value, converts it into a structure of type tm,
and returns the address of that structure. The members of tm are integers and have the
meanings shown here:

int tm_min; // Minutes after the hour (0..59)
int tm_hour; // Hours after midnight (0..23)
int tm_mday; // Day of the month (1..31)
int tm_mon; // Month since January (0..11)
int tm_year; // Years since 1900
int tm_wday; // Weekday (Sunday=0, Monday=1, .. Saturday=6)

The following is an example of how to use time() in conjunction with localtime() to
print the number of the current month:

Program Output
The number of seconds since the epoch is 1247930628

Program 10-21

1 // This program illustrates the use of the time function.
2 #include <iostream>
3 #include <ctime> // Needed to use the time functions and types
4 using namespace std;
5
6 int main()
7 {
8 time_t epSeconds;
9 epSeconds = time(NULL);
10 cout << "Number of seconds since the epoch is "
11 << epSeconds << endl;
12 return 0;
13 }

Program Output
Number of seconds since the epoch is 1247930807

Program 10-20 (continued)

Chapter 10 Pointer

671

time_t epSecs; // Seconds since epoch
tm *pCalendarTime; // Pointer to calendar time
// Get seconds since epoch
epSecs = time(NULL);
// Convert to local time
pCalendarTime = localtime(&epSecs);
// Print number of current month
cout << pCalendarTime->tm_mon;

The following program determines and prints the day of the week, month, and year of the
time of its execution:

Program 10-22

1 // This program prints "today's" date
2 #include <iostream>
3 #include <ctime>
4 #include <string>
5 using namespace std;
6
7 int main()
8 {
9 time_t epSeconds; // Seconds since epoch
10 tm *pCalendarTime; // Pointer to calendar time
11 // Array of weekday names
12 string wDay[] = {"Sunday", "Monday", "Tuesday", "Wednesday",
13 "Thursday", "Friday", "Saturday"
14 };
15 // Array of month names
16 string month[] = {"January", "February", "March", "April",
17 "May", "June", "July", "August", "September",
18 "October", "November", "December"
19 };
20
21 epSeconds = time(NULL); // Seconds since epoch
22 pCalendarTime = localtime(&epSeconds); // Convert to local time
23
24 // Print day of month and day of week
25 cout << "Today is " << wDay[pCalendarTime->tm_wday]
26 << " " << month[pCalendarTime->tm_mon]
27 << " " << pCalendarTime->tm_mday
28 << ", " << 1900 + pCalendarTime->tm_year << endl;
29
30 return 0;
31 }

Program Output
Today is Friday July 17, 2009

Tying It All Together: Pardon Me, Do You Have the Time?

672 Chapter 10 Pointers

Review Questions and Exercises

Fill-in-the-Blank and Short Answer

1. Each byte in memory is assigned a unique __________.

2. The __________ operator can be used to determine a variable’s address.

3. __________ variables are designed to hold addresses.

4. The __________ operator can be used to work with the variable a pointer points to.

5. Array names can be used as __________ and vice-versa.

6. Creating variables while a program is running is called __________.

7. The __________ operator is used to dynamically allocate memory.

8. If the new operator cannot allocate the amount of memory requested, it throws
__________.

9. A pointer that contains the address 0 is called a(n) __________ pointer.

10. When a program is finished with a chunk of dynamically allocated memory, it should
free it with the __________ operator.

11. You should only use the delete operator to deallocate memory that was dynamically
acquired with the __________ operator.

12. What does the indirection operator do?

13. Look at the following code.

int x = 7;
int *ptr = &x;

What will be displayed if you send the expression *iptr to cout? What happens if
you send the expression ptr to cout?

14. Name two different uses for the C++ operator *.

15. Which arithmetic operations can be applied to pointers?

16. Assuming that ptr is a pointer to an int, what happens when you add 4 to it?

17. Look at the following array definition.

int numbers [] = {2, 4, 6, 8, 10};

What will the following statement display?

cout << *(numbers + 3) << endl;

18. What is the purpose of the new operator?

19. What happens when a program uses the new operator to allocate a block of memory,
but the amount of requested memory isn’t available? How do programs written with
older compilers handle this?

20. Under what circumstances can you successfully return a pointer from a function?

21. What is the purpose of the delete operator?

22. What is the difference between a pointer to a constant and a constant pointer?

23. Show C++ code for defining a variable ptr that is a pointer to a constant int.

24. Show C++ code for defining a variable ptr that is a constant pointer to int.

Review Questions and Exercises 673

C++ Language Elements

25. Consider the function

void change(int *p)
{

*p = 20;
}

Show how to call the change function so that it sets the integer variable

int i;

to 20.

26. Consider the function

void modify(int & x)
{

x = 10;
}

Show how to call the modify function so that it sets the integer

int i;

to 10.

Algorithm Workbench

27. Write a function whose prototype is

void exchange(int *p, int *q);

that takes two pointers to integer variables and exchanges the values in those variables.

28. Write a function

void switchEnds(int *array, int size);

that is passed the address of the beginning of an array and the size of the array. The
function swaps the values in the first and last entries of the array.

Predict the Output

29. Given the variable initializations

int a[5] = {0, 10, 20, 30, 40};
int k = 3;
int *p = a + 1;

determine the output from each of the following statements:

A) cout << a[k];
B) cout << *(a + k);
C) cout << *a;
D) cout << a[*a];
E) cout << a[*a + 2];
F) cout << *p;
G) cout << p[0];
H) cout << p[1];

674 Chapter 10 Pointers

Find the Error

30. Each of the following declarations and program segments has errors. Locate as many
as you can.

A) int ptr*;
B) int x, *ptr;

&x = ptr;
C) int x, *ptr;

*ptr = &x;
D) int x, *ptr;

ptr = &x;
ptr = 100; // Store 100 in x
cout << x << endl;

E) int numbers[] = {10, 20, 30, 40, 50};
cout << "The third element in the array is ";
cout << *numbers + 3 << endl;

F) int values[20], *iptr;
iptr = values;
iptr *= 2;

G) double level;
int dPtr = &level;

H) int *iptr = &ivalue;
int ivalue;

I) void doubleVal(int val)
{

*val *= 2;
}

J) int *pint;
new pint;

K) int *pint;
pint = new int;
pint = 100;

L) int *pint;
pint = new int[100]; // Allocate memory
 .
 .
Process the array
 .
 .
delete pint;// Free memory

M) int *getNum()
{
 int wholeNum;

 cout << "Enter a number: ";
 cin >> wholeNum;
 return &wholeNum;
}

Review Questions and Exercises 675

Soft Skills

31. Suppose that you are a manager of a programming team. To facilitate project develop-
ment and maintenance, you have decided to establish some programming and coding
guidelines. Make a list of pointer-related programming guidelines you think will
improve program readability and decrease pointer-related bugs.

Programming Challenges

1. Test Scores #1

Write a program that dynamically allocates an array large enough to hold a user-defined
number of test scores. Once all the scores are entered, the array should be passed to a func-
tion that sorts them in ascending order. Another function should be called that calculates
the average score. The program should display the sorted list of scores and averages with
appropriate headings. Use pointer notation rather than array notation whenever possible.

Input Validation: Do not accept negative numbers for test scores.

2. Test Scores #2

Modify the program of Programming Challenge 1 to allow the user to enter name-score
pairs. For each student taking a test, the user types a string representing the name of the
student, followed by an integer representing the student’s score. Modify both the sorting
and average-calculating functions so they take arrays of structures, with each structure
containing the name and score of a single student. In traversing the arrays, use pointers
rather than array indices.

3. Money Money Money #1

Modify Program 10-19 (the United Cause case study program) so it can be used with any
set of donations. The program should dynamically allocate the donations array and ask
the user to input its values.

4. Money Money Money #2

Modify Program 10-19 (the United Cause case study program) so the arrPtr array is
sorted in descending order instead of ascending order.

5. Pie a la Mode

In statistics the mode of a set of values is the value that occurs most often. Write a program
that determines how many pieces of pie most people eat in a year. Set up an integer array
that can hold responses from 30 people. For each person, enter the number of pieces they
say they eat in a year. Then write a function that finds the mode of these 30 values. This
will be the number of pie slices eaten by the most people. The function that finds and
returns the mode should accept two arguments, an array of integers, and a value indicating
how many elements are in the array.

6. Median Function

In statistics the median of a set of values is the value that lies in the middle when the values
are arranged in sorted order. If the set has an even number of values, then the median is

676 Chapter 10 Pointers

taken to be the average of the two middle values. Write a function that determines the
median of a sorted array. The function should take an array of numbers and an integer
indicating the size of the array and return the median of the values in the array. You may
assume the array is already sorted. Use pointer notation whenever possible.

7. Movie Statistics

Write a program that can be used to gather statistical data about the number of movies col-
lege students see in a month. The program should ask the user how many students were
surveyed and dynamically allocate an array of that size. The program should then allow
the user to enter the number of movies each student has seen. The program should then
calculate the average, median, and mode of the values entered.

8. Days in Current Month

Write a program that can determine the number of days in a month for a specified month
and year. The program should allow a user to enter two integers representing a month and
a year, and it should determine how many days are in the specified month. The integers 1
through 12 will be used to identify the months of January through December. The user
indicates the end of input by entering 0 0 for the month and year. At that point, the pro-
gram prints the number of days in the current month and terminates.

Use the following criteria to identify leap years:

1. A year Y is divisible by 100. Then Y is a leap year if and if only it is divisible by 400.
For example, 2000 is a leap year but 2100 is not.

2. A year Y is not divisible by 100. Then Y is a leap year if and if only it is divisible by 4.
For example, 2008 is a leap year but 2009 is not.

Here is sample run of the program:

Enter month and year: 2 2008[Enter]
29 days
Enter month and year: 0 0[Enter]

The current month, September 2009, has 30 days.

9. Age

Write a program that asks for the user’s name and year of birth, greets the user by name,
and declares the user’s age in years. Users are assumed to be born between the years 1800
and 2099, and should enter the year of birth in one of the three formats 18XX, 19XX, or
20XX. A typical output should be “Hello Caroline, you are 23 years old.”

Solving the
Days in Current
Month Problem

677

C
H

A
P

T
E

R
C

H
A

P
T

E
R

11 More About Classes and
Object-Oriented Programming

11.1 The this Pointer and Constant Member Functions

CONCEPT: By default, the compiler provides each member function of a class with an
implicit parameter that points to the object through which the member
function is called. The implicit parameter is called this. A constant
member function is one that does not modify the object through which it
is called.

The this Pointer
Consider the class

class Example
{

int x;
public:

Example(int a){ x = a;}
void setValue(int);
int getValue();

};

TOPICS

11.1 The this Pointer and Constant
Member Functions

11.2 Static Members
11.3 Friends of Classes
11.4 Memberwise Assignment
11.5 Copy Constructors
11.6 Operator Overloading
11.7 Type Conversion Operators
11.8 Convert Constructors

11.9 Aggregation and Composition
11.10 Inheritance
11.11 Protected Members and Class

Access
11.12 Constructors, Destructors, and

Inheritance
11.13 Overriding Base Class Functions
11.14 Tying It All Together: Putting Data on

the World Wide Web

678 Chapter 11 More About Classes and Object-Oriented Programming

with the member function

int Example::getValue()
{

return x;
}

that simply returns the value in an object of the class. As an example, the getValue
function might be invoked in a program such as

int main()
{

Example ob1(10), ob2(20);
cout << ob1.getValue() << " " << ob2.getValue();
return 0;

}

in which case the program would print out the values 10 20.

You learned in an earlier chapter that the different objects of a structure or class type are
called instances of that class, and that each instance of a class has its own copy of the data
members listed in the class. These data members, called instance members because they
belong to instances of the class, can have different values in different objects. Thus in the
preceding example, the instance member x in the ob1 object has a value of 10 while x in
ob2 has a value of 20.

Now consider again the code for the member function

int Example::getValue()
{

return x;
}

This function is supposed to return the x member of some object of the Example class, but
how does it know which object to use? What happens is that by default, the compiler pro-
vides each member function of every class with an implicit parameter that is a pointer to an
object of the class. Thus for example, the getValue function is equipped with a single
parameter of type pointer to Example. Similarly, the member function

void Example::setValue(int a)
{

x = a;
}

although written by the programmer to take a single parameter of type int, in reality has
two parameters: an pointer to an object of the class Example, and the

int a

parameter specified by the programmer. In all cases, the actual parameter for the implicit
object parameter is the address of the object through which the member function is being
called. Thus in the call

ob1.getValue()

The this Pointer and Constant Member Functions 679

the implicit parameter passed to getValue is the address of ob1, whereas in the call

ob2.setValue(78)

the implicit parameter passed to setValue is &ob2.

The implicit pointer passed by the compiler to a member function can be accessed by
code inside that function by using the reserved keyword this. So for example, a member
function of the Example class could access the object through which it is called by using
the expression

*this

and it could also access any of the members of that object through the same pointer.
Program 11-1 illustrates these concepts. It modifies the Example class to include a
member function that uses the this pointer to print the address of the object through
which it is called as well as the value of the instance member x in the same object.

Program 11-1

Contents of ThisExample.h
1 class Example
2 {
3 int x;
4 public:
5 Example(int a){ x = a;}
6 void setValue(int);
7 void printAddressAndValue();
8 };

Contents of ThisExample.cpp
1 #include "ThisExample.h"
2 #include <iostream>
3 using namespace std;
4
5 //***
6 // Set value of object. *
7 //***
8 void Example::setValue(int a)
9 {
10 x = a;
11 }
12 //***
13 // Print address and value. *
14 //***
15 void Example::printAddressAndValue()
16 {
17 cout << "The object at address " << this << " has "
18 << "value " << (*this).x << endl;
19 }

(program continues)

680 Chapter 11 More About Classes and Object-Oriented Programming

As an example of a common use of the this pointer, consider the member function

void Example::setValue(int a)
{

x = a;
}

It is natural to name the parameter to be used to set the value of the member x using an
identifier that makes its connection to x explicit, perhaps xValue or even x itself. How-
ever, a formal parameter of a member function with the same identifier as a member of
the class will hide the class member, making it inaccessible inside the function. The this
pointer can be used to qualify the name of the class member and make it visible again.
Here is the setValue member function rewritten in this manner:

void Example::setValue(int x)
{

this->x = x;
}

Recall from Chapter 10 that the notation this->x is equivalent to (*this).x.

Constant Member Functions
A parameter that is passed to a function by reference or through a pointer may be modified
by that function. The const key word is used with a parameter to prevent the called function
from modifying it. For example, a function declared as

void fun(const string *str);

Contents of main program, pr11-1.cpp
1 // This program illustrates the this pointer.
2 #include <iostream>
3 #include "ThisExample.h"
4 using namespace std;
5
6 int main()
7 {
8 Example ob1(10), ob2(20);
9
10 // Print the addresses of the two objects.
11 cout << "Addresses of objects are " << &ob1
12 << " and " << &ob2 << endl;
13
14 // Print the addresses and values from within
15 // the member function.
16 ob1.printAddressAndValue();
17 ob2.printAddressAndValue();
18
19 return 0;
20 }

Program Output
Addresses of objects are 0x241ff5c and 0x241ff58
The object at address 0x241ff5c has value 10
The object at address 0x241ff58 has value 20

Program 11-1 (continued)

Static Members 681

takes a pointer to a string object as a parameter, but will not be able to modify the object.
There is a similar mechanism that can be used to protect the implicit parameter *this
from being modified by a member function. When placed right after the parameter list in
the definition of a member function, the const keyword serves as an indication to the
compiler that the member function should not be allowed to modify its object. If the mem-
ber function is defined outside the class, both the in-class declaration and the definition
must have the const. Here is an example

class ConstExample
{

int x;
public:

ConstExample(int a){ x = a;}
void setValue(int);
int getValue() const;

};

The definition of the getValue function would be

int ConstExample::getValue() const
{

return x;
}

11.2 Static Members

CONCEPT: If a member variable is declared static, all objects of that class have
access to that variable. If a member function is declared static, it may be
called before any instances of the class are defined.

Each class object (an instance of a class) has its own copy of the class’s member variables.
An object’s member variables are separate and distinct from the member variables of other
objects of the same class. For example, consider the following declaration:

class Widget
{

private:
double price;
int quantity;

public:
Widget(double p, int q)

 { price = p; quantity = q; }
double getPrice()

 { return price; }
int getQuantity()

 { return quantity; }
};

Assume that in a program, two separate instances of the Widget class are created by the
following declaration:

Widget w1(14.50, 100), w2(12.75, 500);

682 Chapter 11 More About Classes and Object-Oriented Programming

This statement creates w1 and w2, two distinct objects. Each has its own price and
quantity member variables. This is illustrated by Figure 11-1.

When the getQuantity member function of either instance is called, it returns the value
stored in the calling object’s quantity variable. Based on the values initially stored in the
objects, the statement

cout << w1.getQuantity() << " " << w2.getQuantity();

will cause 100 500 to be displayed.

Static Member Variables
It’s possible to create a member variable that is shared by all the objects of the same class. To
create such a member, simply place the key word static in front of the variable declaration,
as shown in the following class:

class StatDemo
{
 private:
 static int x;
 int y;
 public:
 void setx(int a) { x = a; }
 void sety(int b) { y = b; }
 int getx() { return x; }
 int gety() { return y; }
};

Next, place a separate definition of the variable outside the class, such as:

int StatDemo::x;

In this example, the member variable x will be shared by all objects of the StatDemo class.
When one class object puts a value in x, it will appear in all other StatDemo objects. For
example, assume the following statements appear in a program:

StatDemo obj1, obj2;
obj1.setx(5);
obj1.sety(10);
obj2.sety(20);
cout << "x: " << obj1.getx() << " " << obj2.getx() << endl;
cout << "y: " << obj1.gety() << " " << obj2.gety() << endl;

Figure 11-1

w2 Object

50012.75

price quantity

w1 Object

10014.50

price quantity

Static Members 683

The cout statements shown will display

x: 5 5
y: 10 20

The value 5 is stored in the static member variable x by the object obj1. Since obj1 and obj2
share the variable x, the value 5 shows up in both objects. This is illustrated by Figure 11-2.

A more practical use of a static member variable is demonstrated in Program 11-2. The
Budget class is used to gather the budget requests for all the divisions of a company. The class
uses a static member, corpBudget, to hold the amount of the overall corporate budget. When
the member function addBudget is called, its argument is added to the current contents of
corpBudget. By the time the program is finished, corpBudget will contain the total of all the
values placed there by all the Budget class objects.

Figure 11-2

Program 11-2

Contents of budget.h
1 #ifndef BUDGET_H
2 #define BUDGET_H
3
4 class Budget
5 {
6 private:
7 static double corpBudget;
8 double divBudget;
9 public:
10 Budget() { divBudget = 0; }
11 void addBudget(double b)
12 { divBudget += b; corpBudget += divBudget; }
13 double getDivBudget() { return divBudget; }
14 double getCorpBudget() { return corpBudget; }
15 };
16 #endif

(program continues)

obj1

Static Member x

Both obj1 and obj2 share the static member x

Member y

10

obj2

Member y

20

5

684 Chapter 11 More About Classes and Object-Oriented Programming

Contents of main program, pr11-2.cpp
1 // This program demonstrates a static class member variable.
2 #include <iostream>
3 #include <iomanip>
4 #include "budget.h" // For Budget class declaration
5 using namespace std;
6
7 // Definition of the static member of the Budget class.
8 double Budget::corpBudget = 0;
9
10 int main()
11 {
12 const int N_DIVISIONS = 4;
13 Budget divisions[N_DIVISIONS];
14
15 // Get the budget request for each division.
16 for (int count = 0; count < N_DIVISIONS; count++)
17 {
18 double bud;
19
20 cout << "Enter the budget request for division ";
21 cout << (count + 1) << ": ";
22 cin >> bud;
23 divisions[count].addBudget(bud);
24 }
25
26 // Display the budget request for each division.
27 cout << setprecision(2);
28 cout << showpoint << fixed;
29 cout << "\nHere are the division budget requests:\n";
30 for (int count = 0; count < N_DIVISIONS; count++)
31 {
32 cout << "Division " << (count + 1) << "\t$ ";
33 cout << divisions[count].getDivBudget() << endl;
34 }
35
36 // Display the total budget request.
37 cout << "Total Budget Requests:\t$ ";
38 cout << divisions[0].getCorpBudget() << endl;
39
40 return 0;
41 }

(program continues)

Program 11-2 (continued)

Static Members 685

In general, we can divide the member variables and functions of a class into two groups:
instance members and static members. An instance member is one whose use must be
associated with a particular instance of the class. In particular, an instance variable of a
class must be accessed through a specific instance of its class, and an instance member
function must be called through a specific instance of its class.

In contrast, the use of a static member variable, or the call of a static member function,
does not need to be associated with any instance. Only the class of the static member needs
to be specified.

Static Member Functions
A member function of a class can be declared static by prefixing its declaration with the
keyword static. Here is the general form:

static <return type><function name>(<parameter list>)

Static member functions are normally used to work with static member variables of the
class. In fact, member functions that do not access any nonstatic members of their class,
such as getCorpBudget() in Program 11-2, should be made static.

Program 11-3, a modification of Program 11-2, demonstrates this. It asks the user
to enter the main office’s budget request before any division requests are entered. The
Budget class has been modified to include a static member function named mainOffice.
This function adds its argument to the static corpBudget variable and is called before
any instance of the Budget class is defined. The getCorpBudget() function has also
been made static.

Program Output with Example Input Shown in Bold
Enter the budget request for division 1: 102000[Enter]
Enter the budget request for division 2: 201000[Enter]
Enter the budget request for division 3: 570000[Enter]
Enter the budget request for division 4: 100100[Enter]

Here are the division budget requests:
Division 1 $ 102000.00
Division 2 $ 201000.00
Division 3 $ 570000.00
Division 4 $ 100100.00
Total Budget Requests: $ 973100.00

NOTE: Static member variables furnish a good example of the distinction between
C++ declarations and C++ definitions. A declaration provides information about the
existence and type of a variable or function. A definition provides all the information
contained in a declaration, and in addition, causes memory to be allocated for the
variable or function being defined. Static member variables must be declared inside the
class and defined outside of it.

Program 11-2 (continued)

686 Chapter 11 More About Classes and Object-Oriented Programming

Program 11-3

Contents of budget2.h
1 #ifndef BUDGET_H
2 #define BUDGET_H
3
4 class Budget
5 {
6 private:
7 static double corpBudget;
8 double divBudget;
9 public:
10 Budget() { divBudget = 0; }
11 void addBudget(double b)
12 { divBudget += b; corpBudget += divBudget; }
13 double getDivBudget() { return divBudget; }
14 static double getCorpBudget() { return corpBudget; }
15 static void mainOffice(double);
16 };
17 #endif

Contents of budget2.cpp
1 #include "budget2.h"
2
3 // Definition of the static member of Budget class.
4 double Budget::corpBudget = 0;
5
6 //**
7 // Definition of static member function mainOffice *
8 // This function adds the main office's budget request to *
9 // the corpBudget variable. *
10 //**
11 void Budget::mainOffice(double budReq)
12 {
13 corpBudget += budReq;
14 }

Contents of main program, pr11-3.cpp
1 // This program demonstrates a static class member function.
2 #include <iostream>
3 #include <iomanip>
4 #include "budget2.h" // For Budget class declaration
5 using namespace std;
6
7 int main()
8 {
9 const int N_DIVISIONS = 4;
10

(program continues)

Static Members 687

11 // Get the budget requests for each division.
12 cout << "Enter the main office's budget request: ";
13 double amount;
14 cin >> amount;
15 // Call the static member function of the Budget class.
16 Budget::mainOffice(amount);
17 // Create instances of the Budget class.
18 Budget divisions[N_DIVISIONS];
19 for (int count = 0; count < N_DIVISIONS; count++)
20 {
21 double bud;
22
23 cout << "Enter the budget request for division ";
24 cout << (count + 1) << ": ";
25 cin >> bud;
26 divisions[count].addBudget(bud);
27 }
28
29 // Display the budget for each division.
30 cout << setprecision(2);
31 cout<< showpoint << fixed;
32 cout << "\nHere are the division budget requests:\n";
33 for (int count = 0; count < N_DIVISIONS; count++)
34 {
35 cout << "\tDivision " << (count + 1) << "\t$ ";
36 cout << divisions[count].getDivBudget() << endl;
37 }
38
39 // Print total budget requests.
40 cout << "Total Requests (including main office): $ ";
41 cout << Budget::getCorpBudget() << endl;
42 return 0;
43 }

Program Output with Example Input Shown in Bold
Enter the main office's budget request: 400000[Enter]
Enter the budget request for division 1: 102000[Enter]
Enter the budget request for division 2: 210000[Enter]
Enter the budget request for division 3: 240000[Enter]
Enter the budget request for division 4: 105000[Enter]

Here are the division budget requests:
 Division 1 $ 102000.00
 Division 2 $ 210000.00
 Division 3 $ 240000.00
 Division 4 $ 105000.00
Total Requests (including main office): $ 1057000.00

Program 11-3 (continued)

688 Chapter 11 More About Classes and Object-Oriented Programming

Notice the statement that calls the static function mainOffice:

Budget::mainOffice(amount);

Calls to static member functions are normally made by connecting the function name to
the class name with the scope resolution operator. If objects of the class have been defined,
static member functions can also be called by connecting their names to the object with the
dot operator. Thus the last output statement of Program 11-3 could be written as

cout << divisions[0].getCorpBudget() << endl;

The this pointer cannot be used in a static member function, because static member func-
tions are not called through any instance of their class. Moreover, a static member function
cannot access an instance member of its class unless it specifies what instance the member
belongs to. For example, in the class

class StatAccess
{

private:
int x;

public:
static void output()

{
cout << x; // incorrect access of non-static member

}
StatAccess(int x) { this->x = x; }

};

The attempt to access x in the statement cout << x is incorrect because it is tantamount
to an implicit use of the this pointer, which the static function output does not have. In
contrast, in the following modified example of the same class, the static member function
print correctly accesses the nonstatic member x because it qualifies it with the name of a
class object passed to it as a parameter.

class StatAccess
{

private:
int x;

public:
static void print(StatAccess a)
{

cout << a.x;
}

StatAccess(int x) { this->x = x; }
};

An advantage of static member functions is they can be called before any instances of the
class have been created. This allows them to be used to perform complex initialization
tasks that have to be done before objects of the class have been created.

Friends of Classes 689

11.3 Friends of Classes

CONCEPT: A friend is a function that is not a member of a class, but has access to the
private members of the class.

Private members are hidden from all parts of the program outside the class, and accessing
them requires a call to a public member function. Sometimes you will want to create an
exception to that rule. A friend function is a function that is not a member of a class, but
that has access to the class’s private members. In other words, a friend function is treated
as if it were a member of the class. A friend function can be a regular stand-alone function,
or it can be a member of another class. (In fact, an entire class can be declared a friend of
another class.)

In order for a function or class to become a friend of another class, it must be declared as
such by the class granting it access. Classes keep a “list” of their friends, and only the
external functions or classes whose names appears in the list are granted access. A function
is declared a friend by placing the keyword friend in front of a prototype of the function.
Here is the general format:

friend <return type><function name>(<parameter type list>);

In the following declaration of the Budget class, the addBudget function of another class,
Aux, has been declared a friend:

class Budget
{
private:

static double corpBudget;
double divBudget;

public:
Budget() { divBudget = 0; }
void addBudget(double b)

{ divBudget += b; corpBudget += divBudget; }
double getDivBudget() { return divBudget; }
static double getCorpBudget() { return corpBudget; }
static void mainOffice(double);
friend void Aux::addBudget(double); // A friend

};

Let’s assume another class Aux represents a division’s auxiliary office, perhaps in another
country. The auxiliary office makes a separate budget request, which must be added to the
overall corporate budget. The friend declaration of the Aux::addBudget function tells the
compiler that the function is to be granted access to Budget’s private members. The func-
tion takes an argument of type double representing an amount to be added to the corpo-
rate budget:

class Aux
{
private:

double auxBudget;

690 Chapter 11 More About Classes and Object-Oriented Programming

public:
Aux() { auxBudget = 0; }
void addBudget(double);
double getDivBudget() { return auxBudget; }

};

And here is the definition of the Aux addBudget member function:

void Aux::addBudget(double b)
{

auxBudget += b;
Budget::corpBudget += auxBudget;

}

The parameter b is added to the corporate budget, which is accessed by using the expression
Budget::corpBudget. Program 11-4 demonstrates the classes in a complete program.

Program 11-4

Contents of auxil.h
1 #ifndef AUXIL_H
2 #define AUXIL_H
3
4 // Aux class declaration.
5 class Aux
6 {
7 private:
8 double auxBudget;
9 public:
10 Aux() { auxBudget = 0; }
11 void addBudget(double);
12 double getDivBudget() { return auxBudget; }
13 };
14 #endif

Contents of budget3.h
1 #ifndef BUDGET3_H
2 #define BUDGET3_H
3 #include "auxil.h" // For Aux class declaration
4
5 // Budget class declaration.
6 class Budget
7 {
8 private:
9 static double corpBudget;
10 double divBudget;
11 public:
12 Budget() { divBudget = 0; }
13 void addBudget(double b)
14 { divBudget += b; corpBudget += divBudget; }
15 double getDivBudget() { return divBudget; }
16 static double getCorpBudget() { return corpBudget; }
17 static void mainOffice(double);
18 friend void Aux::addBudget(double);
19 };
20 #endif

(program continues)

Friends of Classes 691

Contents of budget3.cpp
1 #include "budget3.h"
2
3 // Definition of static member.
4 double Budget::corpBudget = 0;
5
6 //**
7 // Definition of static member function mainOffice *
8 // This function adds the main office's budget request to *
9 // the corpBudget variable. *
10 //**
11 void Budget::mainOffice(double budReq)
12 {
13 corpBudget += budReq;
14 }

Contents of auxil.cpp
1 #include "auxil.h"
2 #include "budget3.h"
3
4 //***
5 // Definition of member function addBudget *
6 // This function is declared a friend by the Budget class *
7 // It adds the value of argument b to the static corpBudget *
8 // member variable of the Budget class. *
9 //***
10
11 void Aux::addBudget(double b)
12 {
13 auxBudget += b;
14 Budget::corpBudget += auxBudget;
15 }

Contents of main program pr11-4.cpp
1 // This program demonstrates a static class member variable.
2 #include <iostream>
3 #include <iomanip>
4 #include "budget3.h"
5 using namespace std;
6
7 int main()
8 {
9 const int N_DIVISIONS = 4;
10
11 // Get the budget requests for the divisions and
12 // offices.
13 cout << "Enter the main office's budget request: ";
14 double amount;
15 cin >> amount;
16 Budget::mainOffice(amount);
17

(program continues)

Program 11-4 (continued)

692 Chapter 11 More About Classes and Object-Oriented Programming

18 // Create the division and auxiliary offices.
19 Budget divisions[N_DIVISIONS];
20 Aux auxOffices[N_DIVISIONS];
21
22 cout << "\nEnter the budget requests for the divisions and "
23 << "\ntheir auxiliary offices as prompted:\n";
24 for (int count = 0; count < N_DIVISIONS; count++)
25 {
26 double bud;
27 cout << "Division " << (count + 1) << ": ";
28 cin >> bud;
29 divisions[count].addBudget(bud);
30 cout << "Division " << (count + 1) << "'s auxiliary office: ";
31 cin >> bud;
32 auxOffices[count].addBudget(bud);
33 }
34
35 // Print the budgets.
36 cout << setprecision(2);
37 cout << showpoint << fixed;
38 cout << "Here are the division budget requests:\n";
39 for (int count = 0; count < N_DIVISIONS; count++)
40 {
41 cout << "\tDivision: " << (count + 1) << "\t\t\t$ ";
42 cout << setw(7);
43 cout << divisions[count].getDivBudget() << endl;
44 cout << "\tAuxiliary Office of Division " << (count+1);
45 cout << "\t$ ";
46 cout << auxOffices[count].getDivBudget() << endl;
47 }
48 // Print total requests.
49 cout << "\tTotal Requests (including main office): $ ";
50 cout << Budget::getCorpBudget() << endl;
51 return 0;
52 }

Program Output with Example Input Shown in Bold
Enter the main office's budget request: 100000[Enter]

Enter the budget requests for the divisions and
their auxiliary offices as prompted:
Division 1: 100000[Enter]
Division 1's auxiliary office: 500000[Enter]
Division 2: 200000[Enter]
Division 2's auxiliary office: 40000[Enter]
Division 3: 300000[Enter]
Division 3's auxiliary office: 700000[Enter]
Division 4: 400000[Enter]
Division 4's auxiliary office: 650000[Enter]

(program output continues)

Program 11-4 (continued)

Friends of Classes 693

Checkpoint

11.1 What is the difference between an instance member variable and a static member
variable?

11.2 Static member variables are declared inside the class declaration. Where are static
member variables defined?

11.3 Does a static member variable come into existence in memory before, at the same
time as, or after any instances of its class?

11.4 What limitation does a static member function have?

11.5 What action is possible with a static member function that isn’t possible with an
instance member function?

11.6 If class X declares function f as a friend, does function f become a member of
class X?

11.7 Suppose that class Y is a friend of class X, meaning that the member functions of
class Y have access to all the members of class X. Should the friend key word appear
in class Y’s declaration or in class X’s declaration?

Here are the division budget requests:
 Division: 1 $ 100000.00
 Auxiliary Office of Division 1 $ 50000.00
 Division: 2 $ 200000.00
 Auxiliary Office of Division 2 $ 40000.00
 Division: 3 $ 300000.00
 Auxiliary Office of Division 3 $ 70000.00
 Division: 4 $ 400000.00
 Auxiliary Office of Division 4 $ 65000.00
 Total Requests (including main office): $ 1325000.00

NOTE: As mentioned before, it is possible to make an entire class a friend of another
class. The Budget class could make the Aux class its friend with the following
declaration:

friend class Aux;

This may not be a good idea, however. Every member function of Aux (including ones
that may be added later) would have access to the private members of Budget. The best
practice is to declare as friends only those functions that must have access to the private
members of the class.

Program 11-4 (continued)

694 Chapter 11 More About Classes and Object-Oriented Programming

11.4 Memberwise Assignment

CONCEPT: The = operator may be used to assign one object to another, or to
initialize one object with another object’s data. By default, each member
of one object is copied to its counterpart in the other object.

Like other variables (except arrays), objects may be assigned to each other using the =
operator. As an example, consider Program 11-5, which uses a Rectangle class similar to
the one discussed in Chapter 7:

Program 11-5

1 // This program demonstrates object assignment.
2 #include <iostream>
3 using namespace std;
4
5 class Rectangle
6 {
7 private:
8 double width, length;
9 public:
10 Rectangle(double width, double length)
11 {
12 this->width = width;
13 this->length = length;
14 }
15 double getWidth() { return width; }
16 double getLength() { return length; }
17 void output()
18 {
19 cout << "Width is " << width << ", "
20 << "Length is " << length << endl;
21 }
22 };
23
24 int main()
25 {
26 // Set up two rectangle objects.
27 Rectangle box1(10, 20), box2(5, 10);
28
29 // Display the rectangle objects.
30 cout << "Before the assignment:\n";
31 cout << "Box 1 data:\t"; box1.output();
32 cout << "Box 2 data:\t"; box2.output();
33
34 // Assignment.
35 box2 = box1;
36
37 // Display the rectangle objects.
38 cout << "\nAfter the assignment:\n";

(program continues)

Copy Constructors 695

As you can see, the statement

box2 = box1

copied the width and length variables of box1 directly into the width and length vari-
ables of box2.

Memberwise assignment also occurs when one object is initialized with another object’s
values. Remember the difference between assignment and initialization: assignment
occurs between two objects that already exist, and initialization happens to an object
being created. Consider the following program segment:

Rectangle box1(10, 50);
Rectangle box2 = box1;

The second statement defines a Rectangle object box2 and initializes it to the values
stored in box1. Because memberwise assignment takes place, the box2 object will contain
the same values as the box1 object.

11.5 Copy Constructors

CONCEPT: A copy constructor is a special constructor that is called whenever a new
object is created and initialized with the data of another object of the
same class.

Many times it makes sense to create an object and have it start out with its data being the
same as that of another, previously created object. For example, if Mary and Joan live in
the same house and an address object for Mary has already been created, it makes sense
to initialize Joan’s address object to a copy of Mary’s. In particular, suppose we have the
following class to represent addresses:

class Address
{
private:
 string street;

39 cout << "Box 1 data:\t"; box1.output();
40 cout << "Box 2 data:\t"; box2.output();
41 return 0;
42 }

Program Output
Before the assignment:
Box 1 data: Width is 10, Length is 20
Box 2 data: Width is 5, Length is 10

After the assignment:
Box 1 data: Width is 10, Length is 20
Box 2 data: Width is 10, Length is 20

Program 11-5 (continued)

696 Chapter 11 More About Classes and Object-Oriented Programming

public:
 Address() { street = ""; }
 Address(string st) { setStreet(st); }
 void setStreet(string st) { street = st; }
 string getStreet() { return street; }
};

We could then create Mary’s address and then initialize Joan’s address to a copy of Mary’s
using the following code:

Address mary("123 Main St");
Address joan = mary;

Recall that a constructor must execute whenever an object is being created. When an object
is created and initialized with another object of the same class, the compiler automatically
calls a special constructor, called a copy constructor, to perform the initialization using the
existing object’s data. This copy constructor can be specified by the programmer, as we will
shortly show.

The Default Copy Constructor
If the programmer does not specify a copy constructor for the class, then the compiler
automatically calls a default copy constructor. This default copy constructor simply copies
the data of the existing object to the new object using memberwise assignment.

Most of the time, the default copy constructor provides the kind of behavior that we want. For
example, if after initializing Joan’s address with Mary’s, Joan later moves out and gets her own
place, we can change Joan’s address without affecting Mary’s. This is illustrated in Program 11-6.

Program 11-6

1 // This program demonstrates the operation of the
2 // default copy constructor.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 class Address
8 {
9 private:
10 string street;
11 public:
12 Address() { street = ""; }
13 Address(string st) { setStreet(st); }
14 void setStreet(string st) { street = st; }
15 string getStreet() { return street; }
16 };
17
18 int main()
19 {
20 // Mary and Joan live at same address.

(program continues)

Copy Constructors 697

Deficiencies of Default Copy Constructors
There are times, however, when the behavior of the default copy constructor is not what
we expect. Consider a class

class NumberArray
{
private:
 double *aPtr;
 int arraySize;
public:
 NumberArray(int size, double value);
 // ~NumberArray(){ if (arraySize > 0) delete [] aPtr;}
 void print();
 void setValue(double value);
};

that encapsulates an array of numbers of type double (in practice there may be other
members of the class as well). To allow flexibility for different size arrays, the class con-
tains a pointer to the array instead of directly containing the array itself. The constructor
of the class, whose code is shown below, allocates an array of a specified size, then sets all
the entries of the array to a given value. The class has member functions for printing the
array and for setting the entries of the array to a given (possibly different) value. The class’s
destructor uses the delete [] statement to deallocate the array (see Chapter 10) but is cur-
rently commented out to avoid problems caused by the default copy constructor. We shall
shortly point out the specific nature of these problems.

Program 11-7 creates an object of the class, creates and initializes a second object with the
data of the first, and then changes the array in the second object. As shown by the output
of the program, changing the second object’s data changes the data in the first object. In
many cases, this is undesirable and leads to bugs.

21 Address mary("123 Main St");
22 Address joan = mary;
23 cout << "Mary lives at " << mary.getStreet() << endl;
24 cout << "Joan lives at " << joan.getStreet() << endl;
25
26 // Now Joan moves out.
27 joan.setStreet("1600 Pennsylvania Ave");
28 cout << "Now Mary lives at " << mary.getStreet() << endl;
29 cout << "Now Joan lives at " << joan.getStreet() << endl;
30
31 return 0;
32 }

Program Output
Mary lives at 123 Main St
Joan lives at 123 Main St
Now Mary lives at 123 Main St
Now Joan lives at 1600 Pennsylvania Ave

Program 11-6 (continued)

698 Chapter 11 More About Classes and Object-Oriented Programming

Program 11-7

Contents of NumberArray.h
1 #include <iostream>
2 using namespace std;
3
4 class NumberArray
5 {
6 private:
7 double *aPtr;
8 int arraySize;
9 public:
10 NumberArray(int size, double value);
11 // ~NumberArray(){ if (arraySize > 0) delete [] aPtr;}
12 // Commented out to avoid problems with the
13 // default copy constructor.
14 void print();
15 void setValue(double value);
16 };

Contents of NumberArray.cpp
1 #include <iostream>
2 #include "NumberArray.h"
3 using namespace std;
4
5 //***
6 //Constructor allocates an array of the *
7 //given size and sets all its entries to the *
8 //given value. *
9 //***
10 NumberArray::NumberArray(int size, double value)
11 {
12 arraySize = size;
13 aPtr = new double[arraySize];
14 setValue(value);
15 }
16
17 //***
18 //Sets all the entries of the array to the same value. *
19 //***
20 void NumberArray::setValue(double value)
21 {
22 for(int index = 0; index < arraySize; index++)
23 aPtr[index] = value;
24 }
25
26 //***************************************
27 //Prints all the entries of the array. *
28 //***************************************
29 void NumberArray::print()
30 {
31 for(int index = 0; index < arraySize; index++)
32 cout << aPtr[index] << " ";
33 }

(program continues)

Copy Constructors 699

The reason changing the data in one object changes the other object is that the member-
wise assignment performed by the default copy constructor copies the value of the pointer
in the first object to the pointer in the second object, leaving both pointers pointing to the
same data. Thus when one of the objects changes its data through its pointer, it affects the
other object as well. This is illustrated in Figure 11-3.

Contents of Pr11-7.cpp
1 // This program demonstrates the deficiencies of
2 // the default copy constructor.
3 #include <iostream>
4 #include <iomanip>
5 #include "NumberArray.h"
6 using namespace std;
7
8 int main()
9 {
10 // Create an object.
11 NumberArray first(3, 10.5);
12
13 // Make a copy of the object.
14 NumberArray second = first;
15
16 // Display the values of the two objects.
17 cout << setprecision(2) << fixed << showpoint;
18 cout << "Value stored in first object is ";
19 first.print();
20 cout << endl << "Value stored in second object is ";
21 second.print();
22 cout << endl << "Only the value in second object "
23 << "will be changed." << endl;
24
25 // Now change the value stored in the second object.
26 second.setValue(20.5);
27
28 // Display the values stored in the two objects.
29 cout << "Value stored in first object is ";
30 first.print();
31 cout << endl << "Value stored in second object is ";
32 second.print();
33
34 return 0;
35 }

Program Output
Value stored in first object is 10.50 10.50 10.50
Value stored in second object is 10.50 10.50 10.50
Only the value in second object will be changed.
Value stored in first object is 20.50 20.50 20.50
Value stored in second object is 20.50 20.50 20.50

Program 11-7 (continued)

700 Chapter 11 More About Classes and Object-Oriented Programming

The fact that the two pointers point to the same memory location will also cause problems
when the destructors for the two objects try to deallocate the same memory (that is why
the destructor code in the above class is commented out). In general, classes with pointer
members will not behave correctly under the default copy constructor provided by the
compiler. They must be provided with a copy constructor written by the programmer.

Programmer-Defined Copy Constructors
A programmer can define a copy constructor for a class. A programmer-defined copy con-
structor must have a single parameter that is a reference to the same class. Thus in the case
of the previous example, the prototype for the copy constructor would be

NumberArray::NumberArray(NumberArray &obj)

This copy constructor avoids the problems of the default copy constructor by allocating
separate memory for the pointer of the new object before doing the copy:

NumberArray::NumberArray(NumberArray &obj)
{

arraySize = obj.arraySize;
aPtr = new double[arraySize];
for(int index = 0; index < arraySize; index++)

aPtr[index] = obj.aPtr[index];
}

Program 11-8 demonstrates the use of the NumberArray class modified to have a copy con-
structor. The class declaration is in the NumberArray2.h file, with the implementations of
its member functions being given in NumberArray2.cpp.

Figure 11-3

Program 11-8

Contents of NumberArray2.h
1 #include <iostream>
2 using namespace std;
3
4 class NumberArray
5 {
6 private:
7 double *aPtr;
8 int arraySize;
9 public:
10 NumberArray(NumberArray &);
11 NumberArray(int size, double value);

(program continues)

first

second

10.5 10.5 10.5aPtr

aPtr

Copy Constructors 701

12 ~NumberArray() { if (arraySize > 0) delete [] aPtr; }
13 void print();
14 void setValue(double value);
15 };

Contents of NumberArray2.cpp
1 #include <iostream>
2 #include "NumberArray2.h"
3 using namespace std;
4
5 //***
6 //Copy constructor allocates a new *
7 //array and copies into it the entries *
8 //of the array in the other object. *
9 //***
10 NumberArray::NumberArray(NumberArray &obj)
11 {
12 arraySize = obj.arraySize;
13 aPtr = new double[arraySize];
14 for(int index = 0; index < arraySize; index++)
15 aPtr[index] = obj.aPtr[index];
16 }
17
18 //***
19 //Constructor allocates an array of the *
20 //given size and sets all its entries to the *
21 //given value. *
22 //***
23 NumberArray::NumberArray(int size, double value)
24 {
25 arraySize = size;
26 aPtr = new double[arraySize];
27 setValue(value);
28 }
29
30 //**
31 //Sets all the entries of the array to the same value. *
32 //**
33 void NumberArray::setValue(double value)
34 {
35 for(int index = 0; index < arraySize; index++)
36 aPtr[index] = value;
37 }
38
39 //**************************************
40 //Prints all the entries of the array. *
41 //**************************************
42 void NumberArray::print()
43 {
44 for(int index = 0; index < arraySize; index++)
45 cout << aPtr[index] << " ";
46 }

(program continues)

Program 11-8 (continued)

702 Chapter 11 More About Classes and Object-Oriented Programming

The copy constructor is also automatically called by the compiler to create a copy of an
object whenever an object is being passed by value in a function call. It is for this reason
that the parameter to the copy constructor must be passed by reference; if it was passed by
value when the constructor was called, then the constructor would immediately have to be

Contents of Pr11-8.cpp
1 // This program demonstrates the use of copy constructors.
2 #include <iostream>
3 #include <iomanip>
4 #include "NumberArray2.h"
5
6 using namespace std;
7
8 int main()
9 {
10 NumberArray first(3, 10.5);
11
12 //Make second a copy of first object.
13 NumberArray second = first;
14
15 // Display the values of the two objects.
16 cout << setprecision(2) << fixed << showpoint;
17 cout << "Value stored in first object is ";
18 first.print();
19 cout << "\nValue stored in second object is ";
20 second.print();
21 cout << "\nOnly the value in second object will "
22 << "be changed.\n";
23
24 //Now change value stored in second object.
25 second.setValue(20.5);
26
27 // Display the values stored in the two objects.
28 cout << "Value stored in first object is ";
29 first.print();
30 cout << endl << "Value stored in second object is ";
31 second.print();
32 return 0;
33 }

Program Output
Value stored in first object is 10.50 10.50 10.50
Value stored in second object is 10.50 10.50 10.50
Only the value in second object will be changed.
Value stored in first object is 10.50 10.50 10.50
Value stored in second object is 20.50 20.50 20.50

NOTE: A copy constructor must have a single parameter that is a reference to the same
class. Forgetting the & that identifies reference parameters will result in compiler errors.

Program 11-8 (continued)

Copy Constructors 703

called again to create the copy to be passed by value, leading to an endless chain of calls to
the constructor.

The copy constructor is also called to create a copy of an object to be returned from a
function.

Using const Parameters
Because copy constructors are required to use reference parameters, they have access to
their argument’s data. Since the purpose of a copy constructor is to make a copy of the
argument, there is no reason the constructor should modify the argument’s data. With this
in mind, it’s a good idea to make a copy constructor’s parameter constant by specifying the
const key word in the parameter list. Here is an example:

NumberArray::NumberArray(const NumberArray &obj)
{

arraySize = obj.arraySize;
aPtr = new double[arraySize];
for(int index = 0; index < arraySize; index++)

aPtr[index] = obj.aPtr[index];
}

Invocation of Copy Constructors
Copy constructors are automatically called by the system whenever an object is being cre-
ated by initializing it with another object of the same class. For example, the copy construc-
tor for the Rectangle class is called for each of the following initialization statements:

Rectangle box(5, 10);
Rectangle b = box; // Initialization statement
Rectangle b1(box); // Initialization statement

Copy constructors are also automatically called when a function call receives a value
parameter of the class type. For example, for a function of the form

void fun(Rectangle rect)
{
}

a call such as

fun(box);

will cause the Rectangle copy constructor to be called. Finally, copy constructors are
automatically called whenever a function returns an object of the class by value. Thus, in
the function

Rectangle makeRectangle()
{
 Rectangle rect(12, 3);
 return rect;

}

the copy constructor will be called when the return statement is executed. This is because
the return statement must create a nonlocal copy of the object that will be available to

704 Chapter 11 More About Classes and Object-Oriented Programming

the caller after the function is done executing. To summarize, a class copy constructor is
called when

• A variable is being initialized from an object of the same class
• A function is called with a value parameter of the class
• A function is returning a value that is an object of the class

Checkpoint

11.8 Briefly describe what is meant by memberwise assignment.

11.9 Describe two scenarios in which memberwise assignment occurs.

11.10 Describe a situation in which memberwise assignment should not be used.

11.11 When is a copy constructor called?

11.12 How does the compiler know that a member function is a copy constructor?

11.13 What action is performed by a class’s default copy constructor?

11.6 Operator Overloading

CONCEPT: C++ allows you to redefine how standard operators work when used with
class objects.

Overloading the = Operator
As we have seen, copy constructors are designed to solve problems that arise when an
object containing a pointer is initialized with the data of another object of the same class
using memberwise assignment. Similar problems arise in object assignment. For example,
with the NumberArray class of the previous section, we may have a program that has
defined two objects of that class:

NumberArray first(3, 10.5);
NumberArray second(5, 20.5);

Now, because C++ allows the assignment operator to be used with class objects, we may
execute the statement

first = second;

if we want to set the first object to exactly the same value as the second. At this point, C++
will once again perform a memberwise copy from the second to the first object, leaving
pointers in both objects pointing to the same memory.

Because the default object assignment encounters the same problem as the default copy
constructor, we might think that a programmer-defined copy constructor can be used to
solve the problem caused by the default assignment, but this is not so. Copy constructors
only come into play when an object is being initialized at creation time. In particular, copy

NOTE: Copy constructors are not called when a parameter of the class is passed by
reference or through a pointer, nor are they called when a function returns a reference
or pointer to an object of the class.

Operator
Overloading

Operator Overloading 705

constructors are not called in an assignment. To see the difference between initialization and
assignment, suppose that the object first has already been created. Then the statement

NumberArray second = first; // copy constructor called

which creates second and initializes it with the value of first, is an initialization
and causes the copy constructor to be called to perform the initialization. However, the
statement

second = first; // copy constructor not called

which assumes that both objects have previously been created, is an assignment, and there-
fore no constructor is invoked.

To address the problems that result from memberwise assignment of objects, we need to
modify the behavior of the assignment operator so that it does something other than mem-
berwise assignment when it is applied to objects of classes that have pointer members. In
effect we are supplying a different version of the assignment operator to be used for objects
of that class. In so doing, we say that we are overloading the assignment operator.

One way to overload the assignment operator for a given class is to define an operator func-
tion called operator= as a member function of the class. To do this for the NumberArray
class, we would write the class declaration as follows:

class NumberArray
{
private:

double *aPtr;
int arraySize;

public:
void operator=(const NumberArray &right); // Overloaded operator.
NumberArray(const NumberArray &);
NumberArray(int size, double value);
~NumberArray() { if (arraySize > 0) delete [] aPtr; }
void print();
void setValue(double value);

};

Let’s take a look at the function header, or prototype, before we look at how the operator
function itself is implemented. We break the header down into its main parts, as shown in
Figure 11-4.

The name of the function is operator=. Since the operator function is an instance member of
a class, it can only be called through an object of the class. The object of the class through
which it is called is considered the left operand of the assignment operator, while the parameter

Figure 11-4

Return
type

Function
name

Parameter for object
on the right side of operator

void operator=(const NumberArray &right)

706 Chapter 11 More About Classes and Object-Oriented Programming

passed to the function is considered the right operand of the assignment operator. To illus-
trate, let us suppose that two objects, left and right, have been defined in a program:

NumberArray left(3,10.5);
NumberArray right(5, 20.5);

To assign the value of right to left, we call the member function operator= through the
left object, and pass it the right object as parameter:

left.operator=(right);

While you can call operator functions this way, the compiler will also let you use the more
conventional notation

left = right;

Let us now consider the implementation of the above operator function. The function
starts out by deleting memory allocated to pointers in the object being assigned to, then
makes a copy of the other object in pretty much the same way as the copy constructor for
the class. Here is the code for the function (we have used the name right for the object
that is the right parameter of the assignment, but any other name could have been used).

void NumberArray::operator=(const NumberArray &right)
{

if (arraySize > 0) delete [] aPtr;
arraySize = right.arraySize;
aPtr = new double[arraySize];
for (int index = 0; index < arraySize; index++)
 aPtr[index] = right.aPtr[index];

}

In general, the assignment operator should be overloaded whenever a nondefault copy
constructor is used. In particular, classes allocating dynamic memory to a pointer mem-
ber in any constructor should define both a copy constructor and an overloaded assign-
ment operator. In addition, they should also provide a destructor to deallocate the
storage allocated in the constructor.

The class NumberArray, with modifications to include both a copy constructor and an
overloaded assignment operator, is demonstrated in Program 11-9.

NOTE: Parameters to operator functions do not have to be passed by reference, nor do
they have to be declared const. In this example we have used a reference parameter for
efficiency reasons: Reference parameters avoid the overhead of copying the object being
passed as parameter. The const is used to protect the parameter from change.

Program 11-9

Contents of overload.h
1 #include <iostream>
2 using namespace std;
3
4 class NumberArray
5 {
6 private:

(program continues)

Operator Overloading 707

7 double *aPtr;
8 int arraySize;
9 public:
10 // Overloaded operator function.
11 void operator=(const NumberArray &right);
12
13 // Constructors and other member functions.
14 NumberArray(const NumberArray &);
15 NumberArray(int size, double value);
16 ~NumberArray() { if (arraySize > 0) delete [] aPtr; }
17 void print();
18 void setValue(double value);
19 };

Contents of overload.cpp
1 #include <iostream>
2 #include "overload.h"
3 using namespace std;
4
5 //***
6 //The overloaded operator function for assignment. *
7 //***
8 void NumberArray::operator=(const NumberArray &right)
9 {
10 if (arraySize > 0) delete [] aPtr;
11 arraySize = right.arraySize;
12 aPtr = new double[arraySize];
13 for (int index = 0; index < arraySize; index++)
14 aPtr[index] = right.aPtr[index];
15 }
16
17 //**
18 //Copy constructor. *
19 //**
20 NumberArray::NumberArray(const NumberArray &obj)
21 {
22 arraySize = obj.arraySize;
23 aPtr = new double[arraySize];
24 for(int index = 0; index < arraySize; index++)
25 aPtr[index] = obj.aPtr[index];
26 }
27
28 //**
29 //Constructor. *
30 //**
31 NumberArray::NumberArray(int size1, double value)
32 {
33 arraySize = size1;
34 aPtr = new double[arraySize];
35 setValue(value);
36 }
37

(program continues)

Program 11-9 (continued)

708 Chapter 11 More About Classes and Object-Oriented Programming

38 //**
39 //Sets the value stored in all entries of the array. *
40 //**
41 void NumberArray::setValue(double value)
42 {
43 for(int index = 0; index < arraySize; index++)
44 aPtr[index] = value;
45 }
46
47 //***************************************
48 //Print out all entries in the array. *
49 //***************************************
50 void NumberArray::print()
51 {
52 for(int index = 0; index < arraySize; index++)
53 cout << aPtr[index] << " ";
54 }

Contents of Pr11-9.cpp
1 // This program demonstrates overloading of
2 // the assignment operator.
3 #include <iostream>
4 #include <iomanip>
5 #include "overload.h"
6 using namespace std;
7
8 int main()
9 {
10 NumberArray first(3, 10.5);
11 NumberArray second(5, 20.5);
12
13 // Display the values of the two objects.
14 cout << setprecision(2) << fixed << showpoint;
15 cout << "First object's data is ";
16 first.print();
17 cout << endl << "Second object's data is ";
18 second.print();
19
20 // Call the overloaded operator.
21 cout << "\nNow we will assign the second object "
22 << "to the first." << endl;
23 first = second;
24
25 // Display the new values of the two objects.
26 cout << "First object's data is ";
27 first.print();
28 cout << endl << "The second object's data is ";
29 second.print();
30
31 return 0;
32 }

(program continues)

Program 11-9 (continued)

Operator Overloading 709

The = Operator’s Return Value
There is only one problem with the overloaded = operator shown in Program 11-8: It has a void
return type. C++’s built-in assignment operator allows multiple assignment statements such as

a = b = c;

Multiple assignment statements work because the built-in assignment operator is implemented
so that it returns the value of its left operand after the assignment has been performed. Thus in
this statement, the expression b = c causes c to be assigned to b and then returns the value of
b. The return value is then stored in a.

To make an overloaded assignment operator behave similarly, we must redefine the operator
function so that it also returns the value of its left operand after the assignment has been per-
formed. In particular, we need to declare the operator function to have a return type of the
same type as the class. This is shown in our final modification of the NumberArray class:

class NumberArray
{
private:
 double *aPtr;
 int arraySize;
public:
 NumberArray operator=(const NumberArray &right);
 NumberArray(const NumberArray &);
 NumberArray(int size, double value);
 ~NumberArray() { if (arraySize > 0) delete [] aPtr; }
 void print();
 void setValue(double value);
};

The only modification we need to make to the assignment operator function is to add a
statement at the very end returning the value of its left operand. Since the assignment is
equivalent to the statement

left.operator=(right);

returning the value of the left operand is accomplished by the operator function returning
the value of the object through which it is called. Recall that C++ makes available to each
call of a non-static member function, the address of the object through which the call is
being made, and that the address of that object is accessed through the pointer this. The
value of the object itself can be obtained and returned by dereferencing the this pointer:

return *this;

Program Output
First object's data is 10.50 10.50 10.50
Second object's data is 20.50 20.50 20.50 20.50 20.50
Now we will assign the second object to the first.
First object's data is 20.50 20.50 20.50 20.50 20.50
The second object's data is 20.50 20.50 20.50 20.50 20.50

Program 11-9 (continued)

710 Chapter 11 More About Classes and Object-Oriented Programming

The code for the modified assignment operator function is

NumberArray NumberArray::operator=(const NumberArray &right)
{
 if (arraySize > 0) delete [] aPtr;
 arraySize = right.arraySize;
 aPtr = new double[arraySize];
 for (int index = 0; index < arraySize; index++)
 aPtr[index] = right.aPtr[index];
 return *this;
}

Overloading Other Operators
C++ allows the programmer to overload other operators besides assignment. There are
many times when it is natural to overload some of C++’s built-in operators to make them
work with classes that the programmer has defined. For example, assume that a class
named Date exists, and that objects of the Date class hold the day, month, and year in
member variables. Suppose the Date class has a member function named add. The add
member function adds a number of days to the date and adjusts the member variables if
the date goes to another month or year. For example, the following statement adds five
days to the date stored in the today object:

today.add(5);

Although it might be obvious that the statement is adding five days to the date stored in today,
the use of an operator might be more intuitive. For example, look at the following statement:

today += 5;

This statement uses the standard += operator to add 5 to today. This behavior does not
happen automatically, however. The += operator must be overloaded for this action to
occur. In this section, you will learn to overload many of C++’s operators to perform spe-
cialized operations on class objects.

Some General Issues of Operator Overloading
Now that you have had an introduction to operator overloading, let’s look at some of the
general issues involved in this programming technique.

First, you can change an operator’s entire meaning, if that’s what you wish to do. There is
nothing to prevent you from changing the = symbol from an assignment operator to a
“display” operator. For instance, the following class does just that:

class Weird
{
private:

int value;

NOTE: You have already experienced the behavior of an overloaded operator. The /
operator performs two types of division: floating-point and integer. If one of operator’s
operands is a floating-point type, the result will be a floating-point value. If both of the
/ operator’s operands are integers, however, a different behavior occurs: the result is an
integer, and the fractional part is thrown away.

Operator Overloading 711

public:
Weird(int v)

{value = v; }
void operator=(const Weird &right)

{ cout << right.value << endl; }
};

Although the operator= function overloads the assignment operator, the function doesn’t
perform an assignment. All the overloaded operator does is display the contents of
right.value. Consider the following program segment:

Weird a(5), b(10);
a = b;

Although the statement a = b looks like an assignment statement, it actually causes the
contents of b’s value member to be displayed on the screen:

10

Another operator overloading issue is that you cannot change the number of operands
taken by an operator. The = symbol must always be a binary operator. Likewise, ++ and --
must always be unary operators.

The last issue is that although you may overload most of the C++ operators, you can-
not overload all of them. Table 11-1 shows all of the C++ operators that may be
overloaded.

The only operators that cannot be overloaded are

?: . .* :: sizeof

Approaches to Operator Overloading
There are two approaches you can take to overload an operator:

1. Make the overloaded operator a member function of the class. This allows the opera-
tor function access to private members of the class. It also allows the function to use
the implicit this pointer parameter to access the calling object.

2. Make the overloaded member function a separate, stand-alone function. When over-
loaded in this manner, the operator function must be declared a friend of the class to
have access to the private members of the class.

NOTE: Some of the operators in Table 11-1 are beyond the scope of this book and are
not covered.

Table 11-1 Operators That Can Be Overloaded

+ - * / % ^ & | ~ ! = <

> += -= *= /= %= ^= &= |= << >> >>=

<<= == != <= >= && || ++ -- ->* , ->

[] () new delete

712 Chapter 11 More About Classes and Object-Oriented Programming

Some operators, such as the stream input and output operators >> and <<, must be over-
loaded as stand-alone functions. Other operators may be overloaded either as member
functions or stand-alone functions. Consider a class

class Length
{
private:
 int len_inches;
public:
 Length(int feet, int inches)
 {
 setLength(feet, inches);
 }
 Length(int inches){ len_inches = inches; }
 int getFeet(){ return len_inches / 12; }
 int getInches() { return len_inches % 12; }
 void setLength(int feet, int inches)
 {
 len_inches = 12 *feet + inches;
 }

};

designed to represent length measurements. The class internally represents the length of an
item in inches, but allows its clients to specify measurements in feet and inches via a set-
Length() function. The class also provides member functions getFeet() and getInches()
to allow the feet and inch components of a measurement to be separately retrieved.

Overloading the Arithmetic and Relational Operators
Clients of the class must be able to add and subtract measurements. In addition, they
should be able to compare two measurements to see if they are equal, or if one of them is
less or greater than the other. We will provide all these capabilities by overloading the
operators +, -, <, and == as stand-alone functions. We start by adding the following dec-
larations to the Length class:

friend Length operator+(Length a, Length b);
friend Length operator-(Length a, Length b);
friend bool operator<(Length a, Length b);
friend bool operator==(Length a, Length b);

To see how we arrive at these declarations, consider the addition and less-than operators.
Addition needs to take two Length objects a and b as parameters and produce a third
Length object that is the sum of a and b. Similarly, the less-than operator needs to take
two Length objects as parameters and return a Boolean value.

To see how to write the code that implements these functions, consider again the addition
operator. Given two input parameters a and b, it needs to return a Length object whose
len_inches member is the sum of the len_inches members of a and b. This can be done
by writing

Length operator+(Length a, Length b)
{
 Length result(a.len_inches + b.len_inches);
 return result;
}

Operator Overloading 713

or more succinctly:

Length operator+(Length a, Length b)
{
 return Length(a.len_inches + b.len_inches);
}

We can reason in a similar manner to work out the definitions of the operator functions -,
< , and ==. Here is a complete program showing the class and its overloaded operators and
illustrating their use.

Contents of Length.h
1 #ifndef _LENGTH_H
2 #define _LENGTH_H
3 #include <iostream>
4 using namespace std;
5
6 class Length
7 {
8 private:
9 int len_inches;
10 public:
11 Length(int feet, int inches)
12 {
13 setLength(feet, inches);
14 }
15 Length(int inches){ len_inches = inches; }
16 int getFeet(){ return len_inches / 12; }
17 int getInches() { return len_inches % 12; }
18 void setLength(int feet, int inches)
19 {
20 len_inches = 12 *feet + inches;
21 }
22 friend Length operator+(Length a, Length b);
23 friend Length operator-(Length a, Length b);
24 friend bool operator< (Length a, Length b);
25 friend bool operator== (Length a, Length b);
26 };
27 #endif

Contents of Length.cpp
1 #include "Length.h"
2
3 //*************************************
4 // Overloaded operator + *
5 //*************************************
6 Length operator+(Length a, Length b)
7 {
8 return Length(a.len_inches + b.len_inches);
9 }
10
11 //*************************************
12 // Overloaded operator - *
13 //*************************************
14 Length operator-(Length a, Length b)
15 {

714 Chapter 11 More About Classes and Object-Oriented Programming

16 return Length(a.len_inches - b.len_inches);
17 }
18
19 //************************************
20 // Overloaded operator == *
21 //************************************
22 bool operator==(Length a, Length b)
23 {
24 return a.len_inches == b.len_inches;
25 }
26
27 //************************************
28 // Overloaded operator < *
29 //************************************
30 bool operator<(Length a, Length b)
31 {
32 return a.len_inches < b.len_inches;
33 }

Program 11-10

1 // This program demonstrates the Length class's overloaded
2 // +, -, ==, and < operators.
3 #include <iostream>
4 #include "Length.h"
5 using namespace std;
6
7 int main()
8 {
9 Length first(0), second(0), third(0);
10 int f, i;
11 cout << "Enter a distance in feet and inches: ";
12 cin >> f >> i;
13 first.setLength(f, i);
14 cout << "Enter another distance in feet and inches: ";
15 cin >> f >> i;
16 second.setLength(f, i);
17
18 // Test the + and - operators
19 third = first + second;
20 cout << "first + second = ";
21 cout << third.getFeet() << " feet, ";
22 cout << third.getInches() << " inches.\n";
23 third = first - second;
24 cout << "first - second = ";
25 cout << third.getFeet() << " feet, ";
26 cout << third.getInches() << " inches.\n";
27
28 // Test the relational operators
29 cout << "first == second = ";
30 if (first == second) cout << "true"; else cout << "false";
31 cout << "\n";

(program continues)

Operator Overloading 715

Choosing Between Stand-Alone and
Member-Function Operators
Given the stand-alone overloads we have written, the code

Length a(4, 2), b(1, 8), c(0);
c = a + b;

is interpreted by the compiler as being

Length a(4, 2), b(1, 8), c(0);
c = operator+(a, b);

The compiler allows the programmer to use the friendly infix notation. Internally, however,
it sees the operator as just an ordinary function whose name is operator+. This has an
implication that is not immediately obvious. The statement

c = 2 + a;

is equivalent to

c = operator+(2, b);

Both of these statements compile and execute correctly because the convert constructor of
the Length class is able to create a Length object out of the integer parameter 2. You will
learn about convert constructors in Section 11.8.

We could just as easily have overloaded the arithmetic and relational operators as member
functions. Here is how to do so for the addition operator. First, modify the in-class declara-
tion to make the operator a member function:

class Length
{
private:
 int len_inches;
public:
 // Modified declaration of operator+
 Length operator+(Length b);
 // Rest of class not shown
};

32 cout << "first < second = ";
33 if (first < second) cout << "true"; else cout << "false";
34 cout << "\n";
35
36 return 0;
37 }

Program Output with Example Input Shown in Bold
Enter a distance in feet and inches: 6 5[Enter]
Enter another distance in feet and inches: 3 10[Enter]
first + second = 10 feet, 3 inches.
first - second = 2 feet, 7 inches.
first == second = false
first < second = false

Program 11-10 (continued)

716 Chapter 11 More About Classes and Object-Oriented Programming

Notice that the operator is now declared as taking a single operator of type Length. This is
because as a member function, the operator is automatically passed a Length object
through the implicit parameter this. When we write

Length a(4, 2), b(1, 8), c(0);
c = a + b;

The compiler sees this as

Length a(4, 2), b(1, 8), c(0);
c = a.operator+(b);

When you write a + b, the left operand of the overloaded + operator becomes the object
through which the member function is called, and the right operand becomes the explicit
parameter. With these changes, the body of the operator is written as follows:

Length Length::operator+(Length b)
{
 return Length(this->len_inches + b.len_inches);
}

To sum up, the addition operator (as well as other arithmetic and relational operators) can
be overloaded equally well as member functions or as stand-alone functions. It is generally
better to overload binary operators that take parameters of the same type as stand-alone
functions. This is because, unlike stand-alone operator overloading, member-function
overloading introduces an artificial distinction between the two parameters by making the
left parameter implicit. This allows convert constructors to apply to the right parameter
but not to the left, creating situations where changing the order of parameters causes a
compiler error in an otherwise correct program:

Length a(4, 2), c(0);
c = a + 2; // Compiles, equivalent to c = a.operator+(2)
c = 2 + a; // Does not compile: equivalent to c = 2.operator+(a);

Overloading the Prefix ++ Operator
We want to overload the prefix operator for the Length class so that the expression ++b
increments the object b by adding 1 inch to its length and returns the resulting object. We
overload this operator as a member function. This makes its single parameter implicit, so
the overloaded operator needs no parameters. Here is the portion of the Length class that
shows the operator declaration:

class Length
{
private:
 int len_inches;
public:
 // Declaration of prefix ++
 Length operator++();
 // Rest of class not shown
};

Here is the implementation of the operator—it increases the number of inches by 1 and
returns the modified object:

Operator Overloading 717

Length Length::operator++()
{
 len_inches ++;
 return *this;
}

Given this overload, the user-friendly notation ++b is equivalent to the call b.opera-
tor++(). Either notation may be used in your program.

Overloading the Postfix ++ Operator
The postfix increment operator b++ also increments the length of b, but differs from the
prefix version in that it returns the value that the object had prior to being incremented.
Overloading the postfix operator is only slightly different from overloading the prefix ver-
sion. Here is the function that overloads the postfix operator for the Length class:

Length Length::operator++(int)
{
 Length temp = *this;
 len_inches ++;
 return temp;
}

The first difference you will notice is that the function has a dummy parameter of type int
that is never used in the body of the function. This is a convention that tells the compiler that
the increment operator is being overloaded in postfix mode. The second difference is the use
of a temporary local variable temp to capture the value of the object before it is incremented.
This value is saved and is later returned by the function.

Overloading the Stream Insertion and
Extraction Operators
Overloading the stream insertion operator << is convenient because it allows values of
objects to be converted into text and output to cout, to a file object, or to any object of a
class that derives from ostream. In the presence of appropriate overloads, the statements

Length b(4, 8), c(2, 5);
cout << b;
cout << b + c;

appear to the compiler as

Length b(4, 8), c(2, 5);
operator<<(cout, b);
operator(cout, b + c);

This equivalence has the following implications:

1. The overloaded operator << takes two parameters, the first of which is an ostream
object and the second of which is an object of the class for which the operator
is being overloaded. For the Length class, the prototype would be
operator<<(ostream &strm, Length a).

718 Chapter 11 More About Classes and Object-Oriented Programming

2. To allow expressions (such as b + c) in the second parameter, the second parameter
should be passed by value. The first parameter should be passed by reference because
ostream parameters should never be passed by value.

In addition, the stream insertion operator should return its stream parameter so that sev-
eral output expressions can be chained together, as in

Length b(4, 8), c(2, 5);
cout << b << ” ” << b + c;

Putting all of this together, we see that the stream insertion operator should be written as

ostream &operator<<(ostream& out, Length a)
{
 out << a.getFeet() << " feet, " << a.getInches() << " inches";
 return out;
}

Overloading the stream output operator is useful because it allows for the various fields of
a complex class to be labeled during output.

Overloading the stream input operator is similar, except that the class parameter signifying
the object to be read into must be passed by reference. Thus the header for the stream
input operator looks like this:

istream &operator>>(istream &in, Length &a);

The full implementation of this function can be found in lines 3–18 of the following listing
of Length1.cpp. At first glance, the function appears to be useful in that it relieves the
programmer of the necessity of issuing prompts for the different parts of the object when
the user is entering data at the screen and keyboard. Notice, however, that the prompts
become an irritating distraction if the operator is being used to read Length objects from a
non-keyboard source such as a file or network connection.

Contents of Length1.h
1 #ifndef _LENGTH1_H
2 #define _LENGTH1_H
3 #include <iostream>
4 using namespace std;
5
6 class Length
7 {
8 private:
9 int len_inches;
10 public:
11 Length(int feet, int inches)
12 {
13 setLength(feet, inches);
14 }
15 Length(int inches){ len_inches = inches; }
16 int getFeet(){ return len_inches / 12; }
17 int getInches() { return len_inches % 12; }
18 void setLength(int feet, int inches)

Operator Overloading 719

19 {
20 len_inches = 12 *feet + inches;
21 }
22 // Overloaded arithmetic and relational operators
23 friend Length operator+(Length a, Length b);
24 friend Length operator-(Length a, Length b);
25 friend bool operator<(Length a, Length b);
26 friend bool operator==(Length a, Length b);
27 Length operator++();
28 Length operator++(int);
29
30 // Overloaded stream input and output operators
31 friend ostream &operator<<(ostream &out, Length a);
32 friend istream &operator>>(istream &in, Length &a);
33 };
34 #endif

Contents of Length1.cpp
1 #include "Length1.h"
2
3 //**
4 // Overloaded stream extraction operator >> *
5 //**
6 istream &operator>>(istream &in, Length &a)
7 {
8 // Prompt for and read the object data
9 int feet, inches;
10 cout << "Enter feet: ";
11 in >> feet;
12 cout << "Enter inches: ";
13 in >> inches;
14
15 // Modify the object a with the data and return
16 a.setLength(feet, inches);
17 return in;
18 }
19
20 //***
21 // Overloaded stream insertion operator << *
22 //***
23 ostream &operator<<(ostream& out, Length a)
24 {
25 out << a.getFeet() << " feet, " << a.getInches() << " inches";
26 return out;
27 }
28
29 //***********************************
30 // Overloaded prefix ++ operator *
31 //***********************************
32 Length Length::operator++()
33 {
34 len_inches ++;
35 return *this;
36 }

720 Chapter 11 More About Classes and Object-Oriented Programming

37
38 //***********************************
39 // Overloaded postfix ++ operator *
40 //***********************************
41 Length Length::operator++(int)
42 {
43 Length temp = *this;
44 len_inches ++;
45 return temp;
46 }
47
48 //*************************************
49 // Overloaded operator - *
50 //*************************************
51 Length operator+(Length a, Length b)
52 {
53 return Length(a.len_inches + b.len_inches);
54 }
55
56 //*************************************
57 // Overloaded operator - *
58 //*************************************
59 Length operator-(Length a, Length b)
60 {
61 return Length(a.len_inches - b.len_inches);
62 }
63
64 //************************************
65 // Overloaded operator == *
66 //************************************
67 bool operator==(Length a, Length b)
68 {
69 return a.len_inches == b.len_inches;
70 }
71
72 //************************************
73 // Overloaded operator < *
74 //************************************
75 bool operator<(Length a, Length b)
76 {
77 return a.len_inches < b.len_inches;
78 }

Program 11-11

1 // This program demonstrates the Length class's overloaded
2 // prefix ++, postfix ++, and stream operators.
3 #include <iostream>
4 #include "Length1.h"
5 using namespace std;
6
7 int main()

(program continues)

Operator Overloading 721

Overloading the [] Operator
In addition to the traditional operators, C++ allows you to change the way the [] symbols
work. This gives you the ability to write classes that have array-like behaviors. For example,
the string class overloads the [] operator so you can access the individual characters stored in
string class objects. Assume the following definition exists in a program:

string name = "William";

The first character in the string, W, is stored at name[0], so the following statement will dis-
play W on the screen.

cout << name[0];

8 {
9 Length first(0), second(1, 9), c(0);
10
11 cout << "Demonstrating prefix ++ operator and output operator.\n";
12 for (int count = 0; count < 4; count++)
13 {
14 first = ++second;
15 cout << "First: " << first << ". Second: " << second << ".\n";
16 }
17 cout << "\nDemonstrating postfix ++ operator and output operator.\n";
18 for (int count = 0; count < 4; count++)
19 {
20 first = second++;
21 cout << "First: " << first << ". Second: " << second << ".\n";
22 }
23
24 cout << "\nDemonstrating input and output operators.\n";
25 cin >> c;
26 cout << "You entered " << c << "." << endl;
27 return 0;
28 }

Program Output with Example Input Shown in Bold
Demonstrating prefix ++ operator and output operator.
First: 1 feet, 10 inches. Second: 1 feet, 10 inches.
First: 1 feet, 11 inches. Second: 1 feet, 11 inches.
First: 2 feet, 0 inches. Second: 2 feet, 0 inches.
First: 2 feet, 1 inches. Second: 2 feet, 1 inches.

Demonstrating postfix ++ operator and output operator.
First: 2 feet, 1 inches. Second: 2 feet, 2 inches.
First: 2 feet, 2 inches. Second: 2 feet, 3 inches.
First: 2 feet, 3 inches. Second: 2 feet, 4 inches.
First: 2 feet, 4 inches. Second: 2 feet, 5 inches.

Demonstrating input and output operators.
Enter feet: 3[Enter]
Enter inches: 4[Enter]
You entered 3 feet, 4 inches.

Program 11-11 (continued)

722 Chapter 11 More About Classes and Object-Oriented Programming

Program 11-12 further demonstrates the string class’s overloaded [] operator.

You can use the overloaded[]operator to create an array class, like the following one.
The class behaves like a regular array but performs the bounds checking that C++ lacks. It
also has several other enhancements over regular integer arrays.

class IntArray
{

private:
int *aptr;
int arraySize;
void subError(); // Handles subscripts out of range

public:
IntArray(int); // Constructor
IntArray(const intArray &); // Copy constructor
~IntArray(); // Destructor
int size()

 { return arraySize; }
int &operator[](int); // Overloaded [] operator

};

Before focusing on the overloaded operator, let’s look at the constructors and the destruc-
tor. The code for the first constructor is

Program 11-12

1 // This program demonstrates the string class's
2 // overloaded [] operator.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 int main()
8 {
9 string name = "William";
10
11 cout << "Here are the letters in your name: \n";
12 for (int x=0; x < name.length(); x++)
13 cout << name[x] << ' ';
14 cout << "\nEnter a character and press Enter: ";
15 cin >> name[2];
16 cout << "Now, here are the letters in your name:\n";
17 for (int x=0; x < name.length(); x++)
18 cout << name[x] << ' ';
19
20 return 0;
21 }

Program Output with Output Shown in Bold
Here are the letters in your name:
W i l l i a m
Enter a character and press Enter: x[Enter]
Now, here are the letters in your name:
W i x l i a m

Operator Overloading 723

IntArray::IntArray(int s)
{

arraySize = s;
aptr = new int [s];
for (int count = 0; count < size; count++)

*(aptr + count) = 0;
}

When an instance of the class is defined, the number of elements the array is to have is
passed into the constructor’s parameter s. This value is copied to the arraySize member,
then used to dynamically allocate enough memory for the array. The constructor’s final
step is to store zeros in all of the array’s elements:

for (int count = 0; count < size; count++)
*(aptr + count) = 0;

The class also has a copy constructor, which is used when a class object is initialized with
another object’s data:

IntArray::IntArray(const IntArray &obj)
{

arraySize = obj.arraySize;
aptr = new int [arraySize];
for(int count = 0; count < arraySize; count++)

*(aptr + count) = *(obj.aptr + count);
}

A reference to the initializing object is passed into the parameter obj. Once the memory is
successfully allocated for the array, the constructor copies all the values in obj’s array into
the calling object’s array.

The destructor simply frees the memory allocated by the class’s constructors. First, however,
it checks the value in arraySize to be sure the array has at least one element:

IntArray::~IntArray()
{

if (arraySize > 0)
 delete [] aptr;

}

The [] operator is overloaded similarly to other operators. Here is the definition of the
operator[] function for the IntArray class:

int &IntArray::operator[](int sub)
{

if (sub < 0 || sub >= arraySize)
subError();

return aptr[sub];
}

The operator[] function can only have a single parameter. The one shown here uses an
integer parameter. This parameter holds the value placed inside the brackets in an
expression. For example, if table is an IntArray object, the number 12 will be passed
into the sub parameter in the following statement:

cout << table[12];

724 Chapter 11 More About Classes and Object-Oriented Programming

Inside the function, the value in the sub parameter is tested by the following if statement:

if (sub < 0 || sub >= arraySize)
subError();

This statement determines whether sub is within the range of the array’s subscripts. If sub
is less than zero or greater than or equal to arraySize, it’s not a valid subscript, so the
subError function is called. If sub is within range, the function uses it as an offset into the
array, and returns a reference to the value stored at that location.

One critically important aspect of the function shown is its return type. It’s crucial that the
function not simply return an integer, but a reference to an integer. The reason for this is
that expressions such as the following must be possible:

table[5] = 27;

Remember, the built-in = operator requires the object on its left to be an lvalue. An lvalue
must represent a modifiable memory location, such as a variable. The integer return value
of a function is not an lvalue. If the operator[] function merely returns an integer, it can-
not be used to create expressions placed on the left side of an assignment operator.

A reference to an integer, however, is an lvalue. If the operator[] function returns a refer-
ence, the statement above causes the operator[] function to be called with 5 being passed
as its argument. Assuming 5 is within range, the function returns a reference to the integer
stored at (aptr + 5). In essence, the statement is equivalent to

*(aptr + 5) = 27;

Because the operator[] function returns actual integers stored in the array, it is not neces-
sary for math or relational operators to be overloaded. Even the stream operators << and
>> will work just as they are with the IntArray class.

Here is the complete listing of intarray.h and intarray.cpp:

Contents of intarray.h
1 #ifndef INTARRAY_H
2 #define INTARRAY_H
3 #include <iostream>
4 using namespace std;
5
6 class IntArray
7 {
8 private:
9 int *aptr;
10 int arraySize;
11 void subError(); // Handles subscripts out of range
12 public:
13 IntArray(int); // Constructor
14 IntArray(const IntArray &); // Copy constructor
15 ~IntArray(); // Destructor
16 int size(){ return arraySize; }
17 int &operator[](int); // Overloaded [] operator
18 };
19 #endif

Operator Overloading 725

Contents of intarray.cpp
1 #include "intarray.h"
2
3 //**
4 // Constructor for IntArray class. Sets the size of *
5 // the array and allocates memory for it. *
6 //**
7 IntArray::IntArray(int s)
8 {
9 arraySize = s;
10 aptr = new int [s];
11 for (int count = 0; count < arraySize; count++)
12 *(aptr + count) = 0;
13 }
14
15 //**
16 // Copy constructor for IntArray class. *
17 //**
18 IntArray::IntArray(const IntArray &obj)
19 {
20 arraySize = obj.arraySize;
21 aptr = new int [arraySize];
22 for(int count = 0; count < arraySize; count++)
23 *(aptr + count) = *(obj.aptr + count);
24 }
25
26 //**
27 // Destructor for IntArray class. *
28 //**
29 IntArray::~IntArray()
30 {
31 if (arraySize > 0)
32 delete [] aptr;
33 }
34
35 //***
36 // subError function. Displays an error message and *
37 // exits the program when a subscript is out of range.*
38 //***
39 void IntArray::subError()
40 {
41 cout << "ERROR: Subscript out of range.\n";
42 exit(0);
43 }
44
45 //**
46 // Overloaded [] operator. The argument is a subscript *
47 // This function returns a reference to the element *
48 // in the array indexed by the subscript. *
49 //**
50 int &IntArray::operator[](int sub)

726 Chapter 11 More About Classes and Object-Oriented Programming

Program 11-13 demonstrates how the class works.

51 {
52 if (sub < 0 || sub >= arraySize)
53 subError();
54 return aptr[sub];
55 }

Program 11-13

1 // This program demonstrates a class that behaves
2 // like an array.
3 #include <iostream>
4 #include "intarray.h"
5 using namespace std;
6
7 int main()
8 {
9 IntArray table(10);
10
11 // Store values in the array.
12 for (int x = 0; x < table.size(); x++)
13 table[x] = (x * 2);
14
15 // Display the values in the array.
16 for (int x = 0; x < table.size(); x++)
17 cout << table[x] << " ";
18 cout << endl;
19
20 // Use the built-in + operator on array elements.
21 for (int x = 0; x < table.size(); x++)
22 table[x] = table[x] + 5;
23
24 // Display the values in the array.
25 for (int x = 0; x < table.size(); x++)
26 cout << table[x] << " ";
27 cout << endl;
28
29 // Use the built-in ++ operator on array elements.
30 for (int x = 0; x < table.size(); x++)
31 table[x]++;
32
33 // Display the values in the array.
34 for (int x = 0; x < table.size(); x++)
35 cout << table[x] << " ";
36
37 cout << endl;
38 return 0;
39 }

Program Output
0 2 4 6 8 10 12 14 16 18
5 7 9 11 13 15 17 19 21 23
6 8 10 12 14 16 18 20 22 24

Operator Overloading 727

Program 11-14 demonstrates the IntArray class’s bounds-checking capability.

Checkpoint

11.14 Assume there is a class named Pet. Write the prototype for a member function of
Pet that overloads the = operator.

11.15 Assume that dog and cat are instances of the Pet class, which has overloaded the =
operator. Rewrite the following statement so it appears in function call notation
instead of operator notation:

 dog = cat;

11.16 What is the disadvantage of an overloaded = operator returning void?

11.17 Describe the purpose of the this pointer.

11.18 The this pointer is automatically passed to what type of functions?

11.19 Assume there is a class named Animal, which overloads the = and + operators. In
the following statement, assume cat, tiger, and wildcat are all instances of the
Animal class:

 wildcat = cat + tiger;

Program 11-14

1 // This program demonstrates the bounds-checking
2 // capabilities of the IntArray class.
3 #include <iostream>
4 #include "intarray.h"
5 using namespace std;
6
7 int main()
8 {
9 IntArray table(10);
10
11 // Store values in the array.
12 for (int x = 0; x < table.size(); x++)
13 table[x] = x;
14
15 // Display the values in the array.
16 for (int x = 0; x < table.size(); x++)
17 cout << table[x] << " ";
18 cout << endl;
19
20 cout << "Attempting to store outside the array bounds:\n";
21 table[table.size()] = 0;
22
23 return 0;
24 }

Program Output
0 1 2 3 4 5 6 7 8 9
Attempting to store outside the array bounds:
ERROR: Subscript out of range.

728 Chapter 11 More About Classes and Object-Oriented Programming

Of the three objects, wildcat, cat, and tiger, which is calling the operator+
function? Which object is passed as an argument into the function?

11.20 What does the use of a dummy parameter in a unary operator function indicate to
the compiler?

11.21 Describe the values that should be returned from functions that overload relational
operators.

11.22 What is the advantage of overloading the << and >> operators?

11.23 What type of object should an overloaded << operator function return?

11.24 What type of object should an overloaded >> operator function return?

11.25 If an overloaded << or >> operator accesses a private member of a class, what must
be done in that class’s declaration?

11.26 Assume the class NumList has overloaded the [] operator. In the expression below,
list1 is an instance of the NumList class:

list1[25]

Rewrite this expression to explicitly call the function that overloads the [] operator.

11.27 When overloading a binary operator such as + or - as an instance member function
of a class, what object is passed into the operator function’s parameter?

11.28 Explain why overloaded prefix and postfix ++ and -- operator functions should
return a value.

11.29 How does C++ tell the difference between an overloaded prefix and postfix ++ or
-- operator function?

11.30 Overload the function call operator () (int i, int j) for the IntArray class
of Program 11-13 to return the sum of all array entries in positions i through j.

11.7 Type Conversion Operators

CONCEPT: Special operator functions may be written to convert a class object to any
other type.

As you’ve already seen, operator functions allow classes to work more like built-in
data types. Another capability that operator functions can give classes is automatic type
conversion.

Data type conversion happens “behind the scenes” with the built-in data types. For
instance, suppose a program uses the following variables:

int i;
double d;

The following statement automatically converts the value in i to a double and stores it in d:

d = i;

Likewise, the following statement converts the value in d to an integer (truncating the frac-
tional part) and stores it in i:

i = d;

Type Conversion Operators 729

The same functionality can also be given to class objects. For example, assuming distance
is a Length object and d is a double, the following statement would conveniently store
distance into a floating-point number stored in d, if Length is properly written:

d = distance;

To be able to use a statement such as this, an operator function must be written to perform
the conversion. Here is an operator function for converting a Length object to a double:

Length::operator double()
{

return len_inches /12 + (len_inches %12) / 12.0;
}

This function computes the real decimal equivalent of a length measurement in feet. For
example, a measurement of 4 feet 6 inches would be converted to the real number 4.5.

Program 11-15 demonstrates a modified version of the Length class with both a double
and an int conversion operator. The int operator simply returns the number of inches of
the Length object.

NOTE: No return type is specified in the function header because the return type is
inferred from the name of the operator function. Also, because the function is a member
function, it operates on the calling object and requires no other parameters.

Contents of Length2.h
1 #ifndef _LENGTH1_H
2 #define _LENGTH1_H
3 #include <iostream>
4 using namespace std;
5
6 class Length
7 {
8 private:
9 int len_inches;
10 public:
11 Length(int feet, int inches)
12 {
13 setLength(feet, inches);
14 }
15 Length(int inches){ len_inches = inches; }
16 int getFeet(){ return len_inches / 12; }
17 int getInches() { return len_inches % 12; }
18 void setLength(int feet, int inches)
19 {
20 len_inches = 12 *feet + inches;
21 }
22 // Type conversion operators
23 operator double();
24 operator int() { return len_inches; }
25
26 // Overloaded stream output operator
27 friend ostream &operator<<(ostream &out, Length a);
28 };
29 #endif

730 Chapter 11 More About Classes and Object-Oriented Programming

Contents of Length2.cpp
1 #include "Length2.h"
2
3 //***
4 // Operatord double converts Length to a double *
5 //***
6 Length::operator double()
7 {
8 return len_inches /12 + (len_inches %12) / 12.0;
9 }
10
11 //***
12 // Overloaded stream insertion operator << *
13 //***
14 ostream &operator<<(ostream& out, Length a)
15 {
16 out << a.getFeet() << " feet, " << a.getInches() << " inches";
17 return out;
18 }

Program 11-15

1 // This program demonstrates the type conversion operators for
2 // the Length class.
3 #include "Length2.h"
4
5 #include <iostream>
6 #include <string>
7 using namespace std;
8
9 int main()
10 {
11 Length distance(0);
12 double feet;
13 int inches;
14 distance.setLength(4, 6);
15 cout << "The Length object is " << distance << "." << endl;
16
17 // Convert and print
18 feet = distance;
19 inches = distance;
20 cout << "The Length object measures " << feet << " feet." << endl;
21 cout << "The Length object measures " << inches << " inches."
22 << endl;
23 return 0;
24 }

Program Output
The Length object is 4 feet, 6 inches.
The Length object measures 4.5 feet.
The Length object measures 54 inches.

Convert Constructors 731

11.8 Convert Constructors

CONCEPT: In addition to providing a means for the creation of objects, convert
constructors provide a way for the compiler to convert a value of a given
type to an object of the class.

A constructor that takes a single parameter of a type other than its class type can be
regarded as converting its parameter into an object of its class. Such a constructor is called
a convert constructor.

In addition to the function of creating objects of its class, a convert constructor provides
the compiler with a way of performing implicit type conversions. Such type conversions
will be performed by the compiler whenever a value of the constructor’s parameter type is
given where a value of the class type is expected.

As a simple example, consider the class

class IntClass
{
private:

int value;
public:

// Convert constructor from int
IntClass(int intValue)
{

value = intValue;
}
int getValue(){ return value; }

};

Since the constructor IntClass(int) takes a single parameter of a type other than
IntClass, it is a convert constructor.

Convert constructors are automatically invoked by the compiler whenever the context
demands a class object but a value of constructor’s parameter type is provided. This occurs
in four different contexts:

1. An object of the class is initialized with a value of the convert constructor’s parameter
type: for example

IntClass intObject = 23;

2. An object of the class is assigned a value of the convert constructor’s parameter type:
for example

intObject = 24;

3. A function expecting a value parameter of the class type is instead passed a value of
the constructor’s parameter type. For example, we may define a function

void printValue(IntClass x)
{

cout << x.getValue();
}

732 Chapter 11 More About Classes and Object-Oriented Programming

and then pass it an int when we call it:

printValue(25);

The compiler will use the convert constructor to convert the integer 25 into an
object of the IntClass class, and will then pass the object to the function. The
compiler will not invoke the convert constructor if the formal parameter is a
pointer or a reference to an IntClass object: convert constructors are only
invoked when the formal parameter uses pass by value.

4. A function that declares a return value of the class type actually returns a value of
the convert constructor’s parameter type. For example, the compiler will accept the
following function:

IntClass f(int intValue)
{

return intValue;
}

Note that the function returns a value of type integer, even though IntClass is
declared as its return type. Again, the compiler will implicitly call the convert
constructor to convert the integer intValue to an IntClass object. It is this
object which is returned from the function.

The following program illustrates the action of convert constructors.

Contents of Convert.h
1 #include <iostream>
2 using namespace std;
3
4 class IntClass
5 {
6 private:
7 int value;
8 public:
9 // Convert constructor from int.
10 IntClass(int intValue)
11 {
12 value = intValue;
13 }
14 int getValue(){ return value; }
15 };

Contents of Convert.cpp
1 #include "Convert.h"
2 //***
3 // This function returns an int even though *
4 // an IntClass object is declared as the *
5 // return type. *
6 //***
7 IntClass f(int intValue)
8 {
9 return intValue;
10 }
11

Convert Constructors 733

You should consider the use of a convert constructor whenever it makes sense to have
automatic conversions from some type to the class type. A practical example of the use of

12 //***
13 // Prints the int value inside an IntClass *
14 // object. *
15 //***
16 void printValue(IntClass x)
17 {
18 cout << x.getValue();
19 }

Program 11-16

1 // This program demonstrates the action of
2 // convert constructors.
3 #include "Convert.h"
4
5 // Function prototypes.
6 void printValue(IntClass);
7 IntClass f(int);
8
9 int main()
10 {
11 // Initialize with an int.
12 IntClass intObject = 23;
13 cout << "The value is " << intObject.getValue() << endl;
14
15 // Assign an int.
16 intObject = 24;
17 cout << "The value is " << intObject.getValue() << endl;
18
19 // Pass an int to a function expecting IntClass.
20 cout << "The value is ";
21 printValue(25);
22 cout << endl;
23
24 // Demonstrate conversion on a return.
25 intObject = f(26);
26 cout << "The value is ";
27 printValue(intObject);
28
29 return 0;
30 }

Program Output
The value is 23
The value is 24
The value is 25
The value is 26

734 Chapter 11 More About Classes and Object-Oriented Programming

convert constructors can be found in the C++ string class. That class provides a convert
constructor from C-strings:

class string
{

// Only the convert constructor is shown
public:

string(char *);
};

The presence of this convert constructor allows programmers to pass C-strings to func-
tions that expect string object parameters, assign C-strings to string objects, and use
C-strings as initial values of string objects:

string str = "Hello";
str = "Hello There!";

In a way, convert constructors work in a way that is the opposite of the type conversion
operators covered in a previous section: whereas type conversion operators convert an
object to a value of another type, convert constructors convert a value of a given type to an
object of the class.

Checkpoint

11.31 What are the benefits of having operator functions that perform object conversion?

11.32 Why is it not necessary to specify a return type for an operator function that per-
forms data type conversion?

11.33 Assume that there is a class named BlackBox. Write a prototype for a member
function that converts BlackBox to int.

11.34 Assume there are two classes, Big and Small.Write a prototype for the convert
constructor that converts objects of type Small to objects of type Big.

11.9 Aggregation and Composition

CONCEPT: Class aggregation occurs when an object of one class owns an object of
another class. Class composition is a form of aggregation where the owner
class controls the lifetime of objects of the owned class.

In Chapter 7, you learned that a class can contain members that are themselves objects of
other classes. When a class C contains a member that is an object of another class D, every
object of C will have inside it an object of the class D. This creates a has-a relationship
between C and D. In this type of relationship, every instance of C has, or owns, an instance
of the class D. In C++, such ownership usually occurs as result of C having a member of
type D, but it can also occur as result of C having a pointer to an object of D. The term
aggregation is often broadly used to describe situations in which objects of one class own
objects of other classes.

Member Initialization Lists
Consider the following Person and Date classes.

Aggregation
and
Composition

Aggregation and Composition 735

class Date
{

string month;
int day, year;

public:
Date(string m, int d, int y)
{

month = m;
day = d;
year = y;

}
};

class Person
{

String name;
Date dateOfBirth;

public:
Person(string name, string month, int day, int year)
{

// Pass month, day and year to the
// dateOfBirth constructor
this->name = name;

}
};

The Person constructor receives parameters month, day, and year that it needs to pass to
the Date constructor of its dateOfBirth member. C++ provides a special notation, called
a member initialization list, that allows constructors of classes to pass arguments to con-
structors of member objects. A member initialization list is a list of comma-separated calls
to member object constructors. It is prefixed with a colon and is placed just after the
header, but before the body, of the constructor of the containing class:

class Person
{

String name;
Date dateOfBirth;

public:
Person(string name, string month, int day, int year):
dateOfBirth(month, day, year) // Member initialization list
{

this->name = name;
}

};

Notice the colon at the end of the constructor header, and notice that in invoking the con-
structor of the contained Date object, it is the name of the object (dateOfBirth) rather
than the class of the object (Date) that is used. This allows constructors of different objects
of the same class to be invoked in the same initialization list.

Although the member initialization list is usually used to invoke constructors on member
objects, it can be used to initialize member variables of any type. Thus, the Person and
Date class can be written as follows:

class Date
{

string month;
int day, year;

736 Chapter 11 More About Classes and Object-Oriented Programming

public:
Date(string m, int d, int y):
month(m), day(d), year(y) // Member Initialization list
{
}

};

class Person
{

String name;
Date dateOfBirth;

public:
Person(string name, string month, int day, int year):
name(name),
dateOfBirth(month, day, year)
{
}

};

Notice that the bodies of the Date and Person constructors are now empty. This is
because the assignment of values to member variables normally performed there is now
accomplished by the initialization lists. Many programmers prefer the use of member ini-
tialization lists to assignment inside of the body of the constructor because it allows the
compiler to generate more efficient code in certain situations. When using member initial-
ization lists, it is good programming practice to list the members in the initialization list in
the same order that they are declared in the class.

Finally, notice the occurrence of name(name) in the initialization list of the Person con-
structor. The compiler is able to determine that the first occurrence of name refers to the
member variable, and that its second occurrence refers to the parameter.

Aggregation Through Pointers
Now let’s suppose that in addition to having a date of birth, each person has a country of
residence. A country has a name, and possibly many other attributes:

class Country
{

string name;
// Additional fields

};

Because many people will “have” the same country, the has-a relationship between Person
and Country should not be implemented by embedding an instance of the Country class
inside every Person object. Because many people share the same country of residence,
implementing the has-a relation by containment will result in unnecessary duplication of
data and waste memory. In addition, it would require many Person objects to be updated
whenever a country has a change in any of its data. Using a pointer to implement the has-a
relation avoids these problems. Here is a version of the Person class, modified to include a
pointer to the country of residence:

class Person
{

string name;
Date dateOfBirth;
Country *pCountry; // Pointer to country of residence

Aggregation and Composition 737

public:
Person(string name, string month, int day, int year, Country *pC):
dateOfBirth(month, day, year), name(name), pCountry(pC)
{
}

};

Aggregation, Composition, and Object Lifetimes
Composition is a term used to describe special cases of aggregation in which the lifetime of
the owned object coincides with the lifetime of its owner. A good example of composition
is when a class C contains a member that is an object of another class D. The contained D
object is created at the same time that the C object is created, and is destroyed when the
containing C object is destroyed or goes out of scope. Another example of composition is
when a class C contains a pointer to a D object, and the D object is created by the C con-
structor and destroyed by the C destructor.

The following program features modified versions of the above classes designed to illus-
trate aggregation, composition, and object lifetimes. Each class has a constructor to
announce the creation of its objects and a destructor to announce their demise. The Person
class has a static member

int Person::uniquePersonID;

that is used to generate numbers assigned to Person objects as they are created. These
numbers serve as a sort of universal personal identification number, much as social security
numbers are used to identify people in the United States. The numbers are stored in a per-
sonID field of the Person and Date classes, and are used to identify objects being created
or destroyed. Each dateOfBirth object carries the same personID number as the Person
object that contains it.

Program 11-17

1 // This program illustrates aggregation, composition
2 // and object lifetimes.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 class Date
8 {
9 string month;
10 int day, year;
11 int personID; //ID of person whose birthday this is.
12 public:
13 Date(string m, int d, int y, int id):
14 month(m), day(d), year(y), personID(id)
15 {
16 cout << "Date-Of-Birth object for person "
17 << personID << " has been created.\n";
18 }
19 ~Date()

(program continues)

738 Chapter 11 More About Classes and Object-Oriented Programming

20 {
21 cout << "Date-Of-Birth object for person "
22 << personID << " has been destroyed.\n";
23 }
24 };
25
26 class Country
27 {
28 string name;
29 public:
30 Country(string name) : name(name)
31 {
32 cout << "A Country object has been created.\n";
33 }
34 ~Country()
35 {
36 cout << "A Country object has been destroyed.\n";
37 }
38 };
39
40 class Person
41 {
42 string name;
43 Date dateOfBirth;
44 int personID; // Person identification number (PID)
45 Country *pCountry;
46 public:
47 Person(string name, string month, int day, int year, Country *pC):
48 name(name),
49 dateOfBirth(month, day, year, Person::uniquePersonID),
50 personID(Person::uniquePersonID),
51 pCountry(pC)
52 {
53 cout << "Person object "
54 << personID << " has been created.\n";
55 Person::uniquePersonID ++;
56 }
57 ~Person()
58 {
59 cout << "Person object "
60 << personID << " has been destroyed.\n";
61 }
62 static int uniquePersonID; // Used to generate PIDs
63 };
64
65 // Define the static class variable
66 int Person::uniquePersonID = 1;
67
68 int main()
69 {
70 // Create a Country object

(program continues)

Program 11-17 (continued)

Aggregation and Composition 739

The relationship between the dateOfBirth objects and the Person objects that contain
them is an example of composition. As you can see from the program output, those Date
objects are created at the same time, and die at the same time, as the Person objects that
own them. Aggregation in its more general form is exemplified by the has-a relationship
between Person and Country.

By looking at the print member function, you can see an example of how the member
functions of the enclosing class can access the member functions of the contained class.

The Has-A Relation
When one class contains an instance of a second class, the first class is said to sustain a has-a
relation to the second. For example, the Acquaintance class has-a Date class in the form of
its dob member, while the Date class has-a string object in the form of its month member.
The has-a relation is important in modeling relationships among classes and objects during
the design of an object-oriented system. Another important relation between classes in a pro-
gram is the is-a relation, which we will discuss in a later section after we have discussed the
concept of inheritance. Thus object composition realizes the has-a relation, while, as we will
see later, inheritance is a way of realizing the is-a relation.

71 Country usa("USA");
72 // Create a Person object
73 Person *p = new Person("Peter Lee", "January", 1, 1985, &usa);
74 // Create another Person object
75 Person p1("Eva Gustafson", "May", 15, 1992, &usa);
76 cout << "Now there are two people.\n";
77 // Delete the first person
78 delete p;
79 cout << "Now there is only one.\n";
80 // The second person will go out of scope when main returns
81 return 0;
82 }

Program Output
A Country object has been created.
Date-Of-Birth object for person 1 has been created.
Person object 1 has been created.
Date-Of-Birth object for person 2 has been created.
Person object 2 has been created.
Now there are two people.
Person object 1 has been destroyed.
Date-Of-Birth object for person 1 has been destroyed.
Now there is only one.
Person object 2 has been destroyed.
Date-Of-Birth object for person 2 has been destroyed.
A Country object has been destroyed.

Program 11-17 (continued)

740 Chapter 11 More About Classes and Object-Oriented Programming

11.10 Inheritance

Generalization and Specialization
In the real world you can find many objects that are specialized versions of other more gen-
eral objects. For example, the term “insect” describes a very general type of creature with
numerous characteristics. Because grasshoppers and bumblebees are insects, they have all
the general characteristics of an insect. In addition, they have special characteristics of their
own. For example, the grasshopper has its jumping ability, and the bumblebee has its
stinger. Grasshoppers and bumblebees are specialized versions of an insect. This is illus-
trated in Figure 11-5.

Inheritance and the Is-a Relationship
When one object is a specialized version of another object, there is an is-a relationship
between them. For example, a grasshopper is an insect. Here are a few other examples of
the is-a relationship.

• A poodle is a dog.
• A car is a vehicle.
• A rectangle is a shape.

When an is-a relationship exists between objects, it means that the specialized object has all of
the characteristics of the general object, plus additional characteristics that make it special. In
object-oriented programming, inheritance is used to create an is-a relationship between classes.

Inheritance involves a base class and a derived class. The base class is the general class and
the derived class is the specialized class. The derived class is based on, or derived from, the
base class. You can think of the base class as the parent and the derived class as the child.
This is illustrated in Figure 11-6.

Figure 11-5

Insect
All insects have

certain characteristics.

In addition to the common
insect characteristics, the
 bumblebee has its own

characteristics such as the
ability to sting.

In addition to the common
insect characteristics, the
 grasshopper has its own

characteristics such as the
ability to jump.

Inheritance 741

The derived class inherits the member variables and member functions of the base class
without any of them being rewritten. Furthermore, new member variables and functions
may be added to the derived class to make it more specialized than the base class. To take
a specific example, consider a college or university environment where there are both
students and faculty personnel. Suppose that we have a class Person with a name data
member and member functions for working with the name member:

class Person{
private:

string name;
public:

Person(){ setName(""); }
Person(string pName) { setName(pName);}
void setName(string pName) { name = pName; }
string getName() { return name;}

};

Assuming the enumerated types

enum Discipline {
ARCHEOLOGY, BIOLOGY, COMPUTER_SCIENCE

};
enum Classification {

FRESHMAN, SOPHOMORE, JUNIOR, SENIOR
};

to define the range of disciplines in which studies are offered and the classification of students,
we can define both the Student and Faculty classes as classes that inherit from the Person
class. This makes sense because a Student is a Person, and a Faculty member is also
a Person.

To define a class by inheritance, we need to specify the base class plus the additional mem-
bers that the derived class adds to the base class. Let’s say that in addition to having all the
characteristics of a Person, a Student must declare a major in some discipline and have
an academic advisor who is a Person. The Student class can be defined as follows:

class Student : public Person
{
private:

Discipline major;
Person *advisor;

Figure 11-6

Insect class

Grasshopper class

Base class
(parent)

Derived class
(child)

members

members

742 Chapter 11 More About Classes and Object-Oriented Programming

public:
void setMajor(Discipline d) { major = d; }
Discipline getMajor() { return major; }
void setAdvisor(Person *p) { advisor = p; }
Person *getAdvisor() { return advisor; }

};

We assume that many different students may have the same advisor. Having each Student
object store a copy of the advisor data would lead to unnecessary duplication, and would
force us to update each student object whenever the advisor data is updated. The Student
object stores a pointer to the advisor to avoid these and other problems.

The first part of the first line of the class declaration specifies Student as the name of the
class being defined, and specifies the existing class Person as its base class:

The key word public that precedes the name of the base class is the base class access spec-
ification. It affects how the members of the base class will be accessed by the member func-
tions of the derived class, and by code outside of the two classes. We will discuss the base
class access specification in greater detail in a later section.

A class can be used as the base class for more than one derived class. In particular, a
Faculty class can also be derived from the Person class as follows:

class Faculty : public Person
{
private:
 Discipline department;
public:
 void setDepartment(Discipline d) { department = d; }
 Discipline getDepartment() { return department; }
};

Thus a Faculty object is a Person object that has a home department in some discipline. It
is also important to note that each object of the derived class will contain all members of the
base class. This is illustrated by Figure 11-7 in the case of the Student and Person classes.

Figure 11-7

Derived class Base class

class Student : public Person

string name
Person()
Person(string)
void setname(string)
string getName()

Class Person

Members:

string name
Person()
Person(string)
void setname(string)
string getName()

Class Student

Members inherited from Person:

Discipline major
Person *advisor

New Members added by Student:

Inheritance 743

Program 11-18 demonstrates the creation and use of an object of a derived class by creating
a Faculty object. The program uses arrays of strings that map values of enumerated types to
strings to enable printing of values of enumerated types in the form of strings. The included
“inheritance.h” file contains declarations of the Person, Student, and Faculty classes,
as well as the enumerated types Discipline and Classification.

Program 11-18

1 // This program demonstrates the creation and use
2 // of objects of derived classes.
3 #include <iostream>
4 #include "inheritance.h"
5
6 using namespace std;

(program continues)

Contents of Inheritance.h
1 #include <string>
2 using namespace std;
3
4 enum Discipline { ARCHEOLOGY, BIOLOGY, COMPUTER_SCIENCE };
5 enum Classification { FRESHMAN, SOPHOMORE, JUNIOR, SENIOR };
6
7 class Person
8 {
9 private:
10 string name;
11 public:
12 Person() { setName(""); }
13 Person(string pName) { setName(pName); }
14 void setName(string pName) { name = pName; }
15 string getName() { return name; }
16 };
17
18 class Student:public Person
19 {
20 private:
21 Discipline major;
22 Person *advisor;
23 public:
24 void setMajor(Discipline d) { major = d; }
25 Discipline getMajor() { return major; }
26 void setAdvisor(Person *p) { advisor = p; }
27 Person *getAdvisor() { return advisor; }
28 };
29
30 class Faculty:public Person
31 {
32 private:
33 Discipline department;
34 public:
35 void setDepartment(Discipline d) { department = d; }
36 Discipline getDepartment() { return department; }
37 };

744 Chapter 11 More About Classes and Object-Oriented Programming

Superclasses and Subclasses
We can think of a class as describing the set of all objects that have certain characteristics.
An object of a derived class inherits all the characteristics of the base class, so it can be
regarded as belonging to the base class. Thus objects of the derived class are just special-
ized objects of the base class. For this reason, the derived class is often called a subclass of
the base class, and the base class is called a superclass of the derived class.

Multiple Inheritance
C++ supports multiple inheritance, in which a derived class simultaneously derives from
two or more base classes. Although interesting, multiple inheritance can lead to programs
that are very difficult to understand, and is rarely useful in practice. You can find a discus-
sion of it in Appendix K of the student CD.

7
8 // These arrays of string are used to print the
9 // enumerated types.
10 const string dName[] = {
11 "Archeology", "Biology", "Computer Science"
12 };
13
14 const string cName[] = {
15 "Freshman", "Sophomore", "Junior", "Senior"
16 };
17
18 int main()
19 {
20 // Create a Faculty object.
21 Faculty prof;
22
23 // Use a Person member function.
24 prof.setName("Indiana Jones");
25
26 // Use a Faculty member function.
27 prof.setDepartment(ARCHEOLOGY);
28 cout << "Professor " << prof.getName()
29 << " teaches in the " << "Department of ";
30
31 // Get department as an enumerated type.
32 Discipline dept = prof.getDepartment();
33
34 // Print out the department in string form.
35 cout << dName[dept] << endl;
36
37 return 0;
38 }

Program Output
Professor Indiana Jones teaches in the Department of Archeology

Program 11-18 (continued)

Protected Members and Class Access 745

Appendix D on the student CD shows how to represent inheritance using UML.

11.11 Protected Members and Class Access

CONCEPT: Protected members of a base class are like private members, except they
may be accessed by derived classes. The base class access specification
determines how private, protected, and public base class members are
accessed when they are inherited by the derived class.

Until now you have used two access specifications within a class: private and public.
C++ provides a third access specification, protected. Protected members of a base class
are like private members, except they may be accessed by member functions of a derived
class. Protected members are inaccessible to all other code in the program.*

Let us suppose we want to add to the Faculty class a constructor that takes as parameter
the name and department of a professor. The best way to accomplish this is to have the
constructor call the setName() member function inherited from the Person class. To illus-
trate the use of protected members, however, we will change the access specification of the
name field of the Person class to protected and have the Faculty constructor access it
directly. We make similar changes to the Student class, adding a constructor that takes
parameters and sets the protected member name. The resulting code is stored in the
inheritance1.h file:

* Friend functions and friend classes have access to both private and protected members.

Contents of Inheritance1.h
1 #include <string>
2 using namespace std;
3
4 enum Discipline { ARCHEOLOGY, BIOLOGY, COMPUTER_SCIENCE };
5 enum Classification { Freshman, Sophomore, Junior, Senior };
6
7 class Person
8 {
9 protected:
10 string name;
11 public:
12 Person() { setName("");}
13 Person(string pName) { setName(pName);}
14 void setName(string pName) { name = pName; }
15 string getName() { return name; }
16 };
17
18 class Student:public Person
19 {
20 private:
21 Discipline major;
22 Person *advisor;

746 Chapter 11 More About Classes and Object-Oriented Programming

Program 11-19 demonstrates the use of these classes.

23 public:
24 // Constructor.
25 Student(string sname, Discipline d, Person *adv);
26
27 void setMajor(Discipline d) { major = d; }
28 Discipline getMajor(){return major; }
29 void setAdvisor(Person *p){advisor = p;}
30 Person *getAdvisor() { return advisor; }
31 };
32
33 class Faculty:public Person
34 {
35 private:
36 Discipline department;
37 public:
38 // Constructor.
39 Faculty(string fname, Discipline d)
40 {
41 // Access the protected base class member.
42 name = fname;
43 department = d;
44 }
45 // Other member functions.
46 void setDepartment(Discipline d) { department = d; }
47 Discipline getDepartment() { return department; }
48 };

Contents of inheritance1.cpp
1 #include "inheritance1.h"
2 //***
3 // Constructor for the Student class. *
4 //***
5 Student::Student(string sname, Discipline d, Person *adv)
6 {
7 // Access the protected member name.
8 name = sname;
9
10 // Access the other members.
11 major = d;
12 advisor = adv;
13 }

Program 11-19

1 //This program demonstrates the use of
2 //objects of derived classes.
3 #include "inheritance1.h"
4 #include <iostream>
5 using namespace std;
6
7 // These arrays of string are used to print
8 // values of enumerated types.

(program continues)

Protected Members and Class Access 747

Although our example does not show it, member functions of a base class can be declared
protected as well. Protected member functions can be called by member functions of
derived classes, and by friend functions and friend classes.

Base Access Specifications
In addition to public, C++ permits the use of protected and private as base access specifications,
as illustrated in the following (incompletely specified) examples

class Cat : protected Feline
{

};

class Dog : private Canine
{

};

Be careful not to confuse base access specification with member access specification. Member
access specification determines the type of access for members defined in the class, whereas
base access specification determines the type of access for inherited members. Table 11-2 and
Figure 11-8 show the interplay between member access specification in the base class and
base class specification that determines access to the inherited member.

9 const string dName[] =
10 {"Archeology", "Biology", "Computer Science"};
11
12 const string cName[] =
13 {"Freshman", "Sophomore", "Junior", "Senior"};
14
15 int main()
16 {
17 // Create Faculty and Student objects.
18 Faculty prof("Indiana Jones", ARCHEOLOGY);
19 Student st("Sean Bolster", ARCHEOLOGY, &prof);
20 cout << "Professor " << prof.getName() << " teaches "
21 << dName[prof.getDepartment()] << "." << endl;
22
23 //Get student's advisor
24 Person *pAdvisor = st.getAdvisor();
25 cout << st.getName() <<"\'s advisor is "
26 << pAdvisor->getName() << ".";
27
28 return 0;
29 }

Program Output
Professor Indiana Jones teaches Archeology.
Sean Bolster's advisor is Indiana Jones.

Program 11-19 (continued)

748 Chapter 11 More About Classes and Object-Oriented Programming

Checkpoint

11.35 What type of relationship between classes is realized by inheritance?

11.36 Why does it make sense to think of a base class as a superclass of its derived class?

11.37 What is a base class access specification?

Table 11-2 Base Class Access Specifications

Base Class Access
Specification How Members of the Base Class Appear in the Derived Class

private • Private members of the base class are inaccessible to the derived class.

• Protected members of the base class become private members of the
derived class.

• Public members of the base class become private members of the derived
class.

protected • Private members of the base class are inaccessible to the derived class.

• Protected members of the base class become protected members of the
derived class.

• Public members of the base class become protected members of the
derived class.

public • Private members of the base class are inaccessible to the derived class.

• Protected members of the base class become protected members of the
derived class.

• Public members of the base class become public members of the derived
class.

Figure 11-8

private: x
protected: y
public: z

private: x
protected: y
public: z

private: x
protected: y
public: z

x is inaccessible.
private: y
private: z

x is inaccessible.
protected: y
protected: z

x is inaccessible.
protected: y
public: z

private
base class

protected
base class

public
base class

How base class
members appear

in the derived classBase class members

Protected Members and Class Access 749

11.38 Think of an example of two classes where one class is a special case of the other,
and write declarations for both classes, with the special case being written as a
derived class.

11.39 What is the difference between private members and protected members?

11.40 What is the difference between member access specification and base class access
specification?

11.41 Suppose a program has the following class declaration:

class CheckPoint
{

private:
int a;

protected:
int b;
int c;
void setA(int x) { a = x;}

public:
void setB(int y) { b = y;}
void setC(int z) { c = z;}

};

Answer the following questions.

A) Suppose another class, Quiz, is derived from the CheckPoint class. Here is the
first line of its declaration:

 class Quiz : private CheckPoint

Indicate whether each member of the CheckPoint class is private,
protected, public, or inaccessible:

a
b
c
setA
setB
setC

B) Suppose the Quiz class, derived from the CheckPoint class, is declared as

class Quiz : protected Checkpoint

Indicate whether each member of the CheckPoint class is private,
protected, public, or inaccessible:

a
b
c
setA
setB
setC

C) Suppose the Quiz class, derived from the CheckPoint class, is declared as

class Quiz : public Checkpoint

750 Chapter 11 More About Classes and Object-Oriented Programming

Indicate whether each member of the CheckPoint class is private, pro-
tected, public, or inaccessible:

a
b
c
setA
setB
setC

D) Suppose the Quiz class, derived from the CheckPoint class, is declared as

class Quiz : Checkpoint

Is the CheckPoint class a private, public, or protected base class?

11.12 Constructors, Destructors, and Inheritance

CONCEPT: When an object of a derived class is being instantiated, the base class
constructor is called before the derived class constructor. When the object
is destroyed, the derived class destructor is called before the base class
destructor.

Recall that constructors are automatically called by the compiler whenever an object of a
class is being created. Because every object of a derived class can be regarded as having an
object of the base class embedded within it, the creation of a derived class object involves
the creation of the embedded base class object. The compiler will always call the base class
constructor before it calls the derived class constructor. This order is reversed upon
destruction of a derived class object; the destructor in the derived class is called before the
destructor in the base class. This order permits the derived class constructors and destruc-
tors to use data or member functions of the base class in doing their work.

Program 11-20 illustrates this behavior in a simple program.

Program 11-20

1 // This program demonstrates the order in which base and
2 // derived class constructors and destructors are called.
3 // For the sake of simplicity, all the class declarations
4 // are in this file.
5 #include <iostream>
6 using namespace std;
7
8 // Base class.
9 class BaseDemo
10 {
11 public:
12 BaseDemo() // Constructor
13 { cout << "This is the BaseDemo constructor.\n"; }
14 ~BaseDemo() // Destructor
15 { cout << "This is the BaseDemo destructor.\n"; }
16 };

(program continues)

Constructors, Destructors, and Inheritance 751

Passing Arguments to Base Class Constructors
As already mentioned, the compiler will automatically call a base class constructor before
executing the derived class constructor. The compiler’s default action is to call the default
constructor in the base class. Some classes, however, may not have a default constructor.
Also, the programmer may want to specify which of several base class constructors should
be called during the creation of a derived class object.

In these cases, the programmer must explicitly specify which base class constructor should
be called by the compiler. This is done by specifying the arguments to the selected base
class constructor in the definition of the derived class constructor.

The syntax for passing arguments to base class constructors is simple: the header for
the derived class constructor is followed by a colon, an indication of which base class con-
structor to call, and the arguments to be passed. To illustrate, we will modify the constructor
for the Faculty class so that it invokes a constructor in the Person class.

The constructor in its previous form was

Faculty(string fname, Discipline d)
{

name = fname;
department = d;

}

17
18 // Derived class.
19 class DeriDemo : public BaseDemo
20 {
21 public:
22 DeriDemo() //Constructor
23 { cout << "This is the DeriDemo constructor.\n"; }
24 ~DeriDemo() // Destructor
25 { cout << "This is the DeriDemo destructor.\n"; }
26 };
27
28 int main()
29 {
30 cout << "We will now create a DeriDemo object.\n";
31 DeriDemo object;
32 cout << "The program is now going to end.\n";
33 return 0;
34 }

Program Output
We will now create a DeriDemo object.
This is the BaseDemo constructor.
This is the DeriDemo constructor.
The program is now going to end.
This is the DeriDemo destructor.
This is the BaseDemo destructor.

Program 11-20 (continued)

752 Chapter 11 More About Classes and Object-Oriented Programming

It now becomes

Faculty(string fname, Discipline d) : Person(fname)
{

department = d;
}

Notice that one of the arguments passed to the derived class constructor is passed to the
base class constructor. In general, the argument passed to the base class constructor may be
any expression, and may involve any variables that are in scope at the point of the call to
the derived class constructor. For example, a string literal, or even a global string variable,
could have been passed as the argument to the Person constructor. If for example, it was
desired that the name of a faculty member default to that of the ubiquitous “Dr. Staff,” the
following constructor would be just what we want:

Faculty(Discipline d) : Person("Staff")
{

department = d;
}

In general, the base class constructor may take any number of parameters.

Contents of inheritance2.h
1 #include <string>
2 using namespace std;
3
4 enum Discipline { ARCHEOLOGY, BIOLOGY, COMPUTER_SCIENCE };
5 enum Classification { FRESHMAN, SOPHOMORE, JUNIOR, SENIOR };
6
7 class Person
8 {
9 protected:
10 string name;
11 public:
12 Person() {setName(""); }
13 Person(string pName) { setName(pName); }
14 void setName(string pName) { name = pName; }
15 string getName() { return name; }
16 };
17
18 class Student:public Person
19 {
20 private:
21 Discipline major;
22 Person *advisor;
23 public:
24 // Constructor.
25 Student(string sname, Discipline d, Person *adv);
26
27 void setMajor(Discipline d) { major = d; }
28 Discipline getMajor() { return major; }
29 void setAdvisor(Person *p) { advisor = p; }
30 Person *getAdvisor() { return advisor; }

Constructors, Destructors, and Inheritance 753

The new constructors are demonstrated in Program 11-21App on the student CD, which is
virtually the same as Program 11-19. The only difference is that Program 11-21App
includes inheritance2.h rather than inheritance1.h, and must be compiled and linked
with inheritance2.cpp. It can be found in the file Pr11-21App.cpp on the student CD.

It is important to remember that the arguments to the base class constructor must be spec-
ified in the definition of the derived class constructor, and not in its declaration. In the case
of the Student class, the declaration of the constructor occurs at line 25 of the inheri-
tance.h file. The corresponding definition starts at line 5 of the inheritance.cpp file,
and specifies the argument to pass to the Person superclass in line 6.

Checkpoint

11.42 What is the reason that base class constructors are called before derived class
constructors?

11.43 Why do you think the arguments to a base class constructor are specified in the def-
inition of the derived class constructor rather than in the declaration?

11.44 Passing arguments to base classes constructors solves the problem of selecting a
base class constructor in inheritance. Can the same problem arise with composi-
tion? That is, might there be a case where a constructor of a class might have to
pass arguments to the constructor of a contained class? If so, guess the syntax that

31 };
32
33 class Faculty:public Person
34 {
35 private:
36 Discipline department;
37 public:
38 // Constructor.
39 Faculty(string fname, Discipline d) : Person(fname)
40 {
41 department = d;
42 }
43
44 void setDepartment(Discipline d) { department = d; }
45 Discipline getDepartment() { return department; }
46 };

Contents of inheritance2.cpp
1 #include "inheritance2.h"
2 //***
3 // Constructor for the Student class. *
4 //***
5 Student::Student(string sname, Discipline d, Person *adv)
6 : Person(sname) // Base constructor initialization
7 {
8 major = d;
9 advisor = adv;
10 }

754 Chapter 11 More About Classes and Object-Oriented Programming

would be used to pass the parameters, and construct a simple example to verify
your guess.

11.45 What will the following program display?

#include <iostream>
using namespace std;
class Base
{
 public:
 Base() { cout << "Entering the base.\n"; }
 ~Base() { cout << "Leaving the base.\n"; }
};

class Camp : public Base
{
public:

Camp() { cout << "Entering the camp.\n"; }
~Camp() { cout << "Leaving the camp.\n"; }

};
int main()
{

Camp outpost;
return 0;

}

11.46 What will the following program display?

#include <iostream>
using namespace std;
class Base
{
public:

Base() { cout << "Entering the base.\n"; }
Base(char *str)

{ cout << "This base is"
 << str << ".\n";
}

~Base() { cout << "Leaving the base.\n"; }
};
class Camp : public Base
{
public:

Camp() { cout << "Entering the camp.\n"; }
Camp(char * str1, char *str2) : Base(str1)

{ cout << "The camp is " << str2 << ".\n"; }
~Camp() { cout << "Leaving the camp.\n"; }

};

int main()
{

Camp outpost("secure", "secluded");
return 0;

}

Overriding Base Class Functions 755

11.13 Overriding Base Class Functions

CONCEPT: A derived class can override a member function of its base class by
defining a derived class member function with the same name and
parameter list.

It is often useful for a derived class to define its own version of a member function
inherited from its base class. This may be done to specialize the member function to the
needs of the derived class. When this happens, the base class member function is said to be
overridden, or redefined, by the derived class.

As a simple example, suppose that we want to have a class Tfaculty that will allow us to
associate with each member of the faculty a title such as “Dr.”, “Professor”, or “Dean.”
To accomplish this, we derive the new class from the Faculty class by adding a title
data member, an appropriate constructor, a member function to set the title, and then over-
riding the inherited getName() member function to return a “titled” name.

class TFaculty: public Faculty
{
private:
 string title;
public:
 // This Constructor allows the specification of a title.
 TFaculty(string fname, Discipline d, string title)
 : Faculty(fname, d)
 {
 setTitle(title);
 }

 void setTitle(string title) { this->title = title; }

 // Override the getName function.
 string getName(){ return title + " " + name; }
};

Program 11-21 illustrates the use of this class and its overridden member function. It uses
the files inheritance3.h and inheritance3.cpp. The inheritance3.h file is just
inheritance2.h with the class declaration of TFaculty added, and inheritance3.cpp
is the same as inheritance2.cpp. Code listings of inheritance2.h and inheritance2.cpp
can be found at the end of Section 11.12. Copies of all these files are included on the student CD.

Program 11-21

1 // This program illustrates member function overriding.
2 #include "inheritance3.h"
3 #include <iostream>
4 using namespace std;
5

(program continues)

Overriding Base
Class Functions

756 Chapter 11 More About Classes and Object-Oriented Programming

Choosing Between Base and Derived Class Versions
of an Overriden Function
An object of a derived class that has overridden a base class member function contains
more than one version of the member function. The compiler will determine which of the
several versions to call by using type information in the expression used to make the call to
the member function. For example, in Program 11-21, there are two calls to getName():

1. The call prof.getName() returns Dr. Indiana Jones because the function is
called through prof, which has type TFaculty. The compiler calls the TFaculty
version getName().

2. The call pAdvisor->getName() returns Indiana Jones without the “Dr.” because
the function is called through the pointer pAdvisor, which is a pointer to Person.
The compiler calls the Person version of getName().

The Difference Between Overloading and Overriding
Both overloading and overriding involve the definition of different functions with the same
name. There are differences between the two concepts, however. Overriding can only be
done in the context of inheritance, and refers to the defining of a member function by a

6 // These arrays of string are used to output
7 // values of enumerated types.
8 const string dName[] =
9 { "Archeology", "Biology", "Computer Science" };
10
11 const string cName[] =
12 { "Freshman", "Sophomore", "Junior", "Senior" };
13
14 int main()
15 {
16 // New constructor allows specification of title.
17 TFaculty prof("Indiana Jones", ARCHEOLOGY, "Dr.");
18 Student st("Sean Bolster", ARCHEOLOGY, &prof);
19
20 // Use the new TFaculty version of getName.
21 cout << prof.getName() << " teaches "
22 << dName[prof.getDepartment()] << "." << endl;
23
24 // This call uses the Person version of getName.
25 Person *pAdvisor = st.getAdvisor();
26 cout << st.getName() <<"\'s advisor is "
27 << pAdvisor->getName() << ".";
28
29 return 0;
30 }

Program Output
Dr. Indiana Jones teaches Archeology.
Sean Bolster's advisor is Indiana Jones.

Program 11-21 (continued)

757

derived class when the base class already has a member function of the same name and
parameter list. Overloading refers to the definition of different functions within the same
class with the same name and different parameter lists. Overloading can also refer to the
definition of different functions with different parameter lists at the global level.

Gaining Access to an Overridden Member Function
If a derived class overrides a base class member function, member functions of the derived
class that would have otherwise called the overridden base class member function will now
call the version in the derived class. It is occasionally useful to be able to call the overrid-
den version. In fact, the new member function of the derived class may want to call the
base class member function that it is overriding. This is done by using the scope resolution
operator to specify the class of the overridden member function being accessed. For exam-
ple, a member function of TFaculty that is to call the getName function of Person can do
so in this fashion:

Person::getName();

Thus, a better version of the TFaculty class is the following. Note that the overriding
function does not need to access any protected members of Person, but instead calls the
public member function getName.

class TFaculty : public Faculty
{
private:

string title;
public:

TFaculty(string fname, Discipline d, string title)
: Faculty(fname, d)
{

setTitle(title);
}
void setTitle(string title) { this->title = title; }
// Override getName() by calling Person::getName
string getName()
{

return title + " " + Person::getName();
}

};

Code for the program demonstrating this can be found in files Pr11-22App.cpp,
inheritance4.h, and inheritance4.cpp on the student CD.

11.14 Tying It All Together: Putting Data on
the World Wide Web

The ability to generate output formatted in HTML (Hypertext Markup Language) is impor-
tant to programs that interact with users via the World Wide Web. These applications
include Web servers and Web-based E-commerce applications such as Amazon and eBay.
Often the information displayed by these programs must be formatted using HTML tables.

Tying It All Together: Putting Data on the World Wide Web

758 Chapter 11 More About Classes and Object-Oriented Programming

HTML tables are quite simple. They consist of rows of cells where each cell holds a unit of
information referred to as table data. The information comprising the table is marked with
HTML tags as shown in Table 11-3.

The <table> tag normally causes a browser to display tables with no borders. To display
tables with borders, the border attribute can be used. For example, the data table shown in
Table 11-4 can be displayed using the following HTML markup, identified here as the con-
tents of a file named table.html. The file can be found on the student CD in the Programs
folder for this chapter.

Table 11-3 HTML Tags for Formatting Tables

<table> Marks the beginning of the table

</table> Marks the end of the table

<tr> Marks the beginning of a row in the table

</tr> Marks the end of a row in the table

<td> Marks the beginning of data in a single cell of the table

</td> Marks the end of data in a single cell of the table

<th> Marks the beginning of the header for a single column of the table

</th> Marks the end of the header for a single column of the table

Table 11-4 Sample Input Data for the HTML Table Program

Name Address Phone

Mike Sane 1215 Mills St 630-555-1293

Natasha Upenski 513 Briarcliff Ln 412-555-1004

Contents of table.html
<table border = "1">
 <tr>
 <th> Name </th>
 <th> Address </th>
 <th> Phone </th>
 </tr>
 <tr>
 <td> Mike Sane </td>
 <td> 1215 Mills St </td>
 <td> 630-728-1293 </td>
 </tr>
 <tr>
 <td> Natasha Upenski </td>
 <td> 513 Briarcliff Ln </td>
 <td> 412-672-1004 </td>
 </tr>
</table>

Chapter 11 More About Classes and Object-Oriented Programming

759

If you use Microsoft Windows, you can display this table in your browser by double-clicking
on the file table.html in Windows Explorer, or by using Open in the File menu of your
browser.

Let’s write a program that converts a two-dimensional array of strings into an HTML table
capable of being displayed in a Web browser. The centerpiece of our program is an HTML-
Table class with two member variables

vector<string> headers;
vector<vector<string> > rows;

that represent the headers and the rows of the table. The headers constitute a single vec-
tor of strings, while the rows of the table are represented by a vector of vectors. Note the
blank character between the closing > > characters at the end of the definition of a vector
of vectors: it is needed to avoid confusion with the >> operator. The HTMLTable class has
a member function setHeaders() for setting the headers and a member function
addRow() for adding rows to the table. The class also has an overloaded stream output
operator

ostream & operator <<(ostream &out, HTMLTable hTable);

that is used to convert the table data stored in the headers and rows vectors into HTML
markup and write that markup onto an output stream. If the stream receiving the markup
is a file, you can open the file in a browser for viewing. Alternatively, if your system has
established a default browser for opening files with an .html extension, you can use the
C++ library function

system("file_location.html");

to make the operating system open the HTML file using the default browser. This, of course,
assumes that the HTML markup is stored in a file named "file_location.html."

We learned in this chapter that a derived class object can be used wherever a base class
object is expected. We use this fact to allow for more flexibility in the data that is passed as
parameters to functions. We build this flexibility into an overloaded stream output opera-
tor, and into a convert constructor for a class derived from the STL vector class. The
overloaded stream output operator is able to write the standard output object cout
because cout is an ostream object. It is also able to write to an ofstream object because
ofstream inherits from ostream.

C++ programmers often face a dilemma: Although vectors are preferable to arrays in many
ways, arrays are more convenient to initialize. The solution we adopt is to use vectors as
parameters to functions, but use arrays for initialization. To bridge the gap, we write a
StringVector class that has a convert constructor that takes an array of strings as param-
eter. Because StringVector derives from a vector of string, it can be used wherever a
vector of string is expected. At the same time, its convert constructor allows for the use
of arrays of strings, as shown in lines 91–100 of Program 11-22.

Tying It All Together: Putting Data on the World Wide Web

760 Chapter 11 More About Classes and Object-Oriented Programming

Program 11-22

1 // This program demonstrates the use of classes to
2 // to put tabular data on the World Wide Web.
3 #include <iostream>
4 #include <fstream>
5 #include <string>
6 #include <vector>
7 using namespace std;
8
9 // This is a convenience class used to convert
10 // an array of strings into a vector of strings.
11 // The array of strings must be (sentinel)-terminated
12 // by a string of length 0.
13
14 class StringVector : public vector<string>
15 {
16 public:
17 StringVector(string s[])
18 {
19 int k = 0;
20 while (s[k].length() != 0)
21 {
22 this->push_back(s[k]);
23 k++;
24 }
25 }
26 };
27
28 // This class allows a 2-dimensional table expressed as
29 // a vectors of vector of strings to be transformed into
30 // HTML form.
31
32 class HTMLTable
33 {
34 private:
35 vector<string> headers;
36 vector<vector<string> > rows;
37 // Helper method for writing an HTML row in a table
38 void writeRow(ostream &out, string tag, vector<string> row);
39 public:
40 // Set headers for the table columns
41 void setHeaders(const vector<string> &headers)
42 { this->headers = headers; }
43 // Add rows to the table
44 void addRow(const vector<string> &row)
45 { rows.push_back(row); }
46 // Write the table into HTML form onto an output stream
47 friend ostream & operator<<(ostream & out, HTMLTable htmlTable);
48 };
49

(program continues)

Chapter 11 More About Classes and Object-Oriented Programming

761

50 //**
51 // Writes a row of the table, using the given tag for the table *
52 // data. The tag may be td for table data or th for table header. *
53 //**
54 void HTMLTable::writeRow(ostream &out, string tag, vector<string> row)
55 {
56 out << "<tr>\n";
57 for (unsigned int k = 0; k < headers.size(); k++)
58 {
59 out << "<" << tag << "> "
60 << row[k] << " </" << tag << "> ";
61 }
62 out << "\n</tr>\n";
63 }
64
65 //**
66 // Overloaded stream output operator << *
67 //**
68 ostream & operator<<(ostream &out, HTMLTable htmlTable)
69 {
70 out << "<table border = \"1\">\n";
71 // Write the headers
72 htmlTable.writeRow(out, "th", htmlTable.headers);
73 // Write the rows of the table
74 for (unsigned int r = 0; r < htmlTable.rows.size(); r++)
75 {
76 htmlTable.writeRow(out, "td", htmlTable.rows[r]);
77 }
78 // Write end tag for table
79 out << "</table>\n";
80 return out;
81 }
82
83 int main()
84 {
85 // Hard-coded data for table column headers
86 // The arrays must have empty string sentinels
87 string headers [] = {"Name", "Address", "Phone", ""};
88
89 // Hard-coded data for the two rows of the table
90 // The arrays must have empty string sentinels
91 string person1 [] =
92 {"Mike Sane", "1215 Mills St", "630-728-1293", ""};
93 string person2 [] =
94 {"Natasha Upenski", "513 Briarcliff Ln", "412-672-1004", ""};
95
96 // Create the HTML table object and set its members
97 HTMLTable hTable;
98 hTable.setHeaders(StringVector(headers));

(program continues)

Program 11-22 (continued)

Tying It All Together: Putting Data on the World Wide Web

762 Chapter 11 More About Classes and Object-Oriented Programming

Review Questions and Exercises

Fill-in-the-Blank and Short Answer

1. If a member variable is declared __________, all objects of that class share that variable.

2. Static member variables are defined __________ the class.

3. A(n) __________ member function cannot access any nonstatic member variables in
its own class.

4. A static member function may be called __________ any instances of its class are
defined.

5. A(n) __________ function is not a member of a class, but has access to the private
members of the class.

6. A(n) __________ tells the compiler that a specific class will be declared later in the
program.

7. __________ is the default behavior when an object is assigned the value of another
object of the same class.

8. A(n)__________ is a special constructor, called whenever a new object is initialized
with another object’s data.

9. __________ is a special built-in pointer that is automatically passed as a hidden argu-
ment to all nonstatic member functions.

99 hTable.addRow(StringVector(person1));
100 hTable.addRow(StringVector(person2));
101
102 // Open a file and write the HTML code to the file
103 ofstream outFile("c:\\temp\\table.html");
104 outFile << hTable;
105 outFile.close();
106
107 // Write the same HTML code to the screen for ease of viewing
108 cout << hTable;
109 // Use the default browser to view generated HTML table
110 system("c:\\temp\\table.html");
111
112 return 0;
113 }

Program Output as Displayed in Browser

Program 11-22 (continued)

Chapter 11 More About Classes and Object-Oriented Programming

Review Questions and Exercises 763

10. An operator may be __________ to work with a specific class.

11. When the __________ operator is overloaded, its function must have a dummy
parameter.

12. Making an instance of one class a member of another class is called __________.

13. Object composition is useful for creating a(n) __________ relationship between two
classes.

14. A constructor that takes a single parameter of a type different from the class type is a
__________ constructor.

15. The class Stuff has both a copy constructor and an overloaded = operator. Assume
that blob and clump are both instances of the Stuff class. For each of the statements,
indicate whether the copy constructor or the overloaded = operator will be called.

Stuff blob = clump;
clump = blob;
blob.operator=(clump);
showValues(blob); // Blob is passed by value.

16. Explain the programming steps necessary to make a class’s member variable static.

17. Explain the programming steps necessary to make a class’s member function static.

18. Consider the following class declaration:

class Thing
{

private:
 int x;
 int y;
 static int z;
public:
 Thing()
 { x = y = z; }
 static void putThing(int a)
 { z = a; }

};
int Thing:: z = 0:

Assume a program containing the class declaration defines three Thing objects with
the following statement:

Thing one, two, three;

A) How many separate instances of the x member exist?
B) How many separate instances of the y member exist?
C) How many separate instances of the z member exist?
D) What value will be stored in the x and y members of each object?
E) Write a statement that will call the putThing member function before the Thing

objects are defined.

19. Describe the difference between making a class a member of another class (object
composition) and making a class a friend of another class.

20. What is the purpose of a forward declaration of a class?

764 Chapter 11 More About Classes and Object-Oriented Programming

21. Explain why memberwise assignment can cause problems with a class that contains a
pointer member.

22. Explain why a class’s copy constructor is called when an object of that class is passed
by value into a function.

23. Explain why the parameter of a copy constructor must be a reference.

24. Assume a class named Bird exists. Write the header for a member function that over-
loads the = operator for that class.

25. Assume a class named Dollars exists. Write the headers for member functions that
overload the prefix and postfix ++ operators for that class.

26. Assume a class named Yen exists. Write the header for a member function that over-
loads the < operator for that class.

27. Assume a class named Length exists. Write the header for a member function that
overloads the stream insertion << operator for that class.

28. Assume a class named Collection exists. Write the header for a member function
that overloads the [] operator for that class.

29. Explain why a programmer would want to overload operators rather than use regular
member functions to perform similar operations.

Find the Error

30. Each of the following class declarations has errors. Locate as many as you can.

A) class Box
{
 private:
 double width;
 double length;
 double height;
 public:
 Box(double w, l, h)
 { width = w; length = l; height = h; }
 Box(Box b) // Copy constructor
 { width = b.width;
 length = b.length;
 height = b.height; }

 ... Other member functions follow ...
};

B) class Circle

{
 private:
 double diameter;
 int centerX;
 int centerY;
 public:
 Circle(double d, int x, int y)
 { diameter = d; centerX = x; centerY = y; }
 // Overloaded = operator
 void Circle=(Circle &right)

Review Questions and Exercises 765

 { diameter = right.diameter;
 centerX = right.centerX;
 centerY = right.centerY; }

 ... Other member functions follow ...
};

C) class Point
 {
 private:
 int xCoord;
 int yCoord;
 public:
 Point (int x, int y)
 { xCoord = x; yCoord = y; }
 // Overloaded + operator
 void operator+(const &Point Right)
 { xCoord += right.xCoord;
 yCoord += right.yCoord;
 }

 ... Other member functions follow ...
};

D) class Box
 {
 private:
 double width;
 double length;
 double height;
 public:
 Box(double w, l, h)
 { width = w; length = l; height = h; }
 // Overloaded prefix ++ operator
 void operator++()
 { ++width; ++length; }
 // Overloaded postfix ++ operator
 void operator++()
 {width++; length++; }

 ... Other member functions follow ...
 };

E) class Yard
 {
 private:
 double length;
 public:
 Yard(double l)
 { length = l; }
 // double conversion function
 void operator double()
 { return length; }

 ... Other member functions follow ...
 };

766 Chapter 11 More About Classes and Object-Oriented Programming

Fill-in-the-Blank

31. A derived class inherits the __________ of its base class.

32. The base class named in the following line of code is __________ .

class Pet : public Dog

33. The derived class named in the following line of code is __________ .

class Pet : public Dog

34. In the following line of code, the class access specification for the base class is
__________.

class Pet : public Dog

35. In the following line of code, the class access specification for the base class is
__________.

class Pet : Fish

36. Protected members of a base class are like __________ members, except they may be
accessed by derived classes.

37. Complete the following table by filling in private, protected, public, or inaccessible in
the right-hand column:

38. Complete the following table by filling in private, protected, public, or inaccessible in
the right-hand column:

39. Complete the following table by filling in private, protected, public, or inaccessible in
the right-hand column:

In a private base class, this base class
MEMBER access specification…

…becomes this access specification
in the derived class.

private

protected

public

In a protected base class, this base class
MEMBER access specification…

…becomes this access specification
in the derived class.

private

protected

public

In a public base class, this base class
MEMBER access specification…

…becomes this access specification
in the derived class.

private

protected

public

Review Questions and Exercises 767

40. When both a base class and a derived class have constructors, the base class’s con-
structor is called __________ (first/last).

41. When both a base class and a derived class have destructors, the base class’s
destructor is called __________ (first/last).

42. An overridden base class function may be called by a function in a derived class by
using the __________ operator.

Find the Errors

43. Each of the following class declarations and/or member function definitions has
errors. Find as many as you can.

A) class Car, public Vehicle
{
 public:
 Car();
 ~Car();
 protected:
 int passengers;
}

B) class Truck, public : Vehicle, public
{
 private:
 double cargoWeight;
 public:
 Truck();
 ~Truck();
};

Soft Skills

44. Your company’s software is a market leader, but is proving difficult to maintain
because it was written in C without using object-oriented concepts. Customers have
identified problems with the software that must be fixed immediately, and have
pointed out features in competitors’ products that they want you to support. The best
solution will require a complete OOP redesign and subsequent implementation, but
will take three years. Write a memo to company management outlining your recom-
mendation for the course of action the company should pursue.

Programming Challenges

1. Check Writing

Design a class Numbers that can be used to translate whole dollar amounts in the range 0
through 9999 into an English description of the number. For example, the number 713
would be translated into the string seven hundred thirteen, and 8203 would be translated
into eight thousand two hundred three.

The class should have a single integer member variable

int number;

768 Chapter 11 More About Classes and Object-Oriented Programming

and a collection of static string members that specify how to translate key dollar amounts
into the desired format. For example, you might use static strings such as

string lessThan20[] =
 {"zero", "one", …, "eighteen", "nineteen" };

string hundred = "hundred";
string thousand = "thousand";

The class should have a constructor that accepts a nonnegative integer and uses it to initialize
the Numbers object. It should have a member function print() that prints the English
description of the Numbers object. Demonstrate the class by writing a main program that asks
the user to enter a number in the proper range and then prints out its English description.

2. Day of the Year

Assuming that a year has 365 days, write a class named DayOfYear that takes an integer
representing a day of the year and translates it to a string consisting of the month followed
by day of the month. For example,

Day 2 would be January 2

Day 32 would be February 1

Day 365 would be December 31.

The constructor for the class should take as parameter an integer representing the day of
the year, and the class should have a member function print() that prints the day in the
month-day format. The class should have an integer member variable to represent the day,
and should have static member variables of type string to assist in the translation from
the integer format to the month–day format.

Test your class by inputting various integers representing days and printing out their repre-
sentation in the month–day format.

3. Day of the Year Modification

Modify the DayOfYear class, written in an earlier Programming Challenge, to add a con-
structor that takes two parameters: a string representing a month and an integer in the range
0 through 31 representing the day of the month. The constructor should then initialize the
integer member of the class to represent the day specified by the month and day of month
parameters. The constructor should terminate the program with an appropriate error mes-
sage if the number entered for a day is outside the range of days for the month given.

Add the following overloaded operators:

++ prefix and postfix increment operators. These operators should modify the DayOfYear
object so that it represents the next day. If the day is already the end of the year, the
new value of the object will represent the first day of the year.

-- prefix and postfix decrement operators. These operators should modify the DayOfYear
object so that it represents the previous day. If the day is already the first day of the
year, the new value of the object will represent the last day of the year.

4. Number of Days Worked

Design a class called NumDays. The class’s purpose is to store a value that represents a
number of work hours and convert it to a number of days. For example, 8 hours would

Solving the
Number of
Days Worked
Problem

Review Questions and Exercises 769

be converted to 1 day, 12 hours would be converted to 1.5 days, and 18 hours would be
converted to 2.25 days. The class should have a constructor that accepts a number of
hours, as well as member functions for storing and retrieving the hours and days. The class
should also have the following overloaded operators:

• The addition operator +. The number of hours in the sum of two objects is the sum
of the number of hours in the individual objects.

• The subtraction operator -. The number of hours in the difference of two objects X
and Y is the number of hours in X minus the number of hours in Y.

• Prefix and postfix Increment operators ++. The number of hours in an object is incre-
mented by 1.

• Prefix and postfix decrement operators --. The number of hours in an object is decre-
mented by 1.

5. Palindrome Testing

A palindrome is a string that reads the same backward as forward. For example, the words
mom, dad, madam and radar are all palindromes. Write a class Pstring that is derived
from the STL string class. The Pstring class adds a member function

bool isPalindrome()

that determines whether the string is a palindrome. Include a constructor that takes an STL
string object as parameter and passes it to the string base class constructor. Test your
class by having a main program that asks the user to enter a string. The program uses the
string to initialize a Pstring object and then calls isPalindrome() to determine whether
the string entered is a palindrome.

You may find it useful to use the subscript operator [] of the string class: if str is a string
object and k is an integer, then str[k] returns the character at position k in the string.

6. String Encryption

Write a class EncryptableString that is derived from the STL string class. The
Encryptable string class adds a member function

void encrypt()

That encrypts the string contained in the object by replacing each letter with its successor
in the ASCII ordering. For example, the string baa would be encrypted to cbb. Assume that
all characters that are part of an EncryptableString object are letters a, .., z and A, .., Z,
and that the successor of z is a and the successor of Z is A. Test your class with a program
that asks the user to enter strings that are then encrypted and printed.

7. Corporate Sales

A corporation has six divisions, each responsible for sales to different geographic loca-
tions. Design a DivSales class that keeps sales data for a division, with the following
members:

• An array with four elements for holding four quarters of sales figures for the division
• A private static variable for holding the total corporate sales for all divisions for the

entire year.

770 Chapter 11 More About Classes and Object-Oriented Programming

• A member function that takes four arguments, each assumed to be the sales for a
quarter. The value of the arguments should be copied into the array that holds the
sales data. The total of the four arguments should be added to the static variable that
holds the total yearly corporate sales.

• A function that takes an integer argument within the range of 0 to 3. The argument is
to be used as a subscript into the division quarterly sales array. The function should
return the value of the array element with that subscript.

Write a program that creates an array of six DivSales objects. The program should ask
the user to enter the sales for four quarters for each division. After the data is entered, the
program should display a table showing the division sales for each quarter. The program
should then display the total corporate sales for the year.

Input Validation: Only accept positive values for quarterly sales figures.

8. HTML Table of Names and Scores

Write a class whose constructor takes a vector of Student objects, where the each Stu-
dent has a name of type string and a score of type int. The class internally stores the
data passed to it in its constructor. The class should have an overloaded output operator
that outputs its data in the form of an HTML table. Make up suitable input and use it to
test your class.

771

C
H

A
P

T
E

R

12 More About Characters,
Strings, and the string Class

12.1 C-Strings

CONCEPT: A C-string is a sequence of characters stored in consecutive memory
locations and terminated by a null character.

In C++, a C-string is a sequence of characters stored in consecutive memory locations and
terminated by a null character. Recall that the null character is the character whose ASCII
code 0. In a program, the null character is usually written ‘\0’. It is also common to use the
integer 0 or the constant NULL to denote the null character in a program. Thus, all of the
following statements store the null character into a character variable:

char ch1, ch2, ch3;
ch1 = '\0';
ch2 = 0;
ch3 = NULL;

TOPICS

12.1 C-Strings
12.2 Library Functions for Working

with C-Strings
12.3 Conversions Between Numbers and

Strings
12.4 Character Testing
12.5 Character Case Conversion

12.6 Writing Your Own C-String Handling
Functions

12.7 More About the C++ string Class
12.8 Creating Your Own String Class
12.9 Advanced Software Enterprises

Case Study
12.10 Tying It All Together: Program

Execution Environments

772 Chapter 12 More About Characters, Strings, and the string Class

Because an array is a sequence of consecutive memory locations that store values of the
same type, a C-string is really a null-terminated array of characters. C-strings can appear in
a program in one of three forms:

• “Hard-coded’’ string literals
• Programmer-defined arrays of character
• Pointers to character

Regardless of which one of the three forms a C-string appears in a program, a C-string is
always a null-terminated array of characters, and is represented in the program by a
pointer to the first character in the array. In other words, the type of a C-string is

char *

that is, the type of a C-string is pointer to char.

String Literals
String literals, also called string constants, are written directly into the program as a
sequence of characters enclosed in double quotes: For example,

"What is your name?"
"Bailey"

are both string literals. Here is an example of a program that uses a string literal.

Let us look at Program 12-1 to see how the compiler handles C-strings that come in the
form of string literals. When the compiler encounters the literal string "Bailey", it allo-
cates an array of seven characters in the data portion of the program. The compiler then
stores the six characters of the string "Bailey" in the first six entries of the array, storing
the null character in the last entry, as shown in Figure 12-1. Finally, the compiler passes a
value of type char *, the address of the first character of the array, to the cout object.

Program 12-2 illustrates the fact that a string literal is regarded by the compiler as a value
of type char *, that is, it is a pointer to a character.

Program 12-1

1 // This program illustrates string literals.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 cout << "Bailey";
8 return 0;
9 }

Figure 12-1

B a i l e y \0

C-Strings 773

The first two assignments of Program 12-2 show that string literals are pointers to char by
assigning them to variables of type char *. The pointers p and q then hold the addresses of
the two string literals. By casting the pointers to int, we can see where in memory the
string literals are stored. Notice that in this case, the compiler has stored all string literals
in the program in consecutive memory locations.

Programmer-Defined Arrays of Character
String literals can only hold C-strings that are hard-coded into the program. To have a C-string
whose characters are read from the keyboard, or from a file, you must explicitly define an array
to hold the characters of the C-string. In doing this, you should make sure that you allocate an
additional entry in the array for the terminating null character. For example, if your C-string
will be at most 19 characters long, you will need to allocate an array of 20 characters, as in

char company[20];

As in the case of literals, the compiler will represent the C-string by the address of the first
character of the string, in this case, the array identifier. Recall from chapter 8 that an array

Program 12-2

1 // This program demonstrates that string literals
2 // are pointers to char.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 // Define variables that are pointers to char.
9 char *p, *q;
10
11 // Assign string literals to the pointers to char.
12 p = "Hello ";
13 q = "Bailey";
14
15 // Print the pointers as C-strings!
16 cout << p << q << endl;
17
18 // Print the pointers as C-strings and as addresses.
19 cout << p << " is stored at " << int(p) << endl;
20 cout << q << " is stored at " << int(q) << endl;
21
22 // A string literal can be treated as a pointer!
23 cout << int ("Another string literal");
24 return 0;
25 }

Program Output
Hello Bailey
Hello is stored at 4309447
Bailey is stored at 4309454
4309461

774 Chapter 12 More About Characters, Strings, and the string Class

identifier without the brackets is interpreted by the compiler to be the address of the first
entry of the array.

A C-string defined as an array can be given its value by initializing it with a literal string, or
by reading characters into it from the keyboard or a file, or by copying characters into the
array one character at a time. Here are some examples of initialization:

char company[20] = "Robotic Systems, inc.";
char corporation[] = "C. K. Graphics";

When initializing an array with a string literal in this manner, the size of the array in the
array definition is optional. If not specified, the compiler will set the size to one more than
the number of characters in the initializing literal string (thus allowing room for the null
terminator).

As described in Chapter 3, C-strings defined as arrays can be read and written using the
various objects, operators, and member functions of the input and output stream classes. A
C-string stored as a programmer-defined array can be processed using standard subscript
notation. Program 12-3 is an example. It outputs a string one character at a time, and
stops when it finds the null terminator. It uses the getline member function, covered in
Chapter 3, to read the string to be output.

Program 12-3

1 // This program cycles through a character array, displaying
2 // each element until a null terminator is encountered.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 const int LENGTH = 80; // Maximum length for string
9 char line[LENGTH]; // Array of char
10
11 // Read a string into the character array.
12 cout << "Enter a sentence of no more than "
13 << LENGTH-1 << " characters:\n";
14 cin.getline(line, LENGTH);
15 cout << "The sentence you entered is:\n";
16
17 // Loop through the array printing each character.
18 for(int index = 0; line[index] != '\0'; index++)
19 {
20 cout << line[index];
21 }
22 return 0;
23 }

Program Output with Example Input Shown in Bold
Enter a sentence of no more than 79 characters:
C++ is challenging but fun![Enter]
The sentence you entered is:
C++ is challenging but fun!

C-Strings 775

Pointers to char
As we have seen, C-strings can be represented as string literals, or as arrays of characters.
Both of these methods allocate an array and then use the address of the array as a pointer
to char to actually represent the string. The difference between the two is that in the first
case, the array used to store the string is allocated implicitly by the compiler, whereas in the
second, the array is explicitly allocated by the programmer.

The third method of representing a C-string uses a pointer to char to point to a C-string
whose storage has already been allocated by one of the other two methods. Here are some
examples of using C-strings in this way:

char name[20] = "John Q. Public";
char *p;
p = name; // Point to an existing C-string
cout << p << endl; // Print
p = "Jane Doe"; // Point to another C-string
cout << p << endl; // Print

A major advantage in using a pointer variable to represent a C-string is the ability to make
the pointer point to different C-strings.

Another way to use a pointer to a char as a C-string is to define the pointer and then set it
to point to dynamically allocated storage returned by new operator. This is illustrated in
Program 12-4.

Program 12-4

1 // This program illustrates dynamic allocation
2 // of storage for C-strings.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 const int NAME_LENGTH = 50; // Maximum length
9 char *pname; // Address of array
10
11 // Allocate the array.
12 pname = new char[NAME_LENGTH];
13
14 // Read a string.
15 cout << "Enter your name: ";
16 cin.getline(pname, NAME_LENGTH);
17
18 // Display the string.
19 cout << "Hello " << pname;
20 return 0;
21 }

Program Output with Example Input Shown in Bold
Enter your name: George[Enter]
Hello George

776 Chapter 12 More About Characters, Strings, and the string Class

A common mistake when using pointers to char as C-strings is using the pointer when it
does not point to a properly allocated C-string. For example, the code

char *pname;
cout << "Enter your name: ";
cin >> pname;

is erroneous because the program tries to read a string into the memory location pointed to
by pname, when pname has not been properly initialized.

12.2 Library Functions for Working with C-Strings

CONCEPT: The C++ library provides many functions for working with C-strings.

The C++ library provides many functions that can be used to work with C-strings. There
are functions for determining the length of a string, for concatenating two strings, for com-
paring two strings, and for searching for the occurrence of one string within another. You
must include the cstring header file to use these functions.

The strlen Function
The strlen function is passed a C-string as its argument, and returns the length of the
string. This is the number of characters up to, but not including, the null terminator. For
example, in the code segment

char str[20] = "Hello";
int length = strlen(str);

the variable length will have the number 5 stored in it.

The length of a string should not be confused with the size of the array holding it. Remember,
the only information passed to strlen is the beginning of the C-string. It doesn’t know
where the array ends, so it looks for the null terminator to indicate the end of the string.

Passing C-String Arguments
Because C-strings are pointers to char, C-string handling functions take parameters that
are arrays of char, or equivalently, pointers to char. The C-string can be passed to the
function in any one of the three forms that a C-string can take:

• A literal string
• The name of an array that stores the C-string
• A pointer variable holding the address of the C-string

The strcat Function
Another example of a C-string handling function is strcat. The strcat function takes
two strings as parameters and concatenates them, returning a single string that consists of
all the characters of the first string followed by the characters of the second string. Here is
an example of its use:

Library Functions for Working with C-Strings 777

char string1[13] = "Hello ";
char string2[7] = "World!";
cout << string1 << endl;
cout << string2 << endl;
strcat(string1, string2);
cout << string1 << endl;

These statements will produce the following output:

Hello
World!
Hello World!

The strcat function copies the contents of string2 to the end of string1. In this example,
string1 contains the string “Hello ” before the call to strcat. After the call, it contains
the string “Hello World!”. Figure 12-2 shows the contents of both arrays before and after
the function call.

Notice the last character in string1 (before the null terminator) is a space. The strcat
function doesn’t insert a space, so it’s the programmer’s responsibility to make sure one is
already there, if needed. It’s also the programmer’s responsibility to make sure the array
holding string1 is large enough to hold string1 plus string2 plus a null terminator.
Here is a program segment that uses the sizeof operator to test an array’s size before
strcat is called:

if (sizeof(string1) >= (strlen(string1) + strlen(string2) + 1))
 strcat(string1, string2);

else
 cout << "String1 is not large enough for both strings.\n";

Figure 12-2

WARNING! If the array holding the first string isn’t large enough to hold both
strings, strcat will overflow the boundaries of the array.

H e l l o \0

W o r l d ! \0

H e l l o o r l d ! \0W

W o r l d ! \0

string1

string2

string1

string2

Before the call to strcat (string1, string2):

After the call to strcat (string1, string2):

778 Chapter 12 More About Characters, Strings, and the string Class

The strcpy Function
Recall from Chapter 8 that one array cannot be assigned to another with the = operator.
Each individual element must be assigned, usually inside a loop. The strcpy function,
which you have already encountered in Chapter 3, can be used to copy one string to
another. Here is an example of its use:

char name[20];
strcpy(name, "Albert Einstein");

The strcpy function’s arguments are both C-strings. The second C-string is copied to the
address specified by the first C-string argument.

If anything is already stored in the location referenced by the first argument, it is overwrit-
ten, as shown in the following program segment:

char string1[10] = "Hello", string2[10] = "World!";
cout << string1 << endl;
cout << string2 << endl;
strcpy(string1, string2);
cout << string1 << endl;
cout << string2 << endl;

Here is the output:

Hello
World!
World!
World!

Comparing C-Strings
The assignment and relational operators work with the C++ string class because they
have been overloaded to work with that class. However, just as the assignment operator
cannot be used to assign to C-strings, the relational operators <=, <, >, >=, !=, and == can-
not be used to compare C-strings. This is because when used with C-strings, these opera-
tors compare the addresses at which the C-strings are stored instead of comparing the
actual sequence of characters that comprise the C-strings. Program 12-5 shows the incor-
rect result of trying to compare C-strings using the equality operator.

WARNING! Being true to C++’s nature, strcpy performs no bounds checking. The
array specified by the first argument will be overflowed if it isn’t large enough to hold
the string specified by the second argument.

Program 12-5

1 // This program illustrates that you cannot compare
2 // C-strings with relational operators. Although it
3 // appears to test the strings for equality, that is
4 // not what happens.
5 #include <iostream>
6 using namespace std;
7

(program continues)

Library Functions for Working with C-Strings 779

Although two identical strings may be entered, Program 12-5 will always report that they
are not equal. This is because the expression

firstString == secondString

used in the if statement compares the memory addresses of the two arrays instead of
comparing the strings of characters stored at those addresses. Because these addresses are
different, the comparison yields a result of false. In fact, in C++, even the comparison

 "abc" == "abc"

will usually yield a result of false. This is because most compilers do not check to see if a
string literal has been encountered before, and will store the two strings at different memory
addresses. The compiler will then compare the two different addresses, giving a value of
false for the result.

The strcmp Function
To properly compare C-strings, you should use the library function strcmp. This function
takes two C-strings as parameters and returns an integer that indicates how the two strings
compare to each other. Its prototype,

int strcmp(char *string1, char *string2);

8 int main()
9 {
10 // Two arrays for holding two strings.
11 const int LENGTH = 40;
12 char firstString[LENGTH], secondString[LENGTH];
13
14 // Read two strings.
15 cout << "Enter a string: ";
16 cin.getline(firstString, LENGTH);
17 cout << "Enter another string: ";
18 cin.getline(secondString, LENGTH);
19
20 // Attempt to compare the two strings using ==.
21 if (firstString == secondString)
22 cout << "You entered the same string twice.\n";
23 else
24 cout << "The strings are not the same.\n";
25
26 return 0;
27 }

Program Output with Example Input Shown in Bold
Enter a string: Alfonso[Enter]
Enter another string: Alfonso[Enter]
The strings are not the same.

Program 12-5 (continued)

780 Chapter 12 More About Characters, Strings, and the string Class

indicates that the function takes two C-strings as parameters (recall that char * is the type
of C-string) and returns an integer result. The value of the result is set according to the
following convention:

• The result is zero if the two strings are equal on a character by character basis
• The result is negative if string1 comes before string2 in alphabetical order
• The result is positive if string1 comes after string2 in alphabetical order

Here is an example of the use of strcmp to determine if two strings are equal:

if (strcmp(string1, string2) == 0)
 cout << "The strings are equal";

else
 cout << "The strings are not equal";

Program 12-5, which incorrectly tested two C-strings with a relational operator, can be
correctly rewritten with the strcmp function, as shown in Program 12-6.

The function strcmp is case sensitive when it compares strings. If the user enters “Dog”
and “dog” in Program 12-6, it will report they are not the same. Most compilers provide

Program 12-6

1 // This program correctly tests two C-strings for
2 // equality with the strcmp function.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 int main()
8 {
9 // Two arrays for two strings.
10 const int LENGTH = 40;
11 char firstString[LENGTH], secondString[LENGTH];
12
13 // Read two strings.
14 cout << "Enter a string: ";
15 cin.getline(firstString, LENGTH);
16 cout << "Enter another string: ";
17 cin.getline(secondString, LENGTH);
18
19 // Compare the strings for equality with strcmp.
20 if (strcmp(firstString, secondString) == 0)
21 cout << "You entered the same string twice.\n";
22 else
23 cout << "The strings are not the same.\n";
24
25 return 0;
26 }

Program Output with Example Input Shown in Bold
Enter a string: Alfonso[Enter]
Enter another string: Alfonso[Enter]
You entered the same string twice.

Library Functions for Working with C-Strings 781

nonstandard versions of strcmp that perform case-insensitive comparisons. For instance,
Borland C++ has the stricmp function. It works identically to strcmp except the case of
the characters is ignored.

Program 12-7 is a more practical example of how strcmp can be used. It asks the user to
enter the part number of the stereo they wish to purchase. The part number contains digits,
letters, and a hyphen, so it must be stored as a string. Once the user enters the part number,
the program displays the price of the stereo.

Program 12-7

1 // This program uses strcmp to compare the string entered
2 // by the user with the valid stereo part numbers.
3 #include <iostream>
4 #include <cstring>
5 #include <iomanip>
6 using namespace std;
7
8 int main()
9 {
10 // Price of parts.
11 const double A_PRICE = 249.0,
12 B_PRICE = 299.0;
13
14 // Character array for part number.
15 const int PART_LENGTH = 8;
16 char partNum[PART_LENGTH];
17
18 // Instruct the user to enter a part number.
19 cout << "The stereo part numbers are:\n";
20 cout << "\tBoom Box, part number S147-29A\n";
21 cout << "\tShelf Model, part number S147-29B\n";
22 cout << "Enter the part number of the stereo you\n";
23 cout << "wish to purchase: ";
24
25 // Read a part number of at most 8 characters.
26 cin >> setw(9);
27 cin >> partNum;
28
29 // Determine what user entered using strcmp
30 // and print its price.
31 cout << showpoint << fixed << setprecision(2);
32 if (strcmp(partNum, "S147-29A") == 0)
33 cout << "The price is $" << A_PRICE << endl;
34 else if (strcmp(partNum, "S147-29B") == 0)
35 cout << "The price is $" << B_PRICE << endl;
36 else
37 cout << partNum << " is not a valid part number.\n";
38
39 return 0;
40 }

(program continues)

782 Chapter 12 More About Characters, Strings, and the string Class

Using ! with strcmp
Some programmers prefer to use the logical NOT operator with strcmp when testing
strings for equality. Since 0 is considered logically false, the ! operator converts that
value to true. The expression !strcmp(string1, string2) will return true when both
strings are the same, and false when they are different. The two following statements per-
form the same operation:

if (strcmp(firstString, secondString) == 0)
if (!strcmp(firstString, secondString))

Sorting Strings
Programs are frequently written to print alphabetically sorted lists of items. For example,
consider a department store computer system that keeps customers’ names and addresses
in a file. The names do not appear in the file alphabetically but in the order the operator
entered them. If a list were to be printed in this order, it would be very difficult to locate
any specific name. The list would have to be sorted before it was printed.

Because the value returned by strcmp is based on the relative alphabetic order of the two
strings being compared, it can be used in programs that sort strings. Program 12-8 asks the
user to enter two names, which are then printed in alphabetic order.

Program Output with Example Input Shown in Bold
The stereo part numbers are:

Boom Box, part number S147-29A
Shelf Model, part number S147-29B

Enter the part number of the stereo you
wish to purchase: S147-29B[Enter]
The price is $299.00

Program 12-8

1 // This program uses the return value of strcmp to
2 // alphabetically sort two strings entered by the user.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 int main()
8 {
9 // Two arrays to hold two strings.
10 const int NAME_LENGTH = 30;
11 char name1[NAME_LENGTH], name2[NAME_LENGTH];
12
13 // Read two strings.
14 cout << "Enter a name (last name first): ";
15 cin.getline(name1, NAME_LENGTH);
16 cout << "Enter another name: ";
17 cin.getline(name2, NAME_LENGTH);
18

(program continues)

Program 12-7 (continued)

Library Functions for Working with C-Strings 783

Table 12-1 summarizes the string-handling functions discussed here, as well as others. (All
the functions listed require the cstring header file.)

19 // Print the two strings in alphabetical order.
20 cout << "Here are the names sorted alphabetically:\n";
21 if (strcmp(name1, name2) < 0)
22 cout << name1 << endl << name2 << endl;
23 else if (strcmp(name1, name2) > 0)
24 cout << name2 << endl << name1 << endl;
25 else
26 cout << "You entered the same name twice!\n";
27
28 return 0;
29 }

Program Output with Example Input Shown in Bold
Enter a name (last name first): Smith, Richard[Enter]
Enter another name: Jones, John[Enter]
Here are the names sorted alphabetically:
Jones, John
Smith, Richard

Table 12-1 (See your C++ reference manual for more information on these functions.)

Function Description

strlen Accepts a C-string as an argument. Returns the length of the C-string (not including
the null terminator. Example Usage: len = strlen(name);

strcat Accepts two C-strings as arguments. The function appends the contents of the second
string to the first C-string. (The first string is altered, the second string is left
unchanged.)
Example Usage: strcat(string1, string2);

strcpy Accepts two C-strings as arguments. The function copies the second C-string to the
first C-string. The second C-string is left unchanged.
Example Usage: strcpy(string1, string2);

strncpy Copies at most n characters of string2 to string1. If string2 has fewer than n
characters, then string1 is padded with ‘\0’ characters until a total of n characters
have been written to it. If string2 has n or more characters, then the first n
characters are copied and string1 is not null-terminated.
Example Usage: strncpy(string1, string2, n);

strcmp Accepts two C-string arguments. If string1 and string2 are the same, this function
returns 0. If string2 is alphabetically greater than string1, it returns a negative
number. If string2 is alphabetically less than string1, it returns a positive number.
Example Usage: if (strcmp(string1, string2))

strstr Searches for the first occurrence of string2 in string1. If an occurrence of string2
is found, the function returns a pointer to it. Otherwise, it returns a NULL pointer
(address 0).
Example Usage: cout << strstr(string1, string2);

Program 12-8 (continued)

784 Chapter 12 More About Characters, Strings, and the string Class

The strstr Function
The last function in Table 12-1 is strstr, which searches for a string inside of a string.
For instance, it could be used to search for the string “seven” inside the larger string
“Four score and seven years ago.” The function’s first argument is the string to be
searched, and the second argument is the string to look for. If the function finds the
second string inside the first, it returns the address of the occurrence of the second
string within the first string. Otherwise it returns the address 0, or the NULL address.
Here is an example:

char array[] = "Four score and seven years ago";
char *strPtr;
cout << array << endl;
strPtr = strstr(array, "seven"); // search for "seven"
cout << strPtr << endl;

In the preceding program segment strstr will locate the string “seven” inside the string
“Four score and seven years ago.” It will return the address of the first character in
“seven”, which will be stored in the pointer variable strPtr. If run as part of a complete
program, the segment will display the following:

Four score and seven years ago
seven years ago

The strstr function can be useful in any program that must locate information inside one
or more strings. Program 12-9, for example, stores a database of product numbers and
descriptions in an array of C-strings. It allows the user to look up a product description by
entering all or part of its product number.

Program 12-9

1 // This program uses the strstr function to search an array
2 // of strings for a name.
3 #include <iostream>
4 #include <string> // For strstr
5 using namespace std;
6
7 int main()
8 {
9 const int N_ITEMS = 5, // Maximum number of items
10 S_LENGTH = 31; // maximum length of description
11
12 // Array of product descriptions.
13 char prods[5][S_LENGTH] = {"TV327 31 inch Television",
14 "CD257 CD Player",
15 "TA677 Answering Machine",
16 "CS109 Car Stereo",
17 "PC955 Personal Computer"};
18
19

(program continues)

Library Functions for Working with C-Strings 785

In Program 12–9, the loop in lines 29–36 cycles through each C-string in the array calling
the following statement:

strPtr = strstr(prods[index], lookUp);

The strstr function searches the string referenced by prods[index] for the name
entered by the user, which is stored in lookUp. If lookUp is found inside prods[index],

20 char lookUp[S_LENGTH]; // For user input
21 char *strPtr = NULL; // Result from strstr
22
23 // Get user input.
24 cout << "\tProduct Database\n\n";
25 cout << "Enter a product number to search for: ";
26 cin.getline(lookUp, S_LENGTH);
27
28 // Search for the string.
29 int index = 0;
30 while(index < N_ITEMS)
31 {
32 strPtr = strstr(prods[index], lookUp);
33 if (strPtr != NULL)
34 break;
35 index++;
36 }
37
38 // Output the result of the search.
39 if (strPtr == NULL)
40 cout << "No matching product was found.\n";
41 else
42 cout << prods[index] << endl;
43
44 return 0;
45 }

Program Output with Example Input Shown in Bold
Product Database

Enter a product to search for: CD257[Enter]
CD257 CD Player

Program Output with Other Example Input Shown in Bold
Product Database

Enter a product to search for: CS[Enter]
CS109 Car Stereo

Program Output with Other Example Input Shown in Bold
Product Database

Enter a product to search for: AB[Enter]
No matching product was found.

Program 12-9 (continued)

786 Chapter 12 More About Characters, Strings, and the string Class

the function returns its address. In that case, the following if statement causes the loop to
terminate:

if (strPtr != NULL)
 break;

Outside the loop, the following if-else statement determines if the string entered by the
user was found in the array. If not, it informs the user that no matching product was
found. Otherwise, the product number and description are displayed:

if (strPtr == NULL)
cout << "No matching product was found.\n";

else
cout << prods[index] << endl;

Checkpoint

12.1 Write a short description of each of the following functions:
A) strlen
B) strcat
C) strcpy
D) strncpy
E) strcmp
F) strstr

12.2 What will the following program segment display?

char dog[] = "Fido";
cout << strlen(dog) << endl;

12.3 What will the following program segment display?

char string1[16] = "Have a ";
char string2[9] = "nice day";
strcat(string1, string2);
cout << string1 << endl;
cout << string2 << endl;

12.4 Write a statement that will copy the string “Beethoven” to the array composer.

12.5 When complete, the following program skeleton will search for the string
“Windy” in the array place. If place contains “Windy” the program will
display the message “Windy found.” Otherwise it will display “Windy not
found.”

#include <iostream>
// include any other necessary header files
int main()
{

char place[] = "The Windy City";
// Complete the program. It should search the array place
// for the string "Windy" and display the message "Windy
// found" if it finds the string. Otherwise, it should
// display the message "Windy not found."

}

Conversions Between Numbers and Strings 787

12.6 Indicate whether the following strcmp function calls will return 0, a negative number,
or a positive number. Refer to the ASCII table in Appendix A if necessary.

A) strcmp("ABC", "abc");
B) strcmp("Jill", "Jim");
C) strcmp("123", "ABC");
D) strcmp("Sammy", "Sally");

12.7 Complete the if statements in the following program skeleton.

#include <iostream>
using namespace std;

int main()
{

const int LENGTH = 20;
char iceCream[LENGTH];
cout << "What flavor of ice cream do you like best? ";
cout << "Chocolate, Vanilla, or Pralines and Pecan? ";
cin.getline(iceCream, LENGTH);
cout << "Here is the number of fat grams for a half ";
cout << "cup serving:\n";
//
// Finish the following if-else statement
// so the program will select the ice cream entered
// by the user.
//
if (/* insert your code here */)

cout << "Chocolate: 9 fat grams.\n";
else if (/* insert your code here */)

cout << "Vanilla: 10 fat grams.\n";
else if (/* insert your code here */)

cout << "Pralines and Pecan: 14 fat grams.\n";
else

cout << "That's not one of our flavors!\n";
return 0;

}

12.3 Conversions Between Numbers and Strings

CONCEPT: The C++ libraries provide classes that can be used to convert a string
representation of a number to numeric form and vice versa.

There is a difference between a number that is stored as a string and one stored as a
numeric value. The string “2679” isn’t a number: it is a sequence of ASCII codes of
the characters that form the individual digits of the number 2679. Because the string
“2679” is not a number, the compiler will not allow arithmetic operations such as
addition, multiplication, and division to be applied to it. Strings that represent num-
bers must first be converted to numeric form before they can be used with arithmetic
operators.

788 Chapter 12 More About Characters, Strings, and the string Class

String representations of numbers arise naturally in computing, most often during
input and output of numbers. When a user enters a number at a keyboard, the num-
ber is entered in its string form as a sequence of characters (digits) typed by the user.
In C++, such a number is usually read via the stream extraction operator >>. This
operator automatically performs conversions as needed before storing into a variable
of numeric type. During output, the reverse conversion from numeric to string is per-
formed by the stream output operator <<.

There are times when a string such as “2679” that is already stored in memory as a
C-string or string object needs to be converted to numeric form. There are also times
when a number already stored in numeric form in memory needs to be converted into
its string representation. C++ has two classes, ostringstream and istringstream,
that can be used to perform string/numeric conversions. The class ostringstream is
a subclass of ostream (the class that cout belongs to) and uses the stream insertion
operator << to convert numeric values to string. Objects of type ostringstream
work the same way that cout and file objects do, except that instead of writing to the
screen or to a file, ostringstream writes its data to a string object contained inside
it. Each time you use << on the ostringstream object, it performs any numeric-to-
string conversions necessary and appends the result to the end of its string. In addi-
tion to supporting all the member functions and operators of the ostream class,
ostringstream objects support the str member functions shown in Table 12-2.

The istringstream class derives from istream. It contains a string object inside it
that functions as an input stream that can be “read” from. The input stream can be
set by the istringstream constructor when the object is created, or can be set by
calling the str(string s) function after the object has been created. The stream
extraction operator >> reads from the enclosed string and converts from string to
numeric where necessary. Member functions of istringstream are also listed in
Table 12-2. You must include the sstream header file in your programs to use these
classes.

Table 12-2 Member Functions of ostringstream and istringstream Classes

Member Function Description

istringstream(string s) Constructor for istringstream: sets the initial value of the
input stream for the object.
Example: istringstream istr("50 64 28");

ostringstream(string s) Constructor for ostringstream: sets the initial value of the
output stream for the object.
Example: ostringstream ostr("50 64 28");

string str() Returns the string contained in the ostringstream or
istringstream object.
Example: string is = istr.str();

string os = ostr.str();

void str(string &s) Sets the string that serves as the input or output stream for the
object.
Example: ostr.str("50 64 28");

istr.str("50 64 28");

Converting
Strings to
Numbers

Conversions Between Numbers and Strings 789

Program 12-10 demonstrates the use of these classes.

Notice that these classes have the full power of ostream and istream objects, including
the ability to convert numbers to string using different bases such as octal and hexadecimal.
Although these classes are the preferred way to convert between numeric and string forms,

Program 12-10

1 // This program illustrates the use of sstream objects.
2 #include <sstream>
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 int main()
8 {
9 string str = "John 20 50"; // String to read from
10 char *cstr = "Amy 30 42"; // Cstring to read from
11 istringstream istr1(str); // istr1 will read from str
12 istringstream istr2; // istr2 will read from cstr
13 ostringstream ostr; // The ostringstream object
14
15 string name;
16 int score1, score2, average_score;
17
18 // Read name and scores and compute average then write to ostr
19 istr1 >> name >> score1 >> score2;
20 average_score = (score1 + score2)/2;
21 ostr << name << " has average score " << average_score << "\n";
22
23 // Set istr2 to read from the C string and repeat the above
24 istr2.str(cstr);
25 istr2 >> name >> score1 >> score2;
26 average_score = (score1 + score2)/2;
27 ostr << name << " has average score " << average_score << "\n";
28
29 // Switch to hexadecimal output on ostr
30 ostr << hex;
31
32 // Write Amy's scores in hexadecimal
33 ostr << name << "'s scores in hexadecimal are: " << score1
34 << " and " << score2 << "\n";
35
36 // Extract the string from ostr and print it to the screen.
37 cout << ostr.str();
38
39 return 0;
40 }

Program Output
John has average score 35
Amy has average score 36
Amy's scores in hexadecimal are: 1e and 2a

790 Chapter 12 More About Characters, Strings, and the string Class

you should also be aware of the C++ library functions shown in Table 12-3. These func-
tions work on C-strings only.

The atoi function converts a string to an integer. It accepts a C-string argument and
returns the converted integer value. Here is an example of how to use it:

int num;
num = atoi("1000");

In these statements, atoi converts the string “1000” into the integer 1000. Once the vari-
able num is assigned this value, it can be used in mathematical operations or any task
requiring a numeric value.

The atol function works just like atoi, except the return value is a long integer. Here is
an example:

long bigNum;
bigNum = atol("500000");

As expected, the atof function accepts a C-string argument and converts it to a double.
The numeric double value is returned, as shown here:

double fnum;
fnum = atof("12.67");

Table 12-3 (See your C++ reference manual for more information on these functions.)

Function Description

 atoi Accepts a C-string as an argument. The function converts the C-string to an integer
and returns that value.
Example Usage: num = atoi("4569");

atol Accepts a C-string as an argument. The function converts the C-string to a long
integer and returns that value.
Example Usage: lnum = atol("500000");

atof Accepts a C-string as an argument. The function converts the C-string to a double and
returns that value. Use this function to convert a C-string to a float or double.
Example Usage: fnum = atof("3.14159");

itoa Converts an integer to a C-string. The first argument, value, is the integer. The result
will be stored at the location pointed to by the second argument, string. The third
argument, base, is an integer. It specifies the numbering system that the converted
integer should be expressed in (8 = octal, 10 = decimal, 16 = hexadecimal, etc.).
Example Usage: itoa(value, string, base);

NOTE: The atoi function as well as the others discussed in this section require that
the cstdlib header file be included.

NOTE: If a string that cannot be converted to a numeric value is passed to any of these
functions, the function’s behavior is undefined by C++. Many compilers, however, will
perform the conversion process until an invalid character is encountered. For example,
atoi("123x5") might return the integer 123. It is possible that these functions will
return 0 if they cannot successfully convert their argument.

Conversions Between Numbers and Strings 791

The itoa function is similar to atoi, but it works in reverse. It converts a numeric
integer into a string representation of the integer. The itoa function accepts three
arguments: the integer value to be converted, a pointer to the location in memory
where the string is to be stored, and a number that represents the base of the converted
value. Here is an example:

char numArray[10];
itoa(1200, numArray, 10);
cout << numArray << endl;

This program segment converts the integer value 1200 to a string. The string is stored in
the array numArray. The third argument, 10, means the number should be written in deci-
mal, or base 10 notation. The output of the cout statement is

1200

Now let’s look at Program 12-11, which uses a string-to-number conversion function,
atoi. It allows the user to enter a series of values, or the letters Q or q to quit. The average
of the numbers is then calculated and displayed.

WARNING! As always, C++ performs no array bounds checking. Make sure the
array whose address is passed to itoa is large enough to hold the converted number,
including the null terminator.

Program 12-11

1 // This program demonstrates the strcmp and atoi functions.
2 #include <iostream>
3 #include <cstring> // For strcmp
4 #include <cstdlib> // For atoi
5 using namespace std;
6
7 int main()
8 {
9 // Array used to read numbers in string form.
10 const int LENGTH = 20;
11 char input[LENGTH];
12
13 int total = 0, // Running total
14 count = 0; // Number of numbers read
15 double average; // Average
16
17 // Read numbers and computer total of numbers.
18 cout << "This program will average a series of numbers.\n";
19 cout << "Enter the first number or Q to quit: ";
20 cin.getline(input, LENGTH);
21 while((strcmp(input,"Q")!= 0)&&(strcmp(input,"q")!= 0))
22 {
23 // Keep a running total.
24 total += atoi(input);
25
26 // Keep track of how many numbers are entered.
27 count++;
28

(program continues)

792 Chapter 12 More About Characters, Strings, and the string Class

Recall that strcmp compares two C-strings. If they are identical, it returns 0. Otherwise a
nonzero value is returned. The following while statement uses strcmp to determine if the
string in input is either “Q” or “q”.

while ((strcmp(input, "Q") != 0)&&(strcmp(input, "q") != 0))

If the user hasn’t entered “Q” or “q” the program uses atoi to convert the string in input
to an integer and adds its value to total with the following statement:

total += atoi(input); // Keep a running total

The user is then asked for the next number. When all the numbers are entered, the user
terminates the loop by entering “Q” or “q”. If one or more numbers are entered, their
average is displayed.

Checkpoint

12.8 Write a short description of each of the following functions.
A) atoi
B) atol
C) atof
D) itoa

12.9 Write a statement that will convert the C-string “10” to an integer and store the
result in the variable num.

12.10 Write a statement that will convert the C-string “100000” to a long and store the
result in the variable num.

29 // Are there more?
30 cout << "Enter the next number or Q to quit: ";
31 cin.getline(input,LENGTH);}
32 }
33
34 // Compute and print average.
35 if (count != 0)
36 {
37 average = double(total) / count;
38 cout << "average: " << average << endl;
39 }
40
41 return 0;
42 }

Program Output with Example Input Shown in Bold
This program will average a series of numbers.
Enter the first number or Q to quit: 74[Enter]
Enter the next number or Q to quit: 98[Enter]
Enter the next number or Q to quit: 23[Enter]
Enter the next number or Q to quit: 54[Enter]
Enter the next number or Q to quit: Q[Enter]
Average: 62.25

Program 12-11 (continued)

Character Testing 793

12.11 Write a statement that will convert the string “7.2389” to a double and store the
result in the variable num.

12.12 Write a statement that will convert the integer 127 to a string, stored in base 10
notation in the array value.

12.4 Character Testing

CONCEPT: The C++ library provides several functions for testing characters.

The C++ library provides several functions that allow you to test the value of a character.
These functions test a single int argument and return either true or false.* The integer
argument is the ASCII code of a character. For example, the following program segment
uses the isupper function to determine if the character passed as an argument is an
uppercase letter. If it is, the function returns true. Otherwise, it returns false.

char letter = 'a';
if (isupper(letter))

cout << "Letter is uppercase.\n";
else

cout << "Letter is not uppercase.\n";

Since the variable letter, in this example, contains a lowercase character, isupper
returns false. The if statement will cause the message “Letter is not uppercase”
to be displayed.

Table 12-4 lists several character-testing functions. Each of these is implemented in the
cctype header file, so be sure to include that file when using the functions.

* These functions actually return an int value. The return value is nonzero to indicate true, or zero to indicate false.

Table 12-4 Character-Testing Functions

Character
Function Description

isalpha Returns true (a nonzero number) if the argument is a letter of the alphabet.
Returns false if the argument is not a letter.

isalnum Returns true (a nonzero number) if the argument is a letter of the alphabet or
a digit. Otherwise it returns false.

isdigit Returns true (a nonzero number) if the argument is a digit from 0 to 9.
Otherwise it returns false.

islower Returns true (a nonzero number) if the argument is a lowercase letter.
Otherwise, it returns false.

isprint Returns true (a nonzero number) if the argument is a printable character
(including a space). Returns false otherwise.

(table continues)

794 Chapter 12 More About Characters, Strings, and the string Class

Program 12-12 uses several of the functions shown in Table 12-4. It asks the user to input
a character and then displays various messages, depending on the return value of each
function.

ispunct Returns true (a nonzero number) if the argument is a printable character other
than a digit, letter, or space. Returns false otherwise.

isupper Returns true (a nonzero number) if the argument is an uppercase letter.
Otherwise, it returns false.

isspace Returns true (a nonzero number) if the argument is a whitespace character,
otherwise it returns false. Whitespace characters are any of the following:

space ' ' vertical tab '\v'
newline '\n' tab '\t'

Program 12-12

1 // This program demonstrates some of the character
2 // testing functions.
3 #include <iostream>
4 #include <cctype>
5 using namespace std;
6
7 int main()
8 {
9 char input;
10
11 cout << "Enter any character: ";
12 cin.get(input);
13 cout << "The character you entered is: "
14 << input << endl;
15 cout << "Its ASCII code is: "
16 << static_cast<int>(input) << endl;
17 if (isalpha(input))
18 cout << "That's an alphabetic character.\n";
19 if (isdigit(input))
20 cout << "That's a numeric digit.\n";
21 if (islower(input))
22 cout << "The letter you entered is lowercase.\n";
23 if (isupper(input))
24 cout << "The letter you entered is uppercase.\n";
25 if (isspace(input))
26 cout << "That's a whitespace character.\n";
27 return 0;
28 }

(program continues)

Table 12-4 Character-Testing Functions (continued)

Character
Function Description

Character Testing 795

Program 12-13 shows a more practical application of the character-testing functions. It
tests a seven-character customer number to determine whether it is in the proper format.

Program Output with Example Input Shown in Bold
Enter any character: A[Enter]
The character you entered is: A
Its ASCII code is: 65
That's an alphabetic character.
The letter you entered is uppercase.

Program Output with Other Example Input Shown in Bold
Enter any character: 7[Enter]
The character you entered is: 7
Its ASCII code is: 55
That's a numeric digit.

Program 12-13

1 // This program tests a customer number to determine whether
2 // it is in the proper format.
3 #include <iostream>
4 #include <cctype>
5 using namespace std;
6
7 // Function prototype
8 bool testNum(char []);
9
10 const int NUM_LENGTH = 8;
11 const int ALPHA_LENGTH = 3;
12 int main()
13 {
14 char customer[NUM_LENGTH]; // Holds customer number
15
16 // Get the customer number from the user.
17 cout << "Enter a customer number in the form ";
18 cout << "LLLNNNN\n";
19 cout << "(LLL = letters and NNNN = numbers): ";
20 cin.getline(customer, NUM_LENGTH);
21
22 // Test the customer number and print results.
23 if (testNum(customer))
24 cout << "That's a valid customer number.\n";
25 else
26 {
27 cout << "That is not the proper format of the ";
28 cout << "customer number.\nHere is an example:\n";
29 cout << " ABC1234\n";
30 }
31 return 0;
32 }
33

(program continues)

Program 12-12 (continued)

796 Chapter 12 More About Characters, Strings, and the string Class

In Program 12-13, the customer number is expected to consist of alphabetic letters followed
by digits. The testNum function accepts an array argument and tests leading characters with
the following loop:

for (int k = 0; k < ALPHA_LENGTH; k++)
{

if (!isalpha(custNum[k]))
return false;

}

The isalpha function returns true if its argument is an alphabetic character. The ! opera-
tor is used in the if statement to determine whether the tested character is not alphabetic.
If this is so for any of the first three characters, the function testNum returns false.

34 //**
35 // Definition of function testNum. This function accepts a *
36 // character array as its argument and tests its contents *
37 // for a valid customer number. *
38 //**
39 bool testNum(char custNum[])
40 {
41 // Test the leading characters for alphabetic letters.
42 for (int k = 0; k < ALPHA_LENGTH; k++)
43 {
44 if (!isalpha(custNum[k]))
45 return false;
46 }
47
48 // Test the trailing characters for numeric digits.
49 for (int k = ALPHA_LENGTH; k < NUM_LENGTH - 1; k++)
50 {
51 if (!isdigit(custNum[k]))
52 return false;
53 }
54 return true;
55 }

Program Output with Example Input Shown in Bold
Enter a customer number in the form LLLNNNN
(LLL = letters and NNNN = numbers): RQS4567[Enter]
That's a valid customer number.

Program Output with Other Example Input Shown in Bold
Enter a customer number in the form LLLNNNN
(LLL = letters and NNNN = numbers): AX467T9[Enter]
That is not the proper format of the customer number.
Here is an example:
 ABC1234

Program 12-13 (continued)

Character Case Conversion 797

Likewise, the next four characters are tested to be digits with the following loop:

for (int k = ALPHA_LENGTH; k < NUM_LENGTH - 1; k++)
{

if (!isdigit(custNum[k]))
return false;

}

The isdigit function returns true if its argument is the character representation of any of
the digits 0 through 9. Once again, the ! operator is used to determine if the tested charac-
ter is not a digit. If this is so for any of the last four characters, the function testNum
returns false. If the customer number is in the proper format, the function will cycle
through both the loops without returning false. In that case, the last line in the function is
the return true statement, which indicates the customer number is valid.

12.5 Character Case Conversion

CONCEPT: The C++ library offers functions for converting a character to upper- or
lowercase.

The C++ library provides two functions, toupper and tolower, for converting the case of
a character. The functions are described in Table 12-5. (These functions are prototyped in
the header file cctype, so be sure to include it.)

Both of the functions in Table 12-5 accept an integer representing the ASCII code of a char-
acter to be converted and return an integer representing the ASCII code of the uppercase or
lowercase equivalent. Each function simply returns its argument if the conversion cannot be
made or is unnecessary. For example, if the argument to toupper is not a lowercase letter,
then toupper simply returns its argument unchanged. The prototypes of these functions are

int toupper(int ch);
int tolower(int ch);

The fact that these functions return an integer means that a statement such as

cout << toupper('a'); // prints 65

will print the integer that is the ASCII code of 'A' rather than printing the character 'A'
itself. To get it to print the character, you can cast the return value to a char, as in

cout << static_cast<char>(toupper('a')); // prints A

Table 12-5 Character Conversion Functions

Function Description

toupper Returns the uppercase equivalent of its argument.

tolower Returns the lowercase equivalent of its argument.

798 Chapter 12 More About Characters, Strings, and the string Class

or you can assign the return value to a character variable first and then print the character:

char ch = toupper('a');
cout << ch; // prints A

As mentioned above, the toupper function returns its argument unchanged if the argu-
ment is not a letter:

cout << static_cast<char>(toupper('&')); // prints &

or is a letter but it is already uppercase:

cout << static_cast<char>(toupper('B'); // prints B

Because the arguments to toupper and tolower are passed by value, the functions do not
change their actual parameters: Instead, they simply return the uppercase or lowercase
equivalent of their argument. For example, in the following program segment, the variable
letter is set to the value ‘A’. The tolower function returns the character ‘a’, but letter
still contains ‘A’.

char letter = 'A';
char ch = tolower(letter);
cout << ch << endl;
cout << letter;

These statements will cause the following to be displayed:

a
A

Program 12-14 demonstrates the toupper function in a loop that lets the user enter either
Y or N.

Program 12-14

1 // This program calculates the area of a circle. It
2 // asks the user if he or she wishes to continue. A
3 // loop that demonstrates the toupper function repeats
4 // until the user enters 'y', 'Y', 'n', or 'N'.
5 #include <iostream>
6 #include <cctype>
7 #include <iomanip>
8 using namespace std;
9
10 int main()
11 {
12 const double PI = 3.14159;
13 double radius;
14 char response; // User response
15
16 // Output formatting.
17 cout << setprecision(2) << fixed;
18
19 // Instructions to the user.
20 cout << "This program calculates the area of a circle.\n";
21

(program continues)

Character Case Conversion 799

Checkpoint

12.13 Write a short description of each of the following functions:
A) isalpha
B) isalnum
C) isdigit
D) islower
E) isprint
F) ispunct
G) isupper
H) isspace
I) toupper
J) tolower

12.14 Write a statement that will convert the contents of the char variable big to lower-
case. The converted value should be assigned to the variable little.

12.15 Write an if statement that will display the word “digit” if the variable ch contains
a numeric digit. Otherwise, it should display “Not a digit.”

12.16 What is the output of the following statement?

cout << static_cast<char>(toupper(tolower('A')));

22 // Keep reading radii and computing area
23 // until the user has had enough.
24 do
25 {
26 // Get radius of a circle and print its area.
27 cout << "Enter the circle's radius: ";
28 cin >> radius;
29 cout << "The area is " << (PI * radius * radius);
30 cout << endl;
31
32 // Are there more circles?
33 do
34 {
35 cout << "Calculate another? (Y or N) ";
36 cin >> response;
37 response = toupper(response);
38 } while (response != 'Y' && response != 'N');
39 } while (response == 'Y');
40 return 0;
41 }

Program Output with Example Input Shown in Bold
This program calculates the area of a circle.
Enter the circle's radius: 10[Enter]
The area is 314.16
Calculate another? (Y or N) b[Enter]
Calculate another? (Y or N) y[Enter]
Enter the circle's radius: 1[Enter]
The area is 3.14
Calculate another? (Y or N) n[Enter]

Program 12-14 (continued)

800 Chapter 12 More About Characters, Strings, and the string Class

12.17 Write a loop that asks the user “Do you want to repeat the loop or quit?(R/Q)”.
The loop should repeat as long as the user enters an R (in upper- or lowercase) and
terminate when the user enters a Q (in upper- or lowercase).

12.6 Writing Your Own C-String Handling Functions

CONCEPT: You can design your own specialized functions for manipulating strings.

By being able to pass arrays as arguments, you can write your own functions for process-
ing C-strings. For example, Program 12-15 uses a function to copy a C-string from one
array to another.

Program 12-15

1 // This program uses a function to copy
2 // a string into an array.
3 #include <iostream>
4 using namespace std;
5
6 // Function prototype.
7 void stringCopy(char [], char []);
8
9 int main()
10 {
11 // Define two arrays of char.
12 const int S_LENGTH = 30;
13 char dest[S_LENGTH], source[S_LENGTH];
14
15 // Read a string into a source array.
16 cout << "Enter a string with no more than "
17 << S_LENGTH - 1 << " characters:\n";
18 cin.getline(source, S_LENGTH);
19
20 // Copy it into a destination array and print.
21 stringCopy(dest, source);
22 cout << "The string you entered is:\n" << dest << endl;
23 return 0;
24 }
25
26 //**
27 // Definition of the stringCopy function. *
28 // This function accepts two character arrays as *
29 // arguments. The function assumes the two arrays *
30 // contain C-strings. The contents of the second *
31 // array are copied to the first array. *
32 //**

(program continues)

Writing a
C-String
Handling
Function

Writing Your Own C-String Handling Functions 801

Notice the function stringCopy in Program 12-15 does not accept an argument indicating
the size of the arrays. It simply copies the characters from the source string to the destination
until it encounters a null terminator in the source string. When the null terminator is found,
the loop has reached the end of the C-string. The last statement in the function assigns a null
terminator (the '\0' character) to the end of string2, so it is properly terminated.

Program 12-16 uses another C-string handling function: nameSlice. The program asks
the user to enter his or her first and last names, separated by a space. The function searches
the string for the space and replaces it with a null terminator. In effect, this cuts off the last
name of the string.

33 void stringCopy(char destStr[], char sourceStr[])
34 {
35 int index = 0;
36
37 // Copy one character at a time till we come to
38 // the null terminator.
39 while (sourceStr[index] != '\0')
40 {
41 destStr[index] = sourceStr[index];
42 index++;
43 }
44 destStr[index] = '\0';
45 }

Program Output with Example Input Shown in Bold
Enter a string with no more than 29 characters:
Thank goodness it’s Friday![Enter]
The string you entered is:
Thank goodness it's Friday!

WARNING! Since the stringCopy function doesn’t know the size of the destination
array, it’s the programmer’s responsibility to make sure the destination array is large
enough to hold the source string array.

Program 12-16

1 // This program uses the function nameSlice
2 // to "cut" off the last name of a string that
3 // contains the user's first and last names.
4 #include <iostream>
5 using namespace std;
6
7 void nameSlice(char []); // Function prototype
8
9 int main()
10 {
11
12 // Define array of char to hold name.
13 const int NAME_LENGTH = 41;

(program continues)

Program 12-15 (continued)

802 Chapter 12 More About Characters, Strings, and the string Class

The following loop in nameSlice starts at the first character in the array and scans the
string, searching for either a space or a null terminator:

while (userName[k] != ' ' && userName[k] != '\0')
k++;

If the character in userName[k] isn’t a space or the null terminator, k is incremented,
and the next character is examined. With the example input “Jimmy Jones,” the loop
finds the space separating “Jimmy” and “Jones” at userName[5]. When the loop stops,
k is set to 5. This is illustrated in Figure 12-3.

14 char name[NAME_LENGTH];
15
16 // Get user's first and last names.
17 cout << "Enter your first and last names, separated ";
18 cout << "by a space:\n";
19 cin.getline(name, NAME_LENGTH);
20
21 // Slice off the last name and print what is left.
22 nameSlice(name);
23 cout << "Your first name is: " << name << endl;
24 return 0;
25 }
26
27 //***
28 // Definition of function nameSlice. This function *
29 // accepts a character array as its argument. It *
30 // scans the array looking for a space. When it finds *
31 // one, it replaces it with a null terminator. *
32 //***
33 void nameSlice(char userName[])
34 {
35 // Look for the end of the first name, indicated
36 // by a space or a null terminator.
37 int k = 0;
38 while (userName[k] != ' ' && userName[k] != '\0')
39 k++;
40
41 // Insert null terminator.
42 if (userName[k] == ' ')
43 userName[k] = '\0';
44 }

Program Output with Example Input Shown in Bold
Enter your first and last names, separated by a space:
Jimmy Jones[Enter]
Your first name is: Jimmy

NOTE: The loop stops if it encounters a null terminator so it will not go beyond the
boundary of the array if the user didn’t enter a space.

Program 12-16 (continued)

Writing Your Own C-String Handling Functions 803

Once the loop has finished, userName[k] will either contain a space or a null terminator. If
it contains a space, the following if statement whose action is illustrated in Figure 12-4,
replaces it with a null terminator:

if (userName[k] == ' ')
userName[k] = '\0';

The new null terminator now becomes the end of the string.

Using Pointers to Pass C-String Arguments
Pointers are extremely useful for writing functions that process C-strings. If the starting
address of a string is passed into a pointer parameter variable, it can be assumed that all
the characters, from that address up to the byte that holds the null terminator are part of
the string. (It isn’t necessary to know the length of the array that holds the string.)

Program 12-17 demonstrates a function, countChars, that uses a pointer to count the
number of times a specific character appears in a C-string.

Figure 12-3

Figure 12-4

Program 12-17

1 // This program demonstrates a function, countChars,
2 // that counts the number of times a specific
3 // character appears in a string.
4 #include <iostream>
5 using namespace std;
6
7 // Function prototype
8 int countChars(char *, char);
9

(program continues)

J i m m y o n e s \0 J

0 1 2 3 4 5 7 8 9 10 11 12 6

The loop stops when k reaches 5 because userName[5] contains a space

Subscripts

J i m m y \0 o n e s \0J

0 1 2 3 4 5 7 8 9 10 11 126

The space is replaced with a null terminator. This now becomes the end of the string.

Subscripts

804 Chapter 12 More About Characters, Strings, and the string Class

In the function countChars, strPtr points to the C-string that is to be searched and ch
contains the character to look for. The while loop repeats as long the character strPtr
points to is not the null terminator:

while (*strPtr != '\0')

10 int main()
11 {
12 // Define array to hold the string.
13 const int S_LENGTH = 51;
14 char userString[S_LENGTH];
15
16 char letter; // User input.
17
18 // Read the string and the letter to count.
19 cout << "Enter a string (up to "
20 << S_LENGTH-1 << " characters): ";
21 cin.getline(userString, S_LENGTH);
22 cout << "Enter a character and I will tell you how many\n;
23 cout << "times it appears in the string: ";
24 cin >> letter;
25
26 // Output the results of the letter count.
27 cout << letter << " appears ";
28 cout << countChars(userString, letter) << " times.\n";
29 return 0;
30 }
31
32 //***
33 // Definition of countChars. The parameter strPtr is *
34 // a pointer that points to a string. The parameter *
35 // ch is a character that the function searches for *
36 // in the string. The function returns the number of *
37 // times the character appears in the string. *
38 //***
39 int countChars(char *strPtr, char ch)
40 {
41 int count = 0;
42 while (*strPtr != '\0')
43 {
44 if (*strPtr == ch)
45 count++;
46 strPtr++;
47 }
48 return count;
49 }

Program Output with Example Input Shown in Bold
Enter a string (up to 50 characters): Starting Out With C++[Enter]
Enter a character and I will tell you how many
times it appears in the string: t[Enter]
t appears 4 times.

Program 12-17 (continued)

More About the C++ string Class 805

Inside the loop, the following if statement compares the character that strPtr points to
with the character in ch:

if (*strPtr == ch)

If the two are equal, the variable count is incremented. (count keeps a running total of the
number of times the character appears.) The last statement in the loop is

strPtr++;

This statement increments the address in strPtr. This causes strPtr to point to the next
character in the string. Then the loop starts over. When strPtr finally reaches the null
terminator, the loop terminates and the function returns the value in count.

Checkpoint

12.18 What is the output of the following program?

#include <iostream>
using namespace std;

// Function prototype
void mess(char []);

int main()
{

char stuff[] = "Tom Talbert Tried Trains";

cout << stuff << endl;
mess(stuff);
cout << stuff << endl;
return 0;

}

// Definition of function mess
void mess(char str[])
{

int step = 0;

while (str[step] != '\0')
{

if (str[step] == 'T')
str[step] = 'D';

step++;
}

}

12.7 More About the C++ string Class
From an ease-of-programming point of view, the standard library string class offers
several advantages over C-strings. As you have seen throughout this text, the string
class has several member functions and overloaded operators. These simplify tasks,

806 Chapter 12 More About Characters, Strings, and the string Class

such as locating a character or string within a string, that are difficult and tedious to
perform with C-strings. In this section we review some basic operations with strings,
then discuss more of the string class’s member functions.

Any program using the string class must #include the string header file. String objects
may then be created using any of several constructors. Program 12-18 demonstrates two
string class constructors: the default constructor, and, the convert constructor that converts
a C-string into a string object.

Other examples of the use of string constructors are given in Table 12-6.

Program 12-18

1 // This program demonstrates some C++ string class constructors.
2 #include <iostream>
3 #include <string>
4 using namespace std;
5
6 int main()
7 {
8 string greeting; // Default constructor
9 string name("William Smith"); // Convert constructor
10
11 greeting = "Hello ";
12 cout << greeting << name << endl;
13 return 0;
14 }
15

Program Output
Hello William Smith

Table 12-6 String Constructors

Definition Description

string address; Defines an empty string object named address.

string name("William Smith"); Defines a string object named name, initialized with
“William Smith.”

string person1(person2); Defines a string object named person1, which is a copy
of person2. person2 may be either a string object or
character array.

string set1(set2, 5); Defines a string object named set1, which is initialized
to the first five characters in the character array set2.

string lineFull('z', 10); Defines a string object named lineFull initialized with
10 'z' characters.

string firstName(fullName, 0, 7); Defines a string object named firstName, initialized
with a substring of the string fullName. The substring
is seven characters long, beginning at position 0.

More About the C++ string Class 807

Notice in Program 12-18 the use of the = operator to assign a value to the string object.
The string class overloads several operators, which are described in Table 12-7.

Program 12-19 demonstrates some of the string operators.

Table 12-7 String Class Operators

Overloaded Operator Description

>> Extracts characters from a stream and inserts them into the string.
Characters are copied until a whitespace or the end of the input is
encountered.

<< Inserts the string into a stream.

= Assigns the string on the right to the string object on the left.

+= Appends a copy of the string on the right to the string object on the left.

+ Returns a string that is the concatenation of the two string operands.

[] Implements array-subscript notation, as in name[x]. A reference to the
character in the x position is returned.

Relational Operators Each of the relational operators are implemented:

< > <= >= == !=

Program 12-19

1 // This program demonstrates C++ string class operators
2 #include <iostream>
3 #include <string>
4 using namespace std;
5
6 int main()
7 {
8 string str1, str2, str3;
9
10 // String Assignment.
11 str1 = "ABC";
12 str2 = "DEF";
13 // String concatenation.
14 str3 = str1 + str2;
15
16 // String Output.
17 cout << str1 << endl;
18 cout << str2 << endl;
19 cout << str3 << endl;
20
21 // Short form of concatenation.
22 str3 += "GHI";
23
24 // String Output.
25 cout << str3 << endl;
26 return 0;
27 }

(program continues)

808 Chapter 12 More About Characters, Strings, and the string Class

The string class also has several member functions. For example, the size function
returns the length of the string. It is demonstrated in the for loop in Program 12-20.

Table 12-8 lists many of the string class member functions and their overloaded
variations.

Program Output
ABC
DEF
ABCDEF
ABCDEFGHI

Program 12-20

1 // This program demonstrates some C++ string
2 // class member functions.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 int main()
8 {
9 // Define and set values of string variables.
10 string str1, str2, str3;
11 str1 = "ABC";
12 str2 = "DEF";
13 str3 = str1 + str2;
14
15 // Use the size() string member function
16 // and the overloaded string operator [].
17 for (int k = 0; k < str3.size(); k++)
18 cout << str3[k];
19 cout << endl;
20
21 // Use the overloaded string operator <.
22 if (str1 < str2)
23 cout << str1 << " is less than " << str2 << endl;
24 else
25 cout << str1 << " is not less than " << str2 << endl;
26 return 0;
27 }

Program Output
ABCDEF
ABC is less than DEF

Program 12-19 (continued)

More About the C++ string Class 809

Table 12-8 string Class Member Functions

Member Function Example Description

theString.append(str); Appends str to theString. str can be a string object or
character array.

theString.append(str, x, n); n number of characters from str, starting at position x,
are appended to theString. If theString is too small,
the function will copy as many characters as possible.

theString.append(str, n); The first n characters of the character array str are
appended to theString.

theString.append(n, 'z'); Appends n copies of 'z' to theString.

theString.assign(str); Assigns str to theString. The parameter str can be a
string object or a C-string.

theString.assign(str, x, n); n number of characters from str, starting at position x,
are assigned to theString. If theString is too small, the
function will copy as many characters as possible.

theString.assign(str, n); The first n characters of the character array str are
assigned to theString.

theString.assign(n, 'z'); Assigns n copies of 'z' to theString.

theString.at(x); Returns the character at position x in the string.

theString.begin(); Returns an iterator pointing to the first character in the
string. (For more information on iterators, see Chapter 15.)

theString.capacity(); Returns the size of the storage allocated for the string.

theString.clear(); Clears the string by deleting all the characters stored in it.

theString.compare(str); Performs a comparison like the strcmp function with the
same return values. str can be a string object or a
character array.

theString.compare(x, n, str); Compares theString and str, starting at position x,
and continuing for n characters. The return value is
defined as for strcmp. str can be a string object or
character array.

theString.copy(str, x, n); Copies the character array str to theString, beginning
at position x, for n characters. If theString is too small,
the function will copy as many characters as possible.

theString.c_str(): Returns the C-string value of the string object.

theString.data(); Returns a character array containing a null terminated
string, as stored in theString.

theString.empty(); Returns true if theString is empty.

theString.end(); Returns an iterator pointing to the last character of the
string in theString. (For more information on iterators,
see Chapter 15.)

(table continues)

810 Chapter 12 More About Characters, Strings, and the string Class

12.8 Creating Your Own String Class

CONCEPT: This section demonstrates some of the programming techniques used to
create the C++ string class.

The C++ string class automatically handles many of the tedious tasks involved in using
strings, such as dynamic memory allocation and bounds checking. It also overloads
operators such as + and =, and offers many member functions that ease the job of working
with strings. In this section, we create a string data type with much of the functionality of
the C++ class. In the process, we see examples of copy constructors and overloaded
operators in full action, as well as examples of programming techniques that are useful in
the solution of many problems.

theString.erase(x, n); Erases n characters from theString, beginning at
position x.

theString.find(str, x); Returns the first position at or beyond position x where
the string str is found in theString. The parameter str
may be either a string object or a C-string. If str is not
found, a position beyond the end of theString is
returned.

theString.find('z', x); Returns the first position at or beyond position x where
'z' is found in theString.

theString.insert(x, str); Inserts a copy of str into theString, beginning at
position x. str may be either a string object or a character
array.

theString.insert(x, n, 'z'); Inserts 'z' n times into theString at position x.

theString.length(); Returns the length of the string in theString.

theString.replace(x, n, str); Replaces the n characters in theString beginning at
position x with the characters in string object str.

theString.resize(n, 'z'); Changes the size of the allocation in theString to n. If n
is less than the current size of the string, the string is
truncated to n characters. If n is greater, the string is
expanded and 'z' is appended at the end enough times to
fill the new spaces.

theString.size(); Returns the length of the string in theString.

theString.substr(x, n); Returns a copy of a substring. The substring is n
characters long and begins at position x of theString.

theString.swap(str); Swaps the contents of theString with str.

Table 12-8 string Class Member Functions (continued)

Member Function Example Description

Creating Your Own String Class 811

The MyString Class
The MyString class defined in this section is an abstract data type for handling strings. It
has many of the advantages possessed by the C++ string class provided by the Standard
Template Library:

• Memory is dynamically allocated for any string stored in a MyString object. The pro-
grammer using this class doesn’t need to be concerned with how large to make an array.

• Strings may be assigned to a MyString object with the = operator. The programmer
using this class does not have to call the strcpy function.

• One string may be concatenated to another with the += operator. This eliminates the
need for the strcat function.

• Strings may be tested for equality with the == operator. The programmer using this
class doesn’t have to call the strcmp function.

The following program listings show the class implementation.

Contents of mystring.h
1 #ifndef MYSTRING_H
2 #define MYSTRING_H
3
4 #include <iostream>
5 #include <cstring> // For string library functions
6 #include <cstdlib> // For exit() function
7 using namespace std;
8
9 class MyString {
10 private:
11 char *str;
12 int len;
13 public:
14 // Constructors
15 MyString() { str = ""; len = 0; }
16 MyString(char *);
17 MyString(const MyString &);
18
19 // Destructor
20 ~MyString() { if (len != 0) delete [] str; }
21
22 // Various member functions and operators
23 int length() { return len; }
24 char *data() { return str; };
25 MyString operator+=(MyString);
26 MyString operator=(MyString);
27
28 // Various overloaded operators
29 friend bool operator==(MyString, MyString);
30 friend bool operator!=(MyString, MyString);
31 friend bool operator>(MyString, MyString);
32 friend bool operator<(MyString, MyString);
33 friend bool operator>=(MyString, MyString);
34 friend bool operator<=(MyString, MyString);
35 friend ostream & operator<<(ostream &, MyString);
36 friend istream & operator>>(istream &, MyString &);
37 };
38 #endif

812 Chapter 12 More About Characters, Strings, and the string Class

Contents of mystring.CPP
1 #include "mystring.h"
2
3 //**
4 // Constructor to initialize the str member *
5 // with a C-string constant. *
6 //**
7 MyString::MyString(char *sptr)
8 {
9 len = strlen(sptr);
10 str = new char[len + 1];
11 strcpy(str, sptr);
12 }
13
14 //***
15 // Copy constructor. *
16 //***
17 MyString::MyString(const MyString &right)
18 {
19 str = new char[right.len + 1];
20 strcpy(str, right.str);
21 len = right.len;
22 }
23
24 //**
25 // Overloaded = operator. *
26 //**
27 MyString MyString::operator=(MyString right)
28 {
29 if (len != 0) delete [] str;
30 str = new char[right.len + 1];
31 strcpy(str, right.str);
32 len = right.len;
33 return *this;
34 }
35
36 //**
37 // Overloaded += operator. *
38 // Concatenates the str member of right to the *
39 // str member of the calling object. *
40 // Returns the calling object. *
41 //**
42 MyString MyString::operator+=(MyString right)
43 {
44 char *temp = str;
45 str = new char[len + right.len + 1];
46 strcpy(str, temp);
47 strcat(str, right.str);
48 if (len != 0) delete [] temp;
49 len += right.len;
50 return *this;
51 }
52

Creating Your Own String Class 813

53 //***
54 // Overloaded == operator. *
55 //***
56 bool operator==(MyString left, MyString right)
57 {
58 return strcmp(left.str, right.str) == 0;
59 }
60
61 //***
62 // Overloaded != operator. *
63 //***
64 bool operator!=(MyString left, MyString right)
65 {
66 return strcmp(left.str, right.str) != 0;
67 }
68
69 //**
70 // Overloaded > operator. *
71 //**
72 bool operator>(MyString left, MyString right)
73 {
74 return (strcmp(left.str, right.str) > 0);
75 }
76
77 //**
78 // Overloaded < operator. *
79 //**
80 bool operator<(MyString left, MyString right)
81 {
82 return (strcmp(left.str, right.str) < 0);
83 }
84
85 //***
86 // Overloaded >= operator. *
87 //***
88 bool operator>=(MyString left, MyString right)
89 {
90 return (strcmp(left.str, right.str) >= 0);
91 }
92
93 //***
94 // Overloaded <= operator. *
95 //***
96 bool operator<=(MyString left, MyString right)
97 {
98 return (strcmp(left.str, right.str) <= 0);
99 }
100
101 //***
102 // Overloaded stream insertion operator (<<). *
103 //***
104 ostream &operator<<(ostream &strm, MyString obj)

814 Chapter 12 More About Characters, Strings, and the string Class

Constructors and Destructors
Because the MyString class has a pointer that is used to dynamically allocate memory, it
requires a programmer-defined copy constructor, assignment operator, and destructor. In
addition to the copy constructor, there is a default constructor that initializes a MyString
object to an empty string, and a convert constructor that allows C-strings to be used in
place of MyString objects in assignment statements. The convert constructor also allows
C-strings to be passed to functions and operators that would otherwise require MyString
objects as parameters. An example of this is line 119 in the MyString.cpp file, where in
the statement

obj = buffer;

obj is a MyString object being assigned the value of the C-string variable buffer.

The Overloaded = Operator
The overloaded assignment operator is invoked whenever one MyString object is being
assigned to another, as in

MyString x("Hello");
MyString y;
y = x;

It is also called whenever a C-string is assigned to a MyString object, as in

MyString x;
x = "hello";

In this second example, the convert constructor will automatically be called to convert the
C-string "hello" to a MyString object, which is then assigned to the object x.

The Overloaded += Operator
This operator concatenates the Mystring object on its right to the object on its left. The
right operand may be a MyString object, or it may be a C-string:

MyString x("Hello ");
x += "World";

105 {
106 strm << obj.str;
107 return strm;
108 }
109
110 //***
111 // Overloaded stream extraction operator (>>). *
112 //***
113 istream &operator>>(istream &strm, MyString &obj)
114 {
115 // Read the string
116 char buffer[256];
117 strm.getline(buffer, 256);
118 // Invoke the convert constructor and overloaded assignment
119 obj = buffer;
120 return strm;
121 }

Creating Your Own String Class 815

The Overloaded Relational Operators ==, !=, <, <=, >, >=
These operators are overloaded as nonmember functions to preserve the symmetry
between the left and right operands and to allow the convert constructor to be called
when a C-string is passed for the left operand (parameter). These functions return a
Boolean value that is exactly the Boolean value that is obtained when the contained
C-strings are passed to strcmp and the result is compared to 0. As an example, here is
code for operator < :

bool operator<(MyString left, MyString right)
{
 return (strcmp(left.str, right.str) < 0);
}

Program 12-21 demonstrates the use of the += operator and various other features of the
MyString class.

Program 12-21

1 // This program demonstrates the MyString class. Be sure to
2 // compile this program with mystring.cpp.
3 #include <iostream>
4 #include "mystring.h"
5 using namespace std;
6
7 int main()
8 {
9 MyString object1("This"), object2("is");
10 MyString object3("a test.");
11 MyString object4 = object1; // Call copy constructor.
12 MyString object5("is only a test.");
13 char string1[] = "a test.";
14
15 cout << "Object1: " << object1 << endl;
16 cout << "Object2: " << object2 << endl;
17 cout << "Object3: " << object3 << endl;
18 cout << "Object4: " << object4 << endl;
19 cout << "Object5: " << object5 << endl;
20 cout << "String1: " << string1 << endl;
21 object1 += " ";
22 object1 += object2;
23 object1 += " ";
24 object1 += object3;
25 object1 += " ";
26 object1 += object4;
27 object1 += " ";
28 object1 += object5;
29 cout << "object1: " << object1 << endl;
30 return 0;
31 }

(program continues)

816 Chapter 12 More About Characters, Strings, and the string Class

Program 12-22 shows how MyString’s relational operators can be used to compare strings
with the same ease that numeric data types are compared.

Program Output
Object1: This
Object2: is
Object3: a test.
Object4: This
Object5: is only a test.
String1: a test.
object1: This is a test. This is only a test.

Program 12-22

1 // This program demonstrates the MyString class. Be sure to
2 // compile this program with mystring.cpp.
3 #include <iostream>
4 #include "mystring.h"
5 using namespace std;
6
7 int main()
8 {
9 MyString name1("Billy"), name2("Sue");
10 MyString name3("joe");
11 MyString string1("ABC"), string2("DEF");
12
13 cout << "name1: " << name1.getValue() << endl;
14 cout << "name2: " << name2.getValue() << endl;
15 cout << "name3: " << name3.getValue() << endl;
16 cout << "string1: " << string1.getValue() << endl;
17 cout << "string2: " << string2.getValue() << endl;
18 if (name1 == name2)
19 cout << "name1 is equal to name2.\n";
20 else
21 cout << "name1 is not equal to name2.\n";
22 if (name3 == "joe")
23 cout << "name3 is equal to joe.\n";
24 else
25 cout << "name3 is not equal to joe.\n";
26 if (string1 > string2)
27 cout << "string1 is greater than string2.\n";
28 else
29 cout << "string1 is not greater than string2.\n";
30 if (string1 < string2)
31 cout << "string1 is less than string2.\n";
32 else
33 cout << "string1 is not less than string2.\n";
34 if (string1 >= string2)
35 cout << "string1 is greater than or equal to "
36 << "string2.\n";

(program continues)

Program 12-21 (continued)

Advanced Software Enterprises Case Study 817

12.9 Advanced Software Enterprises Case Study
You are a summer intern at Advanced Software Enterprises, and your boss has asked you to
develop a function that can format string representations of dollar amounts. Specifically, he
wants you to add commas and a dollar sign ($) at appropriate places in the string. For exam-
ple, when the function is given the string object or C-string with a value of “1084567.89”, it
should return the string “$1,084,567.89”.

After reviewing the String class members listed in Table 12-8 and giving the problem
some thought, you decide to use the find method. This will let you find the index of the

37 else
38 cout << "string1 is not greater than or equal to "
39 << "string2.\n";
40 if (string1 >= "ABC")
41 cout << "string1 is greater than or equal to "
42 << "ABC.\n";
43 else
44 cout << "string1 is not greater than or equal to "
45 << "ABC.\n";
46 if (string1 <= string2)
47 cout << "string1 is less than or equal to "
48 << "string2.\n";
49 else
50 cout << "string1 is not less than or equal to "
51 << "string2.\n";
52 if (string2 <= "DEF")
53 cout << "string2 is less than or equal to "
54 << "DEF.\n";
55 else
56 cout << "string2 is not less than or equal to "
57 << "DEF.\n";
58 return 0;
59 }

Program Output
name1: Billy
name2: Sue
name3: joe
string1: ABC
string2: DEF
name1 is not equal to name2.
name3 is equal to joe.
string1 is not greater than string2.
string1 is less than string2.
string1 is not greater than or equal to string2.
string1 is greater than or equal to ABC.
string1 is less than or equal to string2.
string2 is less than or equal to DEF.

Program 12-22 (continued)

818 Chapter 12 More About Characters, Strings, and the string Class

decimal point in the input string. Beginning at that point, you can back up in the string,
inserting a comma at every third location. You then finish it off by inserting a $ sign at the
beginning. In no time at all, you have the solution and the demonstration program shown
in the listing for Program 12-23.

Program 12-23

1 // This program demonstrates the use of the string find
2 // and insert member functions.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 string dollarFormat(string); // Prototype
8
9 int main(void)
10 {
11 string input; // User input
12
13 // Get the dollar amount from the user.
14 cout << "Enter a dollar amount in the form nnnnn.nn : ";
15 cin >> input;
16
17 // Display the formatted dollar amount.
18 cout << "Formatted amount: " << dollarFormat(input) << endl;
19 return 0;
20 }
21
22 //**
23 // Returns a $-formatted version of the input string *
24 //**
25 string dollarFormat(string original)
26 {
27 string formatted = original;
28 int dp = formatted.find('.'); // Position of decimal point
29 int pos = dp; // Search for comma position
30 while (pos > 3)
31 {
32 pos = pos - 3;
33 formatted.insert(pos, ",");
34 }
35 formatted.insert(0, "$");
36 return formatted;
37 }

Program Output with Example Input Shown in Bold
Enter a dollar amount in the form nnnnn.nn : 1084567.89[Enter]
Here is the amount formatted: $1,084,567.89

Tying It All Together: Program Execution Environments 819

12.10 Tying It All Together: Program Execution Environments

Most operating systems provide every executing program with an execution environment
consisting of a set of strings of the form

name=value

The name part of this equation is called an environment variable and the value part is used
to specify a string value for that particular environment variable. As an example, look at
this partial listing of the execution environment of a C++ program running on one of the
authors’ machines:

 1 COMPUTERNAME=GCM-VISTA1
 2 ComSpec=C:\Windows\system32\cmd.exe
 3 HOMEDRIVE=C:
 4 HOMEPATH=\Users\gcm
 5 LOGONSERVER=\\GCM-VISTA1
 6 NUMBER_OF_PROCESSORS=2
 7 OS=Windows_NT
 8 SESSIONNAME=Console
 9 SystemDrive=C:
10 SystemRoot=C:\Windows
11 USERDOMAIN=gcm-Vista1
12 USERNAME=gcm
13 windir=C:\Windows
14 WindowsSdkDir=C:\Program Files\\Microsoft SDKs\Windows\v6.0A\

In line 1, COMPUTERNAME is the environment variable and GCM-VISTA1 is the associated
value.

A program that examines its execution environment can obtain information about the user
currently logged in and about the machine on which it is running. Depending on the oper-
ating system, the program can also gather information about the network to which the
machine is connected. For example, by examining the above listing, we can tell that the
user’s login name is gcm (line 12), that the user’s home folder is \Users\gcm (line 4), and
that the machine’s operating system is a version of Microsoft Windows (line 7). Further-
more, we can tell that the computer has two central processing units (line 6) and that the
network name of the machine is GCM-VISTA1 (line 1).

The operating system stores the program’s environment as an array of pointers to C-strings.
To mark the end of the array, the system sets the last entry in the array to 0. It then passes the
base address of this array to the program. When the program starts executing, the C++ runt-
ime system sets a variable

char **environ;

to point to the beginning of the environment array.

Basically, the environ variable is a global variable defined in library code that is linked
with the executable code of your program. In C++, a function can access a global variable
defined in a separate file by declaring the variable and prefixing the declaration with the

820 Chapter 12 More About Characters, Strings, and the string Class

keyword extern. This means that you can gain access to the environment by including this
declaration in your program:

extern char ** environ;

In Chapter 10 you learned that if environ is a pointer to the beginning of an array of
items, you can use the notation

environ[k]

to access the various components of that array. By starting a variable k at 0 and repeatedly
incrementing k, you can step through the array and examine each environment string, as
shown in Program 12-24.

The output from this program will vary depending on the user running the program and
the machine on which the program is running. It will be similar to what is shown at the
beginning of this section.

Review Questions and Exercises

Fill-in-the-Blank

1. The _________ function returns true if the character argument is uppercase.

2. The _________ function returns true if the character argument is a letter of the alphabet.

3. The _________ function returns true if the character argument is a digit.

4. The _________ function returns true if the character argument is a whitespace
character.

5. The _________ function returns the uppercase equivalent of its character argument.

6. The _________ function returns the lowercase equivalent of its character argument.

Program 12-24

1 // This program prints its environment variables.
2 #include <iostream>
3 using namespace std;
4
5 int main(int argc, char** argv)
6 {
7 extern char **environ; // Needed to access the environment
8
9 int k = 0;
10 while(environ[k] != 0) // Is it last C-string in environment?
11 {
12 // Print the string
13 cout << environ[k] << "\n";
14 k++;
15 }
16 return 0;
17 }

Chapter 12 More About Characters, Strings, and the string Class

Review Questions and Exercises 821

7. The _________ file must be included in a program that uses character testing functions.

8. The _________ function returns the length of a string.

9. To _________ two strings means to append one string to the other.

10. The _________ function concatenates two strings.

11. The _________ function copies one string to another.

12. The _________ function searches for a string inside of another one.

13. The _________ function compares two strings.

14. The _________ function copies, at most, n number of characters from one string to
another.

15. The _________ function returns the value of a string converted to an integer.

16. The _________ function returns the value of a string converted to a long integer.

17. The _________ function returns the value of a string converted to a double.

18. The _________ function converts an integer to a string.

Algorithm Workbench

19. Write a function whose prototype is

char lastChar(char *str)

that takes a nonempty C-string as parameter and returns the last character in the
string. For example, the call lastChar("abc") will return the character c.

Predict the Output

For some of the questions, you may need to consult a table of ASCII codes.

20. #include <iostream>
using namespace std;
int main()
{
 cout << ("hello")[1];
 return 0;
}

21. #include <iostream>
using namespace std;
int main()
{
 cout << *("hello");
 return 0;
}

22. #include <iostream>
using namespace std;
int main()
{
 cout << *("C++ is fun" + 5);
 return 0;
}

822 Chapter 12 More About Characters, Strings, and the string Class

23. #include <iostream>
#include <string>
using namespace std;
int main()
{
 cout << string("fantastic").size();
 return 0;
}

24. #include <iostream>
#include <cctype>
using namespace std;
int main()
{
 cout << toupper('B');
 return 0;
}

25. #include <iostream>
using namespace std;
int main()
{
 if ("a" == "a")

 cout << "equal";
 else

 cout << "not equal";
 return 0;

}

26. #include <iostream>
#include <cctype>
using namespace std;
int main()
{
 char ch = toupper(65);
 cout << ch;
 return 0;

}

27. #include <iostream>
#include <cstring>
using namespace std;
int main()
{
 char name[20] = "abracadabra";
 strcpy(name+4, "sion");
 cout << name;
return 0;

}

28. #include <iostream>
#include <cstring>
using namespace std;
int main()

Review Questions and Exercises 823

{
 char name[20] = "John ";
 *name = '\0';
 strcat(name, "Smith");
 cout << name;
 return 0;
}

Find the Errors

29. Each of the following programs or program segments has errors. Find as many as you
can.

A) char string[] = "Stop";
if (isupper(string) == "STOP")

exit(0);

B) char numeric[5];
int x = 123;
numeric = atoi(x);

C) char string1[] = "Billy";
char string2[] = " Bob Jones";
strcat(string1, string2);

D) char x = 'a', y = 'a';
if (strcmp(x, y) == 0)

 exit(0);

Soft Skills

30. You are a member of a standardization committee for a new C++ standard, and there is
a proposal on the table to drop C-strings from the language and support only the C++
string class. State whether you would oppose or support the proposal and explain why.

Programming Challenges

1. String Length

Write a function that accepts a C-string as an argument and returns the length of the
C-string as a result. The function should count the number of characters in the string and
return that number. Demonstrate the function in a simple program that asks the user to
input a string, passes it to the function, and then displays the function’s return value.

2. Backward String

Write a function that accepts a C-string as an argument and displays its contents back-
wards. For instance, if the string argument is “Gravity” the function should display
“ytivarG”. Demonstrate the function in a program that asks the user to input a string and
then passes it to the function.Solving the

Backward
String Problem

824 Chapter 12 More About Characters, Strings, and the string Class

3. Word Counter

Write a function that accepts a C-string as an argument and returns the number of words
contained in the string. For instance, if the string argument is “Four score and seven years
ago” the function should return the number 6. Demonstrate the function in a program that
asks the user to input a string and then passes it to the function. The number of words in
the string should be displayed on the screen.

4. Average Number of Letters

Modify the program you wrote for problem 3 (Word Counter), so it also displays the aver-
age number of letters in each word.

5. Sentence Capitalizer

Write a function that accepts a C-string as an argument and capitalizes the first character of
each sentence in the string. For instance, if the string argument is “hello. my name is Joe.
what is your name?” the function should manipulate the string so it contains “Hello. My
name is Joe. What is your name?” Demonstrate the function in a program that asks the
user to input a string and then passes it to the function. The modified string should be dis-
played on the screen.

6. Vowels and Consonants

Write a function that accepts a C-string as its argument. The function should count the
number of vowels appearing in the string and return that number.

Write another function that accepts a C-string as its argument. This function should count
the number of consonants appearing in the string and return that number.

Demonstrate the two functions in a program that performs the following steps:
1. The user is asked to enter a string.
2. The program displays the following menu:

A) Count the number of vowels in the string
B) Count the number of consonants in the string
C) Count both the vowels and consonants in the string
D) Enter another string
E) Exit the program

3. The program performs the operation selected by the user and repeats until the user
selects E, to exit the program.

7. Name Arranger

Write a program that asks for the user’s first, middle, and last names. The names should be
stored in three different character arrays. The program should then store in a fourth array
the name arranged in the following manner: the last name followed by a comma and a
space, followed by the first name and a space, followed by the middle name. For example,
if the user entered “Carol Lynn Smith”, it should store “Smith, Carol Lynn” in the
fourth array. Display the contents of the fourth array on the screen.

Review Questions and Exercises 825

8. Sum of Digits in a String

Write a program that asks the user to enter a series of single-digit numbers with nothing
separating them. Read the input as a C-string or a string object. The program should dis-
play the sum of all the single-digit numbers in the string. For example, if the user enters
2514, the program should display 12, which is the sum of 2, 5, 1, and 4. The program
should also display the highest and lowest digits in the string.

9. Most Frequent Character

Write a function that accepts either a pointer to a C-string, or a string object, as its argu-
ment. The function should return the character that appears most frequently in the string.
Demonstrate the function in a complete program.

10. replaceSubstring Function

Write a function named replaceSubstring. The function should accept three C-string or
string object arguments. Let’s call them string1, string2, and string3. It should
search string1 for all occurrences of string2. When it finds an occurrence of string2, it
should replace it with string3. For example, suppose the three arguments have the fol-
lowing values:

string1: "the dog jumped over the fence"
string2: "the"
string3: "that"

With these three arguments, the function would return a string object with the value
“that dog jumped over that fence”. Demonstrate the function in a complete program.

11. Case Manipulator

Write a program with three functions: upper, lower, and reverse. The upper function
should accept a C-string as an argument. It should step through all the characters in the
string, converting each to uppercase. The lower function, too, should accept a pointer to a
C-string as an argument. It should step through all the characters in the string, converting
each to lowercase. Like upper and lower, reverse should also accept a C-string. As it
steps through the string, it should test each character to determine whether it is upper- or
lowercase. If a character is uppercase, it should be converted to lowercase. If a character is
lowercase, it should be converted to uppercase.

Test the functions by asking for a string in function main, then passing it to them in the fol-
lowing order: reverse, lower, and upper.

12. Password Verifier

Imagine you are developing a software package that requires users to enter their own pass-
words. Your software requires that user’s passwords meet the following criteria:

• The password should be at least six characters long.
• The password should contain at least one uppercase and at least one lowercase letter.
• The password should have at least one digit.

Write a program that asks for a password and then verifies that it meets the stated criteria.
If it doesn’t, the program should display a message telling the user why.

826 Chapter 12 More About Characters, Strings, and the string Class

13. Phone Number List

Write a program that has an array of at least 10 string objects that hold people’s names
and phone numbers. You may make up your own strings or use the following:

"Becky Warren, 678-1223"
"Joe Looney, 586-0097"
"Geri Palmer, 223-8787"
"Lynn Presnell, 887-1212"
"Holly Gaddis, 223-8878"
"Sam Wiggins, 486-0998"
"Bob Kain, 586-8712"
"Tim Haynes, 586-7676"
"Warren Gaddis, 223-9037"
"Jean James, 678-4939"
"Ron Palmer, 486-2783"

The program should ask the user to enter a name or partial name to search for in the array.
Any entries in the array that match the string entered should be displayed. For example, if
the user enters “Palmer” the program should display the following names from the list:

Geri Palmer, 223-8787
Ron Palmer, 486-2783

14. Check Writer

Write a program that displays a simulated paycheck. The program should ask the user to
enter the date, the payee’s name, and the amount of the check. It should then display a sim-
ulated check with the dollar amount spelled out, as shown here:

 Date: 12/24/2007

Pay to the Order of: John Phillips $1920.85

One thousand nine hundred twenty and 85 cents

Be sure to format the numeric value of the check in fixed-point notation with two decimal
places of precision. Be sure the decimal place always displays, even when the number is
zero or has no fractional part. Use either C-strings or string class objects in this program.

Input Validation: Do not accept negative dollar amounts, or amounts over $10,000.

15. Digit Sums of Squares and Cubes

If you add up all the digits in 468, you get 4 + 6 + 8 = 18. The square and cube of 468 are
219024 and 102503232, respectively. Interestingly, if you add up the digits of the square
or cube, you get 18 again. Are there other integers that share this property? Write a pro-
gram that lists all positive integers k less than 1000 such that the three numbers k, k2, and
k3 have digits that add up to the same number.

16. Dollar Amount Formatter

Modify Program 12-23 by adding a function

string dollarFormat(double amount)

Review Questions and Exercises 827

that takes a dollar amount in numeric form and returns a string formatted in currency
notation, with a $ sign and commas inserted at the appropriate locations. Test your func-
tion using suitable inputs.

17. User Name

Write a program that queries its environment, determines the user’s login name, and then
greets the user by name. For example, if the login name of the user is gcm, then the pro-
gram prints

Hello, gcm

when it is executed.

This page intentionally left blank

829

C
H

A
P

T
E

R

13 Advanced File
and I/O Operations

13.1 Files

CONCEPT: A file is a collection of information, usually stored on a computer’s disk.
Information can be saved to files and later retrieved.

Files are crucial to the operation of many real-world programs. Examples of familiar types
of software packages that use files extensively are:

• Word Processors: Word processing programs are used to write letters, memos,
reports, and other documents. The documents are then saved in files so they can be
edited and printed.

• Database Management Systems: DBMSs are used to create and maintain databases.
Databases are files that contain large collections of information, such as payroll
records, inventories, sales statistics, and customer records.

• Spreadsheets: Spreadsheet programs are used to work with numerical data. Numbers
and mathematical formulas can be inserted into the rows and columns of the spread-
sheet. The spreadsheet can then be saved to a file for use later.

TOPICS

13.1 Files
13.2 Output Formatting
13.3 Passing File Stream Objects to Functions
13.4 More Detailed Error Testing
13.5 Member Functions for Reading and

Writing Files
13.6 Binary Files
13.7 Creating Records with Structures

13.8 Random-Access Files
13.9 Opening a File for Both Input

and Output
13.10 Online Friendship Connections Case

Study: Object Serialization
13.11 Tying It All Together: File Merging and

Color-Coded HTML

830 Chapter 13 Advanced File and I/O Operations

• Compilers: Compilers translate the source code of a program, which is saved in a file,
into an executable file. Throughout the previous chapters of this book you have cre-
ated many C++ source files and compiled them to executable files.

In previous chapters, you learned how to open files, how to read files, and how to store
data in files. In this chapter, we briefly review some of what you already know, then cover
additional information on the use of files.

File-Naming Conventions
Each operating system has its own rules for naming files. Some systems allow long file-
names such as

infoFrom1997
corpSalesReport
vehicleRegistrations

Other systems only allow shorter file names. MS-DOS, for example, allows filenames of no
more than eight characters with an optional three-character extension.

Extensions are commonly used with filenames. The name and extension are separated by a
period, called a “dot.” While the filename identifies the file’s purpose, the extension identi-
fies the type of information contained in the file. For example, the .cpp extension identifies
a C++ program. The filename payroll.cpp would identify a payroll program written in
C++. Table 13-1 lists other example filenames and the type of information they contain.

Using Files
As you learned in Chapter 3, there are three steps to using a file: The file must be opened,
the file is then read or written, and finally, the file should be closed when the program has
finished using it. In C++, files are used through file stream objects. These are objects
belonging to the ifstream, ofstream, and fstream classes. Access to these classes is
gained by placing the include directive

#include <fstream>

Table 13-1 Filename Extensions

Filename and Extension File Contents

myprog.bas BASIC program

menu.bat Microsoft Windows batch file

install.doc Microsoft Word file

crunch.exe Executable file

bob.html HTML file

model.java Java program or applet

invent.obj Object file

ansi.sys System device driver

readme.txt Text file

Files 831

in your program. Objects of type ifstream connect to input files, while objects of type
ofstream connect to output files. Objects of the fstream class can be used for input, out-
put, or both input and output at the same time. For each file that you want to use in your
program, you should first determine whether you want to use it for input, output, or both,
then define an appropriate file stream object to be used to connect to the file. For example,
to read an input file inFile, write an output file outFile, and use a third file ioFile for
either input or output, you would define three file stream objects as follows:

ifstream inFile;
ofstream outFile;
fstream ioFile;

Using Variable File Names
You have already learned how to specify names of files to be opened or created by cod-
ing the literal name of the file into your program. For example, to read a file called
demoFile.txt, you would write

inFile.open("demoFile.txt");

While this is convenient for student programs, real-world applications cannot require a
specific file name: They must read the name of the file the user wants to use. To do this,
define an array of characters to hold the name of the file, read the name into the array, and
then pass the array to the open function:

ifstream inFile;
char fileName[81];
cout << "Please enter the name of the file: ";
cin.getline(filename, 81);
inFile.open(fileName);

You should be aware that the open function of file stream objects expects the name of the
file to be a C-string and will not accept C++ string objects. If you already have the name
of the file in a string object, you need to use the c_str or data member functions to
extract the C-string from the string object:

ifstream inFile;
string fileName;
cout << "Please enter the name of the file: ";
getline(cin, fileName);
inFile.open(fileName.data());

Using a string object for the filename has the drawback of requiring an extra step to extract
the C-string, but it has the advantage of avoiding possible buffer overflow problems if the
name of the file entered by the user is longer than the array can hold.

How the Program Locates Files
The name of a file being given to a program can be simple, consisting of just the name of
the file, as in

myfile.dat

or it can be a full pathname like

C:\csc\programs\myfile.dat

832 Chapter 13 Advanced File and I/O Operations

which specifies the path through the directories on the system that the computer should
follow to locate the file. Generally, the full pathname has to be specified unless the file is
located in the current directory. The current directory is the directory the user is in when he
or she executes the program from the command line. This will normally be the directory
containing the file with the program’s executable code.

Using the fstream Object
File stream objects require the programmer to specify whether the object will be used for
input, output, or both. This is done through the use of file open modes. A file open mode is
an option, or flag, that the programmer can set to determine how the file will be used. The
open member function of the file stream objects is overloaded to take a file mode as an
optional second parameter.

File open modes are predefined values that are members of the ios class. The ios::in
mode is used to set the fstream object for input, and ios::out is used to set it for output.
For example, we can open a file input.dat for input, and output.dat for output, using
the fstream object and the appropriate file modes as follows:

fstream inFile, outFile;
inFile.open("input.dat", ios::in);
outFile.open("output.dat", ios::out);

It is possible to combine several file open mode flags when a file is being opened. The com-
bination of flags is achieved through the bitwise or operator |. The bitwise or operator,
which occupies the same key as the backslash on most keyboards, is discussed further in
Appendix H.

Here is an example of combining file mode flags to open a file for both reading and writing:

fstream dataFile;
myFile.open("myfile.dat", ios::in | ios::out);

Reading and Writing Files
File stream objects have a lot of the same member functions as, and behave similarly to,
the iostream objects cin and cout. In particular, the insertion operator <<, the extrac-
tion operator >>, many member functions such as getline, and even the library func-
tion getline for working with string objects work the same way with file stream
objects as they do with the iostream objects. In fact, even the I/O manipulators work
with the fstream objects. Program 13-1 shows the use of the insertion operator and of
the getline function with an fstream object. It opens a file for writing, writes two

NOTE: The notion of a current directory does not apply if you are executing your
program from within your compiler’s development environment. In this case, files that
are not specified using full pathnames will be searched for in a default directory. The
default directory is usually the one that contains the program project’s source files. For
further information, see the appendices for Borland C++ Builder, and Microsoft Visual
C++.

Files 833

sentences to it, closes the file, and then opens the file for reading. The contents of the file
are then printed on the screen.

There are other file modes besides ios::in and ios::out. Although we have illustrated
file modes for fstream objects, file modes can be used with ifstream and ofstream
objects as well. Of course, some file modes do not make sense with certain file stream
objects: For example, you should not use the ios::in mode with an ofstream object.
Certain file streams are opened with some of the modes already set by default. Table 13-2
gives details on default modes for ifstream and ofstream objects.

Program 13-1

1 //This program demonstrates the use of an fstream object
2 //and file mode flags.
3 #include <iostream>
4 #include <fstream>
5 using namespace std;
6
7 int main()
8 {
9 fstream dataFile; // file object
10 string buffer; // Used to read line from file
11
12 // Create a new file named myfile.dat to write to.
13 dataFile.open("myfile.dat", ios::out);
14
15 // Write two lines to the file.
16 dataFile << "Now is the time for all good men" << endl
17 << "to come to the aid of their country.";
18 // Close the file.
19 dataFile.close();
20
21 // Open the file for input.
22 dataFile.open("myfile.dat", ios::in);
23
24 // Read a line into a buffer and print the line.
25 getline(dataFile, buffer);
26 cout << buffer << endl;
27
28 // Read a second line and print it.
29 getline(dataFile, buffer);
30 cout << buffer << endl;
31
32 // Close the file.
33 dataFile.close();
34 }

Program Output
Now is the time for all good men
to come to the aid of their country.

834 Chapter 13 Advanced File and I/O Operations

Many times when a program opens a file for output, the assumption is that no file of that
name already exists: The intention is to create a new file to hold data generated by the pro-
gram. This is why the default action in opening a file for output is to delete any existing file
of the same name and replace it with a new one. The ios::app mode can be used if the
data already in the file is to be preserved and new data being generated is to be added, or
appended, to the end of the file. The ios::noreplace flag specifies that an attempt to
open a file for output should fail if the file already exists. This protects important files from
deletion or modification.

Program 13-2 illustrates the use of the ios::app file mode. It opens a file, writes two
names to the file, and then closes the file. The program then reopens the file in append
mode, adds two more names, closes the file, and terminates.

Table 13-2 Files Open Modes

File Type Default Open Mode

ofstream The file is opened for output only. (Information may be written to the file, but not
read from the file.) If the file does not exist, it is created. If the file already exists, its
contents are deleted (the file is erased).

ifstream The file is opened for input only. (Information may be read from the file, but not
written to it.) The file’s contents will be read from its beginning. If the file does not
exist, the open function fails.

NOTE: When used by itself, the ios::out causes the file’s contents to be deleted if the
file already exists. When it is used with the ios::app flag, however, the file’s existing
contents are preserved. If the file does not exist, it is created.

Program 13-2

1 // This program writes information to a file, closes the file,
2 // then reopens it and appends more information.
3 #include <fstream>
4 using namespace std;
5
6 int main()
7 {
8 fstream dataFile; // file object
9
10 // Open a file to write to, and write to it.
11 dataFile.open("demofile.txt", ios::out);
12 dataFile << "Jones\n";
13 dataFile << "Smith\n";
14
15 // Close the file.
16 dataFile.close();
17

(program continues)

Files 835

Table 13-3 gives a list of file mode flags and their meanings.

Using File Stream Constructors to Open Files
The ifstream, ofstream, and fstream classes all have constructors that can take a name of
a file as well as an optional set of file open mode flags and automatically open the file. This
eliminates the need for a separate call to the open member function. Here are some examples:

ifstream infile("names.dat");
fstream iofile("names.dat", ios::in | ios::out);

Testing for File Operation Errors
A call to open a file, such as

infile.open("names.dat", ios::in);

18 // Open the same file in append mode, and write to it.
19 dataFile.open("demofile.txt", ios::out|ios::app);
20 dataFile << "Willis\n";
21 dataFile << "Davis\n";
22
23 // Close the file.
24 dataFile.close();
25 return 0;
26 }

Output to File demofile.txt
Jones
Smith
Willis
Davis

Table 13-3 File Mode Flags

File Mode Flag Meaning

ios::app Append mode. If the file already exists, its contents are preserved and all
output is written to the end of the file. By default, this flag causes the file to
be created if it does not exist.

ios::ate Initial output to the file will take place at the end of the file.

ios::binary Binary mode. When a file is opened in binary mode, information is written to
or read from it in pure binary format. (The default mode is text.)

ios::in Input mode. Information will be read from the file. If the file does not exist, it
will not be created and the open function will fail.

ios::out Output mode. Information will be written to the file. By default, the file’s
contents will be deleted if it already exists.

ios::trunc If the file already exists, its contents will be deleted (truncated). This is the
default mode used by ios::out.

Program 13-2 (continued)

836 Chapter 13 Advanced File and I/O Operations

will fail if the names.dat file does not exist. It is good programming practice to check
whether an attempt to open a file was successful before attempting to use the file. Testing
for a successful file open operation is usually accomplished by testing the value of the
stream object immediately after the call to open the file (or after the call to the constructor
if the file is being opened in the constructor). The value of the stream object will be false
(or zero) if the open failed. Thus the expression !infile will be true if the open call failed.

fstream infile("customer.dat", ios::in)
if (!infile)
 {
 cout << "The customer.dat file could not be opened";

 exit(1);
 }

Other file operations, such as attempts to read or write a file can fail for a variety of hard-
ware-related reasons. For example, an attempt to write data will fail if the disk is full, or if
the disk drive is malfunctioning. Likewise, an attempt to read a file will fail if there is no
more data left to read in the file. File stream objects have a member function fail, which
returns true if an I/O operation was not successfully completed. For example, a failed
attempt to open a file can be detected by using code such as this:

infile.open("customer.dat");
if (infile.fail())
 {

 cout << "The customer.dat file could not be opened";
 exit(1);

 }

This code will detect a failed attempt to open a file for input and terminate the program.

Testing for the End of a File
Testing for the end of a file is accomplished by calling the eof member function, as you
learned in Chapter 5. The eof function, however, is not the best way to determine whether
there is still data left in the file when reading from the file using the extraction operator.
Depending on whether the file contains whitespace after the last item, code using eof to
check for the end of a file will either miss the last data item in the file or read the last data
item twice. A better way to determine if there is data left in the file is to attempt a read, and
then call the fail function to find out if the read was successful. For example, the follow-
ing code fragment will read and print to the screen all numbers stored in a file:

string filename;
cout << "Enter the name of the file:";
getline(cin, filename);
ifstream file(filename.c_str());
if (!file)
 {

 cout << "Cannot open the file " << filename;
 exit(1);

 }
cout << "Contents of the file are:";
cout << endl;

Files 837

int number;
file >> number;
while (!file.fail())
{

cout << number << " ";
file >> number;

}

There is another way of testing whether a read operation was successful. This method is
based on the fact that the extraction operator >> returns a value that can be tested to deter-
mine the success of the operation. Thus the attempt to read and the subsequent test for suc-
cess can be done by putting the read operation as the test for loop continuation in a while
loop as follows:

cout << "Contents of the file are:";
cout << endl;
int number;
while (file >> number)
{

cout << number << " ";
}

Notice that the initial read outside the loop and the second read at the end of the loop are
both eliminated because they are folded into the loop test.

The eof function can reliably be used to test for end of data in binary files because there
are no whitespace separators in that kind of file. Binary files are covered in a later section.

Checkpoint

13.1 How are files identified outside of a C++ program?

13.2 What are the three steps that must be taken when a file is used by a program?

13.3 What header file is required for a C++ program to perform file operations?

13.4 Describe each of the following file stream types:

ofstream
ifstream
fstream

13.5 What file operation must be performed before information can be written to or read
from a file?

13.6 Assuming diskInfo is an fstream object, write a statement that opens the file
names.dat for output.

13.7 Assuming diskInfo is an fstream object, write a statement that opens the file
customers.dat for output, where all output will be written to the end of the file.

13.8 Assuming diskInfo is an fstream object, write a statement that opens the file
payable.dat for both input and output.

13.9 Write an if statement that tests the file stream object dataBase to determine
whether the file was opened successfully.

13.10 Write a statement that closes the file associated with the file stream object outFile.

838 Chapter 13 Advanced File and I/O Operations

13.2 Output Formatting

CONCEPT: Output formatting works the same way on all output stream objects.

Output formatting works the same way with file stream objects as with the cout object. In
particular, the I/O manipulators you learned about in Chapter 3,

setw(n) fixed
showpoint setprecision(n)
left right

all work the same way with output file streams as they do with cout. Program 13-3 dem-
onstrates the use of setw(n)to arrange output being sent to a file into columns.

Program 13-3

1 //This program formats a table of numbers into a file
2 //using setw(n).
3 #include <iostream>
4 #include <fstream>
5 #include <iomanip>
6 using namespace std;
7
8 int main()
9 {
10 const int ROWS = 3, COLS = 3;
11 fstream outFile("table.txt", ios::out);
12 int nums[ROWS][COLS] = { 2897, 5, 837,
13 34, 7, 1623,
14 390, 3456, 12 };
15
16 // Write the three rows of numbers.
17 for (int row = 0; row < ROWS; row++)
18 {
19 for (int col = 0; col < COLS; col++)
20 {
21 outFile << setw(4) << nums[row][col] << " ";
22 }
23 outFile << endl;
24 }
25
26 // Close the file.
27 outFile.close();
28 return 0;
29 }

Output to File table.txt
2897 5 837
 34 7 1623
 390 3456 12

Output Formatting 839

Figure 13-1 shows the way the characters appear in the file.

Formatting Using sstream Objects
In Chapter 12, you learned about the library class ostringstream. Objects of that class
are capable of writing to strings stored in memory and can be used to format certain types
of output. You need to include the appropriate header file in your program before you can
use the ostringstream class:

#include <sstream>

Stream objects of ostringstream type are defined in the usual way:

ostringstream outStr;

Once a string stream object has been defined, we can write to it using the insertion opera-
tor << and the usual formatting manipulators. The C-string in the string stream can then be
extracted using the member function str. For example, to print on the screen what has
already been written into the string stream object, we can write

cout << outStr.str();

Program 13-4 demonstrates the use of a string output stream. It simply writes the squares
of the first five positive integers to a string object, then extracts the string and prints it on
the screen using cout.

Figure 13-1

Program 13-4

1 //This program demonstrates a string stream output object.
2 #include <iostream>
3 #include <sstream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {
9 const int SIZE = 5;
10 double squares[SIZE] = {1, 4, 9, 16, 25};
11 ostringstream outStr; //String stream object.
12

(program continues)

2 8 9 7 5 8 3 7 \n

3 4 7 1 6 2 3 \n

3 9 0 3 5 6 1 2 \n4

<EOF>

840 Chapter 13 Advanced File and I/O Operations

Consider the problem of formatting a set of prices for some products in columns, with the
dollar amounts being right justified in fields of width 10. For example, if we had such a
price table of three rows and two columns, it might look like this:

$124.45 $5.00
 $67.67 $34.32
 $56.23 $89.00

We can format a price into a string object by first writing the dollar sign, followed immedi-
ately by the price:

ostringstream outStr;
outStr << showpoint << fixed << setprecision(2);
outStr << '$' << amount;

We can then extract the string outStr.str() and print it right justified in a field of 10
spaces. Program 13-5 implements this strategy to format a table of prices. The formatting
procedure is embodied in a function that takes as parameters the dollar amount to be for-
matted and returns the formatted amount as a string object. The main function then writes
this string right justified in a field of 10.

13 //Format everything in the in-memory string.
14 outStr << showpoint << fixed << setprecision(1);
15 for (int index = 0; index < SIZE; index++)
16 {
17 outStr << setw(10) << squares[index];
18 }
19 //Print the string on the screen.
20 cout << outStr.str();
21 return 0;
22 }

Program Output
 1.0 4.0 9.0 16.0 25.0

NOTE: On some compilers, you must write a null terminator to the end of a
ostringstream object.

Program 13-5

1 // This program demonstrates the use of an ostringstream
2 // object to do sophisticated formatting.
3 #include <iostream>
4 #include <iomanip>
5 #include <sstream>
6 using namespace std;
7
8 string dollarFormat(double); // Function Prototype
9
10 int main()
11 {
12 const int ROWS = 3, COLS = 2;
13

(program continues)

Program 13-4 (continued)

Output Formatting 841

Table 13-4 shows a list of other I/O manipulators that can be used with C++ stream objects
and gives a brief description of their meanings.

14 double amount[ROWS][COLS] = {184.45, 7, 59.13,
15 64.32, 7.29, 1289 };
16
17 // Format table of dollar amounts in columns of width 10
18 for (int row = 0; row< ROWS; row++)
19 {
20 for (int column = 0; column < COLS; column++)
21 {
22 cout << setw(10)
23 << dollarFormat(amount[row][column]);
24 }
25 cout << endl;
26 }
27 return 0;
28 }
29
30 //**
31 // formats a dollar amount *
32 //**
33 string dollarFormat(double amount)
34 {
35 // Create ostringstream object
36 ostringstream outStr;
37
38 // Set up format information and write to outStr.
39 outStr << showpoint << fixed << setprecision(2);
40 outStr << '$' << amount;
41
42 // Extract and return the string inside outStr.
43 return outStr.str();
44 }

Program Output
 $184.45 $7.00
 $59.13 $64.32
 $7.29 $1289.00

Table 13-4 I/O Manipulators

Manipulator Description

dec Displays subsequent numbers in decimal format.

endl Writes new line and flushes output stream.

fixed Uses fixed notation for floating-point numbers.

flush Flushes output stream.

hex Inputs or outputs in hexadecimal.

left Left justifies output.
(table continues)

Program 13-5 (continued)

842 Chapter 13 Advanced File and I/O Operations

You have already encountered some of these manipulators in Chapter 3. The oct, dec, and
hex manipulators can be used with both input and output streams; they allow numbers to be
read or written using the octal, decimal, or hexadecimal number systems. For example, Pro-
gram 13-6 will print the numbers 63 in octal, decimal, and hexadecimal, then decimal again.

oct Inputs or outputs in octal.

right Right justifies output.

scientific Uses scientific notation for floating-point numbers.

setfill(ch) Makes ch the fill character.

setprecision(n) Sets floating-point precision to n.

setw(n) Set width of output field to n.

showpoint Forces decimal point and trailing zeros to be displayed.

noshowpoint Prints no trailing zeros and drops decimal point if possible.

showpos Prints a + with nonnegative numbers.

noshowpos Prints no + with nonnegative numbers.

Program 13-6

1 //This program demonstrates output of numbers using
2 //the octal, decimal, and hexadecimal number systems.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {
9 int x = 63;
10
11 cout << setw(20) << left << "Octal:" << right
12 << oct << x << endl;
13 cout << setw(20) << left << "Decimal:" << right
14 << dec << x << endl;
15 cout << setw(20) << left << "Hexadecimal:" << right
16 << hex << x << endl;
17 cout << setw(20) << left << "Decimal:" << right
18 << dec << x << endl;
19 return 0;
20 }

Program Output
Octal: 77
Decimal: 63
Hexadecimal: 3f
Decimal: 63

Table 13-4 I/O Manipulators (continued)

Manipulator Description

Output Formatting 843

Recall from Chapter 3 that when a program writes data to an open file, the data does not
go directly to the file. Instead, the data is stored in an output buffer associated with the
file and is later transferred to the file in a process known as flushing the buffer. Usually
the buffer is only flushed if it is full or when the file is closed. The endl and flush
manipulators allow the programmer to flush the buffer at any time, hence forcing transfer
of buffered data to the file. For example, the following statement flushes the buffer of an
output stream:

dataOut << flush;

The scientific manipulator causes floating-point numbers to be written out in scientific
notation, that is, in the form d.dddEdd. The fill character is the character that is written
when a printed number does not fill the entire field it is printed in. By default, the fill char-
acter is a blank. The programmer can specify a different fill character by using the setfill
manipulator. For example,

dataOut << setfill('%');

will make the percent character (%) the fill character.

Output Formatting with Member Functions
Stream manipulators are not the only way to format data. Field width, precision, and the
various format flags may also be modified by using member functions of the stream
objects. For example, the display field width of an output stream dataOut can be set with
the member function

dataOut.width(n);

This is equivalent to using the stream manipulator

dataOut << setw(n);

Similarly, there is a member function precision(n) for setting the precision for floating-
point numbers; the call

dataOut.precision(n);

is equivalent to the statement

dataOut << setprecision(n);

Note that the names of the member functions are different from the names of the corre-
sponding manipulators. There is also a setf member function that can be used to do the
job done by the manipulator flags. It is passed a flag that is a value defined in the ios class.
For example, the call

dataOut.setf(ios::fixed);

is equivalent to the using the manipulator

dataOut << fixed.

844 Chapter 13 Advanced File and I/O Operations

Multiple format flags can be set with a single call to setf by combining them using the
bitwise or operator. Here is a statement that sets the flags for fixed-point notation, decimal
point displaying, and left-justification:

dataOut.setf(ios::fixed | ios::showpoint | ios::left);

Regardless of the way format flags are set, they can be turned off with the unsetf func-
tion. It works like setf, except the format flags you specify are disabled. The following
statement turns off the fixed and left-justification flags:

dataOut.unsetf(ios::fixed | ios::left);

Table 13-5 shows the member functions that can be used for formatting.

Checkpoint

13.11 Write cout statements with member function calls that perform the following:
A) Set the field width to six spaces.
B) Set the precision to four decimal places.
C) Set the display mode to fixed-point notation.
D) Set the display mode to left justification and scientific notation.
E) Turn off the scientific notation display mode.

13.12 The following program will not compile because the lines have been mixed up.

#include <iomanip>
}
cout << person << endl;
string person = "Wolfgang Smith";
int main()
cout << person << endl;
{
#include <iostream>
cout.setf(ios::left);
cout.width(20);
cout.setf(ios::right);
using namespace std;
return 0;

When the lines are properly arranged the program should display the following:

 Wolfgang Smith
Wolfgang Smith

Rearrange the lines in the correct order. Test the program by entering it on the com-
puter, compiling it, and running it.

Table 13-5 Formatting Member Functions

Member Functions Description

width() Sets the display field width.

precision() Sets the precision of floating-point numbers.

setf() Sets the specified format flags.

unsetf() Disables, or turns off, the specified format flags.

Passing File Stream Objects to Functions 845

13.3 Passing File Stream Objects to Functions

CONCEPT: File stream objects should be passed by reference to functions.

A file object maintains a state within it that changes with every file operation. Part of this
state tracks the current file position, that is, the place in the file where the next read or
write will take place.

Suppose that you have a file and two functions that need to take turns reading from the
file. For example, the file might consist of runs of text followed by runs of numbers. Your
program might have a main function that opens the file and processes it by calling a func-
tion F whenever it comes to a run of text, and by calling another function G whenever it
comes to a run of numbers.

How should main pass the file object to the two functions? If the file object is passed by
value, the called function will get a copy of the file object. When function F is called, it will
read the file until it comes to the end of the run of text, but this new file position will be
reflected only in the copy of the file object that was passed to F. When F returns, its copy of
the file object, being a local variable, is destroyed. The main function will still have its copy
of the file object, but this copy will not reflect the read operations performed by F. In par-
ticular, the file position in main’s file object will still be at the beginning of the run of text.
This will lead to an error when the file object is passed to G. For this reason, file objects
should be passed by reference.

Here is an example of a function with a file object parameter passed by reference. The
function takes a file object as parameter and echoes the contents of the file to the screen.

void showContents(fstream &file)
{

string str;

file >> str;
while (!file.fail())
{

cout << str << endl;
file >> str;

}
}

A complete example is given in Program 13-7.

Program 13-7

1 // This program uses the file stream object's fail()
2 // member function to detect the end of the data in
3 // a file. The program also demonstrates how to pass
4 // file stream objects as parameters.
5 #include <iostream>
6 #include <fstream>
7 #include <string>
8 using namespace std;
9

(program continues)

Passing File
Stream
Objects to
Functions

846 Chapter 13 Advanced File and I/O Operations

10 // Function prototype
11 void showContents(fstream &);
12
13 int main()
14 {
15 fstream dataFile;
16
17 dataFile.open("demofile.txt", ios::in);
18 if (dataFile.fail())
19 {
20 cout << "File open error!" << endl;
21 exit(1);
22 }
23 cout << "File opened successfully.\n";
24 cout << "Now reading information from the file.\n\n";
25 showContents(dataFile);
26 dataFile.close();
27 cout << "\nDone.\n";
28 return 0;
29 }
30
31 //***
32 // Definition of function showContents. Accepts an fstream *
33 // reference as its argument. Reads strings from the file *
34 // displays them on the screen. *
35 //***
36
37 void showContents(fstream &file)
38 {
39 string str;
40
41 file >> str;
42 while (!file.fail())
43 {
44 cout << str << endl;
45 file >> str;
46 }
47 }

Program Screen Output
File opened successfully.
Now reading information from the file.

Jones
Smith
Willis
Davis

Done.

Program 13-7 (continued)

More Detailed Error Testing 847

13.4 More Detailed Error Testing

CONCEPT: All stream objects have error state bits that indicate the condition of the
stream.

All stream objects contain a set of bits that act as flags. These flags indicate the current
state of the stream. Table 13-6 lists these bits.

These bits can be tested by the member functions listed in Table 13-7. (You’ve already
learned about the eof() and fail() functions.) One of the functions listed in the table,
clear(), can be used to set a status bit.

The function showState, shown here, accepts a file stream reference as its argument. It
shows the state of the file by displaying the return values of the eof(), fail(), bad(), and
good() member functions:

void showState(fstream &file)
{

cout << "File Status:\n";
cout << " eof bit: " << file.eof() << endl;
cout << " fail bit: " << file.fail() << endl;
cout << " bad bit: " << file.bad() << endl;
cout << " good bit: " << file.good() << endl;
file.clear(); // Clear any bad bits

}

Table 13-6 Files Condition Bit Flags

Bit Description

ios::eofbit Set when the end of an input stream is encountered.

ios::failbit Set when an attempted operation has failed.

ios::hardfail Set when an unrecoverable error has occurred.

ios::badbit Set when an invalid operation has been attempted.

ios::goodbit Set when all the flags above are not set. Indicates the stream is in good
condition.

Table 13-7 Member Functions That Report on the Bit Flags

Function Description

eof() Returns true (nonzero) if the eofbit flag is set; otherwise returns false.

fail() Returns true (nonzero) if the failbit or hardfail flags are set; otherwise
returns false.

bad() Returns true (nonzero) if the badbit flag is set; otherwise returns false.

good() Returns true (nonzero) if the goodbit flag is set; otherwise returns false.

clear() When called with no arguments, clears all the flags listed above. Can also be
called with a specific flag as an argument.

848 Chapter 13 Advanced File and I/O Operations

Program 13-8 uses the showState function to display testFile’s status after various
operations. First, the file is created and the integer value 10 is stored in it. The file is then
closed and reopened for input. The integer is read from the file, and then a second read
operation is performed. Since there is only one item in the file, the second read operation
will result in an error.

Program 13-8

1 // This program demonstrates the return value of
2 // the stream object error testing member functions.
3 #include <iostream>
4 #include <fstream>
5 using namespace std;
6
7 // Function prototype
8 void showState(fstream &);
9
10 int main()
11 {
12 // Open a file, write a number, and show file status.
13 fstream testFile("stuff.dat", ios::out);
14 if (testFile.fail())
15 {
16 cout << "cannot open the file.\n";
17 return 0;
18 }
19 int num = 10;
20 cout << "Writing to the file.\n";
21 testFile << num;
22 showState(testFile);
23 testFile.close();
24
25 // Open the same file, read the number, show status.
26 testFile.open("stuff.dat", ios::in);
27 if (testFile.fail())
28 {
29 cout << "cannot open the file.\n";
30 return 0 ;
31 }
32 cout << "Reading from the file.\n";
33 testFile >> num;
34 showState(testFile);
35
36 // Attempt an invalid read, and show status.
37 cout << "Forcing a bad read operation.\n";
38 testFile >> num;
39 showState(testFile);
40
41 // Close file and quit.
42 testFile.close();
43 return 0;
44 }
45

(program continues)

Member Functions for Reading and Writing Files 849

13.5 Member Functions for Reading and Writing Files

CONCEPT: File stream objects have member functions for more specialized file
reading and writing.

If whitespace characters are part of the information in a file, a problem arises when the file
is read by the >> operator. Since the operator considers whitespace characters as delimiters,
it does not read them. For example, consider the file murphy.txt that contains the follow-
ing information:

Jayne Murphy
47 Jones Circle
Almond, NC 28702

46 //***
47 // Definition of function showState. This function uses *
48 // an fstream reference as its parameter. The return *
49 // values of the eof(), fail(), bad(), and good() member *
50 // functions is displayed. The clear() function is called *
51 // before the function returns. *
52 //***
53 void showState(fstream &file)
54 {
55 cout << "File Status:\n";
56 cout << " eof bit: " << file.eof() << endl;
57 cout << " fail bit: " << file.fail() << endl;
58 cout << " bad bit: " << file.bad() << endl;
59 cout << " good bit: " << file.good() << endl;
60 file.clear(); // Clear any bad bits.
61 }

Program Screen Output
Writing to the file.
File Status:
 eof bit: 0
 fail bit: 0
 bad bit: 0
 good bit: 1
Reading from the file.
File Status:
 eof bit: 1
 fail bit: 0
 bad bit: 0
 good bit: 0
Forcing a bad read operation.
File Status:
 eof bit: 1
 fail bit: 1
 bad bit: 0
 good bit: 0

Program 13-8 (continued)

850 Chapter 13 Advanced File and I/O Operations

Figure 13-2 shows the way the information is recorded in the file.

The problem that arises from the use of the >> operator is evident in the output of
Program 13-9.

Figure 13-2

Program 13-9

1 // This program shows the behavior of the >> operator
2 // on files that contain spaces as part of the information.
3 // The program reads the contents of the file and transfers
4 // those contents to standard output.
5 #include <iostream>
6 #include <fstream>
7 using namespace std;
8
9 int main()
10 {
11 // Variables needed to read file.
12 const int LENGTH = 81;
13 fstream file;
14 char input[LENGTH];
15
16 // Open the file.
17 file.open("murphy.txt", ios::in);
18 if (!file)
19 {
20 cout << "File open error!" << endl;
21 return 0;
22 }
23
24 // Read the file and echo to screen.
25 file >> input;
26 while (!file.fail())
27 {
28 cout << input;
29 file >> input;
30 }
31

(program continues)

J a y n e u r p h y \n 4 7M

J o n e s C i r c l e \n A

l m o n d , N C 2 8 7 0

2 \n <EOF>

Member Functions for Reading and Writing Files 851

The getline Member Function
The problem with Program 13-9 can be solved by using the file stream object’s getline
member function. The function reads a “line” of information, including whitespace char-
acters. Here is an example of the function call:

dataFile.getline(str, 81, '\n');

The three arguments in this statement are as follows.

str This is the name of a character array, or a pointer to a section of memory. The
information read from the file will be stored here.

81 This number is one greater than the maximum number of characters to be read.
In this example, a maximum of 80 characters will be read.

'\n' This is a delimiter character of your choice. If this delimiter is encountered, it will
cause the function to stop reading before it has read the maximum number of
characters. (This argument is optional. If it’s left out, '\n' is the default.)

The statement is an instruction to read a line of characters from the file. The function will
read until it has read 80 characters or encounters a \n, whichever happens first. The line of
characters will be stored in the str array.

Program 13-10 is a modification of Program 13-9. It uses the getline member function to
read whole lines of information from the file.

32 // Close the file.
33 file.close();
34 return 0;
35 }

Program Screen Output
JayneMurphy47JonesCircleAlmond,NC28702

Program 13-10

1 // This program uses the file stream object's getline() member
2 // function to read a line of information from the file.
3 #include <iostream>
4 #include <fstream>
5 using namespace std;
6
7 int main()
8 {
9 // Variables needed for file input.
10 const int LENGTH = 81;
11 fstream nameFile;
12 char input[LENGTH];
13

(program continues)

Program 13-9 (continued)

852 Chapter 13 Advanced File and I/O Operations

Since the third argument of the getline function was left out in Program 13-10, its
default value is \n. Sometimes you might want to specify another delimiter. For example,
consider a file that contains multiple names and addresses, and that is internally formatted
in the following manner:

Contents of addresses.txt
Jayne Murphy$47 Jones Circle$Almond, NC 28702\n$Bobbie Smith$
217 Halifax Drive$Canton, NC 28716\n$Bill Hammet$PO Box 121$
Springfield, NC 28357\n$

Think of this file as consisting of three records. A record is a complete set of information
about a single item. Also, the records in the file are made of three fields. The first field is the
person’s name. The second field is the person’s street address or PO box number. The third
field contains the person’s city, state, and ZIP code. Notice that each field ends with a $
character, and each record ends with a \n character. Program 13-11 demonstrates how a
getline function can be used to detect the $ characters.

14 // Open the file.
15 nameFile.open("murphy.txt", ios::in);
16 if (!nameFile)
17 {
18 cout << "File open error!" << endl;
19 return 0;
20 }
21
22 // Read the file one line at at time.
23 nameFile.getline(input,LENGTH);
24 while (!nameFile.fail())
25 {
26 cout << input << endl;
27 nameFile.getline(input,LENGTH);
28 }
29
30 // Close the file.
31 nameFile.close();
32 return 0;
33 }

Program Screen Output
Jayne Murphy
47 Jones Circle
Almond, NC 28702

Program 13-11

1 // This file demonstrates the getline function with a
2 // user-specified delimiter.
3 #include <iostream>
4 #include <fstream>
5 using namespace std;
6

(program continues)

Program 13-10 (continued)

Member Functions for Reading and Writing Files 853

Notice that the \n characters, which mark the end of each record, are also part of the
output. They cause an extra blank line to be printed on the screen, separating the records.

As demonstrated in Program 13-1, another way to read lines of input is to use a string
class object instead of an array of char, and then call the getline library function in place

7 int main()
8 {
9 // Variables needed to read file.
10 const int LENGTH = 81;
11 char input[LENGTH];
12
13 // Open the file.
14 fstream dataFile("addresses.txt", ios::in);
15 if (!dataFile)
16 {
17 cout << "Error opening file.";
18 return 0;
19 }
20
21 // Read lines terminated by '$' sign and output.
22 dataFile.getline(input, LENGTH, '$');
23 while (!dataFile.fail())
24 {
25 cout << input << endl;
26 dataFile.getline(input, LENGTH, '$');
27 }
28
29 // Close the file.
30 dataFile.close();
31 return 0;
32 }

Program Output
Jayne Murphy
47 Jones Circle
Almond, NC 28702

Bobbie Smith
217 Halifax Drive
Canton, NC 28716

Bill Hammet
PO Box 121
Springfield, NC 28357

NOTE: When using a printable character, such as $, to delimit information in a file, be
sure to select a character that will not actually appear in the information itself. Since it’s
doubtful that anyone’s name or address contains a $ character, it’s an acceptable
delimiter. If the file contained dollar amounts, however, another delimiter would have
been chosen.

Program 13-11 (continued)

854 Chapter 13 Advanced File and I/O Operations

of the getline member function discussed in this section. An advantage of the member
function discussed in this section, however, is that it allows the use of a delimiter other
than the end of line.

The get Member Function
Another useful member function is get. It reads a single character from the file. Here is an
example of its usage:

inFile.get(ch);

In this example, ch is a char variable. A character will be read from the file and stored in
ch. Program 13-12 shows the function used in a complete program. The user is asked for
the name of a file. The file is opened and the get function is used in a loop to read the file’s
contents, one character at a time.

Program 13-12

1 // This program asks the user for a file name. The file is
2 // opened and its contents are displayed on the screen.
3 #include <iostream>
4 #include <fstream>
5 using namespace std;
6
7 int main()
8 {
9 // Variables needed to read file one character at a time.
10 const int LENGTH = 81;
11 fstream file;
12 char ch, fileName[LENGTH];
13
14 // Get file name and open file.
15 cout << "Enter a file name: ";
16 cin >> fileName;
17 file.open(fileName, ios::in);
18 if (!file)
19 {
20 cout << fileName << " could not be opened.\n";
21 return 0;
22 }
23
24 // Read file one character at a time and echo to screen.
25 file.get(ch);
26 while (!file.fail())
27 {
28 cout << ch;
29 file.get(ch);
30 }
31
32 // Close file
33 file.close();
34 return 0;
35 }

Member Functions for Reading and Writing Files 855

Program 13-12 will display the contents of any file. The get function even reads whitespaces,
so all the characters will be shown exactly as they appear in the file.

There is another version of the get function that takes no parameters and returns the char-
acter read, which is used as follows:

char ch;
ch = inFile.get();

This version of get returns a special EOF value when it gets to the end of the input stream.
The following code will open a file and copy its contents to the screen by reading the file
one character at a time:

char ch;
infile.open(fileName, ios::in);
ch = inFile.get();
while (ch != EOF)
{
 cout << ch;
 ch = inFile.get();
}

The peek Member Function
The peek member function is similar to get, but there is an important difference. When
the get function is called, it returns the next character available from the input stream and
simultaneously removes that character from the stream. In contrast, the peek function
returns a copy of the next character available but leaves the character itself in the input
stream. Thus get()reads a character from the file, but peek() just “looks” at the next
character without actually reading it. To see the difference, suppose that a newly opened
file contains the string "abc". Then the sequence of statements

char ch = inFile.get(); // Read a character
cout << ch; // Output the character
ch = inFile.get(); // Read another character
cout << ch; // Output the character

will print the two characters "ab" on the screen. However, the statements

char ch = inFile.peek(); // Return the next character without reading it
cout << ch; // Output the character
ch = inFile.get(); // Now read the next character
cout << ch; // Output the character

will print the two characters "aa" on the screen.

The peek function is useful when you need to know what kind of data you are about to
read before you actually read it, so you can decide on the best input method to use. If the
data is numeric, it is best read with the stream extraction operator >>, but if the data is a
non-numeric sequence of characters, then it should be read with get or getline. The fol-
lowing program uses the peek function in making a modified copy of a file by increasing
the value of each integer number appearing in the file by 1.

856 Chapter 13 Advanced File and I/O Operations

Program 13-13

1 // This program demonstrates the peek member function.
2 #include <iostream>
3 #include <fstream>
4 using namespace std;
5
6 int main()
7 {
8 // Variables needed to read characters and numbers from
9 // an input file
10 const int LENGTH = 81;
11 char fileName[LENGTH];
12 fstream inFile;
13 char ch;
14 int number;
15
16 fstream outFile; // File object for output file
17
18 // Open the file to be modified
19 cout << "Enter a file name: ";
20 cin >> fileName;
21 inFile.open(fileName, ios::in);
22 if (!inFile)
23 {
24 cout << "Cannot open file " << fileName;
25 exit(1);
26 }
27
28 // Open the file to receive the modified copy
29 outFile.open("modified.txt", ios::out);
30 if (!outFile)
31 {
32 cout << "Cannot open the output file.";
33 exit(2);
34 }
35
36 // Copy the input file one character at a time
37 // except numbers in the input file must have 1
38 // added to them
39
40 // Peek at the first character
41 ch = inFile.peek();
42 while (ch != EOF)
43 {
44 // Examine current character
45 if (isdigit(ch))
46 {
47 // numbers should be read with >>
48 inFile >> number;
49 outFile << number + 1;
50 }

(program continues)

Member Functions for Reading and Writing Files 857

The program cannot tell beforehand whether the next character to be read is a digit that
starts a number (in which case, the entire number should be read using the stream extraction
operator >>) or just an ordinary nondigit character (in which case, the character should be
read using a call to the get() member function). The program therefore uses peek()to
examine characters without actually reading them (lines 40 and 57). If a character is a
digit, the extraction operator is called to read the number that starts with that character
(lines 44–49). Otherwise, the character is read using a call to get()(lines 50–55) and cop-
ied to the target file.

The put Member Function
The put member function writes a single character to the file. Here is an example of its
usage:

outFile.put(ch);

In this statement, the variable ch is assumed to be a char variable. Its contents will be writ-
ten to the file associated with the file stream object outFile. Program 13-14 demonstrates
the put function.

51 else
52 {
53 // just a simple character, read it and copy it.
54 ch = inFile.get();
55 outFile << ch;
56 }
57 // Peek at the next character from input file
58
59 ch = inFile.peek();
60 }
61
62 // Close the files.
63 inFile.close();
64 outFile.close();
65 return 0;
66 }

Sample Input File
Amy is 23 years old. Robert is 50 years old. The
difference between their ages is 27 years. Amy was born
in 1986.

Program Ouput for the Given Sample Input File
Amy is 24 years old. Robert is 51 years old. The
difference between their ages is 28 years. Amy was born
in 1987.

Program 13-13 (continued)

858 Chapter 13 Advanced File and I/O Operations

Rewinding a File
Many times it is useful to open a file, process all the data in it, rewind the file back to the
beginning, and process it again, perhaps in a slightly different fashion. For example, a user
may ask the program to search a database for all records of a certain kind, and when those
are found, the user may want to search the database for all records of some other kind.

Program 13-14

1 // This program demonstrates the put() member function.
2 #include <iostream>
3 #include <fstream>
4 using namespace std;
5
6 int main()
7 {
8 // Variable needed to open and write file.
9 char ch;
10
11 // Open the file.
12 fstream dataFile("sentence.txt", ios::out);
13 if (!dataFile)
14 {
15 cout << "Error opening the file.";
16 return 0;
17 }
18
19 // Instructions to user.
20 cout << "Type a sentence and be sure to end it with a ";
21 cout << "period.\n";
22
23 // Read characters from cin and put to file.
24 cin.get(ch);
25 while (ch != '.')
26 {
27 dataFile.put(ch);
28 cin.get(ch);
29 }
30 dataFile.put(ch);
31
32 // Close the file.
33 dataFile.close();
34 return 0;
35 }

Program Screen Output with Example Input Shown in Bold
Type a sentence and be sure to end it with a
period.
I am on my way to becoming a great programmer.[Enter]

Resulting Contents of the File sentence.txt:
I am on my way to becoming a great programmer.

Rewinding a
File

Member Functions for Reading and Writing Files 859

File stream classes offer a number of different member functions that can be used to move
around in a file. One such method is the

seekg(offset, place);

member function of the input stream classes (the file “seeks” to a certain place in the file;
the ‘g’ is for “get” and denotes that the function works on an input stream, because we
“get” data from an input stream). The new location in the file to seek to is given by the two
parameters: the new location is at an offset of offset bytes from the starting point given
by place. The offset parameter is a long integer, while place can be one of three values
defined in the ios class. The starting place may be the beginning of the file, the current
place in the file, or the end of the file. These places are indicated by the constants ios:beg,
ios::cur, and ios::end, respectively.

More information on moving around in files will be given in a later section. Here we are inter-
ested in moving to the beginning of the file. To move to the beginning of a file, use the call

seekg(0L, ios::beg);

to move 0 bytes relative to the beginning of the file.

Program 13-15 illustrates how to rewind a file. It creates a file, writes some text to it, and
closes the file. The file is then opened for input, read once to the end, rewound, and then
read again.

NOTE: If you are already at the end of the file, you must clear the end of file flag before
calling this function. Thus, to move to the beginning of a file stream dataIn that you
have just read to the end, you need the two statements

dataIn.clear();
dataIn.seekg(0L, ios::beg);

Program 13-15

1 // Program shows how to rewind a file. It writes a
2 // text file and opens it for reading, then rewinds
3 // it to the beginning and reads it again.
4 #include <iostream>
5 #include <fstream>
6 using namespace std;
7
8 int main()
9 {
10 // Variables needed to read or write file one
11 // character at a time.
12 char ch;
13 fstream ioFile("rewind.txt", ios::out);
14
15 // Open file.
16 if (!ioFile)

(program continues)

860 Chapter 13 Advanced File and I/O Operations

Checkpoint

13.13 Make the required changes to the following program so it writes its output to the
file output.txt instead of to the screen.

17 {
18 cout << "Error in trying to create file";
19 return 0;
20 }
21
22 // Write to file and close.
23 ioFile << "All good dogs " << endl
24 << "growl, bark, and eat." << endl;
25 ioFile.close();
26
27 //Open the file.
28 ioFile.open("rewind.txt", ios::in);
29 if (!ioFile)
30 {
31 cout << "Error in trying to open file";
32 return 0;
33 }
34
35 // Read the file and echo to screen.
36 ioFile.get(ch);
37 while (!ioFile.fail())
38 {
39 cout.put(ch);
40 ioFile.get(ch);
41 }
42
43 //Rewind the file.
44 ioFile.clear();
45 ioFile.seekg(0, ios::beg);
46
47 //Read file again and echo to screen.
48 ioFile.get(ch);
49 while (!ioFile.fail())
50 {
51 cout.put(ch);
52 ioFile.get(ch);
53 }
54 return 0;
55 }

Program Output
All good dogs
growl, bark, and eat.
All good dogs
growl, bark, and eat.

Program 13-15 (continued)

Member Functions for Reading and Writing Files 861

#include <iostream>
using namespace std;

int main()
{

cout << "Today is the first day\n";
cout << "of the rest of your life.\n";
return 0;

}

13.14 Describe the purpose of the eof member function.

13.15 Assume the file input.txt contains the following characters:

What will the following program display on the screen?

#include <iostream>
#include <fstream>
using namespace std;

int main()
{

const int SIZE = 81;

fstream inFile("input.txt", ios::in);
char item[SIZE];
inFile >> item;
while (!inFile.fail())
{

cout << item << endl;
inFile >> item;

}
return 0;

}

13.16 Describe the difference between reading a file with the >> operator and with the
getline member function.

13.17 Describe the difference between the getline and get member functions.

13.18 Describe the purpose of the put member function.

13.19 What will be stored in the file out.dat after the following program runs?

#include <iostream>
#include <fstream>
#include <iomanip>
using namespace std;

int main()
{

const int SIZE = 5;

R u n S p t r u n \n S eo

e S p o t r u n \n <EOF>

862 Chapter 13 Advanced File and I/O Operations

ofstream outFile("out.dat");
double nums[] = {100.279, 1.719, 8.602, 7.777, 5.099};
outFile << setprecision(2);
for (int count = 0; count < SIZE; count++)
{

outFile << setw(8) << nums[count];
}
outFile.close();
return 0;

}

13.20 The following program skeleton, when complete, will allow the user to store names
and telephone numbers in a file. Complete the program.

#include <iostream>
#include <fstream>
#include <cctype> // Needed for toupper
using namespace std;

int main()
{

// Define a file stream object here and use
// the file stream to open the file phones.dat.
const int NAME_LENGTH = 81;
const int PHONE_LENGTH = 26;
char name[NAME_LENGTH], phone[PHONE_LENGTH];

cout << "This program allows you to add names and phone\n";
cout << "numbers to phones.dat.\n";
do
{

char add;
cout << "Do you wish to add an entry? ";
cin >> add;
if (toupper(add) == 'Y')
{

// Write code here that asks the user for a name
// and phone number, then stores it in the file.

}
} while (toupper(add) == 'Y');
// Don't forget to close the file.
return 0;

}

13.6 Binary Files

CONCEPT: Values of numeric data types such as int and double must be formatted
for output before being written to text files. No such formatting takes
place when numbers are written to binary files.

A short integer number such as 1297 has both a string representation “1297” (shown in Figure
13-3) and a binary numeric representation (shown in Figure 13-4). Both representations can

Binary Files 863

be viewed as sequences of bytes. The string representation depends on the type of encoding
used to represent individual characters and is 4 bytes long when the ASCII encoding is
used. The number of bytes in the binary numeric representation depends on the type of the
number and is 2 bytes long when the number is a short int. The conversion of string rep-
resentation to numeric is called parsing, while the reverse conversion from numeric to
string is called formatting.

Although people find it natural to work with numbers in their string representation, com-
puter hardware is better adapted to processing numbers in their binary form. This is why
numbers must be parsed when input from the keyboard or from a file that has been edited
by a person. It is also the reason why numbers must be formatted when being output in a
form that will be viewed by humans. There are times, however, when a program is output-
ting data to a file that will only be read by other programs and will never be viewed by
humans. In those cases, formatting of numeric data during output and the parsing of num-
bers during input can be omitted. When data is written in unformatted form, it is said to be
written in binary, and files written in this way are called binary files. In contrast, files that
hold formatted data are called text files.

As a convenience to programmers, the stream insertion operator << provides automatic
formatting of numbers during output. Likewise, the stream extraction operator >> pro-
vides parsing of numeric input. For example, consider the following program fragment:

ofstream file("num.dat");
short x = 1297;
file << x;

The last statement writes the contents of x to the file. When the number is written, how-
ever, it is stored as the characters '1', '2', '9', and '7'. This is illustrated in Figure 13-3.

The number 1297 isn’t stored in memory (in the variable x) in the fashion depicted in
Figure 13-3, however. It is formatted as a binary number, occupying 2 bytes on a typical
PC. Figure 13-4 shows how the number is represented in memory, using binary or hexa-
decimal.

Figure 13-3

Figure 13-4

'1'

1297 expressed in ASCII

'2' '9' '7' <EOF>

49 50 57 55 <EOF>

00000101

1297 as a short integer, in binary

1297 as a short integer, in hexadecimal

00010001

05 11

864 Chapter 13 Advanced File and I/O Operations

The unformatted representation of the number shown in Figure 13-4 is the way the “raw”
data is stored in memory. Information can be stored in a file in its pure, binary format. The
first step is to open the file in binary mode. This is accomplished by using the ios::binary
flag. Here is an example:

file.open("stuff.dat", ios::out | ios::binary);

Notice the ios::out and ios::binary flags are joined in the statement with the | opera-
tor. This causes the file to be opened in both output and binary modes.

The write member function of the ostream and ofstream classes can be used to write
binary data to a file or other output stream. To call this function, you specify the address of
a buffer containing an array of bytes to be written, and an integer indicating how many
bytes are to be written:

write(addressOfBuffer, numberOfBytes);

The write member function does not distinguish between integers, floats, or some other
type in the buffer; it just treats the buffer as an array of bytes. Because C++ does not sup-
port a pointer to a byte, the prototype of write specifies that the address of a buffer be a
pointer to a char:

write(char *addressOfBuffer, int numberOfBytes);

This means that when we call write, we need to tell the compiler to interpret the address
of the buffer as a pointer to char. We do this by using a special form of type casting called
a reinterpret_cast. Briefly, reinterpret_cast is used to force the compiler to inter-
pret the bits of one type as if they defined a value of a different type. Here is an example of
using reinterpet_cast to convert a pointer to a double into a pointer to a char.

double d = 45.9;
double *pd = &d;
char *pChar;
// convert pointer to double to pointer to char
pChar = reinterpret_cast<char *>(pd);

In general, to convert a value to some target type, use the expression

reinterpret_cast<TargetType>(value);

Here are examples of using write to write a double and an array of double to a file.

double dl = 45.9;
double dArray[3] = { 12.3, 45.8, 19.0 };
ofstream outFile("stuff.dat", ios::binary);
outFile.write(reinterpret_cast<char *>(&dl), sizeof(d1));
outFile.write(reinterpret_cast<char *>(dArray),

sizeOf(dArray));

Notice that in writing a single variable such as dl, we treat the variable itself as the buffer
and pass its address (in this case the address is &dl). However, in using an array as the
buffer, we just pass the array because the array is already an address.

NOTE: By default, files are opened in text mode.

Binary Files 865

If the data we are writing happens to be character data, there is no need to use the cast.
Here are some examples of writing character data.

char ch = 'X';
char charArray[5] = "Hello";
outFile.write(&ch, sizeof(ch));
outFile.write(charArray, sizeof(charArray));

There is a read member function in the istream and ifstream classes that can be used to
read binary data written by write. It takes as parameters the address of a buffer in which
the bytes read are to be stored, and the number of bytes to read:

read(addressOfBuffer, numberOfBytes)

The address of the buffer must be interpreted as a pointer to char using reinterpret_cast.
You can find out if the specified number of bytes was successfully read by calling the fail()
member function on the input stream.

Program 13-16 demonstrates the use of write and read. The program initializes an array
of integers and then stores the number of array entries in the array using the statements

int buffer[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
int size = sizeof(buffer)/sizeof(buffer[0]);

Recall that the sizeof operator can be used on variables to determine the number of
bytes occupied by the variable. Here sizeof(buffer) returns the number of bytes allo-
cated to the array by the initialization statement, and sizeof(buffer[0]) returns the
number of bytes occupied by a single array entry. By dividing the former by the latter, we
obtain the number of array entries, which we then store in size.

Program 13-16 demonstrates the use of write and read.

Program 13-16

1 //This program uses the write and read functions.
2 #include <iostream>
3 #include <fstream>
4 using namespace std;
5
6 int main()
7 {
8 // File object used to access file.
9 fstream file("nums.dat", ios::out | ios::binary);
10 if (!file)
11 {
12 cout << "Error opening file.";
13 return 0;
14 }
15
16 // Integer data to write to binary file.
17 int buffer[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
18 int size = sizeof(buffer)/sizeof(buffer[0]);
19

(program continues)

866 Chapter 13 Advanced File and I/O Operations

13.7 Creating Records with Structures

CONCEPT: Structures may be used to store fixed-length records to a file.

Earlier in this chapter the concept of fields and records was introduced. A field is an indi-
vidual piece of information pertaining to a single item. A record is made up of fields and is
a complete set of information about a single item. For example, a set of fields might be a
person’s name, age, address, and phone number. Together, all those fields that pertain to
one person make up a record.

20 // Write the data and close the file.
21 cout << "Now writing the data to the file.\n";
22 file.write(reinterpret_cast<char *>(buffer),
23 sizeof(buffer));
24 file.close();
25
26 // Open the file and use a binary read to read
27 // contents of the file into an array.
28 file.open("nums.dat", ios::in);
29 if (!file)
30 {
31 cout << "Error opening file.";
32 return 0;
33 }
34
35 cout << "Now reading the data back into memory.\n";
36 file.read(reinterpret_cast<char *>(buffer),
37 sizeof(buffer));
38
39 // Write out the array entries.
40 for (int count = 0; count < size ; count++)
41 cout << buffer[count] << " ";
42
43 // Close the file.
44 file.close();
45 return 0;
46 }

Program Screen Output
Now writing the data to the file.
Now reading the data back into memory.
1 2 3 4 5 6 7 8 9 10

Program 13-16 (continued)

Creating Records with Structures 867

In C++, structures provide a convenient way to organize information into fields and
records. For example, the following structure declaration could be used to create a record
containing information about a person.

const int NAME_SIZE = 51, ADDR_SIZE = 51, PHONE_SIZE = 14;
struct Info
{

char name[NAME_SIZE];
int age;
char address1[ADDR_SIZE];
char address2[ADDR_SIZE];
char phone[PHONE_SIZE];

};

Besides providing an organizational structure for information, structures also package
information into a single unit. For example, assume the structure variable person is
declared as

Info person;

Once the members (or fields) of person are filled with information, the entire variable may
be written to a file using the write function:

file.write(reinterpret_cast<char*>(&person), sizeof(person));

The first argument is the address of the person variable. The reinterpret_cast<char*>
cast operator is necessary because write expects the first argument to be a pointer to a
char. When you pass the address of anything other than a char to the write function, you
must make it look like a pointer to a char with the cast operator. The second argument is
the sizeof operator. It tells write how many bytes to write to the file. Program 13-17
demonstrates this technique.

Program 13-17 allows you to build a file by filling the members of the person variable,
then writing the variable to the file. Program 13-18 opens the file and reads each record
into the person variable, then displays the information on the screen.

NOTE: Since structures can contain a mixture of data types, you should always use the
ios::binary mode when opening a file to store them.

Program 13-17

1 //This program demonstrates the use of a structure variable to
2 //store a record of information to a file.
3 #include <iostream>
4 #include <fstream>
5 #include <cctype> // for toupper
6 using namespace std;
7
8 const int NAME_SIZE = 51, ADDR_SIZE = 51, PHONE_SIZE = 14;
9

(program continues)

868 Chapter 13 Advanced File and I/O Operations

10 // Declare a structure for the record
11 struct Info
12 {
13 char name[NAME_SIZE];
14 int age;
15 char address1[ADDR_SIZE];
16 char address2[ADDR_SIZE];
17 char phone[PHONE_SIZE];
18 };
19
20 int main()
21 {
22 Info person; // Store information about a person
23 char response; // User response
24
25 // Create file object and open file.
26 fstream people("people.dat", ios::out | ios::binary);
27 if (!people)
28 {
29 cout << "Error opening file. Program aborting.\n";
30 return 0;
31 }
32
33 // Keep getting information from user and writing it
34 // to the file in binary mode.
35 do
36 {
37 cout << "Enter the following information about a "
38 << "person:\n";
39 cout << "Name: ";
40 cin.getline(person.name, NAME_SIZE);
41 cout << "Age: ";
42 cin >> person.age;
43 cin.ignore(); // Skip over remaining newline.
44 cout << "Address line 1: ";
45 cin.getline(person.address1, ADDR_SIZE);
46 cout << "Address line 2: ";
47 cin.getline(person.address2, ADDR_SIZE);
48 cout << "Phone: ";
49 cin.getline(person.phone, PHONE_SIZE);
50 people.write(reinterpret_cast<char *>(&person),
51 sizeof(person));
52 cout << "Do you want to enter another record? ";
53 cin >> response;
54 cin.ignore();
55 } while (toupper(response) == 'Y');
56
57 // Close file.
58 people.close();
59 return 0;
60 }

(program continues)

Program 13-17 (continued)

Creating Records with Structures 869

Program Screen Output with Example Input Shown in Bold
Enter the following information about a person:
Name: Charlie Baxter[Enter]
Age: 42[Enter]
Address line 1: 67 Kennedy Bvd.[Enter]
Address line 2: Perth, SC 38754[Enter]
Phone: (803)555-1234[Enter]
Do you want to enter another record? Y[Enter]
Enter the following information about a person:
Name: Merideth Murney[Enter]
Age: 22[Enter]
Address line 1: 487 Lindsay Lane[Enter]
Address line 2: Hazelwood, NC 28737[Enter]
Phone: (704)453-9999[Enter]
Do you want to enter another record? N[Enter]

Program 13-18

1 // This program demonstrates the use of a structure
2 // variable to read a record of information from a file.
3 #include <iostream>
4 #include <fstream>
5 using namespace std;
6
7 const int NAME_SIZE = 51, ADDR_SIZE = 51, PHONE_SIZE = 14;
8
9 // Declare a structure for the record
10 struct Info
11 {
12 char name[NAME_SIZE];
13 int age;
14 char address1[ADDR_SIZE];
15 char address2[ADDR_SIZE];
16 char phone[PHONE_SIZE];
17 };
18
19 int main()
20 {
21 Info person; // Store person information
22 char response; // User response
23
24 // Create file object and open file for binary reading.
25 fstream people("people.dat", ios::in | ios::binary);
26 if (!people)
27 {
28 cout << "Error opening file. Program aborting.\n";
29 return 0;
30 }
31
32 // Label the output.
33 cout << "Here are the people in the file:\n\n";

(program continues)

Program 13-17 (continued)

870 Chapter 13 Advanced File and I/O Operations

34
35 // Read one structure at a time and echo to screen.
36 people.read(reinterpret_cast<char *>(&person),
37 sizeof(person));
38 while (!people.eof())
39 {
40 cout << "Name: ";
41 cout << person.name << endl;
42 cout << "Age: ";
43 cout << person.age << endl;
44 cout << "Address line 1: ";
45 cout << person.address1 << endl;
46 cout << "Address line 2: ";
47 cout << person.address2 << endl;
48 cout << "Phone: ";
49 cout << person.phone << endl;
50 cout << "\nStrike any key to see the next record.\n";
51 cin.get(response);
52 people.read(reinterpret_cast<char *>(&person),
53 sizeof(person));
54 }
55 cout << "That's all the information in the file!\n";
56 people.close();
57 return 0;
58 }

Program Screen Output (Using the same file created by Program 13-17 as input)
Here are the people in the file:

Name: Charlie Baxter
Age: 42
Address line 1: 67 Kennedy Bvd.
Address line 2: Perth, SC 38754
Phone: (803)555-1234

Strike any key to see the next record.
Name: Merideth Murney
Age: 22
Address line 1: 487 Lindsay Lane
Address line 2: Hazelwood, NC 28737
Phone: (704)453-9999

Strike any key to see the next record.
That's all the information in the file!

NOTE: Structures containing pointers cannot be correctly stored to disk using the
techniques of this section. This is because if the structure is read into memory on a
subsequent run of the program, it cannot be guaranteed that all program variables will
be at the same memory locations. Because string class objects contain implicit
pointers, they cannot be a part of a structure that has to be stored.

Program 13-18 (continued)

Random-Access Files 871

Checkpoint

13.21 Describe how you set up a C++ program to have multiple files open at the same
time.

13.22 How would the number 479 be stored in a text file? (Show the character and ASCII
code representation.)

13.23 Describe the differences between the write member function and the << operator.

13.24 What are the purposes of the two arguments needed for the write member
function?

13.25 What are the purposes of the two arguments needed for the read member function?

13.26 Describe the relationship between fields and records.

13.27 Assume the following structure declaration, variable, and file stream object defini-
tion exist in a program:

const int NAME_SIZE = 51;
struct Data
{

char customer[NAME_SIZE];
int num;
double balance;

};
Data cust;
fstream file("stuff", ios::out | ios::binary);

Write a statement that uses the write member function to store the contents of cust
in the file.

13.8 Random-Access Files

CONCEPT: Random access means nonsequentially accessing information in a file.

All of the programs created so far in this chapter have performed sequential file access.
When a file is opened, the position where reading and/or writing will occur is at the file’s
beginning (unless the ios::app mode is used, which causes data to be written to the end of
the file). If the file is opened for output, bytes are written to it one after the other. If the file
is opened for input, data is read beginning at the first byte. As the reading or writing con-
tinues, the file stream object’s read/write position advances sequentially through the file’s
contents.

The problem with sequential file access is that in order to read a specific byte from the file,
all the bytes that precede it must be read first. For instance, if a program needs information
stored at the 100th byte of a file, it will have to read the first 99 bytes to reach it. If you’ve
ever searched for a song on a cassette tape, you understand sequential access. To find a
song, you have to listen to all the songs that come before it, or fast-forward over them.
There is no way to immediately jump to that particular song.

Although sequential file access is useful in many circumstances, it can slow a program
down tremendously. If the file is very large, locating information buried deep inside it can

872 Chapter 13 Advanced File and I/O Operations

take a long time. Alternatively, C++ allows a program to perform random file access. In
random file access, a program may immediately jump to any byte in the file without first
reading the preceding bytes. The difference between sequential and random file access is
like the difference between a cassette tape and a compact disc. When listening to a CD,
there is no need to listen to or fast-forward over unwanted songs. You simply jump to the
track that you want to listen to. This is illustrated in Figure 13-5.

The seekp and seekg Member Functions
File stream objects have two member functions that are used to move the read/write posi-
tion to any byte in the file. They are seekp and seekg. The seekp function is used with
files opened for output and seekg is used with files opened for input. (It makes sense if you
remember that “p” stands for “put” and “g” stands for “get.” seekp is used with files that
you put information into, and seekg is used with files you get information out of.)

Here is an example of seekp’s usage:

file.seekp(20L, ios::beg);

The first argument is a long integer representing an offset into the file. This is the number
of the byte you wish to move to. In this example, 20L is used. (Remember, the L suffix
forces the compiler to treat the number as a long integer.) This statement moves the file’s
write position to byte number 20. (All numbering starts at 0, so byte number 20 is actually
the 21st byte.)

The second argument is called the mode flag, and it designates where to calculate the offset
from. The flag ios::beg means the offset is calculated from the beginning of the file.
Alternatively, the offset can be calculated from the end of the file or the current position in
the file. Table 13-8 lists the flags for all three of the random-access modes.

Figure 13-5

Table 13-8 File Positioning Flags

Mode Flag Description

ios::beg The offset is calculated from the beginning of the file.

ios::end The offset is calculated from the end of the file.

ios::cur The offset is calculated from the current position.

Sequential Access

Random Access

Random-Access Files 873

Table 13-9 shows examples of seekp and seekg using the various mode flags.

Notice that some of the examples in Table 13-9 use a negative offset. Negative offsets
result in the read or write position being moved backward in the file, while positive offsets
result in a forward movement.

Assume the file letters.txt contains the following data:

abcdefghijklmnopqrstuvwxyz

Program 13-19 uses the seekg function to jump around to different locations in the file,
retrieving a character after each stop.

Table 13-9 File Seek Operations

Statement How It Affects the Read/Write Position

file.seekp(32L, ios::beg); Sets the write position to the 33rd byte (byte 32) from the
beginning of the file.

file.seekp(-10L, ios::end); Sets the write position to the 11th byte (byte 10) from the
end of the file.

file.seekp(120L, ios::cur); Sets the write position to the 121st byte (byte 120) from
the current position.

file.seekg(2L, ios::beg); Sets the read position to the 3rd byte (byte 2) from the
beginning of the file.

file.seekg(-100L, ios::end); Sets the read position to the 101st byte (byte 100) from the
end of the file.

file.seekg(40L, ios::cur); Sets the read position to the 41st byte (byte 40) from the
current position.

file.seekg(0L, ios::end); Sets the read position to the end of the file.

Program 13-19

1 // This program demonstrates the seekg function.
2 #include <iostream>
3 #include <fstream>
4 using namespace std;
5
6 int main()
7 {
8 // Variable to access file.
9 char ch;
10
11 // Open the file for reading
12 fstream file("letters.txt", ios::in);
13 if (!file)
14 {
15 cout << "Error opening file.";
16 return 0;
17 }
18

(program continues)

874 Chapter 13 Advanced File and I/O Operations

Program 13-20 shows another example of the seekg function. It opens the people.dat
file created by Program 13-17. The file contains two records. Program 13-20 displays
record 1 (the second record) first, then displays record 0.

19 // Get fifth byte from beginning of alphabet file.
20 file.seekg(5L, ios::beg);
21 file.get(ch);
22 cout << "Byte 5 from beginning: " << ch << endl;
23
24 // Get tenth byte from end of alphabet file.
25 file.seekg(-10L, ios::end);
26 file.get(ch);
27 cout << "Byte 10 from end: " << ch << endl;
28
29 // Go forward three bytes from current position
30 file.seekg(3L, ios::cur);
31 file.get(ch);
32 cout << "Byte 3 from current: " << ch << endl;
33
34 // Close file.
35 file.close();
36 return 0;
37 }

Program Screen Output
Byte 5 from beginning: f
Byte 10 from end: q
Byte 3 from current: u

Program 13-20

1 // This program demonstrates the use of a structure
2 // variable to read a record of information from a file.
3 #include <iostream>
4 #include <fstream>
5 using namespace std;
6
7 const int NAME_SIZE = 51, ADDR_SIZE = 51, PHONE_SIZE = 14;
8
9 // Declare a structure for the record
10 struct Info
11 {
12 char name[NAME_SIZE];
13 int age;
14 char address1[ADDR_SIZE];
15 char address2[ADDR_SIZE];
16 char phone[PHONE_SIZE];
17 };
18
19 // Function Prototypes
20 long byteNum(int);
21 void showRec(Info);
22

(program continues)

Program 13-19 (continued)

Random-Access Files 875

23 int main()
24 {
25 // Person information.
26 Info person;
27
28 // Create file object and open the file.
29 fstream people("people.dat", ios::in | ios::binary);
30 if (!people)
31 {
32 cout << "Error opening file. Program aborting.\n";
33 return 0;
34 }
35
36 // Skip forward and read record 1 in the file.
37 cout << "Here is record 1:\n";
38 people.seekg(byteNum(1), ios::beg);
39 people.read(reinterpret_cast<char *>(&person),
40 sizeof(person));
41 showRec(person);
42
43 // Skip backwards and read record 0 in the file.
44 cout << "\nHere is record 0:\n";
45 people.seekg(byteNum(0), ios::beg);
46 people.read(reinterpret_cast<char *>(&person),
47 sizeof(person));
48 showRec(person);
49
50 // Close the file.
51 people.close();
52 return 0;
53 }
54
55
56 //**
57 // Definition of function byteNum. Accepts an integer as *
58 // its argument. Returns the byte number in the file of the *
59 // record whose number is passed as the argument. *
60 //**
61 long byteNum(int recNum)
62 {
63 return sizeof(Info) * recNum;
64 }
65
66 //**
67 // Definition of function showRec. Accepts an Info structure *
68 // as its argument, and displays the structure's contents. *
69 //**

(program continues)

Program 13-20 (continued)

876 Chapter 13 Advanced File and I/O Operations

The program has two important functions other than main. The first, byteNum, takes a
record number as its argument and returns that record’s starting byte. It calculates the
record’s starting byte by multiplying the record number by the size of the Info structure.
This returns the offset of that record from the beginning of the file. The second function,
showRec, accepts an Info structure as its argument and displays its contents on the screen.

The tellp and tellg Member Functions
File stream objects have two more member functions that may be used for random file
access: tellp and tellg. Their purpose is to return, as a long integer, the current byte
number of a file’s read and write position. As you can guess, tellp is used to return the
write position and tellg is used to return the read position. Assuming pos is a long inte-
ger, here is an example of the functions’ usage:

pos = outFile.tellp();
pos = inFile.tellg();

Program 13-21 demonstrates the tellg function. It opens the letters.txt file, which
was also used in Program 13-19. The file contains the following characters:

abcdefghijklmnopqrstuvwxyz

70 void showRec(Info record)
71 {
72 cout << "Name: ";
73 cout << record.name << endl;
74 cout << "Age: ";
75 cout << record.age << endl;
76 cout << "Address line 1: ";
77 cout << record.address1 << endl;
78 cout << "Address line 2: ";
79 cout << record.address2 << endl;
80 cout << "Phone: ";
81 cout << record.phone << endl;
82 }

Program Screen Output (Using the same file created by Program 13-17 as input)
Here is record 1:
Name: Merideth Murney
Age: 22
Address line 1: 487 Lindsay Lane
Address line 2: Hazelwood, NC 28737
Phone: (704)453-9999

Here is record 0:
Name: Charlie Baxter
Age: 42
Address line 1: 67 Kennedy Bvd.
Address line 2: Perth, SC 38754
Phone: (803)555-1234

Program 13-20 (continued)

Random-Access Files 877

Program 13-21

1 // This program demonstrates the tellg function.
2 #include <iostream>
3 #include <fstream>
4 #include <cctype> // For toupper
5 using namespace std;
6
7 int main()
8 {
9 // Variables used to read the file.
10 long offset;
11 char ch;
12
13 char response; //User response
14
15 // Create the file object and open the file.
16 fstream file("letters.txt", ios::in);
17 if (!file)
18 {
19 cout << "Error opening file.";
20 return 0;
21 }
22
23 // Work with the file.
24 do
25 {
26 // Where in the file am I?
27 cout << "Currently at position "
28 << file.tellg() << endl;
29
30 // Get a file offset from the user.
31 cout << "Enter an offset from the "
32 << "beginning of the file: ";
33 cin >> offset;
34
35 // Read the character at the given offset.
36 file.seekg(offset, ios::beg);
37 file.get(ch);
38 cout << "Character read: "
39 << ch << endl;
40 cout << "Do it again? ";
41 cin >> response;
42 } while (toupper(response) == 'Y');
43 file.close();
44 return 0;
45 }

(program continues)

878 Chapter 13 Advanced File and I/O Operations

13.9 Opening a File for Both Input and Output

CONCEPT: You may perform input and output on an fstream file without closing it
and reopening it.

Sometimes you’ll need to perform both input and output on a file without closing and
reopening it. For example, consider a program that allows you to search for a record in a
file and then make changes to it. A read operation is necessary to copy the information
from the file to memory. After the desired changes have been made to the information in
memory, a write operation is necessary to replace the old data in the file with the new data
in memory.

Such operations are possible with fstream objects. The ios::in and ios::out file access
flags may be joined with the | operator, as shown in this example declaration:

fstream file("data.dat", ios::in | ios::out)

The same operation may be accomplished with the open member function:

file.open("data.dat", ios::in | ios::out);

You may also specify the ios::binary flag if binary data is to be written to the file. Here
is an example:

file.open("data.dat", ios::in | ios::out | ios::binary);

When an fstream file is opened with both the ios::in and ios::out flags, the file’s cur-
rent contents are preserved and the read/write position is initially placed at the beginning
of the file. If the file does not exist, it is created (unless the ios::nocreate is also used).

Programs 13-22, 13-23, and 13-24 demonstrate many of the techniques we have discussed.
Program 13-22 sets up a file with five blank inventory records. Each record is a structure
with members for holding a part description, quantity on hand, and price. Program 13-23
displays the contents of the file on the screen. Program 13-24 opens the file in both input
and output modes and allows the user to change the contents of a specific record.

Program Output with Example Input Shown in Bold
Currently at position 0
Enter an offset from the beginning of the file: 5[Enter]
Character read: f
Do it again? y[Enter]
Currently at position 6
Enter an offset from the beginning of the file: 0[Enter]
Character read: a
Do it again? y[Enter]
Currently at position 1
Enter an offset from the beginning of the file: 20[Enter]
Character read: u
Do it again? n[Enter]

Program 13-21 (continued)

Opening a File for Both Input and Output 879

Program 13-22

1 // This program sets up a file of blank inventory records.
2 #include <iostream>
3 #include <fstream>
4 using namespace std;
5
6 const int DESC_SIZE = 31, NUM_RECORDS = 5;
7 // Declaration of Invtry structure.
8 struct Invtry
9 {
10 char desc[DESC_SIZE];
11 int qty;
12 double price;
13 };
14
15 int main()
16 {
17 // Variables needed to write the file.
18 Invtry record = { "", 0, 0.0 };
19
20 // Create file object and open file.
21 fstream inventory("invtry.dat", ios::out | ios::binary);
22 if (!inventory)
23 {
24 cout << "Error opening file.";
25 return 0;
26 }
27
28 // Now write the blank records.
29 for (int count = 0; count < NUM_RECORDS; count++)
30 {
31 cout << "Now writing record " << count << endl;
32 inventory.write(reinterpret_cast<char *>(&record),
33 sizeof(record));
34 }
35
36 //Close the file.
37 inventory.close();
38 return 0;
39 }

Program Screen Output
Now writing record 0
Now writing record 1
Now writing record 2
Now writing record 3
Now writing record 4

880 Chapter 13 Advanced File and I/O Operations

Program 13-23 simply displays the contents of the inventory file on the screen. It can be
used to verify that Program 13-22 successfully created the blank records and that Program
13-24 correctly modified the designated record.

Program 13-23

1 // This program displays the contents of the inventory file.
2 #include <iostream>
3 #include <fstream>
4 using namespace std;
5
6 const int DESC_SIZE = 31;
7
8 // Declaration of Invtry structure.
9 struct Invtry
10 {
11 char desc[DESC_SIZE];
12 int qty;
13 double price;
14 };
15
16 int main()
17 {
18 // Buffer used for reading.
19 Invtry record;
20
21 // Create and open the file for reading.
22 fstream inventory("invtry.dat", ios::in | ios::binary);
23 if (!inventory)
24 {
25 cout << "Error in opening the file.";
26 return 0;
27 }
28
29 // Now read and display the records
30 inventory.read(reinterpret_cast<char *>(&record),
31 sizeof(record));
32 while (!inventory.eof())
33 {
34 cout << "Description: ";
35 cout << record.desc << endl;
36 cout << "Quantity: ";
37 cout << record.qty << endl;
38 cout << "Price: ";
39 cout << record.price << endl << endl;
40 inventory.read(reinterpret_cast<char *>(&record),
41 sizeof(record));
42 }
43 inventory.close();
44 return 0;
45 }

Opening a File for Both Input and Output 881

Here is the screen output of Program 13-23 if it is run immediately after Program 13-22
sets up the file of blank records.

Program Screen Output
Description:
Quantity: 0
Price: 0.0

Description:
Quantity: 0
Price: 0.0

Description:
Quantity: 0
Price: 0.0

Description:
Quantity: 0
Price: 0.0

Description:
Quantity: 0
Price: 0.0

Program 13-24 allows the user to change the contents of an individual record in the inven-
tory file.

Program 13-24

1 // This program allows the user to edit a specific
2 // record in the inventory file.
3 #include <iostream>
4 #include <fstream>
5 using namespace std;
6
7 const int DESC_SIZE = 31;
8 // Declaration of Invtry structure.
9 struct Invtry
10 {
11 char desc[DESC_SIZE];
12 int qty;
13 double price;
14 };
15
16 int main()
17 {
18 // Variables needed to read the file.
19 Invtry record;
20 long recNum;
21

(program continues)

882 Chapter 13 Advanced File and I/O Operations

22 // Open the file.
23 fstream inventory("invtry.dat", ios::in | ios::out |
24 ios::binary);
25 if (!inventory)
26 {
27 cout << "Error opening file.";
28 return 0;
29 }
30
31 // Move to the desired record and read it into record.
32 cout << "Which record do you want to edit?";
33 cin >> recNum;
34 inventory.seekg(recNum * sizeof(record), ios::beg);
35 inventory.read(reinterpret_cast<char *>(&record),
36 sizeof(record));
37
38 // Get new data from user and edit in-memory record.
39 cout << "Description: ";
40 cout << record.desc << endl;
41 cout << "Quantity: ";
42 cout << record.qty << endl;
43 cout << "Price: ";
44 cout << record.price << endl;
45 cout << "Enter the new data:\n";
46 cout << "Description: ";
47 cin.ignore();
48 cin.getline(record.desc, DESC_SIZE);
49 cout << "Quantity: ";
50 cin >> record.qty;
51 cout << "Price: ";
52 cin >> record.price;
53
54 // Move to the right place in file and write the record.
55 inventory.seekp(recNum * sizeof(record), ios::beg);
56 inventory.write(reinterpret_cast<char *>(&record),
57 sizeof(record));
58
59 // Close the file.
60 inventory.close();
61 return 0;
62 }

Program Screen Output with Example Input Shown in Bold
Which record do you want to edit? 2[Enter]
Description:
Quantity: 0
Price: 0.0
Enter the new data:
Description: Wrench[Enter]
Quantity: 10[Enter]
Price: 4.67[Enter]

Program 13-24 (continued)

883

Checkpoint

13.28 Describe the difference between the seekg and the seekp functions.

13.29 Describe the difference between the tellg and the tellp functions.

13.30 Describe the meaning of the following file access flags.

ios::beg
ios::end
ios::cur

13.31 What is the number of the first byte in a file?

13.32 Briefly describe what each of the following statements do.

file.seekp(100L, ios::beg);
file.seekp(-10L, ios::end);
file.seekg(-25L, ios::cur);
file.seekg(30L, ios::cur);

13.33 Describe the mode that each of the following statements cause a file to be opened in.

file.open("info.dat", ios::in | ios::out);
file.open("info.dat", ios::in | ios::app);
file.open("info.dat", ios::in | ios::out | ios::ate);
file.open("info.dat", ios::in | ios::out | ios::binary);

13.10 Online Friendship Connections Case Study:
Object Serialization
Online Friendship Connections is an online service that helps people meet and make new
friends. People who want to join the club and use its services fill out a registration form,
stating their names, age, contact information, gender, hobbies, personal interests, and
other pertinent information about themselves. They also specify the qualities they are look-
ing for in a new friend. The service will then try to get two people together if the personal
information submitted indicates that there is a high probability of a good match.

Object Serialization
Online Friendship Connections will store information about its members in files. Member
information will be manipulated by a C++ program, and will be stored in objects of appro-
priately designed classes. These objects may involve pointers to other objects, forming a
network of objects whose structure must somehow be preserved when the data are stored
to a file. This structure is then reconstructed when the data is read back from the file at a
later time. The process of transforming complex networks of objects interconnected
through pointers into a form that can be stored in a disk file (or on some other medium
outside of central memory) is called object serialization.

In this section, we will illustrate some of the techniques used in serializing objects by look-
ing at a simple case in which an object containing a C++ string object is serialized. Recall
that C++ strings are normally implemented using pointers to dynamically allocated array
of char.

Online Friendship Connections Case Study: Object Serialization

884 Chapter 13 Advanced File and I/O Operations

Designing the Classes Needed by the Program
A simple class that stores a portion of the information submitted by members of Online
Friendship Connections might include a first name, middle initial, last name, and the age of
a member. In addition to the usual getter and setter functions, we need member functions
for serializing the object: that is, a member function that converts the object into data
stored in a file:

void store(ofstream &outFile);

We also need a member function for deserializing an object: that is, one that reads from a
file data previously placed there by store, recovers its structure, and sets the data mem-
bers of the object correctly:

void load(ifstream &inFile);

After adding a constructor and a display member function, we come up with the follow-
ing class:

Contents of serialization.h
1 #include <iostream>
2 #include <fstream>
3 #include <string>
4 using namespace std;
5
6 class Person
7 {
8 string fname, lname;
9 char mi;
10 int age;
11 public:
12 string getFname(){return fname;}
13 string getLname(){return lname;}
14 char getMi(){return mi;}
15 int getAge(){return age;}
16
17 void setFname(string name){fname = name;}
18 void setLname(string name){lname = name;}
19 void setMi(char ch){mi = ch;}
20
21 // read data from file
22 void load(ifstream &inFile);
23 // store data to file
24 void store(ofstream &outFile);
25
26 // constructor
27 Person(string fname = "", char mi = 0,
28 string lname = "", int age = 0);
29
30 void display()
31 {
32 cout << fname << " " << mi << " " << lname << endl
33 << "Age : " << age << endl;
34 }
35 };

885

Determining a Serialization Scheme
We cannot just write the contents of a Person object to a disk file because the string mem-
bers contain pointers to arrays of characters which need to be stored so that the string
objects can be reconstructed at a later time when the object is deserialized. Because strings
have varying lengths, Person objects will occupy varying amounts of space on the disk
when they are deserialized. A simple but effective serialization scheme is to first write all
the members of the object that take up constant space, and then write each member whose
space requirement may vary on the disk, preceded by the number of bytes that the member
occupies. For the Person class, we can use the scheme shown in Figure 13-6.

The code for the store function is then very straightforward and can be seen in the listing
of the file serialization.cpp. To design the load function, we note that we need to
reconstruct the fname and lname strings by first reading their data portions into an in-
memory buffer that is an array of character. To do this for fname, we first read the num-
ber of bytes occupied by its data portion from the file:

int firstNameLength;
inFile.read(addr(&firstNameLength), sizeof(int));

We must then read that many bytes into a buffer and null terminate the buffer to turn it
into a C-string:

inFile.read(buffer, firstNameLength);
buffer[firstNameLength] = '\0';

Finally, we convert the C-string to a string object by assigning it to the fname member. The
C++ string has a convert constructor that automatically converts C-strings to string objects
to make such assignments possible.

frame = buffer;

The buffer array is used as a temporary holding place. Making it an instance member of
the class would allocate space for it in every object and would waste a lot of memory. A
better idea to make it a static member of the class, so that the scratch space can be shared
by all members of the object. However, we note that it is only used by the load member
function. For this reason, we make it local static. That way, space for the buffer is allocated
once instead of being allocated anew for each call to load. Static local variables were
described in Chapter 6.

Figure 13-6

mi

age

fname.length()

fname.data()

lname.length()

lname.data()

Online Friendship Connections Case Study: Object Serialization

886 Chapter 13 Advanced File and I/O Operations

The rest of the member functions needed to implement the Person class are shown in the
listing of the serialization.cpp file.

Contents of serialization.cpp
1 #include "serialization.h"
2
3 Person::Person(string fname, char mi,
4 string lname, int age)
5 {
6 this->fname = fname;
7 this->lname = lname;
8 this->mi = mi;
9 this->age = age;
10 }
11
12 //***
13 // Stores mi, age, then length of fname, *
14 // then data for fname, then length of lname, *
15 // then data for lname *
16 //***
17 void Person::store(ofstream &outFile)
18 {
19 outFile.write(&mi, sizeof(mi));
20 outFile.write(reinterpret_cast<char *>(&age),
21 sizeof(age));
22
23 // Write length and data for fname and lname.
24 int firstNameLength = fname.length();
25 outFile.write(reinterpret_cast<char *>(&firstNameLength),
26 sizeof(int));
27 outFile.write(fname.data(), firstNameLength);
28 int lastNameLength = lname.length();
29 outFile.write(reinterpret_cast<char *>(&lastNameLength),
30 sizeof(int));
31 outFile.write(lname.data(), lastNameLength);
32 }
33
34 //**
35 // Reads the data in the format written by *
36 // Person::store *
37 //**
38 void Person::load(ifstream &inFile)
39 {
40 const int BUFFER_SIZE = 256;
41 static char buffer[256]; //used to read names
42
43 inFile.read(&mi, sizeof(mi));
44 inFile.read(reinterpret_cast<char *>(&age), sizeof(age));
45
46 // First get length and data for fname.
47 int firstNameLength;
48 inFile.read(reinterpret_cast<char *>(&firstNameLength),
49 sizeof(int));
50

887

We need two separate programs to demonstrate the serialization capabilities of the Person
class. Program 13-25, which generates no screen output, creates an array of two objects,
serializes them, and writes them to a file.

Program 13-26 opens the file created by Program 13-25, deserializes the two objects in the
file, and displays them on the screen.

51 // Read the data for fname into a local buffer.
52 inFile.read(buffer, firstNameLength);
53
54 // Null terminate the buffer.
55 buffer[firstNameLength] = '\0';
56 fname = buffer; //take advantage of convert constructor
57
58 // Do the same thing for length and data for lname.
59 int lastNameLength;
60 inFile.read(reinterpret_cast<char *>(&lastNameLength),
61 sizeof(int));
62 inFile.read(buffer, lastNameLength);
63 buffer[lastNameLength] = '\0';
64 lname = buffer;
65 }

Program 13-25

1 //This program demonstrates object serialization.
2 #include "serialization.h"
3 int main()
4 {
5 // Array of objects to store in file.
6 Person people[] =
7 { Person("Joseph", 'X', "Puff", 32),
8 Person("Louise", 'Y', "Me", 28)
9 };
10 // Open a file and store the array of people.
11 ofstream outFile("MorePeople.dat", ios::binary);
12 if(!outFile)
13 {
14 cout << "The output file cannot be opened";
15 exit(1);
16 }
17
18 // Store the people data in the file.
19 people[0].store(outFile);
20 people[1].store(outFile);
21 cout << "Data has been written to the file "
22 << " 'Morepeople.dat'";
23
24 // Close file.
25 outFile.close();
26 return 0;
27 }

Online Friendship Connections Case Study: Object Serialization

888 Chapter 13 Advanced File and I/O Operations

13.11 Tying It All Together: File Merging and
Color-Coded HTML

Suppose that you have two files, with each file containing a sorted list of names and each
name occurring on a line by itself, as illustrated in Table 13-10.

Program 13-26

1 //This program demonstrates object deserialization.
2 #include "serialization.h"
3 int main()
4 {
5 const int NUM_PEOPLE = 2;
6 Person people[NUM_PEOPLE];
7 // Open a file and load the array of people.
8 ifstream inFile("MorePeople.dat", ios::binary);
9 if(!inFile)
10 {
11 cout << "The input file cannot be opened";
12 exit(1);
13 }
14
15 // Read the data from the file.
16 for (int k = 0; k < NUM_PEOPLE; k++)
17 people[k].load(inFile);
18
19 // Display the data.
20 for (int k = 0; k < NUM_PEOPLE; k++)
21 people[k].display();
22
23 // Close the file.
24 inFile.close();
25 return 0;
26 }

Program Output
Joseph X Puff
Age : 32
Louise Y Me
Age : 28

Table 13-10

Black File Blue File

Abrams, Elaine
Bostrom, Andy
Potus, Nicholas
Radon, Joseph
Williams, Nancy

Avon, Martha
Gomez, Diane
Pistachio, Mary
Rhodes, Peter
Wilson, Zelda
Zazinski, Pete

Tying It All Together: File Merging and Color-Coded HTML 889

You want to merge the contents of the two files into one file in such a way that the merged
file is sorted in alphabetic order. You also want people to be able to tell at a glance which
of the two original files a given line in the merged file came from. One way to do this is to
color-code the original files and then display each line of the merged file in the color of the
originating file:

Abrams, Elaine
Avon, Martha
Bostrom, Andy
Gomez, Diane
Pistachio, Mary
Potus, Nicholas
Radon, Joseph
Rhodes, Peter
Williams, Nancy
Wilson, Zelda
Zazinski, Pete

To accomplish this, we code the output file in HTML and arrange for the browser to dis-
play each line with the appropriate color. This can be done via what are called CSS styles.
We will use the HTML span elements to enclose a line and then color the content of the
span element using the CSS style attribute. For the two files shown above, our program
will produce the following output:

 Abrams, Elaine

 Avon, Martha

 Bostrom, Andy

 Gomez, Diane

 Pistachio, Mary

 Potus, Nicholas

 Radon, Joseph

 Rhodes, Peter

 Williams, Nancy

 Wilson, Zelda

 Zazinski, Pete

The
 HTML element signifies a line break.

Our solution to this problem will use a subclass of fstream that has a member function
for writing a string inside of an HTML span element. The span element will specify the
color the browser should use to display the string:

class ColorCodedStream : public fstream
{
public:
 void writeInColor(string str, string aColor)
 {
 *this << " ";
 *this << str << "
 ";
 *this << "\n";
 }
};

890 Chapter 13 Advanced File and I/O Operations

Our program will need to open two files for reading and a third file for writing. To avoid
repetition of code, we write a function

void openFile(fstream &file, string descr);

that takes a file object and a description ("black", "blue", or "output"), prompts the
user for the name of a file, and then opens the file. A file described as "black" or "blue" is
opened for input, while a file described as "output" is opened for output.

 Our program also uses the library function

getline(istream &in, string &str);

to read strings from the input file one line at a time. The program has two variables

string blackInput, blueInput

that are used to hold the line that was last read from the corresponding file. Because a read
may be unsuccessful, the program tests each file object for errors before using the input last
read from it. For example, the code

if (blackFile && !blueFile)
 {
 // Only blackInput is good
 outputFile.writeInColor(blackInput, "black");
 getline(blackFile, blackInput);
 }

determines that the last read from the black file was good while the read from the blue file
failed, so it processes the input from the black file. After the input from the black file has
been written out, the black file is read again to prepare for the next iteration of the loop.
When the program cannot read any more data from either file (this is checked at the top of
the loop that begins at line 39) the program terminates.

Program 13-27

1 // This program demonstrates file merging and the use
2 // of CSS to determine text colors in HTML documents.
3 #include <stdlib.h>
4 #include <iostream>
5 #include <fstream>
6 #include <string>
7 using namespace std;
8
9 // This subclass of fstream adds the ability to
10 // write a string that is automatically embedded
11 // in an HTML span element with a color specification
12 // style.
13 class ColorCodedStream : public fstream
14 {
15 public:
16 void writeInColor(string str, string aColor)
17 {
18 *this << " ";

(program continues)

Tying It All Together: File Merging and Color-Coded HTML 891

19 *this << str << "
 ";
20 *this << "\n";
21 }
22 };
23
24 void openFile(fstream &file, string descr); // Prototype
25
26 int main()
27 {
28 ColorCodedStream outputFile;
29 fstream blackFile, blueFile;
30 openFile(blackFile, "black");
31 openFile(blueFile, "blue");
32 openFile(outputFile, "output");
33
34 string blackInput, blueInput;
35 // read the first line from each file
36 getline(blackFile, blackInput); // Read black file into buffer
37 getline(blueFile, blueInput); // Read blue file into buffer
38
39 while (blackFile || blueFile)
40 {
41 if (blackFile && blueFile)
42 {
43 // Both buffers have fresh data
44 if (blackInput <= blueInput)
45 {
46 outputFile.writeInColor(blackInput, "black");
47 getline(blackFile, blackInput);
48 }
49 else
50 {
51 outputFile.writeInColor(blueInput, "blue");
52 getline(blueFile, blueInput);
53 }
54 }
55 if (blackFile && !blueFile)
56 {
57 // Only blackInput is good
58 outputFile.writeInColor(blackInput, "black");
59 getline(blackFile, blackInput);
60 }
61 if (blueFile && !blackFile)
62 {
63 // Only blueInput is good
64 outputFile.writeInColor(blueInput, "blue");
65 getline(blueFile, blueInput);
66 }
67 }
68 return 0;
69 }

(program continues)

Program 13-27 (continued)

892 Chapter 13 Advanced File and I/O Operations

The contents of the output file can be viewed in a browser.

Review Questions and Exercises

Fill-in-the-Blank and Short Answer

1. All files are assigned a(n)__________ that is used for identification purposes by the
operating system and the user.

2. Before a file can be used, it must first be __________.

3. When a program is finished using a file, it should __________ it.

4. The __________ header file is required for file I/O operations.

5. The three file stream data types are __________, __________, and __________.

6. The __________ file stream data type is for output files.

7. The __________ file stream data type is for input files.

70 //**
71 // Opens a specified file for reading or writing. The descr argument *
72 // is used in prompting for the name of the file. *
73 //**
74 void openFile(fstream &file, string descr)
75 {
76 string fileName;
77 cout << "Enter the name of the " << descr << " file: ";
78 cin >> fileName;
79
80 // Determine whether the file should be opened for reading
81 // or writing based on the description (descr).
82 if (descr == "output")
83 file.open(fileName.data(), ios::out);
84 else
85 file.open(fileName.data(), ios::in);
86
87 // Check if file open was successful
88 if (!file)
89 {
90 cout << "Cannot open the file " << fileName;
91 exit(1);
92 }
93 }

Sample Program Interaction with User Input Shown in Bold
Enter the name of the black file: blackfile.txt[Enter]
Enter the name of the blue file: bluefile.txt[Enter]
Enter the name of the output file: mergedfile.html[Enter]

Program 13-27 (continued)

Chapter 13 Advanced File and I/O Operations

Review Questions and Exercises 893

8. The __________ file stream data type is for output files, input files, or files that per-
form both input and output.

9. Write a statement that defines a file stream object named people. The object will be
used for file output.

10. Write a statement that defines a file stream object named pets. The object will be
used for file input.

11. Write a statement that defines a file stream object named places. The object will be
used for both output and input.

12. Write two statements that use the people file stream object to open a file named
people.dat. (Show how to open the file with a member function and at definition.)
The file should be opened for output.

13. Write two statements that use the pets file stream object to open a file named
pets.dat. (Show how to open the file with a member function and at definition.) The
file should be opened for input.

14. Write two statements that use the places file stream object to open a file named
places.dat. (Show how to open the file with a member function and at definition.)
The file should be opened for both input and output.

15. If a file fails to open, the file stream object will be set to __________.

16. Write a program segment that defines a file stream object named employees. The file
should be opened for both input and output (in binary mode). If the file fails to open,
the program segment should display an error message.

17. The same formatting techniques used with __________ may also be used when writing
information to a file.

18. The __________ member function reports when the end of the file has been
encountered.

19. The __________ member function reads a line of text from a file.

20. The __________ member function reads a single character from a file.

21. The __________ member function writes a single character to a file.

22. __________ files contain data that is unformatted and not necessarily stored as ASCII
text.

23. __________ files contain information formatted as ASCII text.

24. A record is a complete set of information about a single item and is made up
of __________.

25. In C++, __________ provide a convenient way to organize information into fields and
records.

26. The __________ member function writes “raw” binary data to a file.

27. The __________ member function reads “raw” binary data from a file.

894 Chapter 13 Advanced File and I/O Operations

28. The __________ operator is necessary if you pass anything other than a pointer to
char as the first argument of the two functions mentioned in questions 26 and 27.

29. In __________ file access, the contents of the file are read in the order they appear in
the file, from the file’s start to its end.

30. In __________ file access, the contents of a file may be read in any order.

31. The __________ member function moves a file’s read position to a specified byte in the
file.

32. The __________ member function moves a file’s write position to a specified byte in
the file.

33. The __________ member function returns a file’s current read position.

34. The __________ member function returns a file’s current write position.

35. The __________ mode flag causes an offset to be calculated from the beginning of a
file.

36. The __________ mode flag causes an offset to be calculated from the end of a file.

37. The __________ mode flag causes an offset to be calculated from the current position
in the file.

38. A negative offset causes the file’s read or write position to be moved __________ in the
file from the position specified by the mode.

Algorithm Workbench

39. Give a pseudocode algorithm for determining the length of a file: that is, the number
of bytes that are stored in the file.

40. Give a pseudocode algorithm for comparing two files to see if their contents are
identical.

41. Design a pseudocode algorithm for reversing the contents of a text file into another
file. Assume that the amount of memory is limited, so that you cannot read the entire
source file into memory before you start writing it to a second file in reverse order.

42. Suppose that you have two text files that contain sequences of integers separated by
white space (blank space, tabs, and line breaks). The integers in both files appear in
sorted order, with smaller values near the beginning of the file and large values closer
to the end. Write a pseudocode algorithm that merges the two sequences into a single
sorted sequence that is written to a third file.

Find the Error

43. Each of the following programs or program segments has errors. Find as many as you
can.

A) fstream file(ios::in | ios::out);
file.open("info.dat");
if (!file)
{

cout << "Could not open file.\n";
}

Review Questions and Exercises 895

B) ofstream file;
file.open("info.dat", ios::in);
if (file)
{

cout << "Could not open file.\n";
}

C) fstream file("info.dat");
if (!file)
{

cout << "Could not open file.\n";
}

D) fstream dataFile("info.dat", ios:in | ios:binary);
int x = 5;
dataFile << x;

E) fstream dataFile("info.dat", ios:in);
int x;
while (dataFile.eof())
{

dataFile >> x;
cout << x << endl;

}
F) fstream dataFile("info.dat", ios:in);

char line[81];
dataFile.getline(line);

G) fstream dataFile("info.dat", ios:in);
char stuff[81];
dataFile.get(stuff);

H) fstream dataFile("info.dat", ios:in);
char stuff[81] = "abcdefghijklmnopqrstuvwxyz";
dataFile.put(stuff);

I) fstream dataFile("info.dat", ios:out);
struct Date
{

int month;
int day;
int year;

};
Date dt = { 4, 2, 98 };
dataFile.write(&dt, sizeof(int));

J) fstream inFile("info.dat", ios:in);
int x;
inFile.seekp(5);
inFile >> x;

Soft Skills

44. Learning to look beyond the symptoms of a problem to identify the root cause is an
important skill. Bugs in a program are sometimes the result of careless mistakes, but
at other times, they reflect a fundamental misunderstanding of some concept.

896 Chapter 13 Advanced File and I/O Operations

Suppose that a friend has been trying to determine why his file processing program is
not working correctly. You notice that he is passing file objects to functions by value.
In addition to simply telling your friend that file parameters need to be passed by ref-
erence, what can you tell him that will help him understand why files need to be
passed by reference?

Suppose now that you need to demonstrate this bug to other people. Bugs usually
occur in the context of a larger program, which can make it difficult for a person
unfamiliar with the program to understand what is happening. Write a program that
is as short as possible, but still has the file-passing bug.

Programming Challenges

1. File Previewer

Write a program that asks the user for the name of a text file. The program should display
the first 10 lines of the file on the screen. If the file has fewer than 10 lines, the entire file
should be displayed along with a message indicating the entire file has been displayed.

2. File Display Program

Write a program that asks the user for the name of a file. The program should display the
contents of the file on the screen. If the file’s contents won’t fit on a single screen, the pro-
gram should display 24 lines of output at a time, and then pause. Each time the program
pauses, it should wait for the user to type a key before the next 24 lines are displayed.

3. Punch Line

Write a program that reads and prints a joke and its punch line from two different files.
The first file contains a joke, but not its punch line. The second file has the punch line as its
last line, preceded by “garbage.” The main function of your program should open the two
files and then call two functions, passing each one the file it needs. The first function should
read and display each line in the file it is passed (the joke file). The second function should
display only the last line of the file it is passed (the punch line file). It should find this line
by seeking to the end of the file and then backing up to the beginning of the last line. Data
to test your program can be found in the joke.dat and punchline.dat files.

4. Tail of a File

Write a program that asks the user for the name of a text file. The program should display
the last 10 lines of the file on the screen (the “tail” of the file). If the file has less than 10
lines, the entire file is displayed, with a message that the entire file has been displayed. The
program should do this by seeking to the end of the file and then backing up to the tenth
line from the end.

5. String Search

Write a program that asks the user for the name of a file and a string to search for. The pro-
gram will search the file for all occurrences of the specified string and display all lines that
contain the string. After all occurrences have been located, the program should report the
number of times the string appeared in the file.

Review Questions and Exercises 897

6. Sentence Filter

A program that processes an input file and produces an output file is called a filter. Write
a program that asks the user for two file names. The first file will be opened for input and
the second file will be opened for output. (It will be assumed that the first file contains
sentences that end with a period.) The program will read the contents of the first file and
change all the letters other than the first letter of sentences to lowercase. First letter of
sentences should be made uppercase. The revised contents should be stored in the second
file.

7. File Encryption Filter

File encryption is the science of writing the contents of a file in a secret code. Your encryp-
tion program should work like a filter, reading the contents of one file, modifying the infor-
mation into a code, and then writing the coded contents out to a second file. The second
file will be a version of the first file, but written in a secret code.

Although there are complex encryption techniques, you should come up with a simple one
of your own. For example, you could read the first file one character at a time, and add 10
to the ASCII code of each character before it is written to the second file.

8. File Decryption Filter

Write a program that decrypts the file produced by the program in Programming Challenge 7.
The decryption program should read the contents of the coded file, restore the information
to its original state, and write it to another file.

9. Letter Frequencies

The letter e is the most frequently used letter in English prose, and the letter z is the least
frequently used. A friend of yours doing a sociology experiment believes that this may not
necessarily be true of the writings of first-year college students. To test his theory, he asks
you to write a program that will take a text file and print, for each letter of the English
alphabet, the number of times the letter appears in the file.

Hint: Use an integer array of size 128, and use the ASCII values of letters to index into the
array to store and retrieve counts for the letters.

10. Corporate Sales Data Output

Write a program that uses a structure to store the following information on a company
division:

Division name (such as East, West, North, or South)
Quarter (1, 2, 3, or 4)
Quarterly sales

The user should be asked for the four quarters’ sales figures for the East, West, North, and
South divisions. The information for each quarter for each division should be written to a
file.

Input Validation: Do not accept negative numbers for any sales figures.

Solving the File
Encryption
Filter Problem

898 Chapter 13 Advanced File and I/O Operations

11. Corporate Sales Data Input

Write a program that reads the information in the file created by the program in Program-
ming Challenge 9. The program should calculate and display the following figures:

• Total corporate sales for each quarter
• Total yearly sales for each division
• Total yearly corporate sales
• Average quarterly sales for the divisions
• The highest and lowest quarters for the corporation

12. Inventory Program

Write a program that uses a structure to store the following inventory information in a file:

Item description
Quantity on hand
Wholesale cost
Retail cost
Date added to inventory

The program should have a menu that allows the user to perform the following tasks:

• Add new records to the file
• Display any record in the file
• Change any record in the file

Input Validation: The program should not accept quantities, or wholesale or retail
costs less than 0. The program should not accept dates that the programmer deter-
mines are unreasonable.

13. Inventory Screen Report

Write a program that reads the information in the file created by the program in Program-
ming Challenge 11. The program should calculate and display the following information:

• The total wholesale value of the inventory
• The total retail value of the inventory
• The total quantity of all items in the inventory

Group Project

14. Customer Accounts

This program should be designed and written by a team of students. Here are some
suggestions:

• One student should design function main, which will call other program functions or
class member functions. The remainder of the functions will be designed by other
members of the team.

• The requirements of the program should be analyzed so each student is given about
the same workload.

Review Questions and Exercises 899

Write a program that uses a structure to store the following information about a customer
account:

• Name
• Address
• City, state, and ZIP
• Telephone number
• Account balance
• Date of last payment

The structure should be used to store customer account records in a file. The program
should have a menu that lets the user perform the following operations:

• Enter new records into the file
• Search for a particular customer’s record and display it
• Search for a particular customer’s record and delete it
• Search for a particular customer’s record and change it
• Display the contents of the entire file

Input Validation: When the information for a new account is entered, be sure the user
enters data for all the fields. No negative account balances should be entered.

This page intentionally left blank

901

C
H

A
P

T
E

R

14 Recursion

14.1 Introduction to Recursion

CONCEPT: A recursive function is one that calls itself.

You have seen instances of functions calling other functions. Function A can call function
B, which can then call Function C. It’s also possible for a function to call itself. A function
that calls itself is a recursive function. Look at this message function:

void message()
{

cout << "This is a recursive function.\n";
message();

}

TOPICS

14.1 Introduction to Recursion
14.2 The Recursive Factorial Function
14.3 The Recursive gcd Function
14.4 Solving Recursively Defined Problems
14.5 A Recursive Binary Search Function
14.6 Focus on Problem Solving and

Program Design: The QuickSort
Algorithm

14.7 The Towers of Hanoi
14.8 Focus on Problem Solving: Exhaustive

and Enumeration Algorithms
14.9 Focus on Software Engineering:

Recursion Versus Iteration
14.10 Tying It All Together: Infix and Prefix

Expressions

902 Chapter 14 Recursion

This function displays the string "This is a recursive function.\n", and then calls
itself. Each time it calls itself, the cycle is repeated. Can you see a problem with the func-
tion? There’s no way to stop the recursive calls. This function is like an infinite loop
because there is no code to stop it from repeating.

To be useful, a recursive function must have a way of controlling the number of recursive
calls. The following is a modification of the message function. It passes an integer argu-
ment that holds the number of times the function is to call itself.

void message(int times)
{

if (times > 0)
{

cout << "This is a recursive function.\n";
message(times - 1);

}
}

This function contains an if statement that controls the recursion. As long as the times
argument is greater than zero, it will display the message and call itself again. Each time it
calls itself, it passes times - 1 as the argument. For example, let’s say a program calls the
function with the following statement:

message(3);

The argument, 3, will cause the function to be called four times. The first time the function
is called, the if statement will display the message and call itself with 2 as the argument.
Figure 14-1 illustrates this.

The diagram in Figure 14-1 illustrates two separate calls of the message function. Each
time the function is called, a new instance of the times parameter is created in memory.
The first time the function is called, the times parameter is set to 3. When the function
calls itself, a new instance of times is created, and the value 2 is passed into it. This cycle
repeats until zero is passed to the function. This is illustrated in Figure 14-2.

As you can see from Figure 14-2, the function will be called four times, so the depth of
recursion is four. When the function reaches the fourth call, the times parameter will
be set to 0. At that point, the if statement will stop the recursive chain of calls and the

Figure 14-1

3

2

message (3)

times = 3

message (2)

times = 2

Introduction to Recursion 903

fourth instance of the function will return. Control of the program will return from
the fourth instance of the function to the point in the third instance directly after the
recursive function call:

Because there are no more statements to be executed after the function call, the third
instance of the function returns control of the program back to the second instance. This
repeats until all instances of the function return. Program 14-1 demonstrates the recursive
message function, modified to show the value of the parameter to each call.

Figure 14-2

Program 14-1

1 // This program demonstrates a simple recursive function.
2 #include <iostream>
3 using namespace std;
4

(program continues)

3

2

message (3)

times = 3

message (2)

times = 2

1

message (1)

times = 1

0

message (0)

times = 0

if (times > 0)
{

cout << "This is a recursive function.\n";
message(times - 1);

}

 Control returns here.

904 Chapter 14 Recursion

To further illustrate the inner workings of this recursive function, let’s look at another ver-
sion of the program. In Program 14-2, a message is displayed each time the function is
entered, and another message is displayed just before the function returns.

Recursive functions work by breaking a complex problem down into subproblems of the
same type. This breaking down process stops when it reaches a base case, that is, a sub-
problem that is simple enough to be solved directly. For example, in the recursive message
function of the preceding examples, the base case is when the parameter times is 0.

5 // Function prototype
6 void message(int);
7
8 int main()
9 {
10 message(3);
11 return 0;
12 }
13
14 //***
15 // Definition of function message. If the value in times *
16 // is greater than 0, the message is displayed and the *
17 // function is recursively called with the argument *
18 // times - 1. *
19 //***
20 void message(int times)
21 {
22 if (times > 0)
23 {
24 cout << "Message " << times << "\n";
25 message(times - 1);
26 }
27 }

Program Output
Message 3
Message 2
Message 1

Program 14-2

1 // This program demonstrates a simple recursive function.
2 #include <iostream>
3 using namespace std;
4
5 // Function prototype
6 void message(int);
7

(program continues)

Program 14-1 (continued)

Introduction to Recursion 905

You should consider the use of recursion when there is a way to express the solution of a
problem in terms of solutions of simpler, or smaller, problems of the same type. As an
example, one can envision sorting a long list of names by splitting the list into two sublists
and assigning the two sublists to two different people to sort. Once the sublists are sorted,
they can be merged into a sorted version of the original list by a suitable collating process.
In this case, the problems of sorting the sublists are the simpler problems of the same type,
and the base cases occur when the sublists consist of a single name.

Let’s look at a simple example of recursion that performs a useful task. The function
numChars counts the number of times a specific character appears in a string.

int numChars(char ch, char str[], int subscript)
{

if (str[subscript] == '\0') // base case
return 0;

if (str[subscript] == ch)

8 int main()
9 {
10 message(3);
11 return 0;
12 }
13
14 //***
15 // Definition of function message. If the value in times *
16 // is greater than 0, the message is displayed and the *
17 // function is recursively called with the argument *
18 // times - 1. *
19 //***
20 void message(int times)
21 {
22 cout << "Message " << times << ".\n";
23 if (times > 0)
24 {
25 message(times - 1);
26 }
27 cout << "Message " << times << " is returning.\n";
28 }

Program Output
Message 3.
Message 2.
Message 1.
Message 0.
Message 0 is returning.
Message 1 is returning.
Message 2 is returning.
Message 3 is returning.

Program 14-2 (continued)

906 Chapter 14 Recursion

return 1 + numChars(ch, str, subscript+1);
else

return numChars(ch, str, subscript+1);
}

The function’s parameters are

• ch: the character to be searched for and counted
• str: an array containing the string to be searched
• subscript: the starting subscript for the search

The first if statement determines whether the base case, that is, the end of the string, has
been reached:

if (str[subscript] == '\0')

If the end of the string has been reached, the function returns 0, indicating there are no
more characters to count. Otherwise, the following if statement is executed:

if (str[subscript] == ch)
return 1 + numChars(ch, str, subscript+1);

else
return numChars(ch, str, subscript+1);

If str[subscript] contains the search character, the function performs a recursive call.
The return statement returns 1 + the number of times the search character appears in the
string, starting at subscript + 1. If str[subscript] does not contain the search character, a
recursive call is made to search the remainder of the string. Program 14-3 demonstrates the
program.

Program 14-3

1 // This program demonstrates a recursive function for
2 // counting the number of times a character appears
3 // in a string.
4 #include <iostream>
5 using namespace std;
6
7 // Function prototype
8 int numChars(char, char [], int);
9
10 int main()
11 {
12 char array[] = "abcddddef";
13
14 cout << "The letter d appears "
15 << numChars('d', array, 0) << " times.\n";
16 return 0;
17 }
18

(program continues)

Introduction to Recursion 907

Direct and Indirect Recursion
The examples we have discussed so far show recursive functions that directly call
themselves. This is known as direct recursion. There is also the possibility of creating
indirect recursion in a program. This occurs when function A calls function B, which in
turn calls function A. There can even be several functions involved in the recursion.
For example, function A could call function B, which could call function C, which calls
function A.

Checkpoint

14.1 What is a recursive function’s base case?

14.2 What happens if a recursive function does not handle base cases correctly?

14.3 What will the following program display?

#include <iostream>
using namespace std;

// Function prototype
void showMe(int arg);

int main()
{

int num = 0;

showMe(num);
return 0;

}

19 //**
20 // Function numChars. This recursive function *
21 // counts the number of times the character *
22 // search appears in the string str. The search *
23 // begins at the subscript stored in subscript. *
24 //**
25 int numChars(char search, char str[], int subscript)
26 {
27 if (str[subscript] == '\0') //base case
28 return 0;
29 if (str[subscript] == search)
30 return 1 + numChars(search, str, subscript+1);
31 else
32 return numChars(search, str, subscript+1);
33 }

Program Output
The letter d appears 4 times.

Program 14-3 (continued)

908 Chapter 14 Recursion

void showMe(int arg)
{

if (arg < 10)
 showMe(++arg);
else
 cout << arg << endl;

}

14.4 What is the difference between direct and indirect recursion?

14.2 The Recursive Factorial Function

CONCEPT: The recursive factorial function accepts an argument and calculates its
factorial. Its base case is when the argument is 0.

Let’s use an example from mathematics to examine an application of recursion. In mathe-
matics, the notation n! represents the factorial of the number n. The factorial of an integer
n is defined as

n! = 1 × 2 × 3 × … × n; if n > 0
= 1; if n = 0

The rule states that when n is greater than 0, its factorial is the product of all the positive
integers from 1 up to n. For instance, 6! can be calculated as 1 × 2 × 3 × 4 × 5 × 6. The rule
also specifies the base case: the factorial of 0 is 1.

We can define the factorial of a number using recursion as follows:

factorial(n)= n × factorial(n – 1) if n > 0
 = 1; if n = 0

The C++ implementation of this recursive definition is

int factorial(int num)
{

if (num == 0) // base case
return 1;

else
return num * factorial(num – 1);

}

Consider a program that displays the value of 3! with the following statement:

cout << factorial(3) << endl;

The first time the function is called, num is set to 3. The if statement will execute the
following line:

return num * factorial(num - 1);

Although this is a return statement, it does not immediately return. Before the return
value can be determined, the value of factorial(num - 1) must be determined. The func-
tion is called recursively until the fourth call, in which the num parameter will be set to
zero. The diagram in Figure 14-3 illustrates the value of num and the return value during
each call of the function.

The Recursive Factorial Function 909

Program 14-4 demonstrates the factorial function.

Figure 14-3

Program 14-4

1 // This program demonstrates a recursive function
2 // to calculate the factorial of a number.
3 #include <iostream>
4 using namespace std;
5
6 // Function prototype
7 int factorial(int);
8
9 int main()
10 {
11 int number;
12
13 cout << "Enter an integer value and I will display\n";
14 cout << "its factorial: ";
15 cin >> number;
16 cout << "The factorial of " << number << " is ";
17 cout << factorial(number) << endl;
18 return 0;
19 }
20

(program continues)

return num x 1 = 1 x 1 = 1

return 1

return num x 1 = 2 x 1 = 2

return num x 2 = 3 x 2 = 6

factorial (3)

num = 3

factorial (2)

num = 2

factorial (1)

num = 1

factorial (0)

num = 0

3

2

1

0

910 Chapter 14 Recursion

14.3 The Recursive gcd Function

CONCEPT: There is a recursive method for finding the greatest common divisor (gcd)
of two numbers.

Our next example of recursion is the calculation of the greatest common divisor, or gcd, of
two numbers. Using Euclid’s algorithm, the gcd of two positive integers, x and y, is

gcd(x, y) = y if y divides x with no remainder
 = gcd(y, remainder of x/y); otherwise

This definition states that the gcd of x and y is y if x/y has no remainder. Otherwise, the
answer is the gcd of y and the remainder of x/y. Program 14-5 shows the recursive C++
implementation:

21 //**
22 // Definition of factorial. A recursive function to *
23 // calculate the factorial of the parameter, num. *
24 //**
25 int factorial(int num)
26 {
27 if (num == 0) //base case
28 return 1;
29 else
30 return num * factorial(num - 1);
31 }

Program Output with Example Input
Enter an integer value and I will display
its factorial: 4
The factorial of 4 is 24

Program 14-5

1 // This program demonstrates a recursive function to
2 // calculate the greatest common divisor (gcd) of two
3 // numbers.
4 #include <iostream>
5 using namespace std;
6
7 // Function prototype
8 int gcd(int, int);
9
10 int main()
11 {
12 int num1, num2;
13

(program continues)

Program 14-4 (continued)

Solving Recursively Defined Problems 911

14.4 Solving Recursively Defined Problems

CONCEPT: Some problems naturally lend themselves to recursive solutions.

Some problems naturally lend themselves to recursive solutions. One well-known example
is the calculation of Fibonacci numbers. The Fibonacci numbers, named after the Italian
mathematician Leonardo Fibonacci (born circa 1170), form the following sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …

Notice that after the second number, each number in the sequence is the sum of the two
previous numbers. The Fibonacci sequence can be defined as:

F0 = 0,
F1 = 1,
FN = FN – 1 + FN – 2 for all N ≥ 2.

It is clear that the problem of computing a Fibonacci number other than the first two can
be reduced to the problems of computing the two preceding Fibonacci numbers. Thus this
problem makes a good candidate for a recursive solution. The problems of computing the
first two Fibonacci numbers are the base cases. Here is the recursive C++ function for com-
puting the nth number in the Fibonacci sequence:

14 cout << "Enter two integers: ";
15 cin >> num1 >> num2;
16 cout << "The greatest common divisor of " << num1;
17 cout << " and " << num2 << " is ";
18 cout << gcd(num1, num2) << endl;
19 return 0;
20 }
21
22 //***
23 // Definition of gcd. This function uses recursion to *
24 // calculate the greatest common divisor of two integers, *
25 // passed into the parameters x and y. *
26 //***
27 int gcd(int x, int y)
28 {
29 if (x % y == 0) //base case
30 return y;
31 else
32 return gcd(y, x % y);
33 }

Program Output with Example Input Shown in Bold
Enter two integers: 49 28
The greatest common divisor of 49 and 28 is 7

Program 14-5 (continued)

912 Chapter 14 Recursion

int fib(int n)
{

if (n <= 0) // base case
return 0;

else if (n == 1) // base case
return 1;

else
return fib(n - 1) + fib(n - 2);

}

The function is demonstrated in Program 14-6, which displays the first 10 numbers in the
Fibonacci sequence.

Another such example is Ackermann’s function. A Programming Challenge at the end of
this chapter asks you to write a recursive function that calculates Ackermann’s function.

Program 14-6

1 // This program demonstrates a recursive function
2 // that calculates Fibonacci numbers.
3 #include <iostream>
4 using namespace std;
5
6 // Function prototype
7 int fib(int);
8
9 int main()
10 {
11 cout << "The first 10 Fibonacci numbers are:\n";
12 for (int x = 0; x < 10; x++)
13 cout << fib(x) << " ";
14 cout << endl;
15 return 0;
16 }
17
18 //***
19 // Function fib. Accepts an int argument *
20 // in n. This function returns the nth *
21 // Fibonacci number. *
22 //***
23
24 int fib(int n)
25 {
26 if (n <= 0) //base case
27 return 0;
28 else if (n == 1) //base case
29 return 1;
30 else
31 return fib(n - 1) + fib(n - 2);
32 }

Program Output
The first 10 Fibonacci numbers are:
0 1 1 2 3 5 8 13 21 34

A Recursive Binary Search Function 913

14.5 A Recursive Binary Search Function

CONCEPT: The binary search algorithm can be defined as a recursive function.

In Chapter 9 you learned about the binary search algorithm and how it can be used to
search a sorted array for a given value. Let us look to see how the binary search algorithm
can be formulated using recursion. Suppose that we want to write the function so that it
has prototype

int binarySearch(int array[], int first, int last, int value)

where the parameter array is the array to be searched; the parameter first holds the sub-
script of the first element in the search range (the portion of the array to be searched); the
parameter last holds the subscript of the last element in the search range; and the param-
eter value holds the value to be searched for. The function will return the subscript of
value if it is found within the array, and will return –1 otherwise.

In order to use recursion, we need to find a way of breaking down the problem of search-
ing a range of a sorted array for a given value into smaller problems of the same type. We
start by comparing value to the middle element of the search range. If value is equal to the
middle element, we are done and we return the subscript of the middle element. Otherwise,
if value is smaller than the middle element, then we must search for it in the lower half of
the original range (a recursive call on a smaller problem of the same type); but if value is
larger than the middle element, we must search for it in the upper half of the original
range. Notice that every time we make a recursive call, the search range will be smaller.
The base case is when the search range is empty. Here is the function:

int binarySearch(int array[], int first, int last, int value)
{
 int middle; // mid point of search

 if (first > last) // base case
 return -1;

 middle = (first + last) / 2;
 if (array[middle] == value)

 return middle;
 if (array[middle] < value)
 return binarySearch(array, middle+1,last,value);
 else
 return binarySearch(array, first,middle-1,value);
}

This function is demonstrated in Program 14-7.

Program 14-7

1 // This program demonstrates a recursive function that
2 // performs a binary search on an integer array.
3 #include <iostream>
4 using namespace std;
5

(program continues)

Recursive
Binary Search

914 Chapter 14 Recursion

6 // Function prototype
7 int binarySearch(int [], int, int, int);
8
9 const int SIZE = 20;
10
11 int main()
12 {
13 int tests[SIZE] = { 101, 142, 147, 189, 199, 207, 222,
14 234, 289, 296, 310, 319, 388, 394,
15 417, 429, 447, 521, 536, 600};
16 int result; // Result of the search
17 int empID; // What to search for
18
19 cout << "Enter the Employee ID you wish to search for: ";
20 cin >> empID;
21 result = binarySearch(tests, 0, SIZE - 1, empID);
22 if (result == -1)
23 cout << "That number does not exist in the array.\n";
24 else
25 {
26 cout << "That ID is found at element " << result;
27 cout << " in the array\n";
28 }
29 return 0;
30 }
31
32 //**
33 // The binarySearch function performs a recursive binary *
34 // search on a range of elements of an integer array. The *
35 // parameter first holds the subscript of the range's *
36 // starting element, and last holds the subscript of the *
37 // ranges's last element. The parameter value holds the *
38 // the search value. If the search value is found, its *
39 // array subscript is returned. Otherwise, -1 is returned *
40 // indicating the value was not in the array. *
41 //**
42 int binarySearch(int array[], int first, int last, int value)
43 {
44 int middle; // Mid point of search
45
46 if (first > last) // Base case
47 return -1;
48 middle = (first + last)/2;
49 if (array[middle]==value)
50 return middle;
51 if (array[middle]<value)
52 return binarySearch(array, middle+1,last,value);
53 else
54 return binarySearch(array, first,middle-1,value);
55 }

Program Output with Example Input Shown in Bold
Enter the Employee ID you wish to search for: 521 [Enter]
That ID is found at element 17 in the array

Program 14-7 (continued)

915

14.6 Focus on Problem Solving and Program Design:
The QuickSort Algorithm

CONCEPT: The QuickSort algorithm uses recursion to sort lists efficiently.

QuickSort is a recursive sorting algorithm that was invented in 1960 by C. A. R. Hoare. It is
very efficient and is often used to sort lists of items stored in arrays. QuickSort is usually
written as a recursive function with three parameters that define a portion of an array to be
sorted. The three parameters are an array arr containing a list of items, and two subscripts
start and end denoting the beginning and end of the segment of arr that is to be sorted. Let
us write arr[start . . end] for these three parameters. To sort the entire array, you call
QuickSort with start set to 0 and end set to the size of the array minus 1.

QuickSort works as follows. If start is greater than or equal to end, then the segment of
arr to be sorted has at most one element and is therefore already sorted. In this case,
QuickSort returns immediately. Otherwise, QuickSort partitions arr[start . . end] by
selecting one of the elements in arr[start . . end] to be a pivot element, and then
rearranging arr[start . . end] so that all entries that are less than the pivot are to the left
of the pivot, and all entries greater than or equal to the pivot are to the right of the pivot.
In effect, the partition step rearranges arr[start . . end] so that it consists of a sublist 1,
the pivot element, and a sublist 2 as shown in Figure 14-4.

Depending on the value selected to be the pivot element, one or the other of the two sublists
may be empty. For example, if the pivot element happens to be the minimum array element,
there will be no array entries less than the pivot and sublist 1 will be empty.

Notice that once the partition stage is completed and we have the situation shown in
Figure 14-4, the pivot element will be in the right place. By recursively applying the
QuickSort procedure to the two sublists, each of the sublists will be partitioned,
putting whatever element was selected to be the pivot for that sublist in its right place.
The process continues until the length of the sublists is at most one. At that point, the
original array will be sorted.

Let us assume that we have a function

int partition(int arr[], int start, int end)

which when called will

1. select a pivot element from arr[start . . end]

Figure 14-4

sublist 1
entries � Pivot

sublist 2
entries � Pivot

Pivot endstart

Focus on Problem Solving and Program Design: The QuickSort Algorithm

QuickSort

916 Chapter 14 Recursion

2. rearrange arr[start . . end] into sublist 1, the pivot element, and sublist 2 (see
Figure 14-4) so that the pivot element is at position p and sublist 1 and sublist 2 are
respectively arr[start . . p-1] and arr[p+1 . . end],

3. return the position p of the pivot.

We can then implement QuickSort in C++ as follows:

void quickSort(int arr[], int start, int end)
{
 if (start < end)
 {
 // Partition the array and get the pivot point.
 int p = partition(arr, start, end);

 // Sort the portion before the pivot point.
 quickSort(arr, start, p - 1);

 // Sort the portion after the pivot point.
 quickSort(arr, p + 1, end);
 }
}

Now let us consider the process of partitioning the array segment arr[start . . end]. The
partitioning algorithm selects arr[start] to be the pivot element and then builds the two
sublists on the left and right of the pivot element in stages. Initially, the portion of the array
that has been partitioned consists of just the pivot element by itself. In effect, the initial
situation will be as shown in Figure 14-4, with sublist 1 and sublist 2 being empty and all the
array entries that have not yet been added to the partitioned part lying to the right of sublist 2.

The main idea is to extend the partitioned portion of the array one element at a time by
considering the element X that is just to the right of sublist 2. If such an X is greater than
or equal to the pivot, it is added to the end of sublist 2 by leaving it where it is and moving
on to consider the next element. If X is less than the pivot element, it is added to the end of
sublist 1 by placing it just to the left of the pivot element. One way to do this is to store X in
a temporary location, move every element in sublist 2 up one position, move the pivot element
up one position, and then drop X into the array position just vacated by the pivot element.
This simplistic strategy moves too many array elements and does not result in an effi-
cient algorithm. Instead, we can put X to the left of the pivot more efficiently by first
exchanging X with the array item Y that is just to the right of the pivot element, and
then exchanging X with the pivot element. The first exchange puts Y, which is greater or
equal to the pivot element, at the end of sublist 2 while putting X in a position that is adja-
cent to the pivot. The second exchange then puts X to the left of the pivot. This is repeated
until the entire list has been partitioned. The code for the partition function is

int partition(int arr[], int start, int end)
{

// The pivot element is taken to be the element at
// the start of the subrange to be partitioned.
int pivotValue = arr[start];
int pivotPosition = start;

// Rearrange the rest of the array elements to
// partition the subrange from start to end.
for (int pos = start + 1; pos <= end; pos++)

917

{
if (arr[pos] < pivotValue)
{

// arr[scan] is the "current" item.
// Swap the current item with the item to the
// right of the pivot element.
swap(arr[pivotPosition + 1], arr[pos]);
// Swap the current item with the pivot element.
swap(arr[pivotPosition], arr[pivotPosition + 1]);
// Adjust the pivot position so it stays with the
// pivot element.
pivotPosition ++;

}
}
return pivotPosition;

}

The swap function used in partition is part of the standard template library. You need to
include the algorithm header file to use it.

Program 14-8 demonstrates the QuickSort algorithm in action.

Program 14-8

1 // This program demonstrates the QuickSort algorithm.
2 #include <iostream>
3 #include <algorithm> //needed for swap function
4 using namespace std;
5
6 // Function prototypes
7 void quickSort(int [], int, int);
8 int partition(int [], int, int);
9
10 int main()
11 {
12 // Array to be sorted.
13 const int SIZE = 10;
14 int array[SIZE] = {17, 53, 9, 2, 30, 1, 82, 64, 26, 5};
15
16 // Echo the array to be sorted.
17 for (int k = 0; k < SIZE; k++)
18 cout << array[k] << " ";
19 cout << endl;
20
21 // Sort the array using QuickSort.
22 quickSort(array, 0, SIZE-1);
23
24 // Print the sorted array.
25 for (int k = 0; k < SIZE; k++)
26 cout << array[k] << " ";
27 cout << endl;
28
29 return 0;
30 }
31

(program continues)

Focus on Problem Solving and Program Design: The QuickSort Algorithm

918 Chapter 14 Recursion

32 //**
33 // quickSort uses the QuickSort algorithm to *
34 // sort arr from arr[start] through arr[end]. *
35 //**
36 void quickSort(int arr[], int start, int end)
37 {
38 if (start < end)
39 {
40 // Partition the array and get the pivot point.
41 int p = partition(arr, start, end);
42
43 // Sort the portion before the pivot point.
44 quickSort(arr, start, p - 1);
45
46 // Sort the portion after the pivot point.
47 quickSort(arr, p + 1, end);
48 }
49 }
50
51 //***
52 // partition rearranges the entries in the array arr from *
53 // start to end so all values greater than or equal to the *
54 // pivot are on the right of the pivot and all values less *
55 // than are on the left of the pivot. *
56 //***
57 int partition(int arr[], int start, int end)
58 {
59 // The pivot element is taken to be the element at
60 // the start of the subrange to be partitioned.
61 int pivotValue = arr[start];
62 int pivotPosition = start;
63
64 // Rearrange the rest of the array elements to
65 // partition the subrange from start to end.
66 for (int pos = start + 1; pos <= end; pos++)
67 {
68 if (arr[pos] < pivotValue)
69 {
70 // arr[scan] is the "current" item.
71 // Swap the current item with the item to the
72 // right of the pivot element.
73 swap(arr[pivotPosition + 1], arr[pos]);
74 // Swap the current item with the pivot element.
75 swap(arr[pivotPosition], arr[pivotPosition + 1]);
76 // Adjust the pivot position so it stays with the
77 // pivot element.
78 pivotPosition ++;
79 }
80 }
81 return pivotPosition;
82 }

Program Output
17 53 9 2 30 1 82 64 26 5
1 2 5 9 17 26 30 53 64 82

Program 14-8 (continued)

The Towers of Hanoi 919

14.7 The Towers of Hanoi

CONCEPT: There are problems that have simple recursive solutions, but which are
otherwise very difficult to solve.

The Towers of Hanoi is a game that is often used in computer science textbooks to illus-
trate the power of recursion. The game uses three pegs and a set of disks of different sizes
with holes through their centers. The game begins with all of the disks stacked on the first
of the three pegs as shown in Figure 14-5.

The object of the game is to move all the disks from the first peg to the third, while abiding
by the following rules:

• All disks must rest on a peg except while being moved.
• Only one disk may be moved at a time.
• No disk may be placed on top of a smaller disk.

Let us look at some examples of how the game is played. The simplest case is when there is
only one disk: in this case, you solve the game in one move, by moving the disk from peg 1
to peg 3.

If you have two disks, you can solve the game with three moves:

1. Move a disk from peg 1 to peg 2 (it must be the top one.)
2. Move a disk from peg 1 to peg 3.
3. Move a disk from peg 2 to peg 3.

Notice that although the object of the game is to move the disks from peg 1 to peg 3, it is
necessary to use peg 2 as a temporary resting place for some of the disks. The complexity
of the solution increases rapidly as the number of disks to be moved increases. Moving
three disks requires seven moves as shown in Figure 14-6.

Figure 14-5 The pegs and disks in the Towers of Hanoi game

1 2 3

920 Chapter 14 Recursion

There is a charming legend associated with this game. According to this legend, there is a
group of monks in a temple in Hanoi who have a set of pegs with 64 disks. The monks are
busy moving the 64 disks, initially stacked on the first peg, to the third peg. When the
monks complete their task the world will come to an end.

Let us now return to the problem and consider its solution in the general case when we can
have any number of disks. The problem can be stated as:

Move n disks from peg 1 to peg 3 using peg 2 as a temporary peg.

It is very difficult to see how this problem can be solved using loops. Happily, it is not dif-
ficult to envision a recursive solution: If we can (recursively) move n � 1 disks from peg 1
to peg 2 while using peg 3 as the temporary peg, then the largest disk will be left sitting
alone on peg 1. We can then move the large disk from peg 1 to peg 3 in one move. We can
then (recursively) move the n � 1 disks from peg 2 to peg 3, this time using peg 1 as the
temporary peg. This plan can be formulated in pseudocode as follows:

To move n disks from peg 1 to peg 3, using peg 2 as a temporary peg:
If n > 0 Then

Move n � 1 disks from peg 1 to peg 2, using peg 3 as a temporary peg.

Figure 14-6

First move: Move disk 1 to peg 3.Original setup.

1

1

2

3

2 3

Second move: Move disk 2 to peg 2. Third move: Move disk 1 to peg 2.

Fourth move: Move disk 3 to peg 3. Fifth move: Move disk 1 to peg 1.

Sixth move: Move disk 2 to peg 3. Seventh move: Move disk 1 to peg 3.

0 1

2 3

4 5

6 7

The Towers of Hanoi 921

Move a disk from peg 1 to peg 3.
Move n � 1 disks from peg 2 to peg 3, using peg 1 as a temporary peg.

End If

We will now write a function that implements this solution by printing a sequence of
moves that solves the game. We will also use names rather than numbers to describe the
pegs. The object of the function is then to move a stack of disks from a source peg (peg 1)
to a destination peg (peg 2) using a temporary peg (peg 3). Here is the code for the
function:

void moveDisks(int n, string source, string dest, string temp)
{

if (n > 0)
{

// Move n - 1 disks from source to temp
// using dest as the temporary peg.
moveDisks(n - 1, source, temp, dest);

// Move a disk from source to dest.
cout << "Move a disk from " << source

 << " to " << dest << endl;

// Move n - 1 disks from temp to dest
// using source as the temporary peg.
moveDisks(n - 1, temp, dest, source);

}
}

The base case occurs when n = 0 and there are no disks to be moved. In this case the func-
tion call returns without doing anything. The function is demonstrated in program 14-9.

Program 14-9

1 // This program displays a solution to the towers of
2 // Hanoi game.
3
4 #include <iostream>
5 using namespace std;
6
7 // Function prototype
8 void moveDisks(int, string, string, string);
9
10 int main()
11 {
12 // Play the game with 3 disks.
13 moveDisks(3, "peg 1", "peg 3", "peg 2");
14 cout << "All the disks have been moved!"
15
16 return 0;
17 }
18

(program continues)

922 Chapter 14 Recursion

14.8 Focus on Problem Solving:
Exhaustive and Enumeration Algorithms

CONCEPT: An enumeration algorithm is one that generates all possible combinations
of items of a certain type; an exhaustive algorithm is one that searches
through such a set of combinations to find the best one.

19 //***
20 // The moveDisks function displays disk moves used *
21 // to solve the Towers of Hanoi game. *
22 // The parameters are: *
23 // n : The number of disks to move. *
24 // source : The peg to move from. *
25 // dest : The peg to move to. *
26 // temp : The temporary peg. *
27 //***
28 void
29 moveDisks(int n, string source, string dest, string temp)
30 {
31 if (n > 0)
32 {
33 // Move n - 1 disks from source to temp
34 // using dest as the temporary peg.
35 moveDisks(n - 1, source, temp, dest);
36
37 // Move a disk from source to dest.
38 cout << "Move a disk from " << source
39 << " to " << dest << endl;
40
41 // Move n - 1 disks from temp to dest
42 // using source as the temporary peg.
43 moveDisks(n - 1, temp, dest, source);
44 }
45 }

Program Output
Move a disk from peg 1 to peg 3
Move a disk from peg 1 to peg 2
Move a disk from peg 3 to peg 2
Move a disk from peg 1 to peg 3
Move a disk from peg 2 to peg 1
Move a disk from peg 2 to peg 3
Move a disk from peg 1 to peg 3
All the disks have been moved!

NOTE: You can find many animations on the World Wide Web and on YouTube. Type
“Towers of Hanoi Animation” into your favorite search engine.

Program 14-9 (continued)

923

Many problems can only be solved by examining all possible combinations of items of a
certain type and then choosing the best one. For example, consider the problem of making
change for $1.00 using the U.S. system of coins. A few of the solutions to this problem are:

one dollar coin
two fifty-cent coins
four quarters
one fifty-cent coin and two quarters
three quarters, two dimes, and one nickel.

In fact, there are 293 ways to make change for $1.00, so we need to have a systematic
method for generating them. Suppose we want to make change for a given amount using
the fewest coins. A strategy for this problem that almost immediately suggests itself is to
give as many of the largest coin as possible, then as many of the second largest coin as pos-
sible, and so on, until you have made change for the complete amount. It turns out that for
the U.S. system of coins, this procedure, which is called the greedy strategy, always finds
the best solution. However, the procedure does not work for other systems of coins. For
example, if there are only three coin sizes,

1, 20, 25

and one has to make change for 44 cents, the greedy strategy will give one quarter and 19
pennies, for a total of 20 coins. The best solution uses six coins: two twenty-cent pieces
and four pennies. In general, one would have to try all possible ways of making change to
determine the best one. An algorithm that searches through all possible combinations to
solve a problem is called an exhaustive algorithm; an algorithm that generates all possible
combinations is an enumeration algorithm.

Recursive techniques are often useful in exhaustive and enumeration algorithms. In this
section, we look at a recursive algorithm that counts the number of different ways to make
change for a given amount. With some modification, the algorithm can be adapted to keep
track of the different combinations, and either enumerate the list of all such combinations,
or report which combination is best. Although the algorithm works for any system that
includes a one-cent piece among its coins, we will assume the American system with the six
coin values: 1, 5, 10, 25, 50, and 100.

The main idea is this. Suppose we want to calculate the number of ways to make change
for 24 cents using coins in the set 1, 5, 10, 25, 50, 100. Since there is no way to make
change for 24 cents that uses coins in the set 25, 50, 100, the largest usable coin is a dime
and we can just calculate the number of ways to make change for 24 cents using coins in
the set 1, 5, 10. Moreover, we cannot use more than two 10-cent pieces in making change
for 24 cents, so we only need to count the number of ways to make change that use zero,
one, or two 10-cent pieces and add them all together to get our answer. Table 14-1 lists
these possibilities, shows how each possibility can be decomposed into a smaller problem
of the same type, and shows the call to the recursive mkChange function that would be
invoked to solve the subproblem. The parameters for the mkChange function will be
explained shortly.

Focus on Problem Solving: Exhaustive and Enumeration Algorithms

924 Chapter 14 Recursion

We are now ready to present the implementation of the algorithm. The set of possible coin
values is given by an array

const int coinValues[] = {1, 5, 10, 25, 50, 100};

and the algorithm itself is embodied in the recursive function

int mkChange(amount, largestIndex)

where the first parameter is the amount to make change for, the second is the index of the
largest coin in the coinValues array to be used in making that amount, and the integer
returned is the number of combinations possible to make the specified amount of change
using the specified maximum coin value. Thus the call to make change for 24 cents using
coin values 1, 5 is

mkChange(24,1);

In this case, the second parameter 1 is the index of the largest coin to be used, that is the
index of the nickel in the coinValues array. Likewise, the call to make change for 14 cents
using the same coin values is

mkChange(14,1);

Program 14-10 implements this algorithm for the U.S. system of coins. It would work for
any other coin system by simply changing the coin set size and the values in the coinValues
array. The algorithm assumes that the coinValues array lists its values in increasing order.

Notice how the function handles the base case in lines 23–24. It returns 1 when the
amount equals 0, so that when the calling function deducts coins that equal the desired
amount exactly in line 34, nWays will be incremented by 1 in line 38. The function also
returns 1 when largestIndex equals 0 to indicate that any amount can be composed in
just 1 way using pennies (this wouldn’t necessarily be true if the smallest coin were not 1).

Table 14-1

number of ways to make
change for 24 cents using no
dimes

=
number of ways to make change
for 24 cents using coins in the
set 1, 5

= mkChange(24,1);

number of ways to make
change for 24 cents using one
dime

=
number of ways to make change
for 14 cents using coins in the
set 1, 5

= mkChange(14,1);

number of ways to make
change for 24 cents using two
dimes

=
number of ways to make change
for 4 cents using coins in the
set 1, 5

= mkChange(4,1);

Program 14-10

1 // This program demonstrates a recursive function that finds
2 // and counts all possible combinations of coin values to
3 // make a specified amount of change.
4
5 #include <iostream>
6 using namespace std;
7

(program continues)

925

8 const int COIN_SET_SIZE = 6;
9 const int coinValues[] = {1, 5, 10, 25, 50, 100};
10
11 //***
12 // This function returns the number of ways to make change *
13 // for an amount if we can only use coinValues in the array *
14 // positions 0 through largestIndex *
15 //***
16
17 int mkChange(int amount, int largestIndex)
18 {
19 // Don't use coin values bigger than amount.
20 while(coinValues[largestIndex] > amount)
21 largestIndex--;
22
23 if (amount == 0 || largestIndex == 0)
24 return 1;
25
26 // Number of ways to make change for amount.
27 int nWays = 0;
28 // Number of coins of largest index to use.
29 int nCoins = 0 ;
30
31 while (nCoins <= amount/coinValues[largestIndex])
32 {
33 int amountLeft;
34 amountLeft = amount - nCoins * coinValues[largestIndex];
35
36 // Add the number of ways to make change with nCoins
37 // of the largest index.
38 nWays = nWays + mkChange(amountLeft, largestIndex-1);
39
40 nCoins++;
41 }
42 return nWays;
43 }
44
45 int main()
46 {
47 // Display possible coin values.
48 cout << "Here are the valid coin values, in cents: ";
49 for (int index = 0; index < COIN_SET_SIZE; index ++)
50 cout << coinValues[index] << " ";
51 cout << endl;
52
53 // Get input from user.
54 int amount;
55 cout << "Enter the amount of cents to make change for: ";
56 cin >> amount;
57

(program continues)

Program 14-10 (continued)

Focus on Problem Solving: Exhaustive and Enumeration Algorithms

926 Chapter 14 Recursion

14.9 Focus on Software Engineering:
Recursion Versus Iteration

CONCEPT: Recursion and iteration are equivalent in expressive power.

Recursion and iteration are equivalent in expressive power in the sense that whatever can
be done with one can also be done with the other. In any program, any recursive function
can be replaced with an equivalent function that uses loops and no recursion, and
conversely, any function that uses loops can be replaced with an equivalent recursive func-
tion that uses no loops.

In general, programs that use recursion incur more overhead than equivalent programs
that use iteration. This is because recursion typically involves the making of several
function calls. For each such call, the machine must pass parameters to the call, keep track
of the return address, create the function’s local variables, and finally, destroy the local
variables when the fuction returns. Current computers are fast enough that for many
problems people would not notice this difference in efficiency between an algorithm that
uses recursion and one that does not. In such cases, it does not make much difference
whether one uses recursion or iteration.

There are, however, some recursive algorithms (like the one used to compute the Fibonacci
sequence) that in the course of solving a problem recompute solutions to the same sub-
problems over and over again. Such algorithms tend to be extremely inefficient and should
always be avoided in favor of iteration.

In general, recursion should be used whenever the problem has a natural recursive solution
that does not unncessarily recompute solutions to subproblems and the equivalent solution
based on iteration either is not obvious or is difficult.

58 // Compute and display number of ways to make change.
59 cout << "Number of possible combinations is "
60 << mkChange(amount, COIN_SET_SIZE-1)
61 << endl;
62 return 0;
63 }

Program Output with Example Input Shown in Bold
Here are the valid coin values, in cents: 1 5 10 25 50 100
Enter (as an integer) the amount of cents to make change for: 11[Enter]
Number of possible combinations: 4

Program 14-10 (continued)

927

14.10 Tying It All Together: Infix and Prefix Expressions

A binary operator is said to be infix if it is written between its operands, as in the expres-
sion x + y. It is said to prefix if it is written before its operands, as in the expression + x y.
Finally, it is said to be postfix if it is written after its operands as in x y +. An arithmetic
expression consisting of numbers, variables, and operators is called infix if it uses only
infix operators, prefix if it uses only prefix operators, and postfix if all of its operators are
postfix. Table 14-2 shows the infix, prefix, and postfix forms of five different expressions.

An infix expression with more than one operator can be evaluated in different ways yield-
ing different results. Consider the expression 2 + 5 *3. If we add before multiplying, the
result is 21, but if we multiply and then add, we get 17. Infix expressions depend on elabo-
rate rules of operator precedence to determine how the expression is evaluated. In addi-
tion, parentheses must sometimes be used with infix expressions to override the precedence
rules.

Prefix and postfix expressions do not suffer from these drawbacks, and need neither paren-
theses nor rules of precedence. Instead, their operators are simply applied in the order in
which they are encountered. The omission of parentheses allows prefix and postfix expres-
sions to be stored in very compact forms, leading to savings in the amount of memory
used. Because algorithms that work with prefix and postfix expressions do not need to pro-
cess the parentheses or deal with precedence, they are often simpler.

Most programming languages, however, use infix expressions because that is what people
are accustomed to. Many compilers and interpreters internally translate infix expressions
to prefix or postfix so they can take advantage of the resulting efficiencies in storage and
processing.

It is useful, when working with prefix expressions, to know they can be defined recursively:

1. A simple variable such as x, or a number such as 23, is a prefix expression.
2. Any operator followed by two prefix expressions is a prefix expression.

Based on this recursive definition, we will develop a strategy for converting a fully paren-
thesized infix expression to its prefix equivalent. First, note that an infix expression that
involves no operators (it is an identifier or a number) is already in prefix form, in which
case there is nothing to do. Otherwise, place the outermost operator of the fully parenthe-
sized infix expression before its operands and then recursively apply this strategy to the

Table 14-2

Infix Expression Prefix Expression Postfix Expression

2
x
x + 2
x + 23 * y
(x + 23) * y

2
x
+ x 2
+ x * 23 y
* + x 23 y

2
x
x 2 +
x 23 y * +
x 23 + y *

Tying It All Together: Infix and Prefix Expressions

928 Chapter 14 Recursion

subexpressions (the operands of the outermost operator). Continue this until all subexpres-
sions have been converted to prefix. Here is an example of this process:

1. Original infix expression is (x + 23)* y.
2. Place the outermost operator before its operands to give the result * (x + 23) y.
3. Recursively apply the same strategy to the inner subexpression x + 23 by placing +

before x and 23 to give the result * + x 23 y.
4. Recursively apply the strategy to x, 23, and y. However, these are all base cases so

they remain unchanged. The procedure terminates with the result * + x 23 y.

Having gained some practice working with prefix expressions, let’s write a program that
reads in prefix expressions, evaluates them, and prints the results. We assume that the pre-
fix expressions contain no variables.

We use a recursive strategy. The base case is when the prefix expression is a single number.
In that case, we just read the number and return its value. A prefix expression that is not a
single number must consist of an operator followed by two prefix expressions. To evaluate
such an expression, we read and store the operator, recursively evaluate the two prefix
expressions to get two results, and then apply the operator to the two results. The recursive
function prefixExpr() shown in Program 14-11 implements this strategy.

The prefixExpr() function uses the peek() member function of the istream class to
skip whitespace and locate the beginning of the prefix expression. The peek() function
returns the next available character from the stream without actually reading it and remov-
ing it from the stream. We use peek() to ensure that we do not skip a character that is
part of the expression while we are skipping leading whitespace. We also use the peek()
function to check if the first non-space character is a digit: if it is, we know the prefix
expression is a number and we read it using the extraction operator in line 43:

exprStream >> number;

A non-space character that begins a prefix expression but is not a digit must be an opera-
tor. In that case, we read the character using the get() member function in line 52:

ch = exprStream.get();

The main function of this program just reads one line at a time, transforms the string
retrieved into an istringstream object, and calls the prefixExpr() function. The user
can enter multiple infix expressions with each expression being entered on its own line.
The program terminates when the user enters a blank line.

Program 14-11

1 // This program evaluates prefix expressions.
2 #include <stdlib.h>
3 #include <string>
4 #include <sstream>
5 #include <iostream>
6 using namespace std;
7
8 int prefixExpr(istream &exprStream); //Prototype
9
10 int main()

(program continues)

Chapter 14 Recursion

929

11 {
12 string input;
13 cout << "Enter prefix expressions to evaluate.\n"
14 << "Press enter after each expression,\n"
15 << "and press enter on a blank line to quit.\n\n" ;
16 cout << "Enter a prefix expression to evaluate: ";
17 getline(cin, input);
18 while (input.size() != 0)
19 {
20 // Convert string to istringstream
21 istringstream exprStream(input);
22 // Evaluate the prefix expression
23 cout << prefixExpr(exprStream) << endl;
24 // Get next line of input
25 cout << "Enter a prefix expression to evaluate: ";
26 getline(cin, input);
27 }
28 return 0;
29 }
30
31 //***
32 // Takes an istream that contains a single prefix expression p *
33 // and returns the integer value of p *
34 //***
35 int prefixExpr(istream &exprStream)
36 {
37
38 // Peek at first non-space character in prefix expression
39 char ch = exprStream.peek();
40 while (isspace(ch))
41 {
42 ch = exprStream.get(); // Read the space character
43 ch = exprStream.peek(); // Peek again
44 }
45
46 if (isdigit(ch))
47 {
48 // The prefix expression is a single number
49 int number;
50 exprStream >> number;
51 return number;
52 }
53 else
54 {
55 // The prefix expression is an operator followed
56 // by two prefix expressions: Compute values of
57 //the prefix expressions
58
59 // Read the operator
60 ch = exprStream.get();
61

(program continues)

Program 14-11 (continued)

Tying It All Together: Infix and Prefix Expressions

930 Chapter 14 Recursion

Review Questions and Exercises

Fill-in-the-Blank and Short Answer

1. What type of recursive function do you think would be more difficult to debug; one
that uses direct recursion, or one that uses indirect recursion? Why?

2. Which repetition approach is less efficient; a loop or a recursive function? Why?

3. When should you choose a recursive algorithm over an iterative algorithm?

4. The __________ of recursion is the number of times a function calls itself.

5. __________ recursion is when a function explicitly calls itself.

6. __________ recursion is when function A calls function B, which in turn calls function A.

62 // Recursively evaluate the two subexpressions
63 int value1 = prefixExpr(exprStream);
64 int value2 = prefixExpr(exprStream);
65
66 // Apply the operator
67 switch(ch)
68 {
69 case '+': return value1 + value2;
70 case '-': return value1 - value2;
71 case '*': return value1 * value2;
72 case '/': return value1 / value2;
73 default: cout << "Bad input expression";
74 exit(1);
75 }
76 }
77 }

Program Output with Example Input Shown in Bold
Enter prefix expressions to evaluate.
Press enter after each expression,
and press enter on a blank line to quit.

Enter a prefix expression to evaluate: 34[Enter]
34
Enter a prefix expression to evaluate: + 23 5[Enter]
28
Enter a prefix expression to evaluate: * +23 5 2[Enter]
56
Enter a prefix expression to evaluate:[Enter]

Program 14-11 (continued)

Chapter 14 Recursion

Review Questions and Exercises 931

Predict the Output

7. What is the output of the following programs?

A) #include <iostream>
using namespace std;

int function(int);
int main()
{
 int x = 10;

 cout << function(x) << endl;
 return 0;
}

int function(int num)
{
 if (num <= 0)
 return 0;
 else
 return function(num - 1) + num;
}

B) #include <iostream>
using namespace std;

void function(int);

int main()
{

int x = 10;

function(x);
return 0;

}

void function(int num)
{

if (num > 0)
{

for (int x = 0; x < num; x++)
cout << '*';

cout << endl;
function(num - 1);

}
}

932 Chapter 14 Recursion

C) #include <iostream>
using namespace std;

void function(char [], int, int);

int main()
{
 char names[] = "Adam and Eve";
 function(names, 0, 13);
 return 0;
}
void function(char array[], int pos, int size)
{
 if (pos < size - 1)
 {

 function(array, pos + 1, size);
 cout << array[pos];

 }
}

Soft Skills

8. Programming is communication; the programmer “explains” to a computer how to
carry out a task, with the explanation being the program. Can you think of any cases
where communication directed to people uses direct or indirect recursion? Are there
cases where such a use of recursion is indispensable?

Programming Challenges

1. Iterative Factorial

Write an iterative version (using a loop instead of recursion) of the factorial function
shown in this chapter. Demonstrate the use of the function in a program that prints the fac-
torial of a number entered by the user.

2. Recursive Conversion

Convert the following function to one that uses recursion.

void sign(int n)
{

while (n > 0)
{

cout << "No Parking\n";
n--;

}
}

Demonstrate the function with a driver program.

3. QuickSort Template

Create a template version of the quickSort algorithm that will work with any data type
that overloads the comparison operators. Demonstrate the template with a driver function.

Review Questions and Exercises 933

4. Recursive Array Sum

Write a function that accepts two arguments, an array of integers and a number indicating
the number of elements in the array. The function should recursively calculate the sum of
all the numbers in the array. Demonstrate the use of the function in a program that asks
the user to enter an array of numbers and prints its sum.

5. Recursive Multiplication

Write a recursive function that accepts two arguments into the parameters x and y. The
function should return the value of x times y. Remember, multiplication can be performed
as repeated addition:

7 * 4 = 4 + 4 + 4 + 4 + 4 + 4 + 4

6. Recursive Member Test

Write a recursive boolean function named isMember. The function should accept three
parameters: an array of integers, an integer indicating the number of elements in the array,
and an integer value to be searched for. The function should return true if the value is
found in the array, or false if the value is not found. Demonstrate the use of the function
in a program that asks the user to enter an array of numbers and a value to be searched for.

7. String Reverser

Write a recursive function that accepts a string as its argument and prints the string in
reverse order. Demonstrate the function in a driver program.

8. Ackermann’s Function

Ackermann’s function is a recursive mathematical algorithm that can be used to test how
well a computer performs recursion. Write a function A(m, n) that solves Ackermann’s
function. Use the following logic in your function:

If m = 0 then return n + 1
If n = 0 then return A(m-1, 1)
Otherwise, return A(m-1, A(m, n-1))

Test your function in a driver program that displays the following values:

A(0, 0) A(0, 1) A(1, 1) A(1, 2) A(1, 3) A(2, 2) A(3, 2)

9. Prefix to Postfix

Write a program that reads prefix expressions and converts them to postfix. Each prefix
expression should be entered on a separate line. The program should keep reading prefix
expressions and converting them to postfix until a blank line is entered.

10. Prefix to Infix

Write a program that reads prefix expressions and converts them to infix. The infix expres-
sions should be fully parenthesized to show the order of application of the operators. Each
prefix expression should be entered on a separate line. The program should keep reading
prefix expressions and converting them to infix until a blank line is entered.

Solving the
Recursive
Multiplication
Problem

This page intentionally left blank

935

C
H

A
P

T
E

R

15 Polymorphism and Virtual
Functions

15.1 Type Compatibility in Inheritance Hierarchies

CONCEPT: Objects of a derived class can be used wherever objects of a base class
object are expected.

Hierarchies of Inheritance
As you learned in Chapter 11, it often makes sense to create a new class based on an exist-
ing class if the new class is a special version of the existing one. The derived class can then
itself serve as the base class for other classes, resulting in an inheritance hierarchy. For
example, in Chapter 11, we used the process of inheritance to create a hierarchy of several
classes: Person, Student, Faculty, and TFaculty. The relationship of inheritance is normally
depicted using rectangles to represent the classes and arrows pointing from the derived
class to the base class, as shown in Figure 15-1.

This hierarchy may of course be extended. For example, the Student class might itself be
used as a base class for two other derived classes, CStudent and RStudent. These last two
classes might be used to represent a type of student that commutes, and another type of
student that is resident on campus.

TOPICS

15.1 Type Compatibility in
Inheritance Hierarchies

15.2 Polymorphism and Virtual
Member Functions

15.3 Abstract Base Classes and Pure
Virtual Functions

15.4 Focus on Object-Oriented
Programming: Composition
Versus Inheritance

15.5 Secure Encryption Systems, Inc.,
Case Study

15.6 Tying It All Together: Let’s Move It

936 Chapter 15 Polymorphism and Virtual Functions

Type Compatibility in Inheritance
Certain type compatibility relationships hold among different classes in an inheritance
hierarchy. Because objects in an inheritance hierarchy are commonly accessed through
pointers, we state these rules in terms of pointers:

• A derived class pointer can always be assigned to a base class pointer. This means
that base class pointers can point to derived class objects.

• A type cast is required to perform the opposite assignment of a base class pointer to a
derived class pointer. An error may result at run time if the base class pointer does
not actually point to a derived class object.

Let us illustrate the use of these rules with a simple example.

class Base
{
public:

int i;
Base(int k){i = k;}

};
class Derived : public Base
{
public:

double d;
Derived(int k, double g) : Base(k){ d = g ;}

};

Base *pb = new Base(5);
Derived *pd = new Derived(6, 10.5);

The first rule says we can assign derived class pointers to base class pointers. Thus we can
write:

Base *pb1 = pd;
Base *pb2 = new Derived(7, 11.5);

Figure 15-1

Student

TFaculty

Faculty

Person

Type Compatibility in Inheritance Hierarchies 937

The second rule says we can assign a base class pointer to a derived class pointer if we use
a type cast. Thus we can write:

Derived *pd1 = static_cast<Derived *>(pb1);

This assignment leaves pd1, (which is a pointer to Derived) pointing to a Derived class
object, and allows subsequent accesses to Derived class members through pd1 to execute
correctly:

cout << pd1->d;

Consider now the scenario in which a Base class pointer pb pointing to a Base class object
is assigned to a Derived class pointer using a type cast.

pd = static_cast<Derived *>pb;

The statement compiles correctly, but when it is executed, it leaves a Derived class pointer
pointing to a Base class object. A subsequent access to Derived class members through pd
will cause a runtime error:

cout << pd->d; // Error

The error occurs because the Base class object pointed to by pd does not have a member d.

These types of compatibility rules hold even for deep inheritance hierarchies. For example,
if as in Figure 15-1 Person is a base class for Faculty which is in turn a base class for
TFaculty, then you can assign a TFaculty pointer to a Person pointer:

TFaculty *tF = new TFaculty(name, disc);
Person *p ;
p = tF;

The assignment in the reverse direction, however, requires a type cast:

tF = static_cast<TFaculty *>(p);

To give further illustration of these concepts, consider the following program which uses
modified versions of classes first encountered in Section 12 of Chapter 11.

Contents of Inheritance4.h
1 #include <string>
2 using namespace std;
3
4 enum Discipline { ARCHEOLOGY, BIOLOGY, COMPUTER_SCIENCE };
5 enum Classification { FRESHMAN, SOPHOMORE, JUNIOR, SENIOR };
6
7 class Person
8 {
9 protected:
10 string name;
11 public:
12 Person() { setName(""); }
13 Person(string pName) { setName(pName); }
14 void setName(string pName) { name = pName; }
15 string getName() { return name; }
16 };

938 Chapter 15 Polymorphism and Virtual Functions

17
18 class Student:public Person
19 {
20 private:
21 Discipline major;
22 Person *advisor;
23 public:
24
25 Student(string sname, Discipline d, Person *adv)
26 : Person(sname)
27 {
28 major = d;
29 advisor = adv;
30 }
31 void setMajor(Discipline d) { major = d; }
32 Discipline getMajor() { return major; }
33 void setAdvisor(Person *p) { advisor = p; }
34 Person *getAdvisor() { return advisor; }
35 };
36
37 class Faculty:public Person
38 {
39 private:
40 Discipline department;
41 public:
42 Faculty(string fname, Discipline d) : Person(fname)
43 {
44 department = d;
45 }
46 void setDepartment(Discipline d) { department = d; }
47 Discipline getDepartment() { return department; }
48 };
49
50 class TFaculty : public Faculty
51 {
52 private:
53 string title;
54 public:
55 TFaculty(string fname, Discipline d, string title)
56 : Faculty(fname, d)
57 {
58 setTitle(title);
59 }
60 void setTitle(string title) { this->title = title; }
61
62 // Override getName()
63 string getName()
64 {
65 return title + " " + Person::getName();
66 }
67 };

Type Compatibility in Inheritance Hierarchies 939

Here are other examples of assigning derived class pointers to base classes:

Person *ptp;
TFaculty *ptf;
// Pointer to Derived class is assigned to Base class
// pointer.
ptp = new TFaculty("Indiana Jones", ARCHEOLOGY, "Dr.");
// Assigning a base class pointer to a derived class
// pointer requires a typecast
ptf = static_cast<TFaculty *>(ptp);

In this section of code, the new operator returns a pointer to the derived class TFaculty,
which is assigned to the base class pointer ptp. The base class pointer ptp is then assigned
to ptf using a type cast.

These type compatibility rules apply in two other cases. A function that is declared as tak-
ing a pointer to a base class will accept a pointer to a derived class object as an actual
parameter. Also, a function that declares a return type of a pointer to a particular class C
may actually return a pointer to on object of a class derived from C.

Using Type Casts with Base Class Pointers
We have seen that a pointer to a particular class C may actually be pointing an object of a
class derived from C. In this case, the class type of the pointer will be different from the
class type of the object, and C++ defaults to using the class of the pointer to determine
access to the members of the object. As an example, consider the statement

Person *pPerson = new Faculty("Donald Knuth", COMPUTER_SCIENCE);

Even though this assignment is legal, it does not make the pointer pPerson aware of addi-
tional members of the Faculty class that are not in the Person class. Consequently, an
attempt to access members of the Faculty class through pPerson, such as

pPerson->setDepartment(BIOLOGY); // compiler error!

is rejected by the compiler. If we do know that pPerson actually points to a Faculty
object, we can use a type cast to get the compiler to accept the statement:

static_cast<Faculty *>(pPerson)->setDepartment(BIOLOGY);

The type cast informs the compiler that pPerson is actually pointing to a Faculty object
derived from the Person base class. Alternatively, we can first cast pPerson to a pointer to
Faculty, and then use the new pointer:

Faculty *pFaculty = static_cast<Faculty *>(pPerson);
pFaculty->setDepartment(BIOLOGY);

In general, a pointer to a base class that actually points to a derived class object must first
be appropriately cast before the additional features of the derived class can be used.

Recall from Chapter 11 that a derived class may override member functions that are
defined in its base class. When a pointer to a base class is being used to access a member
function that has been overridden by the derived class, the default C++ behavior is to use
the version of the function that is defined in the class of the pointer rather than in the class
of the object. For example, the code

Person *pP = new TFaculty("Indiana Jones", ARCHEOLOGY);

940 Chapter 15 Polymorphism and Virtual Functions

sets pP, which is a pointer to the base class Person, to point to a TFaculty object. Note that
TFaculty overrides the getName function defined in Person. In executing the statement

cout << pP->getName();

the compiler is not aware that the actual class type of the object is TFaculty. The compiler
sees the class type of the pointer and assumes that the class type of the object is the same as
that of the pointer. Therefore, it calls the version of getName defined in the Person class.
Program 15-1 illustrates these concepts.

Program 15-1

1 // This program demonstrates type compatibility within
2 // an inheritance hierarchy.
3 #include "inheritance4.h"
4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {
9 Person *pp;
10 Faculty *pf;
11 TFaculty *ptf;
12 ptf = new TFaculty("Indiana Jones", ARCHEOLOGY, "Dr.");
13
14 // Calling getName through a pointer to TFaculty uses
15 // the version of getName in TFaculty.
16 cout << "Get name through a pointer to TFaculty: ";
17 cout << ptf->getName() << endl;
18
19 // Assignment of derived to base needs no cast.
20 pf = ptf;
21
22 // Calling getName through a pointer to Faculty uses the
23 // version of getName in Faculty.
24 cout << "Get name through a pointer to Faculty: ";
25 cout << pf->getName() << endl;
26
27 // Assignment of derived to base needs no cast.
28 pp = ptf;
29
30 // Derived class members can be accessed using a cast.
31 cout << "Get name through a cast to pointer to TFaculty: ";
32 cout << static_cast<TFaculty *>(pp)->getName() << endl;
33
34 // Assigment from base to derived needs a cast.
35 TFaculty *ptf1;
36 ptf1 = static_cast<TFaculty *>(pp);
37
38 // Access getName through a pointer to TFaculty
39 cout << "Get name through a pointer to TFaculty: ";
40 cout << ptf1->getName();
41
42 return 0;
43 }

(program continues)

Polymorphism and Virtual Member Functions 941

15.2 Polymorphism and Virtual Member Functions

CONCEPT: Virtual functions allow the most specific version of a member function in
an inheritance hierarchy to be selected for execution. Virtual functions
make polymorphism possible.

A piece of code is said to be polymorphic if executing the code with different types of
data produces different behavior. For example, a function would be called polymorphic
if it executes differently when it is passed different types of parameters.

To illustrate polymorphism, consider the following program. The program creates an array
of (pointers to) Person objects of type Student, Faculty, and TFaculty. It then prints the
names in all the objects using the same code. Because an array can only hold elements of
one type, we must use an array of pointers to the base class.

Program Output
Get name through a pointer to TFaculty: Dr. Indiana Jones
Get name through a pointer to Faculty: Indiana Jones
Get name through a cast to pointer to TFaculty: Dr. Indiana Jones
Get name through a pointer to TFaculty: Dr. Indiana Jones

Program 15-2

1 // This exhibits the default non-polymorphic behavior of C++.
2 #include "inheritance4.h"
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 // Create an array of pointers to Person objects.
9 const int NUM_PEOPLE = 5;
10 Person *arr[NUM_PEOPLE] =
11 {
12 new TFaculty("Indiana Jones", ARCHEOLOGY, "Dr."),
13 new Student("Thomas Cruise", COMPUTER_SCIENCE, NULL),
14 new Faculty("James Stock", BIOLOGY),
15 new TFaculty("Sharon Rock", BIOLOGY, "Professor"),
16 new TFaculty("Nicole Eweman", ARCHEOLOGY, "Dr.")
17 };
18 // Print the names of the Person objects.
19 for (int k = 0; k < NUM_PEOPLE; k++)
20 {
21 cout << arr[k]->getName() << endl;
22 }
23 return 0;
24 }

(program continues)

Program 15-1 (continued)

Polymorphism

942 Chapter 15 Polymorphism and Virtual Functions

Notice that the program calls the Person version of the getName function for all objects in
the array, even though the TFaculty objects have their own, more specialized version. This
code is obviously not polymorphic, for it executes the same member function for each
object, regardless of its type. In other words, it does not behave differently for different
types of objects.

To better understand what is happening, we need to take a closer look at each of the five
calls

arr[k]->getName()

used to retrieve the name to be printed. In each of these calls, a pointer arr[k] to the base
class Person is used to invoke the getName function in objects of different derived classes.
Some of these classes, like TFaculty, override getName to provide a more specialized ver-
sion of that function. When arr[k] is pointing to a TFaculty object, the compiler must
choose between the getName defined in Person, the class of the pointer, and the getName
defined in TFaculty, the class that the object actually belongs to. The default C++ behav-
ior is to use the class type of the pointer rather than that of the object to determine which
version of an overridden function to call.

The scenario of invoking a member function of a derived class object through a base class
pointer is a common occurrence in object-oriented programming. Let us say that we have a
base class B with a member function mfun() and a base class pointer ptr that is pointing
to an object of a derived class D.

class B
{
public:
 void mfun()
 {
 cout << "Base class version";
 }
};
class D : public B
{
public:
 void mfun()
 {
 cout << "Derived class version";
 }
};
Base *ptr = new D();

Program Output
Indiana Jones
Thomas Cruise
James Stock
Sharon Rock
Nicole Eweman

Program 15-2 (continued)

Polymorphism and Virtual Member Functions 943

We want to tell the compiler that whenever we write

ptr->mfun()

the compiler should select the more specialized version of mfun() in the derived class. We
can do this in C++ by declaring mfun() to be a virtual function in the base class. Virtual
functions are used in C++ to support polymorphic behavior. Thus, to achieve polymorphic
behavior for mfun() in the class B and all of its derived classes, we must modify the defini-
tion of B as follows:

class B
{
public:
 virtual void mfun()
 {
 cout << "Base class version";
 }
};

The virtual characteristic is inherited: that is, if a member function of a derived class over-
rides a virtual function in the base class, then that member function is automatically virtual
itself. Thus the declaration of mfun as virtual in B makes mfun virtual in D and in all classes
derived from D.

Although it is not necessary, many programmers tag all virtual functions with the key word
virtual to make it easer to identify them. This is good practice, and accordingly, the defini-
tion of D should be written as follows:

class D : public B
{
public:
 virtual void mfun()
 {
 cout << "Derived class version";
 }
};

The following program is a modification of Program 15-2. In it, the getName function of
the Person class has been declared virtual. It includes the inheritance5.h file, which is
the just the inheritance4.h file modified to make the getName function in the Person
class virtual.

Program 15-3

Contents of Inheritance5.h
1 #include <string>
2 using namespace std;
3
4 enum Discipline { ARCHEOLOGY, BIOLOGY, COMPUTER_SCIENCE };
5 enum Classification { FRESHMAN, SOPHOMORE, JUNIOR, SENIOR };
6
7 // The Person class is modified to make getName
8 // a virtual function.

(program continues)

944 Chapter 15 Polymorphism and Virtual Functions

9 class Person{
10 protected:
11 string name;
12 public:
13 Person() { setName(""); }
14 Person(string pName) { setName(pName); }
15 void setName(string pName) { name = pName; }
16
17 // Virtual function.
18 virtual string getName() { return name; }
19 };
20
21 class Student:public Person
22 {
23 private:
24 Discipline major;
25 Person *advisor;
26 public:
27 Student(string sname, Discipline d, Person *adv)
28 : Person(sname)
29 {
30 major = d;
31 advisor = adv;
32 }
33 void setMajor(Discipline d) { major = d; }
34 Discipline getMajor() { return major; }
35 void setAdvisor(Person *p) { advisor = p; }
36 Person *getAdvisor() { return advisor; }
37 };
38
39 class Faculty:public Person
40 {
41 private:
42 Discipline department;
43 public:
44 Faculty(string fname, Discipline d) : Person(fname)
45 {
46 department = d;
47 }
48 void setDepartment(Discipline d) { department = d; }
49 Discipline getDepartment() { return department; }
50 };
51
52 class TFaculty : public Faculty
53 {
54 private:
55 string title;
56 public:
57 TFaculty(string fname, Discipline d, string title)
58 : Faculty(fname, d)

(program continues)

Program 15-3 (continued)

Polymorphism and Virtual Member Functions 945

Dynamic and Static Binding
The compiler is said to bind the name of a function when it selects the code that should be
executed when the function name is invoked. In other words, the compiler binds the name
to a function definition when the function is called.

59 {
60 setTitle(title);
61 }
62
63 void setTitle(string title) { this->title = title; }
64
65 // Virtual function
66 virtual string getName()
67 {
68 return title + " " + Person::getName();
69 }
70 };
71

Contents of Main Program, pr15-03.cpp
1 // This demonstrates the polymorphic behavior
2 // of classes with virtual functions.
3 #include "inheritance5.h"
4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {
9 // Create an array of Person objects.
10 const int NUM_PEOPLE = 5;
11 Person *arr[NUM_PEOPLE] =
12 {
13 new TFaculty("Indiana Jones", ARCHEOLOGY, "Dr."),
14 new Student("Thomas Cruise", COMPUTER_SCIENCE, NULL),
15 new Faculty("James Stock", BIOLOGY),
16 new TFaculty("Sharon Rock", BIOLOGY, "Professor"),
17 new TFaculty("Nicole Eweman", ARCHEOLOGY, "Dr.")
18 };
19 // Print the names of the Person objects.
20 for (int k = 0; k < NUM_PEOPLE; k++)
21 {
22 cout << arr[k]->getName() << endl;
23 }
24 return 0;
25 }

Program Output
Dr. Indiana Jones
Thomas Cruise
James Stock
Professor Sharon Rock
Dr. Nicole Eweman

Program 15-3 (continued)

946 Chapter 15 Polymorphism and Virtual Functions

Static binding happens at compile time, and binds the name to a fixed function definition,
which is then executed each time the name is invoked. For example, in Program 15-2 of the
previous section, the compiler used static binding to bind getName in the statement

for (int k = 0; k < NUM_PEOPLE; k++)
{

cout << arr[k]->getName() << endl;
}

to the definition of getName in the Person class.

In static binding, the compiler uses type information available at compile time. If the code
is operating on objects of different classes within an inheritance hierarchy, the only type
information available to the compiler will be the base class pointer type used to access all
the objects. Consequently, static binding will always use the base class version of a member
function.

In contrast, dynamic binding occurs at run time. Dynamic binding works only if the compiler
can determine at run time the exact class that a subclass object belongs to. The compiler then
uses this run-time type information to call the version of the function defined in that class.
To make dynamic binding possible, the compiler stores run-time type information in every
object of a class with a virtual function. Dynamic binding always uses the version of the
member function in the actual class of the object, regardless of the class of the pointer used
to access the object.

More information on dynamic binding and run-time type information can be found in
Appendix I on the student CD that comes with this book.

15.3 Abstract Base Classes and Pure Virtual Functions

CONCEPT: Abstract classes and pure virtual functions can be used to define an
interface that must be implemented by derived classes.

It is often convenient to have a base class for an inheritance hierarchy that defines a mem-
ber function that must be implemented in every derived class, but which cannot be imple-
mented by the base class itself because the details needed for a reasonable implementation
can only be found in the derived classes. If this is the case, the C++ language permits the
programmer to declare the function a pure virtual function, that is, a member function for
which the class provides no implementation. The C++ way of declaring a pure virtual func-
tion is to put the expression = 0 in the class declaration where the body of the function
would otherwise have gone. For example, if a member function void draw() is being
declared pure virtual, then its declaration in its class looks like

void draw() = 0;

A pure virtual function is sometimes called an abstract function, and a class with at least
one pure virtual function is called an abstract class. The C++ compiler will not allow you
to instantiate an abstract class. Abstract classes can only be subclassed: that is, you can
only use them as base classes from which to derive other classes.

Abstract Base Classes and Pure Virtual Functions 947

A class derived from an abstract class inherits all functions in the base class, and will itself
be an abstract class unless it overrides all the abstract functions it inherits. The usefulness
of abstract classes lies in the fact that they define an interface that will then have to be sup-
ported by objects of all classes derived from it.

You can think of an abstract class as a class which has no instances other than those that
belong to some subclass. There are many examples of abstract classes in real life. For
example, in the animal kingdom, the class “Animal” of all animals is an abstract class.
There are instances of animals that do not actually belong to some subclass. There are ani-
mals that are dogs, or chickens, or foxes, but there no animals that are just animals.

Consider a graphics system that consists of a collection of shapes that must be drawn at
certain locations on the screen. Each shape object would have some member variables to
keep track of its position, and a member function for drawing the shape at the right posi-
tion. The different shapes supported by the system might include rectangles, hexagons
and others. Because a rectangle is a shape, and a hexagon is a shape, it makes sense to
have a Shape class and have both Rectangle and Hexagon be classes derived from
Shape. The Shape class will have a member function setPosition for setting the posi-
tion of the shape, as well as a member function draw for drawing the shape. However,
because Shape is an abstract class (there is no shape that is just a “shape,” it must be a
rectangle, a hexagon, a triangle, or other) the logic for drawing a particular shape must
be delegated to an appropriate subclass. Thus the draw() function cannot have an
implementation in the Shape class, and must be made a pure virtual function.

Program 15-4 shows a Shape class with two derived classes: Rectangle and Hexagon.
The class declares a pure virtual function draw() that is implemented by its two
subclasses. The main function maintains a collection of Shape objects using an array of
pointers.

Program 15-4

1 // This program demonstrates abstract base
2 // classes and pure virtual functions.
3 #include <iostream>
4 using namespace std;
5
6 class Shape
7 {
8 protected:
9 int posX, posY;
10 public:
11 virtual void draw() = 0;
12 void setPosition(int pX, int pY)
13 {
14 posX = pX;
15 posY = pY;
16 }
17 };
18
19 class Rectangle : public Shape
20 {

(program continues)

948 Chapter 15 Polymorphism and Virtual Functions

Program 15-4 affords another demonstration of dynamic binding and polymorphism.
Consider in particular the statement

shapeArray[j]->draw();

21 public:
22 virtual void draw()
23 {
24 cout << "Drawing rectangle at " << posX << " "
25 << posY << endl;
26 }
27 };
28
29 class Hexagon : public Shape
30 {
31 public:
32 virtual void draw()
33 {
34 cout << "Drawing hexagon at " << posX << " "
35 << posY << endl;
36 }
37 };
38
39 int main()
40 {
41 // Create array of pointers to Shapes of various types.
42 const int NUM_SHAPES = 3;
43 Shape * shapeArray[] = { new Hexagon(),
44 new Rectangle(),
45 new Hexagon()
46 };
47 // Set positions of all the shapes.
48 int posX = 5, posY = 15;
49 for (int k = 0; k < NUM_SHAPES; k++)
50 {
51 shapeArray[k]->setPosition(posX, posY);
52 posX += 10;
53 posY += 10;
54 };
55
56 // Draw all the shapes at their positions.
57 for (int j = 0; j < NUM_SHAPES; j++)
58 {
59 shapeArray[j]->draw();
60 }
61 return 0;
62 }

Program Output
Drawing hexagon at 5 15
Drawing rectangle at 15 25
Drawing hexagon at 25 35

Program 15-4 (continued)

Abstract Base Classes and Pure Virtual Functions 949

which is executed a number of different times in the loop

for (int j = 0; j < NUM_SHAPES; j++)
{

shapeArray[j]->draw();
}

The first time the statement is executed, it invokes the draw function on a hexagon object,
while the second time, it invokes the draw function on a rectangle object. Because the two
draw functions are in different classes, they produce different behavior.

Remember the following points about abstract base classes and pure virtual functions:

• When a class contains a pure virtual function, it is an abstract base class.
• Abstract base classes cannot be instantiated.
• Pure virtual functions are declared with the = 0 notation, and have no body, or definition.
• Pure virtual functions must be overridden in derived classes that need to be instantiated.

Checkpoint

15.1 Explain the difference between static binding and dynamic binding.

15.2 Are virtual functions statically bound or dynamically bound?

15.3 What will the following program display?

#include <iostream>
using namespace std;
class First
{

protected:
int a;

public:
First(int x = 1) { a = x; }
int getVal() { return a; }

};
class Second : public First
{

private:
int b;

public:
Second(int y = 5) { b = y; }
int getVal() { return b; }

};
int main()
{

First object1;
Second object2;
cout << object1.getVal() << endl;
cout << object2.getVal() << endl;
return 0;

}

15.4 What will the following program display?

#include <iostream>
using namespace std;
class First

950 Chapter 15 Polymorphism and Virtual Functions

{
protected:

int a;
public:

First(int x = 1) { a = x; }
void twist() { a *= 2; }
int getVal() { twist(); return a; }

};
class Second : public First
{

private:
int b;

public:
Second(int y = 5) { b = y; }
void twist() { b *= 10; }

};
int main()
{

First object1;
Second object2;
cout << object1.getVal() << endl;
cout << object2.getVal() << endl;
return 0;

}

15.5 What will the following program display?

#include <iostream>
using namespace std;
class First
{

protected:
int a;

public:
First(int x = 1) { a = x; }
virtual void twist() { a *= 2; }
int getVal() { twist(); return a; }

};
class Second : public First
{

private:
int b;

public:
Second(int y = 5) { b = y; }
virtual void twist() { b *= 10; }

};
int main()
{

First object1;
Second object2;
cout << object1.getVal() << endl;
cout << object2.getVal() << endl;
return 0;

}

Abstract Base Classes and Pure Virtual Functions 951

15.6 What will the following program display?

#include <iostream>
using namespace std;
class Base
{

protected:
int baseVar;

public:
Base(int val = 2) { baseVar = val; }
int getVar() { return baseVar; }

};
class Derived : public Base
{

private:
int deriVar;

public:
Derived(int val = 100) { deriVar = val; }
int getVar() { return deriVar; }

};

int main()
{

Base *optr;
Derived object;

optr = &object;
cout << optr->getVar() << endl;
return 0;

}

15.7 How can you tell from looking at a class declaration that a virtual member function
is pure?

15.8 What makes an abstract class different from other classes?

15.9 Examine the following classes. The table lists the variables that are members of the
Third class (some are inherited). Complete the table by filling in the access specifi-
cation each member will have in the Third class. Write “inaccessible” if a member
is inaccessible to the Third class.

class First
{

private:
int a;

protected:
double b;

public:
long c;

};

952 Chapter 15 Polymorphism and Virtual Functions

class Second : protected First
{

private:
int d;

protected:
double e;

public:
long f;

};

class Third : public Second
{

private:
int g;

protected:
double h;

public:
long i;

}

15.4 Focus on Object-Oriented Programming:
Composition Versus Inheritance

CONCEPT: Inheritance should model an “is a” relation, rather than a “has a”
relation, between the derived and base classes.

Class inheritance in an object-oriented language should be used to model the fact that the
type of the derived class is a special case of the type of the base class. Actually, a class can
be considered to be the set of all objects that can be created from it. Because the derived

Member
Variable

Access Specification
in Third class

a

b

c

d

e

f

g

h

i

Composition
Versus
Inheritance

953

class is a special case of the base class, the set of objects that correspond to the derived
class will be a subset of the set of objects that correspond to the base class. Thus, every
object of the derived class is also an object of the base class. In other words, each derived
class object is a base class object.

Class composition occurs whenever a class contains an object of another class as one of its
member variables. Composition was discussed in Chapter 11, where it was pointed out
that composition models a has-a relation between classes.

Because a derived class inherits all the members of its base class, a derived class effectively
contains an object of its base class. Because of this, it is possible to use inheritance where a
correct design would call for composition. As an example, consider a program that needs
to represent data for a person, say the person’s name and street address. The street address
might consist of two lines:

123 Main Street
Hometown, 12345

Now suppose we had a class for representing a street address:

class StreetAddress
{

private:
string line1, line2;

public:
void setLine1(string);
void setLine2(string);
string getLine1();
string getLine2();

};

Because a person’s data has a name and a street address, the proper formulation of a class
to represent a person’s data would use composition in the following way:

class PersonData
{

private:
string name;
StreetAddress address;

public:
...

};

We have left off the rest of the class declaration for PersonData because we don’t need it
for our purposes.

It is possible to define this class using inheritance instead of composition. For example, we
could define a class PersonData1 as follows:

class PersonData1:public StreetAddress
{

private:
string name;

public:
...

};

Focus on Object-Oriented Programming: Composition Versus Inheritance

954 Chapter 15 Polymorphism and Virtual Functions

While this new definition would compile correctly, it is conceptually the wrong thing to do
because it regards a person’s data as a special kind of StreetAddress, which it is not. This
type of conceptual error in design can result in a program that is confusing to understand
and difficult to maintain. It is a good design practice to prefer composition to inheritance
whenever possible. One reason is that inheritance breaks the encapsulation of the base
class by exposing the base class’s protected members to the methods of the derived class.

Let us next consider an example where it makes sense to use inheritance rather than com-
position. Suppose that we have a class Dog that represents the set of all dogs. Assuming
that each Dog object has a member variable weight of type double and a member function
void bark(), we might have the following class:

class Dog
{

protected:
double weight;

public:
Dog(double w)

{ weight = w; }
virtual void bark()

{
 cout << "I am dog weighing "

 << weight << " pounds." << endl;
}

};

The class also has a constructor to allow Dog objects to be initialized. Note that we have
declared the bark() member function as virtual to allow it to be overridden in a derived class.

Suppose that we need to have a class that represents the set of all sheep dogs. Since every
sheep dog is also a dog, it makes sense to derive the new SheepDog class from the Dog class.
That way, a SheepDog object will inherit every member of the Dog class. In addition to having
every characteristic that every dog has, a sheep dog can be expected to have other charac-
teristics peculiar to sheep dogs, for example, an integer member numberSheep that indicates
the maximum number of sheep the dog is trained to herd. In addition, a sheep dog might have
a way of barking different from that of a generic dog, perhaps one adapted to the tending of
sheep. This is accounted for by overriding the bark() member function of the Dog class.

class SheepDog:public Dog
{

private:
int numberSheep;

public:
SheepDog(double w, int nSheep) : Dog(w)
{

numberSheep = nSheep;
}
void bark()

 {
 cout << "I am a sheepdog weighing "
 << weight << " pounds \n and guarding "
 << numberSheep << " sheep." << endl;
 }
};

955

To demonstrate this class, we will set up an array of dogs with some of the dogs in the
array being sheep dogs. To get around the fact that an array cannot hold two different
types, we will use an array of pointers to Dog. Recall from Section 15.1 that a pointer to a
base class (in this case, Dog) can point to any derived class object (in this case, SheepDog).
We can therefore create an array of pointers to Dog and have some of those pointers point
to Dog objects while others point to SheepDog objects:

Dog *kennel[3] = { new Dog(40.5),
 new SheepDog(45.3, 50),
 new Dog(24.7)
 };

Finally, we can use a loop to call the bark()member function of each Dog object in the
array.

for (int k = 0; k < 3; k++)
{

cout << k+1 << ": ";
kennel[k]->bark();

}

Because of polymorphism, and because the bark() function was declared virtual, the same
line of code inside the loop will call the original bark() function for a regular dog, but will
call the specialized bark() function for a sheep dog. The complete program is given in
Program 15-5.

Program 15-5

1 // This program demonstrates the is-a
2 // relation in inheritance.
3 #include <iostream>
4 using namespace std;
5
6 // Base class.
7 class Dog
8 {
9 protected:
10 double weight;
11 public:
12 Dog(double w)
13 { weight = w; }
14 virtual void bark()
15 {
16 cout << "I am a dog weighing "
17 << weight << " pounds." << endl;
18 }
19 };
20

(program continues)

Focus on Object-Oriented Programming: Composition Versus Inheritance

956 Chapter 15 Polymorphism and Virtual Functions

Inheritance is a better choice than composition in this example, since to use composition
would be tantamount to saying that a sheep dog has a dog, instead of saying that a sheep
dog is a dog.

There is a third relationship between classes that some authors talk about: the uses imple-
mentation of relation. Basically, one class uses the implementation of a second class if it
calls a member function of an object of the second class.

How can you know when to use inheritance and when to use composition? Suppose that
you have an existing class C1 and you need to write a definition for another class C2 that

21 //A SheepDog is a special type of Dog.
22 class SheepDog:public Dog
23 {
24 int numberSheep;
25 public:
26 SheepDog(double w, int nSheep) : Dog(w)
27 {
28 numberSheep = nSheep;
29 }
30 void bark()
31 {
32 cout << "I am a sheepdog weighing "
33 << weight << " pounds \n and guarding "
34 << numberSheep << " sheep." << endl;
35 }
36 };
37
38 int main()
39 {
40 //Create an array of dogs.
41 const int NUM_DOGS = 3;
42 Dog *kennel[] = { new Dog(40.5),
43 new SheepDog(45.3, 50),
44 new Dog(24.7)
45 };
46
47 //Walk by each kennel and make the dog bark.
48 for (int k = 0; k < NUM_DOGS; k++)
49 {
50 cout << k+1 << ": ";
51 kennel[k]->bark();
52 }
53 return 0;
54 }

Program Output
1: I am a dog weighing 40.5 pounds.
2: I am a sheepdog weighing 45.3 pounds
 and guarding 50 sheep.
3: I am a dog weighing 24.7 pounds.

Program 15-5 (continued)

Secure Encryption Systems, Inc., Case Study 957

will need the services of an associated C1 object. Should you derive C2 from C1, or should
you give C2 a member variable of type C1? In general, you should prefer composition to
inheritance. To help determine if inheritance may be appropriate, you might ask the follow-
ing questions:

• Is it natural to think of a C2 object as a special type of C1 object? If so, then you
should use inheritance.

• Will objects of class C2 need to be used in places where objects of class C1 are used?
For example, will they need to be passed to functions that take reference parameters
of type C1, or pointers to C1? If so, then you should make C2 a derived class of C1.

15.5 Secure Encryption Systems, Inc., Case Study
Secure Encryption Systems is a recently founded consulting company that advises business
and corporations on how to protect their data from unauthorized access. The company is
interested in developing a framework that enables the rapid evaluation and testing of dif-
ferent encryption and decryption algorithms to determine their effectiveness and the level
of security they offer.

In this section, we will consider the use of virtual functions and abstract classes to build
application frameworks. An application framework can be regarded as an application in
skeletal form: it only needs the user to specify the definition of a few functions to transform
the framework into a useful application.

Understanding the Problem
In Chapter 9’s Tying It All Together section you were introduced to the idea of encoding a
message so that it could only be read by someone possessing the right information to
decode it. More formally, encryption is the process of transforming a message, called plain
text, into cipher text, a form that disguises its true meaning. The encryption algorithm used
in Chapter 9 involved substituting a new character for each original character. There are
many other methods of encrypting text. For example, a simple encryption algorithm might
remove all punctuation and spacing from a message and then mix up all the letters in some
predetermined way. The message can later be “unmixed” to allow it to be read. For exam-
ple, the plain text message

attack at dawn

might be transformed into the cipher text

aadakntwctta

The “mixing” scheme is an example of an encryption key, while the “unmixing” scheme
would be a corresponding decryption key. Decryption is the process of reversing the
encryption transformation that has been performed on a message. Decryption is applied to
cipher text to yield the original plain text.

958 Chapter 15 Polymorphism and Virtual Functions

A Simple Encryption / Decryption Framework
To provide a framework for testing encryption and decryption algorithms, we will imple-
ment a class that provides all the functionality needed to test such an algorithm, but leaves
the function that is used to transform the letters unspecified. The framework will be real-
ized as a class, and the transformation function will be a pure virtual member function of
the class. Specific encryption algorithms can then be easily tested by forming a derived class
of the framework class and overriding the virtual transformation function.

We use a really simple character transformation algorithm: it just shifts up the character by
one in the ASCII code: it does not even wrap around to the beginning of the alphabet when
it shifts the letters ‘z’ or ‘Z’. The major part of the program is the Encryption class:

class Encryption
{
 protected:
 ifstream inFile;
 ofstream outFile;
 public:
 Encryption(char *inFileName, char *outFileName);
 ~Encryption();
 // Pure virtual function.
 virtual char transform(char ch) = 0;
 // Do the actual work.
 void encrypt();
};

This class contains the file objects that will be used to access the input and output files. The
constructor is passed the names of the two files and does the work of opening the files. The
destructor closes the files. The encrypt function will read characters from the input file,
call the virtual function transform to transform the single character, and write the charac-
ter to the output file.

Because the transform function is pure virtual, the Encryption class is abstract and can-
not be instantiated. All a subclass of Encryption needs to do is implement a suitable
transform function and pass the file names as parameters to its base class constructor. The
complete program follows.

Application frameworks are used in many areas of software development to simplify the
creation of software. Most application framework rely heavily on virtual functions and
abstract classes.

Program 15-6

1 // This program demonstrates an application
2 // of pure virtual functions.
3 #include <iostream>
4 #include <fstream>
5 using namespace std;
6

(program continues)

Secure Encryption Systems, Inc., Case Study 959

7 class Encryption
8 {
9 protected:
10 ifstream inFile;
11 ofstream outFile;
12 public:
13 Encryption(char *inFileName, char *outFileName);
14 ~Encryption();
15 // Pure virtual function.
16 virtual char transform(char ch) = 0;
17 // Do the actual work.
18 void encrypt();
19 };
20
21 //**
22 // Constructor opens the input and output file. *
23 //**
24 Encryption::Encryption(char *inFileName, char *outFileName)
25 {
26 inFile.open(inFileName);
27 outFile.open(outFileName);
28 if (!inFile)
29 {
30 cout << "The file " << inFileName
31 << " cannot be opened.";
32 exit(1);
33 }
34 if (!outFile)
35 {
36 cout << "The file " << outFileName
37 << " cannot be opened.";
38 exit(1);
39 }
40 }
41
42 //**
43 //Destructor closes files. *
44 //**
45 Encryption::~Encryption()
46 {
47 inFile.close();
48 outFile.close();
49 }
50

(program continues)

Program 15-6 (continued)

960 Chapter 15 Polymorphism and Virtual Functions

51 //***
52 //Encrypt function uses the virtual transform *
53 //member function to transform individual characters. *
54 //***
55 void Encryption::encrypt()
56 {
57 char ch;
58 char transCh;
59 inFile.get(ch);
60 while (!inFile.fail())
61 {
62 transCh = transform(ch);
63 outFile.put(transCh);
64 inFile.get(ch);
65 }
66 }
67
68 // The subclass simply overides the virtual
69 // transformation function.
70 class SimpleEncryption : public Encryption
71 {
72 public:
73 char transform(char ch)
74 {
75 return ch + 1;
76 }
77 SimpleEncryption(char *inFileName, char *outFileName)
78 : Encryption(inFileName, outFileName)
79 {
80 }
81 };
82
83 int main()
84 {
85 char inFileName[80], outFileName[80];
86 cout << "Enter name of file to encrypt: ";
87 cin >> inFileName;
88 cout << "Enter name of file to receive "
89 << "the encrypted text: ";
90 cin >> outFileName;
91 SimpleEncryption obfuscate(inFileName, outFileName);
92 obfuscate.encrypt();
93 return 0;
94 }

Program 15-6 (continued)

961

15.6 Tying It All Together: Let’s Move It

Video game programmers often have to maintain a collection of figures that are simulta-
neously moving in various directions on the screen. Let’s devise a solution to a simplifed
version of this problem. We will maintain a collection of geometric shapes and simulta-
neously animate those shapes. The functions used to directly access the screen and manage
the timer are peculiar to Microsoft Windows, but the principles used are very general and
are applicable to all operating systems.

We begin with a class that represents a shape that is able to move in any of eight different
directions, with each direction being specified by a pair of integer (X, Y) coordinates.
Upward or downward motion is indicated by a Y component of ±1, and likewise, motion
in a left or rightward direction is indicated by an X component of ±1. A value of 0 for an
X or Y coordinate indicates lack of motion in that direction. Thus, a value of (0, 1) for
(X, Y) indicates motion straight up, a value of (−1, 0) indicates motion to the left, and
(1, 1) is motion that is simultaneously downward and to the right. The Shape class can be
seen in lines 13–23 of the ShapeAnimator.h file.

The Shape class has a move() function that is pure virtual. This is because a shape is
moved by erasing it at its current position and redrawing it at a new position, and it is not
possible to know how to draw a shape without knowing what type of shape it is.

Our solution for representing the different shapes will use the five classes Shape, Com-
plexShape, SimpleShape, Box, and Tent. These classes form the inheritance hierarchy
shown in Figure 15-2.

The SimpleShape class represents objects that can be drawn at a given position in a speci-
fied color. Accordingly, it has member variables for representing position and color and
member functions for setting and accessing those values. The SimpleShape class appears
in lines 26–44 of the ShapeAnimator.h file. Notice that the SimpleShape class is still
abstract because it provides no implementation for the draw() method. The class does
implement the move() method, though. This is because the move() method works the
same way for all subclasses of SimpleShape: erase the shape at its current position, com-
pute its new position, and draw the shape at the new position. The draw() method, how-
ever, works differently for each concrete subclass that implements it. Because draw() is
virtual, the move() method will always call the appropriate version of draw(), even when
the call to draw() is through a pointer to the abstract class Shape.

Figure 15-2

Box Tent

Shape

ComplexShape SimpleShape

Tying It All Together: Let’s Move It

962 Chapter 15 Polymorphism and Virtual Functions

The Box and Tent classes are the concrete classes at the tip of the inheritance hierarchy.
They define a specific concrete shape and implement the member function draw() that
draws the shape at its current position using the shape’s specified color. The Box class
defines a rectangular shape by specifying the position of its top left-hand corner together
with its width and height. The Tent class defines a triangle with a horizontal base whose
two other sides are equal in length and whose height is half the length of the base. A Tent
object is specified by giving the position of the left end point of its base together with the
length of the base. For example, a tent whose base has length 5 would look like this:

 *

The Box and Tent classes can be seen in Lines 46–66 of ShapeAnimator.h.

The ComplexShape class provides a mechanism for assembling a collection of simple shapes
to form a single shape that can be moved using a single command. The class maintains a vec-
tor of pointers to Shape objects, and implements its move() method is by calling the move()
methods of all the Shape objects in its collection. Likewise, ComplexShape has a setDirec-
tion() method that can be used to cause all of its constituent shapes to move in the same
direction. The class itself is found in lines 70–78 of the ShapeAnimator.h file, and its
move() method is implemented in lines 124–128 of ShapeAnimator.cpp.

Contents of SortAnimator.h
1 #include <iostream>
2 #include <string>
3 #include <vector>
4 #include <windows.h>
5 using namespace std;
6
7 // A global constant can be included in more than one cpp file.
8 // This is the handle to the output console.
9 const HANDLE outHandle = GetStdHandle(STD_OUTPUT_HANDLE);
10
11 // A shape has a direction and is able to move in that direction.
12 // The move is a virtual member function.
13 class Shape
14 {
15 public:
16 virtual void setDirection(int drow, int dcol)
17 {dRow = drow; dCol = dcol;}
18 void getDirection(int &drow, int &dcol)
19 {drow = dRow; dcol = dCol;}
20 virtual void move()= 0;
21 private:
22 int dRow, dCol; // Direction of motion
23 };
24
25 // A SimpleShape is drawn at a given position in a specified color.
26 class SimpleShape : public Shape

963

27 {
28 public:
29 virtual void draw() = 0;
30 void getPosition(int &row, int &col)
31 {
32 row = rowPos; col = colPos;
33 }
34 void setPosition(int row, int col)
35 {
36 rowPos = row; colPos = col;
37 }
38 void setColor(int c){ color = c; }
39 int getColor() {return color; }
40 virtual void move();
41 private:
42 int color;
43 int rowPos, colPos;
44 };
45
46 // A Box is a rectangular type of shape.
47 class Box : public SimpleShape
48 {
49 public:
50 virtual void draw();
51 Box(int rowPos, int colPos, int width, int height);
52 private:
53 int width, height;
54 };
55
56 // A Tent is an isosceles triangle whose horizontal base has a
57 // given length and whose height is half the length of the base.
58 // The position of the triangle is the left end point of the base.
59 class Tent : public SimpleShape
60 {
61 public:
62 virtual void draw();
63 Tent(int baseRowPos, int baseColPos, int baseLength);
64 private:
65 int baseLength;
66 };
67
68 // A ComplexShape is made up of simpler shapes. It is represented
69 // as a vector of pointers to the simpler shapes that make it up.
70 class ComplexShape : public Shape
71 {
72 public:
73 ComplexShape(Shape ** shapeCollection, int shapesCount);
74 virtual void move();
75 virtual void setDirection(int dRow, int dCol);
76 private:
77 vector<Shape *> shapes;
78 };

Tying It All Together: Let’s Move It

964 Chapter 15 Polymorphism and Virtual Functions

Contents of ShapeAnimator.cpp
1 #include "ShapeAnimator.h"
2
3 //***
4 // Moves a simple shape one step by erasing the shape *
5 // at its current position, changing its position, and then *
6 // redrawing the shape at its new position. *
7 //***
8 void SimpleShape::move()
9 {
10 int dRow, dCol; // Direction of motion
11 int savedColor = color;
12 color = 0; // Drawing in color 0 erases the shape
13 draw();
14 // Compute the new position for the shape by adding a step in
15 // the proper direction to the current position
16 getDirection(dRow, dCol);
17 rowPos += dRow;
18 colPos += dCol;
19 // Draw the shape at its new position in its specified color
20 color = savedColor;
21 draw();
22 }
23 //***********************************
24 // Draws a tent at its position *
25 //***********************************
26 void Tent:: draw()
27 {
28 int rowPos, colPos;
29 COORD pos;
30 int currentLength = baseLength;
31 // Set the color attribute
32 SetConsoleTextAttribute(outHandle, getColor());
33 getPosition(rowPos, colPos);
34 pos.Y = rowPos; pos.X = colPos;
35
36 // Draw the lines that form the tent beginning with
37 // the base and moving up toward the point.
38 for (int r = 0; r < (baseLength + 1)/2; r++)
39 {
40 SetConsoleCursorPosition(outHandle,pos);
41 // Draw a horizontal line of a given length
42 for (int k = 0; k < currentLength; k++)
43 {
44 cout << "*";
45 }
46 cout << endl;
47 pos.Y--;
48 pos.X ++;
49 currentLength -= 2;
50 }
51 // Restore normal attribute
52 SetConsoleTextAttribute(outHandle, 7);
53 }

965

54 //**********************************
55 // Draws a box shape *
56 //**********************************
57 void Box::draw()
58 {
59 int rowPos, colPos;
60 COORD pos;
61
62 // Set the color attribute for the box
63 SetConsoleTextAttribute(outHandle, getColor());
64 getPosition(rowPos, colPos);
65 pos.X = colPos; pos.Y = rowPos;
66
67 // Draw the lines that make up the box
68 for (int r = 0; r < height; r++)
69 {
70 SetConsoleCursorPosition(outHandle, pos);
71 for (int c = 0; c < width; c++)
72 {
73 cout << "*";
74 }
75 cout << endl;
76 pos.Y++;
77 }
78 // Restore normal text attribute
79 SetConsoleTextAttribute(outHandle, 7);
80 }
81 //***
82 // Constructor sets the color, position, and *
83 // dimensions for a box shape, and draws *
84 // the box at its initial position *
85 //***
86 Box::Box(int rowPos, int colPos, int width, int height)
87 {
88 setColor(4);
89 setPosition(rowPos, colPos);
90 this->width = width;
91 this->height = height;
92 draw();
93 }
94 //***
95 // Constructor sets the color for a Tent shape, *
96 // sets the position of the tent as well as the *
97 // length of its base and draws it at its *
98 // initial position *
99 //***
100 Tent::Tent(int baseRowPos, int baseColPos, int baseLength)
101 {
102 setColor(2);
103 setPosition(baseRowPos, baseColPos);
104 this->baseLength = baseLength;
105 draw();
106 }

Tying It All Together: Let’s Move It

966 Chapter 15 Polymorphism and Virtual Functions

Program 15-7, which follows, illustrates the use of these classes. The program starts out by
creating two simple shapes, a tent and a box, in lines 7–8. The tent is created at the left
edge of the screen while the box is near the right edge. In lines 14–26, the program moves
the tent to the right at the same time that it is moving the box to the left, stopping the
motion when the two shapes are within a few coordinates of each other. Lines 27–39
create a complex shape out of the two simple shapes, and then moves the complex shape
diagonally downward and to the right. Finally, in lines 40–46, the program moves the box
horizontally to the right.

107 //**
108 // Constructor builds a complex shape by assembling a vector of *
109 // constituent shapes *
110 //**
111 ComplexShape::ComplexShape(Shape ** shapeCollection, int shapesCount)
112 {
113 Shape *p;
114 for (int k = 0; k < shapesCount; k++)
115 {
116 p = shapeCollection[k];
117 shapes.push_back(p);
118 }
119 }
120 //**************************************
121 // Moves a complex shape by moving the *
122 // constituent shapes *
123 //**************************************
124 void ComplexShape::move()
125 {
126 for (int k = 0; k < shapes.size(); k++)
127 shapes[k]->move();
128 }
129 //**
130 // Sets the direction of a complex shape by setting the *
131 // direction of all constituent shapes *
132 //**
133 void ComplexShape::setDirection(int dRow, int dCol)
134 {
135 // Set direction for the ComplexShape object so
136 // getDirection() will work correctly
137 Shape::setDirection(dRow, dCol);
138
139 // Set the directions for the constituent shapes so
140 // move() will work correctly
141 for (int k = 0; k < shapes.size(); k++)
142 shapes[k]->setDirection(dRow, dCol);
143 }

967

Program 15-7

1 // This program illustrates the use of the various Shape
2 // classes and subclasses to do graphic animation.
3 #include "ShapeAnimator.h"
4 int main()
5 {
6 // Create a tent and a box
7 Tent tent(11, 5, 13);
8 Box box(5, 65, 4, 7);
9
10 // Draw the tent and the box
11 tent.draw();
12 box.draw();
13
14 // Set initial direction of motion for the two shapes
15 tent.setDirection(0, 1); // Tent moves horizontally to the right
16 box.setDirection(0, -1); // Box moves horizontally to the left
17
18 // Simultaneously move the tent and the box, this makes them
19 // move toward each other
20 for (int k = 0; k <= 20; k++)
21 {
22 Sleep(75);
23 tent.move();
24 box.move();
25 }
26
27 // Create a complex shape composed of the tent and the box
28 Shape *myShapes[] = {&tent, &box};
29 ComplexShape cS(myShapes, 2);
30
31 // Set direction for the complex shape and move the
32 // complex shape: this moves both the tent and the box
33 // diagonally to the right
34 cS.setDirection(1, 1);
35 for (int k = 0; k < 12; k++)
36 {
37 Sleep(75);
38 cS.move();
39 }
40 // Move the box by itself horizontally to the right
41 box.setDirection(0, 1);
42 for (int k = 0; k < 10; k ++)
43 {
44 Sleep(75);
45 box.move();
46 }
47 return 0;
48 }

Tying It All Together: Let’s Move It

968 Chapter 15 Polymorphism and Virtual Functions

Review Questions and Exercises

Fill-in-the-Blank

1. A class that cannot be instantiated is a(n) _________.

2. A member function of a class that is not implemented is called a(n) _________
function.

3. A class with at least one pure virtual member function is called a(n) _________ class.

4. In order to use dynamic binding, a member function of a class needs to be declared as
a(n) _________ function.

5. Static binding takes place at _________ time.

6. Dynamic binding takes place at _________ time.

7. The ability of code to execute differently depending on the type of data is called
_________.

8. A base class pointer needs a(n) _________ to be assigned to a derived class pointer.

9. The is-a relation between classes is best implemented using the mechanism of class
_________.

10. The has-a relation between classes is best implemented using the mechanism of class
_________.

11. If every C1 class object can be used as a C2 class object, the relationship between the
two classes should be implemented using _________.

12. A collection of abstract classes defining an application in skeletal form is called a(n)
_________.

C++ Language Elements

Suppose that the classes Dog and Cat derive from Animal, which in turn derives from
Creature. Suppose further that pDog, pCat, pAnimal, and pCreature are pointers to the
respective classes. Suppose that Animal and Creature are both abstract classes.

13. Will the statement

Animal a;

compile?

14. Will the statement

pAnimal = new Cat;

compile?

15. Will the statement

pCreature = new Dog;

compile?

16. Will the statement

pCat = new Animal;

compile?

Review Questions and Exercises 969

17. Rewrite the following two statements to get them to compile correctly.

pAnimal = new Dog;
pDog = pAnimal;

Algorithm Workbench

18. Write a C++ class that has an array of integers as a member variable, a pure virtual
member function

bool compare(int x, int y) = 0;

that compares its two parameters and returns a boolean value, and a member function

void sort()

that uses the comparison defined by the compare virtual function to sort the array.
The sort function will swap a pair of array elements a[k] and a[j] if

compare (a[k], a[j])

 returns true. Explain how you can use this class to produce classes that sort arrays in
ascending order and descending order.

Find the Errors

19. Find all errors in the following fragment of code.

class MyClass
{
public:
 virtual myFun() = 0;
 { cout << "Hello";}
};

Soft Skills

20. Suppose that you need to have a class that can sort an array in ascending order or
descending order upon request. If an array is already sorted in ascending or descend-
ing order, you can easily sort it the other way by reversing it. Now suppose you have
two different classes that encapsulate arrays. One provides a member function to
reverse its array, while the other provides a member function to sort its array. Can you
use multiple inheritance to obtain a quick solution to your problem? Should you?
Write a couple of paragraphs explaining whether using multiple inheritance will or
will not work to solve this problem, and, if it can, whether this is a good way to solve
the problem.

970 Chapter 15 Polymorphism and Virtual Functions

Programming Challenges

1. Analysis of Sorting Algorithms

Design a class AbstractSort that can be used to analyze the number of comparisons per-
formed by a sorting algorithm. The class should have a member function compare that is
capable of comparing two array elements, and a means of keeping track of the number of
comparisons performed. The class should be an abstract class with a pure virtual member
function

void sort(int arr[], int size)

which, when overridden, will sort the array by calling the compare function to determine
the relative order of pairs of numbers. Create a subclass of AbstractSort that uses a sim-
ple sorting algorithm to implement the sort function. The class should have a member
function that can be called after the sorting is done to retrieve the number of comparisons
performed.

2. Analysis of Quicksort

Create a subclass of the AbstractSort class of Programming Challenge 1 that uses the
Quicksort algorithm to implement the sort function.

3. Sequence Sum

A sequence of integers such as 1, 3, 5, 7, … can be represented by a function that takes a
nonnegative integer as parameter and returns the corresponding term of the sequence. For
example, the sequence of odd numbers just cited can be represented by the function

int odd(int k) {return 2 * k + 1;}

Write an abstract class AbstractSeq that has a pure virtual member function

virtual int fun(int k) = 0;

as a stand-in for an actual sequence, and two member functions

void printSeq(int k, int m);
int sumSeq(int k, int m)

that are passed two integer parameters k and m, where k < m. The function printSeq will
print all the terms fun(k) through fun(m) of the sequence, and likewise, the function
sumSeq will return the sum of those terms. Demonstrate your AbstractSeq class by creat-
ing subclasses that you use to sum the terms of at least two different sequences. Determine
what kind of output best shows off the operation of these classes, and write a program that
produces that kind of output.

4. Flexible Encryption

Write a modification of the encryption program of section 15.5 whose transform function
uses an integer key to transform the character passed to it. The function transforms the
character by adding the key to it. The key should be represented as a member of the
Encryption class, and the class should be modified so that it has a member function that
sets the encryption key. When the program runs, the main function should ask the user for
the input file, the output file, and an encryption key.

Solving the
Sequence Sum
Problem

Review Questions and Exercises 971

Show that with these modifications, the same program can be used for both encryption and
decryption.

5. File Filter

A file filter reads an input file, transforms it in some way, and writes the results to an out-
put file. Write an abstract file filter class that defines a pure virtual function for transform-
ing a character. Create one subclass of your file filter class that performs encryption,
another that transforms a file to all uppercase, and another that creates an unchanged copy
of the original file.

The class should have a member function

void doFilter(ifstream &in, ofstream &out)

that is called to perform the actual filtering. The member function for transforming a single
character should have the prototype

char transform(char ch)

The encryption class should have a constructor that takes an integer as an argument and
uses it as the encrytion key.

6. File Double Spacer

Create a subclass of the abstract filter class of Programming Challenge 5 that double spaces
a file: that is, it inserts a blank line between any two lines of the file.

7. Bumper Shapes

Write a program that creates two rectangular shapes and then animates them. The two
shapes should start on opposite ends of the screen and then move toward each other. When
they meet in the middle of the screen, each shape reverses course and moves toward the
edge of the screen. The two shapes keep oscillating and bouncing off of each other in the
middle of the screen. The program terminates when the shapes meet each other in the mid-
dle for the tenth time.

8. Bow Tie

In this chapter’s Tying It All Together we defined a tent to be a certain type of triangular
shape. Define a wedge to be a tent that has been rotated 90 degrees clockwise, and a
reverse wedge to be a tent rotated 90 degrees counterclockwise. Write a program that cre-
ates a wedge and a reverse wedge at the left and right edges of the screen, respectively, and
then moves them toward each other until they meet in the middle. The two shapes should
form a bow tie when they meet.

This page intentionally left blank

973

C
H

A
P

T
E

R

16 Exceptions, Templates, and the
Standard Template Library (STL)

16.1 Exceptions

CONCEPT: Exceptions are used to signal errors or unexpected events that occur while
a program is running.

Error testing is usually a straightforward process involving if statements or other control
mechanisms. For example, the following code segment will trap a division-by-zero error
before it occurs:

if (denominator == 0)
cout << "ERROR: Cannot divide by zero.\n";

else
quotient = numerator / denominator;

TOPICS

16.1 Exceptions
16.2 Function Templates
16.3 Class Templates
16.4 Class Templates and Inheritance

16.5 Introduction to the Standard
Template Library

16.6 Tying It All Together: Word
Transformers Game

974 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

But what if similar code is part of a function that returns the quotient as in the following
example:

// An unreliable division function
double divide(double numerator, double denominator)
{

if (denominator == 0)
 {

 cout << "ERROR: Cannot divide by zero.\n";
 return 0;

 }
else
 return numerator / denominator;

}

Functions commonly signal error conditions by returning a predetermined value. In
this example, the function returns 0 when division by zero has been attempted. This is
unreliable, however, because 0 is a valid result of a division operation. Even though the
function displays an error message, the part of the program that calls the function will
not know when an error has occurred. Problems like these require more sophisticated
error-handling techniques.

Throwing an Exception
One way of handling complex error conditions is with exceptions. An exception is a value
or an object that signals an error. When the error occurs, an exception is said to be
“thrown” because control will pass to a part of the program that catches and handles that
type of error. For example, the following code shows the divide function, modified to
throw an exception when division by zero has been attempted.

double divide(double numerator, double denominator)
{

if (denominator == 0)
throw "ERROR: Cannot divide by zero.\n";

else
return numerator / denominator;

}

The following statement causes the exception to be thrown.

throw "ERROR: Cannot divide by zero.\n";

The throw key word is followed by an argument, which can be any value. As you will see,
the type of the argument is used to determine the nature of the error. The function above
simply throws a string containing an error message.

The line containing a throw statement is known as the throw point. When a throw state-
ment is executed, control is passed to another part of the program known as an exception
handler.

Exceptions 975

Handling an Exception
To handle an exception, a program must have a try/catch construct. The general format of
the try/catch construct is

try
{

// code here calls functions or object member
// functions that might throw an exception.

}
catch(exception parameter)
{

// code here handles the exception
}
// Repeat as many catch blocks as needed.

The first part of the construct is the try block. This starts with the key word try and is fol-
lowed by a block of code executing any statements that might directly or indirectly cause
an exception to be thrown. The try block is immediately followed by one or more catch
blocks, which are the exception handlers. A catch block starts with the key word catch,
followed by a set of parentheses containing the declaration of an exception parameter. For
example, here is a try/catch construct that can be used with the divide function:

try
{

quotient = divide(num1, num2);
cout << "The quotient is " << quotient << endl;

}
catch (char *exceptionString)
{

cout << exceptionString;
}

Because the divide function throws an exception whose type is a string, there must be an
exception handler that catches a string. The catch block shown catches the error message
in the exceptionString parameter, then displays it with cout.

Now let’s look at an entire program to see how throw, try, and catch work together. In
the first sample run of Program 16-1, valid data is given. This shows how the program
should run with no errors. In the second sample run, a denominator of 0 is given. This
shows the result of the exception being thrown.

Program 16-1

1 // This program illustrates exception handling.
2 #include <iostream>
3 using namespace std;
4
5 // Function prototype
6 double divide(double, double);
7

(program continues)

Throwing and
Handling
Exceptions

976 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

As you can see from the second output screen, the exception caused the program to jump
out of the divide function and into the catch block. After the catch block has finished, the
program resumes with the first statement after the try/catch construct.

What If an Exception Is Not Caught?
There are two possible ways for a thrown exception to go uncaught. The first possibility is
for the program to contain no catch blocks with an exception parameter of the right data
type. The second possibility is for the exception to be thrown from outside a try block. In
either case, the exception will cause the entire program to abort execution.

8 int main()
9 {
10 int num1, num2;
11 double quotient;
12
13 cout << "Enter two numbers: ";
14 cin >> num1 >> num2;
15 try
16 {
17 quotient = divide(num1, num2);
18 cout << "The quotient is " << quotient << endl;
19 }
20 catch (char *exceptionString)
21 {
22 cout << exceptionString;
23 }
24 cout << "End of the program.\n";
25 return 0;
26 }
27
28 double divide(double numerator, double denominator)
29 {
30 if (denominator == 0)
31 throw "ERROR: Cannot divide by zero.\n";
32 else
33 return numerator / denominator;
34 }

Program Output with Example Input Shown in Bold
Enter two numbers: 12 2[Enter]
The quotient is 6
End of the program.

Program Output with Example Input Shown in Bold
Enter two numbers: 12 0[Enter]
ERROR: Cannot divide by zero.
End of the program.

Program 16-1 (continued)

Exceptions 977

Object-Oriented Exception Handling with Classes
Now that you have an idea of how the exception mechanism in C++ works, we will exam-
ine an object-oriented approach to exception handling. Let’s begin by looking at the
IntRange class:

IntRange is a simple class whose member function, getInput, lets the user enter an
integer value. The value is compared against the member variables lower and upper
(which are initialized by the class constructor). If the value entered is less than lower or
greater than upper, an exception is thrown indicating the value is out of range. Other-
wise, the value is returned from the function.

Instead of throwing a character string or or some other value of a primitive type, this
function throws an exception class. Notice the empty class declaration that appears in
the public section:

class OutOfRange
{ }; // Empty class declaration

Contents of IntRange.h
1 #ifndef INTRANGE_H
2 #define INTRANGE_H
3
4 #include <iostream>
5 using namespace std;
6
7 class IntRange
8 {
9 private:
10 int input; // For user input
11 int lower; // Lower limit of range
12 int upper; // Upper limit of range
13 public:
14 // Exception class.
15 class OutOfRange
16 { }; // Empty class declaration
17 // Member functions.
18 IntRange(int low, int high) // Constructor
19 {
20 lower = low;
21 upper = high;
22 }
23 int getInput()
24 {
25 cin >> input;
26 if (input < lower || input > upper)
27 throw OutOfRange();
28 return input;
29 }
30 };
31 #endif

978 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Notice that the class has no members. The only important part of this class is its name, which
will be used by the exception handling code. Look at the if statement in the getinput function:

if (input < lower || input > upper)
throw OutOfRange();

The throw statement’s argument, OutOfRange(), causes an instance of the OutOfRange
class to be created and thrown as an exception. All that remains is for a catch block to han-
dle the exception. Here is an example:

catch (IntRange::OutOfRange)
{

cout << "That value is out of range.\n";
}

All that must appear inside the catch block’s parentheses is the name of the exception class.
The exception class is empty, so there is no need to declare an actual parameter. All the
catch block needs to know is the type of the exception.

Since the OutOfRange class is declared in the IntRange class, its name must be fully qualified
with the scope resolution operator. Program 16-2 shows the class at work in a driver program.

Program 16-2

1 // This program demonstrates the use of object-oriented
2 // exception handling.
3 #include <iostream>
4 #include "IntRange.h"
5 using namespace std;
6
7 int main()
8 {
9 IntRange range(5, 10);
10 int userValue;
11
12 cout << "Enter a value in the range 5 - 10: ";
13 try
14 {
15 userValue = range.getInput();
16 cout << "You entered " << userValue << endl;
17 }
18 catch (IntRange::OutOfRange)
19 {
20 cout << "That value is out of range.\n";
21 }
22 cout << "End of the program.\n";
23 return 0;
24 }

Program Output with Example Input Shown in Bold
Enter a value in the range 5 - 10: 12[Enter]
That value is out of range.
End of the program.

Exceptions 979

Multiple Exceptions
The programs we have studied so far test only for a single type of error and throw only a
single type of exception. In many cases a program will need to test for several different
types of errors and signal which one has occurred. C++ allows you to throw and catch
multiple exceptions. The only requirement is that each different exception be of a different
type. You then code a separate catch block for each type of exception that may be thrown
in the try block.

For example, suppose we wish to expand the IntRange class so it throws one type of
exception if the user enters a value that is too low, and another type if the user enters a
value that is too high. First, we declare two different exception classes, such as

// Exception classes
class TooLow

{ };
class TooHigh

{ };

An instance of the TooLow class will be thrown when the user enters a low value, and an
instance of the TooHigh class will be thrown when a high value is entered.

Next we modify the getInput member function to perform the two error tests and throw
the appropriate exception:

if (input < lower)
throw TooLow();

else if (input > upper)
throw TooHigh();

The entire modified class, which is named IntRange2, is shown here:

Contents of IntRange2.h
1 #ifndef INTRANGE2_H
2 #define INTRANGE2_H
3
4 #include <iostream>
5 using namespace std;
6
7 class IntRange2
8 {
9 private:
10 int input; // For user input
11 int lower; // Lower limit of range
12 int upper; // Upper limit of range
13 public:
14 // Exception classes.
15 class TooLow
16 { };
17 class TooHigh
18 { };
19 // Member functions.

980 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Program 16-3 is a simple driver that demonstrates this class.

20 IntRange2(int low, int high) // Constructor
21 {
22 lower = low;
23 upper = high;
24 }
25 int getInput()
26 {
27 cin >> input;
28 if (input < lower)
29 throw TooLow();
30 else if (input > upper)
31 throw TooHigh();
32 return input;
33 }
34 };
35 #endif

Program 16-3

1 // This program demonstrates the IntRange2 class.
2 #include <iostream>
3 #include "IntRange2.h"
4 using namespace std;
5
6 int main()
7 {
8 IntRange2 range(5, 10);
9 int userValue;
10
11 cout << "Enter a value in the range 5 - 10: ";
12 try
13 {
14 userValue = range.getInput();
15 cout << "You entered " << userValue << endl;
16 }
17 catch (IntRange2::TooLow)
18 {
19 cout << "That value is too low.\n";
20 }
21 catch (IntRange2::TooHigh)
22 {
23 cout << "That value is too high.\n";
24 }
25
26 cout << "End of the program.\n";
27 return 0;
28 }

Program Output with Example Input Shown in Bold
Enter a value in the range 5 - 10: 3[Enter]
That value is too low.
End of the program.

Exceptions 981

Extracting Information from the Exception Class
Sometimes we might want an exception to pass information back to the exception handler.
For example, suppose we would like the IntRange class not only to signal when an invalid
value has been entered, but to pass the value back. This can be accomplished by giving the
exception class members in which information can be stored.

IntRange3, our next modification of the IntRange class, again uses a single exception
class: OutOfRange. This version of OutOfRange, however, has a member variable and a
constructor that initializes it:

// Exception class
class OutOfRange
{ public:

int value;
OutOfRange(int i)
{ value = i; }

};

When we throw this exception, we want to pass the value entered by the user to OutOf-
Range’s constructor. This is done with the following statement:

throw OutOfRange(input);

This throw statement creates an instance of the OutOfRange class and passes a copy of the
input variable to the constructor. The constructor then stores this number in OutOfRange’s
member variable value. The class instance carries this member variable to the catch block
that intercepts the exception.

Back in the catch block, the value is extracted:

catch (IntRange3::OutOfRange ex)
{

cout << "That value " << ex.value
 << " is out of range.\n";

}

Notice that the catch block declares a parameter object named ex. This is necessary,
because the exception has a member variable that we want to examine. The entire
IntRange3 class is as follows, and Program 16-4 is a driver that demonstrates it.

Contents of IntRange3.h
1 #ifndef INTRANGE3_H
2 #define INTRANGE3_H
3
4 #include <iostream>
5 using namespace std;
6
7 class IntRange3
8 {
9 private:
10 int input; // For user input
11 int lower; // Lower limit of range
12 int upper; // Upper limit of range

982 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

13 public:
14 // Exception class.
15 class OutOfRange
16 {
17 public:
18 int value;
19 OutOfRange(int i)
20 { value = i; }
21 };
22 // Member functions.
23 IntRange3(int low, int high) // Constructor
24 {
25 lower = low;
26 upper = high;
27 }
28 int getInput()
29 {
30 cin >> input;
31 if (input < lower || input > upper)
32 throw OutOfRange(input);
33 return input;
34 }
35 };
36 #endif

Program 16-4

1 // This program demonstrates the IntRange3 class.
2 #include <iostream>
3 #include "IntRange3.h"
4 using namespace std;
5
6 int main()
7 {
8 IntRange3 range(5, 10);
9 int userValue;
10
11 cout << "Enter a value in the range 5 - 10: ";
12 try
13 {
14 userValue = range.getInput();
15 cout << "You entered " << userValue << endl;
16 }
17 catch (IntRange3::OutOfRange ex)
18 {
19 cout << "That value " << ex.value
20 << " is out of range.\n";
21 }
22 cout << "End of the program.\n";
23 return 0;
24 }

Program Output with Example Input Shown in Bold
Enter a value in the range 5 - 10: 12[Enter]
That value 12 is out of range.
End of the program.

Exceptions 983

Handling the bad_alloc Exception Thrown by new
The new operator throws a system-defined exception of type bad_alloc if it is unable to
allocate the requested storage. For example, the following program attempts to allocate an
array of two integers using the new operator inside a try block. If the allocation fails, the
resulting bad_alloc exception is caught in the attached catch block and the program is
terminated with an appropriate error message. If the allocation succeeds, the program pro-
ceeds on to print the two numbers 10 and 20. The bad_alloc type is defined in the header
file new, which must be included in programs that refer to it.

Unwinding the Stack
If an exception is thrown in a try block that has a catch block capable of handling the
exception, control transfers from the throw point to the catch block. Assuming that the
catch block executes to completion without throwing further exceptions, returning from
the function, or terminating the program, execution will continue at the first statement
after the sequence of catch blocks attached to the try block.

If the function does not contain a catch block capable of handling the exception, control passes
out of the function, and the exception is automatically rethrown at the point of the call in the
calling function. By this process, an exception can propagate backwards along the chain of
function calls until the exception is thrown out of a try block that has a catch block that can

Program 16-5

1 // This program demonstrates the use of the bad_alloc
2 // exception.
3 #include <iostream>
4 #include <cstdlib>
5 #include <new> //needed to use bad_alloc
6 using namespace std;
7
8 int main()
9 {
10 int *p;
11 try
12 {
13 p = new int[2];
14 p[0] = 10;
15 p[1] = 20;
16 }
17 catch(bad_alloc)
18 {
19 cout << "Memory cannot be allocated.";
20 exit(1);
21 }
22 cout << p[0] << " " << p[1];
23 return 0;
24 }

Program Output
10 20

984 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

handle it. If no such try block is ever found, the exception will eventually be thrown out of the
main function, causing the program to be terminated. This process of propagating uncaught
exceptions from a function to its caller is called unwinding the stack of function calls.

Rethrowing an Exception
It is possible for try blocks to be nested. For example, look at this code segment:

void main()
{

try
{

doSomething();
}
catch(exception1)
{

Code to handle exception 1
}
catch(exception2)
{

Code to handle exception 2
}

}

In this try block the function doSomething is called. There are two catch blocks, one that
handles exception1, and another that handles exception2. If the doSomething function
contains a try block, then it is nested inside the one shown.

With nested try blocks, it is sometimes necessary for an inner exception handler to pass an
exception to an outer exception handler. Sometimes, both an inner and an outer catch block
must perform operations when a particular exception is thrown. These situations require
that the inner catch block rethrow the exception so the outer catch block can catch it.

A catch block can rethrow an exception with the throw; statement with no parameter. For
example, suppose the doSomething function (called in the try block above) executes code
that potentially can throw exception1 or exception3. Suppose we do not want to han-
dle the exception1 error in doSomething, but instead want to rethrow it to the outer
block. The following code segment illustrates how this is done.

void doSomething()
{

try
{

Code that can throw exceptions 1 and 3
}
catch(exception1)
{

throw; // Rethrow the exception
}
catch(exception3)
{

Code to handle exception 3
}

}

Function Templates 985

When the first catch block catches exception1, the throw; statement simply throws the
exception again. The catch block in the outer try/catch construct, in this case the one in the
main function, will then handle the exception.

Checkpoint

16.1 What is the difference between a try block and a catch block?

16.2 What happens if an exception is thrown, but not caught?

16.3 If multiple exceptions can be thrown, how does the catch block know which
exception to catch?

16.4 After the catch block has handled the exception, where does program execution
resume?

16.5 How can an exception pass information to the exception handler?

16.2 Function Templates

CONCEPT: A function template is a “generic” function that can work with different
data types. The programmer writes the specifications of the function, but
substitutes parameters for data types. When the compiler encounters a
call to the function, it generates code to handle the specific data type(s)
used in the call.

Overloaded functions make programming convenient because only one function name
must be remembered for a set of functions that perform similar operations. Each of the
functions, however, must still be written individually. For example, consider the following
overloaded square functions.

int square(int number)
{

return number * number;
}

double square(double number)
{

return number * number;
}

The only differences between these two functions are the data types of their return values
and their parameters. In situations like this, it is more convenient to write a function
template than an overloaded function. Function templates allow you to write a single
function definition that works with many different data types, instead of having to write
a separate function for each data type used.

A function template is not an actual function, but a “mold” the compiler uses to generate
one or more functions. When writing a function template, you do not have to specify actual
types for the parameters, return value, or local variables. Instead, you use a type parameter

986 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

to specify a generic data type. When the compiler encounters a call to the function, it exam-
ines the data types of its arguments and generates the function code that will work with those
data types.

Here is a function template for the square function:

template <class T>
T square(T number)
{

return number * number;
}

The beginning of a function template is marked by a template prefix, which begins with
the key word template. Next is a set of angled brackets that contains one or more
generic data types used in the template. A generic data type starts with the key word
class, followed by a parameter name that stands for the data type. The example just
given only uses one, which is named T. (If there were more, they would be separated by
commas.) After this, the function definition is written as usual, except the type parame-
ters are substituted for the actual data type names. In the example the function header
reads

T square(T number)

T is the type parameter, or generic data type. The header defines square as a function that
returns a value of type T and uses a parameter, number, which is also of type T.

As mentioned before, the compiler examines each call to square and fills in the appropriate
data type for T. For example, the following call uses an int argument:

int y, x = 4;
y = square(x);

This code will cause the compiler to generate the function:

int square(int number)
{

return number * number;
}

while the statements

double y, d = 6.2
y = square(d);

will result in the generation of the function

double square(double number)
{

return number * number;
}

Writing a
Function
Template

Function Templates 987

Program 16-6 demonstrates how this function template is used.

Program 16-6

1 // This program uses a function template.
2 #include <iostream>
3 #include <iomanip>
4 using namespace std;
5
6 // Template definition for square function.
7 template <class T>
8 T square(T number)
9 {
10 return number * number;
11 }
12
13 int main()
14 {
15 cout << setprecision(5);
16
17 // Get an integer and compute its square.
18 cout << "Enter an integer: ";
19 int iValue;
20 cin >> iValue;
21
22 // The compiler creates int square(int) at the first
23 // occurrence of a call to square with an int argument.
24 cout << "The square is " << square(iValue);
25
26 // Get a double and compute its square.
27 cout << "\nEnter a double: ";
28 double dValue;
29 cin >> dValue;
30
31 // The compiler creates double square(double)at the first
32 // occurrence of a call to square with a double argument.
33 cout << "The square is " << square(dValue) << endl;
34
35 return 0;
36 }

Program Output with Example Input Shown in Bold
 Enter an integer: 3[Enter]
 The square is 9
 Enter a double: 8.3[Enter]
 The square is 68.89

NOTE: All type parameters defined in a function template must appear at least once in
the function parameter list.

988 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Since the compiler encountered two calls to square in Program 16-6, each with different
parameter types, it generated the code for two instances of the function: one with an int
parameter and int return type, the other with a double parameter and double return
type. This is illustrated in Figure 16-1.

Notice in Program 16-6 that the template appears before all calls to square. As with regular
functions, the compiler must already know the template’s contents when it encounters a call
to the template function. Templates, therefore, should be placed near the top of the program
or in a header file.

The swap Function Template
In many applications, there is a need for swapping the contents of two variables of the same
type. For example, while sorting an array of integers, there would be a need for the function

void swap(int &a, int &b)
{

int temp = a;
a = b;
b = temp;

}

whereas while sorting an array string objects, there would be a need for the function

void swap(string &a, string &b)
{

string temp = a;
a = b;
b = temp;

}

Figure 16-1

NOTE: A function template is merely the specification of a function and by itself does
not cause memory to be used. An actual instance of the function is created in memory
when the compiler encounters a call to the template function.

Function calls
Function template

Template-generated function code

int x = 4, y;
y = square(x);

double x = 12.5, y;
y = square(x);

template <class T>
T square(T number)
{
 return number * number;
}

int square(int number)
{
 return number * number;
}

double square(double number)
{
 return number * number;
}

Function Templates 989

Because the only difference in the coding of these two functions is the type of the variables
being swapped, the logic of both functions and all others like them can be captured with
one template function:

template<class T>
void swap(T &a, T &b)
{

T temp = a;
a = b;
b = temp;

}

Such a template function is available in the libraries that come with standard C++ compilers.
The function is declared in the algorithm header file. Program 16-7 demonstrates the use of
this library template function to swap contents of pairs of variables.

Program 16-7

1 // This program demonstrates the use of the swap
2 // function template.
3 #include <iostream>
4 #include <string>
5 #include <algorithm> //needed for swap
6 using namespace std;
7
8 int main()
9 {
10 // Get and swap two chars.
11 char firstChar, secondChar;
12 cout << "Enter two characters: ";
13 cin >> firstChar >> secondChar;
14 swap(firstChar, secondChar);
15 cout << firstChar << " " << secondChar << endl;
16
17 // Get and swap two ints.
18 int firstInt, secondInt;
19 cout << "Enter two integers: ";
20 cin >> firstInt >> secondInt;
21 swap(firstInt, secondInt);
22 cout << firstInt << " " << secondInt << endl;
23
24 // Get and swap two strings.
25 cout << "Enter two strings: ";
26 string firstString, secondString;
27 cin >> firstString >> secondString;
28 swap(firstString, secondString);
29 cout << firstString << " " << secondString << endl;
30 return 0;
31 }

(program continues)

990 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Using Operators in Function Templates
The square function template shown earlier in this section applies the operator * to its
parameter. The square template will work correctly as long as the type of the parameter
passed to it supports the * operator. For example, it works for numeric types such as int,
long, and double, because all these types have a multiplication operator *. In addition,
the square template will work with any user-defined class type that overloads the operator
*. Errors will result if square is used with types that do not support the operator *.

Always remember that templates will only work with types that support the operations used by
the template. For example, a class can only be used with a template that applies the relational
operators such as <, <=, and != to its type parameter if the class overloads those operators.

For example, because the string class overloads all the relational operators, it can be used
with template functions that compute the minimum of an array of items. Program 16-8
illustrates this.

Program Output With Example Input Shown in Bold
Enter two characters: a b[Enter]
b a
Enter two integers: 12 45[Enter]
45 12
Enter two strings: Ronald Reagan[Enter]
Reagan Ronald

Program 16-8

1 // This program illustrates the use of function templates.
2 #include <string>
3 #include <iostream>
4 using namespace std;
5
6 // Template for minimum of an array.
7 template <class T>
8 T minimum(T arr[], int size)
9 {
10 T smallest = arr[0];
11 for (int k = 1; k < size; k++)
12 {
13 if (arr[k] < smallest)
14 smallest = arr[k];
15 }
16 return smallest;
17 }
18
19 int main()
20 {
21 // The compiler creates int minimum(int [], int)
22 // when you pass an array of int.
23 int arr1[] = {40, 20, 35};
24 cout << "The minimum number is " << minimum(arr1, 3)
25 << endl;

(program continues)

Program 16-7 (continued)

Function Templates 991

Function Templates with Multiple Types
More than one generic type may be used in a function template. Here is an example of a
function that takes as parameters a list of three values of any printable type, prints out the
list in order, and then prints out the list in reverse. The type parameters for the template
function are represented using the identifiers T1, T2 and T3.

26
27 // The compiler creates string minimum(string [], int)
28 // when you pass an array of string.
29 string arr2[] = {"Zoe", "Snoopy", "Bob", "Waldorf"};
30 cout << "The minimum string is " << minimum(arr2, 4)
31 << endl;
32
33 return 0;
34 }

Program Output
The minimum number is 20
The minimum string is Bob

Program 16-9

1 // This program illustrates the use of function templates
2 // with multiple types.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 //template function
8 template <class T1, class T2, class T3>
9 void echoAndReverse(T1 a1, T2 a2, T3 a3)
10 {
11 cout << "Original order is: "
12 << a1 << " " << a2 << " " << a3 << endl;
13 cout << "Reversed order is: "
14 << a3 << " " << a2 << " " << a1 << endl;
15 }
16
17 int main()
18 {
19 echoAndReverse("Computer", 'A', 18);
20 echoAndReverse("One", 4, "All");
21 return 0;
22 }

Program Output
Original order is: Computer A 18
Reversed order is: 18 A Computer
Original order is: One 4 All
Reversed order is: All 4 One

Program 16-8 (continued)

992 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Overloading with Function Templates
Function templates may be overloaded. As with regular functions, function templates are
overloaded by having different parameter lists. For example, there are two overloaded ver-
sions of the sum function in Program 16-10. The first version accepts two arguments, and
the second version accepts three.

There are other ways to perform overloading with function templates as well. For example,
a program might contain a regular (non-template) version of a function as well as a template
version. As long as each has a different parameter list, they can coexist as overloaded functions.

NOTE: Each type parameter declared in the template prefix must be used somewhere
in the template definition.

Program 16-10

1 // This program demonstrates an overloaded function template.
2 #include <iostream>
3 using namespace std;
4
5 template <class T>
6 T sum(T val1, T val2)
7 {
8 return val1 + val2;
9 }
10
11 template <class T>
12 T sum(T val1, T val2, T val3)
13 {
14 return val1 + val2 + val3;
15 }
16
17 int main()
18 {
19 double num1, num2, num3;
20
21 cout << "Enter two values: ";
22 cin >> num1 >> num2;
23 cout << "Their sum is " << sum(num1, num2) << endl;
24 cout << "Enter three values: ";
25 cin >> num1 >> num2 >> num3;
26 cout << "Their sum is " << sum(num1, num2, num3) << endl;
27 return 0;
28 }

Program Output with Example Input Shown in Bold
Enter two values: 12.5 6.9[Enter]
Their sum is 19.4
Enter three values: 45.76 98.32 10.51[Enter]
Their sum is 154.59

Class Templates 993

Defining Template Functions
In defining template functions, it may be helpful to start by writing a non-template version of
the function, and then converting it to a template after it has been tested. The conversion is
then achieved by prefixing the function definition with an appropriate template header, say

template <class T>

and then systematically replacing the relevant type with the generic type T. We followed a
similar procedure in defining the template for the swap function.

Checkpoint

16.6 When does the compiler actually generate code for a function template?

16.7 The function

int minPosition(int arr[], int size)

takes an array of integers of the given size and returns the index of the smallest
element of the array. Define a template that works like this function, but permits
as parameter arrays of any type that can be compared using the less-than operator <.

16.8 What must you be sure of when passing a class object to a function template that
uses an operator, such as * or >?

16.9 What is a good method for writing a function template?

16.3 Class Templates

CONCEPT: Templates may also be used to create generic classes and abstract data
types.

Function templates are used whenever we need several different functions with the same
problem-solving logic, but which differ only in the types of the parameters they work with.
Class templates can be used whenever we need several classes which only differ in the types
of some of their data members, or in the types of the parameters of their member functions.

Declaring a class template is similar to declaring a function template: you write the class
using identifiers such as T, T1, T2 (or whatever other identifier you choose) as generic types,
and then prefix the class declaration with an appropriately written template header. For
example, suppose that we wish to define a class similar to the NumberArray class studied
in Chapter 11, that represents an array of a generic type, and adds an overloaded operator
[] that performs bounds checking. Calling our class SimpleVector, and putting in the
appropriate data members and constructors, we arrive at the template:

template <class T>
class SimpleVector
{
private:

T *aptr;
int arraySize;
void subError(); // Handles subscripts out of range.

994 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

public:
SimpleVector()
 { aptr = 0; arraySize = 0;} // Default Constructor
SimpleVector(int); // Constructor
SimpleVector(const SimpleVector &); // Copy constructor
~SimpleVector(); // Destructor
int size()
 { return arraySize; }
T &operator[](int); // Overloaded [] operator
void print(); // outputs the array elements

};

This class template will store elements of type T in a dynamically generated array. This
explains why the pointer aptr, which will point to the base of this array, is declared to be of
type T*, a pointer to T. Likewise, the overloaded array subscription operator returns a value
of type T. Notice, however, that the size member function and the member arraySize that
represents the number of elements stored in the array are both of type int. This makes sense
because the number of elements in an array is always an integer, regardless of the type of
element the array stores.

You can think of the SimpleVector template as a generic pattern that can be specialized to
create classes of SimpleVector that hold double, long, string, or any other type that
you can define. The rule is that you form the name of such an actual class by appending a
list of the actual types, enclosed in angled brackets, to the name of the class template:

• SimpleVector<double> is the name of a class that stores arrays of double.
• SimpleVector<string> is the name of a class that stores arrays of string.
• SimpleVector<char> is the name of a class that stores arrays of char.

Let us look at some examples of defining objects:

SimpleVector<int> iTable1;
SimpleVector<double> dTable1;
SimpleVector<double> dTable2(10);

The first two statements use default constructors to create iTable1 and dTable1, which
are respectively arrays of int and double of size 0. The last statement uses the convert
constructor to create an array of 10 elements of type double.

Defining a member function of a template class inside the class is straightforward: an
example is furnished by the definition of the default constructor in the SimpleVector
class. To define a member function outside the class, you must prefix the definition of the
member function with a template header that specifies the list of type parameters, and then
within the definition, use the name of the class template followed by a list of the type
parameters in angled brackets whenever you need the name of the class.

Let us use the operator [] function to illustrate the definition of a member function outside
the class.

template <class T>
T &SimpleVector<T>::operator[](int sub)
{

if (sub < 0 || sub >= arraySize)
subError();

return aptr[sub];
}

Class Templates 995

In this definition, the name of the class is needed just before the scope resolution operator,
so we have SimpleVector<T> at that place. As another example, consider the definition of
the convert constructor:

template <class T>
SimpleVector<T>::SimpleVector(int s)
{

arraySize = s;
aptr = new T [s];
for (int count = 0; count < arraySize; count++)
 aptr[count] = T();

}

Here, we need to have SimpleVector<T> before the scope resolution operator, but
only SimpleVector, without the <T>, after. This is because what is needed after the scope
resolution operator is not the name of the class, but the name of a member function, which
in this case happens to be a constructor.

There is an exception to the rule of attaching the list of type parameters to the name of
template class. The list, and the angled brackets that enclose it, can be omitted whenever
the name of the class is within the scope of the template class. Thus the list can be omitted
when the name of a class is being used anywhere within the class itself, or within the local
scope of a member function that is being defined outside of the class. For example, the
copy constructor

template <class T>
SimpleVector<T>::SimpleVector(const SimpleVector &obj)
{

arraySize = obj.arraySize;
aptr = new T [arraySize];
for(int count = 0; count < arraySize; count++)

aptr[count] = obj[count];
}

does not need to append the <T> to the SimpleVector that denotes the type of its argument.

The convert constructor for SimpleVector assumes that the type parameter T has a
default constructor T() when it executes the assignment aptr[count] = T();. If T is a
primitive type, the C++ compiler will use the default value of 0 in place of T(). For exam-
ple, if T were int, the assignment is equivalent to aptr[count] = int(); and a value of
0 will be stored in aptr[count].

The code for the SimpleVector template is listed in the SimpleVector.h file.

Contents of SimpleVector.h
1 #ifndef SIMPLEVECTOR_H
2 #define SIMPLEVECTOR_H
3
4 #include <iostream>
5 #include <cstdlib>
6 using namespace std;
7

996 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

8 template <class T>
9 class SimpleVector
10 {
11 private:
12 T *aptr;
13 int arraySize;
14 void subError(); // Handles subscripts out of range
15 public:
16 SimpleVector(int); // Constructor
17 SimpleVector(const SimpleVector &); // Copy constructor
18 ~SimpleVector(); // Destructor
19 int size()
20 { return arraySize; }
21 T &operator[](int); // Overloaded [] operator
22 void print(); // outputs the array elements.
23 };
24
25 //***
26 // Constructor for SimpleVector class. Sets the size *
27 // of the array and allocates memory for it. *
28 //***
29 template <class T>
30 SimpleVector<T>::SimpleVector(int s)
31 {
32 arraySize = s;
33 aptr = new T [s];
34 for (int count = 0; count < arraySize; count++)
35 aptr[count] = T();
36 }
37 //**
38 // Copy Constructor for SimpleVector class. *
39 //**
40 template <class T>
41 SimpleVector<T>::SimpleVector(const SimpleVector &obj)
42 {
43 arraySize = obj.arraySize;
44 aptr = new T [arraySize];
45 for(int count = 0; count < arraySize; count++)
46 aptr[count] = obj[count];
47 }
48 //***
49 // Destructor for SimpleVector class. *
50 //***
51 template <class T>
52 SimpleVector<T>::~SimpleVector()
53 {
54 if (arraySize > 0)
55 delete [] aptr;
56 }
57
58 //**
59 // subError function. Displays an error message and *
60 // terminates the program when a subscript is out of *
61 // range. *
62 //**

Class Templates 997

Program 16-11 demonstrates the SimpleVector template.

63 template <class T>
64 void SimpleVector<T>::subError()
65 {
66 cout << "ERROR: Subscript out of range.\n";
67 exit(0);
68 }
69 //***
70 // Overloaded [] operator. The argument is a subscript. *
71 // This function returns a reference to the element *
72 // in the array indexed by the subscript. *
73 //***
74 template <class T>
75 T &SimpleVector<T>::operator[](int sub)
76 {
77 if (sub < 0 || sub >= arraySize)
78 subError();
79 return aptr[sub];
80 }
81 //**
82 // prints all the entries is the array. *
83 //**
84 template <class T>
85 void SimpleVector<T>::print()
86 {
87 for (int k = 0; k < arraySize; k++)
88 cout << aptr[k] << " ";
89 cout << endl;
90 }
91 #endif

Program 16-11

1 // This program demonstrates the SimpleVector template.
2 #include <iostream>
3 #include "SimpleVector.h"
4 using namespace std;
5
6 int main()
7 {
8 const int SIZE = 10;
9
10 SimpleVector<int> intTable(SIZE);
11 SimpleVector<double> doubleTable(SIZE);
12
13 // Store values in the arrays.
14 for (int x = 0; x < SIZE; x++)
15 {
16 intTable[x] = (x * 2);
17 doubleTable[x] = (x * 2.14);
18 }
19

(program continues)

998 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

20 // Display the values in the arrays.
21 cout << "These values are in intTable:\n";
22 intTable.print();
23 cout << "These values are in doubleTable:\n";
24
25 doubleTable.print();
26
27 // Use the built-in + operator on array elements.
28 for (int x = 0; x < SIZE; x++)
29 {
30 intTable[x] = intTable[x] + 5;
31 doubleTable[x] = doubleTable[x] + 1.5;
32 }
33 // Display the values in the array.
34 cout << "These values are in intTable:\n";
35 intTable.print();
36 cout << "These values are in doubleTable:\n";
37 doubleTable.print();
38
39 // Use the built-in ++ operator on array elements.
40 for (int x = 0; x < SIZE; x++)
41 {
42 intTable[x]++;
43 doubleTable[x]++;
44 }
45 // Display the values in the array.
46 cout << "These values are in intTable:\n";
47 intTable.print();
48 cout << "These values are in the doubleTable:\n";
49 doubleTable.print();
50 cout << endl;
51 return 0;
52 }

Program Output
These values are in intTable:
0 2 4 6 8 10 12 14 16 18
These values are in doubleTable:
0 2.14 4.28 6.42 8.56 10.7 12.84 14.98 17.12 19.26
These values are in intTable:
5 7 9 11 13 15 17 19 21 23
These values are in doubleTable:
1.5 3.64 5.78 7.92 10.06 12.2 14.34 16.48 18.62 20.76
These values are in intTable:
6 8 10 12 14 16 18 20 22 24
These values are in the doubleTable:
2.5 4.64 6.78 8.92 11.06 13.2 15.34 17.48 19.62 21.76

NOTE: The file that contains the template code has been included in the file that
contains the driver code to avoid the complexities of linking separately compiled files
that use templates.

Program 16-11 (continued)

Class Templates and Inheritance 999

16.4 Class Templates and Inheritance
Inheritance can be applied to class templates. For example, in the following template,
SearchableVector is derived from the SimpleVector class.

Contents of SearchVect.h
1 #ifndef SEARCHABLEVECTOR_H
2 #define SEARCHABLEVECTOR_H
3
4 #include "SimpleVector.h"
5
6 template <class T>
7 class SearchableVector : public SimpleVector<T>
8 {
9 public:
10 // Constructor.
11 SearchableVector(int s) : SimpleVector<T>(s)
12 { }
13 // Copy constructor.
14 SearchableVector(SearchableVector &);
15 // Additional constructor.
16 SearchableVector(SimpleVector<T> &obj):
17 SimpleVector<T>(obj)
18 { }
19 int findItem(T);
20 };
21
22 //**
23 // Definition of the copy constructor. *
24 //**
25 template <class T>
26 SearchableVector<T>::
27 SearchableVector(SearchableVector &obj) :
28 SimpleVector<T>(obj)
29 {
30 }
31
32 //**
33 // findItem takes a parameter of type T *
34 // and searches for it within the array. *
35 //**
36 template <class T>
37 int SearchableVector<T>::findItem(T item)
38 {
39 for (int count = 0; count < this->size(); count++)
40 {
41 if (this->operator[](count) == item)
42 return count;
43 }
44 return -1;
45 }
46 #endif

1000 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Let us use this example to take a closer look at the derivation of a class from a template
base class. First, we have to indicate to the compiler that we are defining a new class tem-
plate based on an another, already existing class template:

template <class T>
class SearchableVector : public SimpleVector<T>
{

// Members of the class will go here
};

Here the new class template being defined is SearchableVector, while the existing base
class template is SimpleVector<T>. The class has three constructors. The first constructor,
shown here,

SearchableVector(int size) : SimpleVector<T>(size){ }

is designed to dynamically allocate an array of size elements of type T, which it does by
invoking the base class constructor and passing it the parameter size. This constructor
will create an array of the specified size with all elements initialized to default values of
type T. The class has another constructor,

SearchableVector(SimpleVector<T> &obj): SimpleVector<T>(obj){ }

which takes as parameter a base class object, a copy of which is to be searched. The con-
structor simply passes its parameter to the base class copy constructor. The remaining con-
structor is the copy constructor for the SearchableVector class,

SearchableVector(SearchableVector<T> &obj): SimpleVector<T>(obj){ }

Because the initialization of a SearchableVector is the same as that of a SimpleVector,
the SearchableVector copy constructor simply passes its argument to the copy construc-
tor of its base class. The member function findItem takes an item of type T as its argu-
ment and returns the position of the item within the array. If the item is not found in the
array, a value of –1 is returned.

Program 16-12 demonstrates the class by storing values in two SearchableVector objects
and then searching for a specific value in each.

Program 16-12

1 // This program demonstrates the SearchableVector template.
2 #include <iostream>
3 #include "searchvect.h"
4 using namespace std;
5
6 int main()
7 {
8 const int SIZE = 10;
9 SearchableVector<int> intTable(SIZE);
10 SearchableVector<double> doubleTable(SIZE);
11

(program continues)

Class Templates and Inheritance 1001

The SearchableVector class demonstrates that a class template may be derived from
another class template. In addition, class templates may be derived from ordinary classes,
and ordinary classes may be derived from class templates.

12 // Store values in the vectors.
13 for (int x = 0; x < SIZE; x++)
14 {
15 intTable[x] = (x * 2);
16 doubleTable[x] = (x * 2.14);
17 }
18 // Display the values in the vectors.
19 cout << "These values are in intTable:\n";
20 for (int x = 0; x < SIZE; x++)
21 cout << intTable[x] << " ";
22 cout << endl;
23 cout << "These values are in doubleTable:\n";
24 for (int x = 0; x < SIZE; x++)
25 cout << doubleTable[x] << " ";
26 cout << endl;
27
28 // Now search for values in the vectors.
29 int result;
30 cout << "Searching for 6 in intTable.\n";
31 result = intTable.findItem(6);
32 if (result == -1)
33 cout << "6 was not found in intTable.\n";
34 else
35 cout << "6 was found at subscript "
36 << result << endl;
37
38 cout << "Searching for 12.84 in doubleTable.\n";
39 result = doubleTable.findItem(12.84);
40 if (result == -1)
41 cout << "12.84 was not found in doubleTable.\n";
42 else
43 cout << "12.84 was found at subscript "
44 << result << endl;
45 return 0;
46 }

Program Output
These values are in intTable:
0 2 4 6 8 10 12 14 16 18
These values are in doubleTable:
0 2.14 4.28 6.42 8.56 10.7 12.84 14.98 17.12 19.26
Searching for 6 in intTable.
6 was found at subscript 3
Searching for 12.84 in doubleTable.
12.84 was found at subscript 6

Program 16-12 (continued)

1002 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Checkpoint

16.10 Suppose your program uses a class template named List, which is defined as
template<class T>
class List
{

// Members are declared here…
};

Give an example of how you would use int as the data type in the declaration of a
List object. (Assume the class has a default constructor.)

16.11 In the following Rectangle class declaration, the width, length, and area mem-
bers are of type double. Rewrite the class as a template that will accept any
numeric type for these members.

class Rectangle
{

private:
 double width;
 double length;
 double area;
public:
 void setData(double w, double l)

 { width = w; length = l;}
 void calcArea()

 { area = width * length; }
 double getWidth()

 { return width; }
 double getLength()

 { return length; }
 double getArea()

 { return area; }
};

16.5 Introduction to the Standard Template Library

CONCEPT: The Standard Template Library contains many templates for useful
algorithms and data structures.

In addition to its run-time library, which you have used throughout this book, C++ also
provides a library of templates. The Standard Template Library (or STL) contains numer-
ous templates for implementing data types and algorithms.

The most important data structures in the STL are the containers and iterators. A con-
tainer is a class that stores data and organizes it in some fashion. An iterator is an object
that works like a pointer and allows access to items stored in containers.

Sequential Containers
There are two types of container classes in the STL: sequential containers and associative con-
tainers. Sequential containers store items in the form of sequences, meaning that there is a nat-
ural way to order the items by their position within the container. An array is an example of a
sequential container. The STL provides the three sequential containers shown in Table 16-1.

Introduction to the Standard Template Library 1003

Because a sequential container organizes the items it stores as a sequence, it can be said to
have a front and a back. A container is said to provide random access to its contents if it is
possible to specify a position of an item within the container and then jump directly to that
item without first having to go through all the items that precede it in the container.

Positions used in random access are usually specified by giving an integer specifying the
position of the desired item within the container. The integer may specify a position
relative to the beginning of the container, the end of the container, or relative to some
other position. Arrays and vectors are examples of sequential containers that provide
random access.

Associative Containers
Sequential containers use the position of an item within the sequence to access their data.
In contrast, associative containers associate a key with each item stored, and then use the
key to retrieve the stored item. A telephone book is an example of an associative container;
the values stored are telephone numbers, and each telephone number is associated with a
name. The name can later be used as a key to look up, or retrieve, the telephone number.
The STL provides four associative containers, as shown in Table 16-2.

A map is a container that requires each value stored to be associated with a key. Each key
may be associated with only one value; once a key is used, no other value with the same
key may be added to the map. A multimap is like a map, except a key may be associated
with multiple values.

Table 16-1 STL Sequential Containers

Container Name Description

vector A sequence of items implemented as an array that can automatically grow as
needed during program execution. Items can be efficiently added and
removed from the vector at its end. Insertions and removals from the middle
or beginning of the vector are not as efficient.

deque A sequence of items that has a front and back: items can be efficiently added
or removed from the front and back. Insertions and removals in the middle
of a deque are not as efficient.

list A sequence of items that allows quick additions and removals from any
position.

Table 16-2 STL Associative Containers

Container Name Description

set Stores a set of keys. No duplicate values are allowed.

multiset Stores a set of keys. Duplicates are allowed.

map Maps a set of keys to data elements. Each key is associated with a unique
data element, and duplicate keys are not permitted.

multimap Maps a set of keys to data elements. The same key may be associated with
multiple values.

1004 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

A set is like a map in which only keys are stored, with no associated values. No item may
be stored twice in a set: that is, duplicates are not permitted. A multi set is like a set in
which duplicates are permitted.

Iterators
Iterators are objects that behave like pointers. They are used to access items stored in
containers. A typical iterator is an object of a class declared inside a container class.
The iterator overloads pointer operators such as the increment operator ++ , the decre-
ment operator --, and the dereferencing operator * in order to provide pointer-like
behavior.

Each STL container object provides member functions begin() and end() that return the
beginning and ending iterators for the object. The begin() iterator points to the item at
the beginning of the container if the container is nonempty, while the end() iterator points
to just past the end of the container. More details on the use of these iterators will be given
later.

Table 16-3 shows the different types of iterators available for use with various STL
containers.

The Use of Iterators
Let us consider the use of iterators, including begin() and end(), to access items stored in
an STL container.

Because an iterator is an object of an inner class called iterator that is defined inside a
container class, the use of the scope resolution operator is necessary to obtain an iterator
for a given container. For example, to define an iterator object iter that will work with a
class of type vector<int>, we write:

vector<int>::iterator iter;

To define an iterator for a vector of int and have it initialized to the beginning of the
container vect, we write:

vector<int> vect;
vector<int>::iterator iter = vect.begin();

Table 16-3 Iterator Types

Iterator Type Description

Forward Can only move forward in a container (uses the ++ operator).

Bidirectional Can move forward or backward in a container (uses the ++ and -- operators).

Random-access Can move forward and backward, and can jump to a specific data element in a
container.

Input Can be used with cin to read information from an input device or a file.

Output Can be used with cout to write information to an output device or a file.

Iterators

Introduction to the Standard Template Library 1005

Once an iterator is defined and made to point to the beginning of the container, the items in
the container at the position of the iterator can be accessed by dereferencing the iterator. An
iterator can be made to move to the next item in the container by incrementing it, and if the
iterator is bidirectional, it can be made to move to the previous element by decrementing it.
For example, the statements

cout << *iter;
iter++;

print the value of an element in the container and then move the iterator to the next element.

Because the end iterator does not point to a legitimate element, an iterator whose value is
end() should not be dereferenced. Program 16-13 illustrates the use of iterators with
vector containers.

Notice in Program 16-13 the inclusion of the vector header file, which is required for the
vector container. The vector container is one of the simplest types of containers in the
STL. In the following chapters, you will see examples using other types of containers.

The vector Container
Table 16-4 lists a selection of member functions of the vector class template. Some of these
accept iterators as parameters, and some of them return iterators as results.

Program 16-13

1 // This program provides a simple demonstration of the
2 // vector STL template.
3 #include <iostream>
4 #include <vector> // needed to use vectors
5 using namespace std;
6
7 int main()
8 {
9 vector<int> vect; // Create a vector of int
10
11 for (int x = 0; x < 10; x++)
12 vect.push_back(x*x);
13
14 //print everything using iterators.
15 vector<int>::iterator iter = vect.begin();
16 while (iter != vect.end())
17 {
18 cout << *iter << " ";
19 iter ++;
20 }
21 return 0;
22 }

Program Output
0 1 4 9 16 25 36 49 64 81

1006 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Table 16-4 Selected Member Functions of the Vector Class

Member Function Description

at(position) Returns the value of the element located at position in the vector.
Example:
 x = vect.at(5);
This statement assigns the value of the element in position 5 of vect to x.

back() Returns a reference to the last element in the vector.
Example:
 cout << vect.back() << endl;

begin() Returns an iterator pointing to the vector's first element.
Example:
 iter = vect.begin();

capacity() Returns the maximum number of elements that may be stored in the vector
without additional memory being allocated. (This is not the same value as
returned by the size member function).
Example:
 x = vect.capacity();
This statement assigns the capacity of vect to x.

clear() Clears a vector of all its elements.
Example:
 vect.clear();
This statement removes all the elements from vect.

empty() Returns true if the vector is empty. Otherwise, it returns false.
Example:
 if (vect.empty())
 cout << "The vector is empty.";

end() Returns an iterator pointing to just after the last element of the vector.
Example:
 iter = vect.end();

erase(iter) Causes the vector element pointed to by the iterator iter to be removed.
Example:
 vect.erase(iter);

erase(iter1,
iter2)

Removes all vector elements in the range specified by the iterators iter1
and iter2.
Example:
 vect.erase(iter1, iter2);

front() Returns a reference to the vector's first element.
Example:
 cout << vector.front() << endl;

(table continues)

Introduction to the Standard Template Library 1007

insert(iter,
value)

Inserts an element into the vector.
Example:
 vect.insert(iter, x);
This statement inserts the value x just before the element pointed to by the
iterator iter.

insert(iter, n,
value)

Inserts n copies of value into the vector, starting just before the position
pointed to by the iterator iter.
Example:
 vect.insert(iter, 7, x);
This statement inserts 7 copies of the value x just before the element pointed
to by the iterator iter.

pop_back() Removes the last element from the vector.
Example:
 vect.pop_back();
This statement removes the last element of vect, thus reducing its size by
one.

push_back(value) Stores value as the new last element of the vector. If the vector is already
filled to capacity, it is automatically resized.
Example:
 vect.push_back(7);
This statement stores 7 as the new last element of vect.

reverse() Reverses the order of the elements in the vector (the last element becomes
the first element, and the first element becomes the last element.)
Example:
 vect.reverse();.

resize(n)
resize(n, value)

Resizes a vector to have n elements, where n is greater than the vector’s
current size. If the optional value argument is included, each of the new
elements will be initialized with that value.
Example where vect currently has 4 elements:
 vect.resize(6,99);
adds two elements to the end of the vector, each initialized to 99.

size() Returns the number of elements in the vector.
Example:
 cout << vector.size() << endl;

swap(vector2) Swaps the contents of the vector with the contents of vector2.
Example:
 vect1.swap(vect2);
The statement above swaps the contents of vect1 and vect2.

Table 16-4 Selected Member Functions of the Vector Class (continued)

Member Function Description

1008 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Algorithms
The algorithms provided by the STL are implemented as function templates and perform
various operations on elements of containers. There are many algorithms in the STL;
Table 16-5 lists a few of them. (The table gives only general descriptions.)

Table 16-5 STL Algorithms

Algorithm Description

binary_search Performs a binary search for an object and returns true if the object is found,
false if not.
Example:
 binary_search(iter1, iter2, value);
In this statement, iter1 and iter2 define a range of elements within the
container. (iter1 points to the first element in the range and iter2 points to
just after the last element in the range.) The statement performs a binary
search on the range of elements, searching for value. The binary_search
function returns true if the element was found and false if the element was
not found.

count Returns the number of times a value appears in a range.
Example:
 number = count(iter1, iter2, value);
In this statement, iter1 and iter2 define a range of elements within the
container. (iter1 points to the first element in the range and iter2 points to
just after the last element in the range.) The statement returns the number of
times value appears in the range of elements.

for_each Executes a function for each element in a container.
Example:
 for_each(iter1, iter2, func);
In this statement, iter1 and iter2 define a range of elements within the
container. (iter1 points to the first element in the range and iter2 points to
just after the last element in the range.) The third argument, func, is the
name of a function. The statement calls the function func for each element in
the range, passing the element as an argument.

find Finds the first object in a container that matches a value and returns an
iterator to it.
Example:
 iter3 = find(iter1, iter2, value);
In this statement, iter1 and iter2 define a range of elements within the
container. (iter1 points to the first element in the range and iter2 points to
just after the last element in the range.) The statement searches the range of
elements for value. If value is found, the function returns an iterator to the
element containing it, otherwise, it returns the iterator iter2.

(table continues)

Introduction to the Standard Template Library 1009

Program 16-14 demonstrates the use of the random_shuffle, sort, and binary_search
algorithm templates.

max_element Returns an iterator to the largest object in a range.
 Example:
 iter3 = max_element(iter1, iter2);
In this statement, iter1 and iter2 define a range of elements within the
container. (iter1 points to the first element in the range and iter2 points to
just after the last element in the range.) The statement returns an iterator to
the element containing the largest value in the range.

min_element Returns an iterator to the smallest object in a range.
Example:
 iter3 = min_element(iter1, iter2);
In this statement, iter1 and iter2 define a range of elements within the
container. (iter1 points to the first element in the range and iter2 points to
just after the last element in the range.) The statement returns an iterator to
the element containing the smallest value in the range.

random_shuffle Randomly shuffles the elements of a container.
Example:
 random_shuffle(iter1, iter2);
In this statement, iter1 and iter2 define a range of elements within the
container. (iter1 points to the first element in the range and iter2 points to
just after the last element in the range.) The statement randomly reorders the
elements in the range.

sort Sorts a range of elements.
Example:
 sort(iter1, iter2);
In this statement, iter1 and iter2 define a range of elements within the
container. (iter1 points to the first element in the range and iter2 points to
just after the last element in the range.) The statement sorts the elements in
the range in ascending order.

NOTE: The STL algorithms require the inclusion of the algorithm header file.

Program 16-14

1 // This program provides a simple demonstration of the
2 // STL algorithms.
3
4 #include <iostream>
5 #include <vector> // Include the vector header
6 #include <algorithm> // Required for STL algorithms
7 using namespace std;
8

(program continues)

Table 16-5 STL Algorithms (continued)

Algorithm Description

1010 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

9 int main()
10 {
11 vector<int> vect; // Define a vector object
12
13 // Use push_back to push values into the vector.
14 for (int x = 0; x < 10; x++)
15 vect.push_back(x*x);
16 // Display the vector's elements
17 cout << "The collection has " << vect.size()
18 << " elements. Here they are:\n";
19 for (int x = 0; x < vect.size(); x++)
20 cout << vect[x] << " ";
21 cout << endl;
22
23 // Randomly shuffle the vector's contents.
24 random_shuffle(vect.begin(), vect.end());
25 // Display the vector's elements
26 cout << "The elements have been shuffled:\n";
27 for (int x = 0; x < vect.size(); x++)
28 cout << vect[x] << " ";
29 cout << endl;
30
31 // Now sort them.
32 sort(vect.begin(), vect.end());
33
34 // Display the vector's elements again.
35 cout << "The elements have been sorted:\n";
36 for (int x = 0; x < vect.size(); x++)
37 cout << vect[x] << " ";
38 cout << endl;
39
40 // Now search for an element.
41 int val = 49;
42 if (binary_search(vect.begin(), vect.end(), val))
43 cout << "The value " << val
44 << " was found in the vector.\n";
45 else
46 cout << "The value " << val
47 << " was not found in the vector.\n";
48 return 0;
49 }

Program Output
The collection has 10 elements. Here they are:
0 1 4 9 16 25 36 49 64 81
The elements have been shuffled:
64 1 81 4 0 25 49 9 16 36
The elements have been sorted:
0 1 4 9 16 25 36 49 64 81
The value 49 was found in the vector.

NOTE: Your run of this program will generate a different random shuffle.

Program 16-14 (continued)

Introduction to the Standard Template Library 1011

The random_shuffle function rearranges the elements of a container. In Program 16-14,
it is called in the following manner:

random_shuffle(vect.begin(), vect.end());

The function takes two arguments, which together represent a range of elements within a
container. The first argument is an iterator to the first element in the range. In this case,
vect.begin() is used. The second argument is an iterator to just after the last element in
the range. Here we have used vect.end(). These arguments tell random_shuffle to rear-
range all the elements from the beginning to the end of the vect container.

The sort algorithm also takes iterators to a range of elements. Here is the function call
that appears in Program 16-14:

sort(vect.begin(), vect.end());

All the elements within the range are sorted in ascending order.

The binary_search algorithm searches a range of elements for a value. If the value is
found, the function returns true. Otherwise, it returns false. For example, the following
function call searches all the elements in vect for the value 7.

binary_search(vect.begin(), vect.end(), 7)

Program 16-15 demonstrates the count algorithm.

Program 16-15

1 // This program demonstrates the STL count algorithm.
2 #include <iostream>
3 #include <vector> // Needed to declare the vector
4 #include <algorithm> // Needed for the for_each algorithm
5 using namespace std;
6
7 int main()
8 {
9 vector<int> values;
10 vector<int>::iterator iter;
11
12 // Store some values in the vector.
13 values.push_back(1);
14 values.push_back(2);
15 values.push_back(2);
16 values.push_back(3);
17 values.push_back(3);
18 values.push_back(3);
19
20 // Display the values in the vector.
21 cout << "The values in the vector are:\n";
22 for (iter = values.begin(); iter != values.end(); iter++)
23 cout << *iter << " ";
24 cout << endl << endl;
25

(program continues)

1012 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Program 16-16 demonstrates the max_element and min_element algorithms.

26 // Display the count of each number.
27 cout << "The number of 1s in the vector is ";
28 cout << count(values.begin(), values.end(), 1) << endl;
29 cout << "The number of 2s in the vector is ";
30 cout << count(values.begin(), values.end(), 2) << endl;
31 cout << "The number of 3s in the vector is ";
32 cout << count(values.begin(), values.end(), 3) << endl;
33 return 0;
34 }

Program Output
The values in the vector are:
1 2 2 3 3 3

The number of 1s in the vector is 1
The number of 2s in the vector is 2
The number of 3s in the vector is 3

Program 16-16

1 // This program demonstrates the STL max_element
2 // and min_element algorithms.
3 #include <iostream>
4 #include <vector> // Needed to declare the vector
5 #include <algorithm> // Needed for the algorithms
6 using namespace std;
7
8 int main()
9 {
10 vector<int> numbers;
11 vector<int>::iterator iter;
12
13 // Store some numbers in the vector.
14 for (int x = 0; x < 10; x++)
15 numbers.push_back(x);
16
17 // Shuffle things up just for fun.
18 random_shuffle(numbers.begin(), numbers.end());
19 // Display the numbers in the vector.
20 cout << "The numbers in the vector are:\n";
21 for (iter = numbers.begin(); iter != numbers.end(); iter++)
22 cout << *iter << " ";
23 cout << endl;
24
25 // Find the largest value in the vector.
26 iter = max_element(numbers.begin(), numbers.end());
27 cout << "The largest value in the vector is "
28 << *iter << endl;
29

(program continues)

Program 16-15 (continued)

Introduction to the Standard Template Library 1013

Program 16-17 demonstrates the find algorithm.

30 // Find the smallest value in the vector.
31 iter = min_element(numbers.begin(), numbers.end());
32 cout << "The smallest value in the vector is "
33 << *iter << endl;
34
35 return 0;
36 }

Program Output
The values in the vector are:
8 1 9 2 0 5 7 3 4 6
The largest value in the vector is 9
The smallest value in the vector is 0

Program 16-17

1 // This program demonstrates the STL find algorithm.
2 #include <iostream>
3 #include <vector> // Needed to declare the vector
4 #include <algorithm> // Needed for the find algorithm
5 using namespace std;
6
7 int main()
8 {
9 vector<int> numbers;
10 vector<int>::iterator iter;
11
12 // Store some numbers in the vector
13 for (int x = 0; x < 10; x++)
14 numbers.push_back(x);
15
16 // Display the numbers in the vector
17 cout << "The numbers in the vector are:\n";
18 for (iter = numbers.begin(); iter != numbers.end(); iter++)
19 cout << *iter << " ";
20 cout << endl << endl;
21
22 // Find 7 in the vector
23 iter = find(numbers.begin(), numbers.end(), 7);
24 cout << "The value searched for is " << *iter << endl;
25 return 0;
26 }

Program Output
The numbers in the vector are:
0 1 2 3 4 5 6 7 8 9

The value searched for is 7

Program 16-16 (continued)

1014 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Program 16-18 demonstrates the for_each algorithm.

Program 16-18

1 // This program demonstrates the for_each find algorithm
2
3 #include <iostream>
4 #include <vector> // Needed to declare the vector
5 #include <algorithm> // Needed for the for_each algorithm
6 using namespace std;
7
8 // Function prototype
9 void doubleValue(int &);
10
11 int main()
12 {
13 vector<int> numbers;
14 vector<int>::iterator iter;
15
16 // Store some numbers in the vector.
17 for (int x = 0; x < 10; x++)
18 numbers.push_back(x);
19
20 // Display the numbers in the vector.
21 cout << "The numbers in the vector are:\n";
22 for (iter = numbers.begin(); iter != numbers.end(); iter++)
23 cout << *iter << " ";
24 cout << endl;
25
26 // Double the values in the vector.
27 for_each(numbers.begin(), numbers.end(), doubleValue);
28
29 // Display the numbers in the vector again.
30 cout << "Now the numbers in the vector are:\n";
31 for (iter = numbers.begin(); iter != numbers.end(); iter++)
32 cout << *iter << " ";
33 cout << endl;
34 return 0;
35 }
36
37 //**
38 // Function doubleValue. This function accepts an int *
39 // reference as its argument. The value of the argument *
40 // is doubled. *
41 //**
42 void doubleValue(int &val)
43 {
44 val *= 2;
45 }

Program Output
The numbers in the vector are:
0 1 2 3 4 5 6 7 8 9
Now the numbers in the vector are:
0 2 4 6 8 10 12 14 16 18

1015

In Program 16-18, the following statement calls for_each:

for_each(numbers.begin(), numbers.end(), doubleValue);

The first and second arguments specify a range of elements. In this case, the range is the
entire vector. The third argument is the name of a function. The for_each algorithm calls
the function once for each element in the range, passing the element as an argument to the
function.

The programs in this section give you a brief introduction to using the STL by demonstrating
simple operations on a vector. In the remaining chapters you will be given specific examples
of how to use other STL containers, iterators, and algorithms.

16.6 Tying It All Together: Word Transformers Game

A software entrepreneur is designing an educational word game for children. A child playing
the game is given two words, and must determine if it is possible to rearrange the letters in the
first word to form the second. What the program does next depends on the relation between
the two words and on the correctness of the player’s answer.

When given two words, the child may claim that transformation of the first word into the sec-
ond is possible. In this case, the program asks the child to demonstrate the correctness of the
answer by typing a sequence of words starting with the first and ending with the second. Such a
sequence is an acceptable proof sequence if each word is obtained from its predecessor by
swapping a single pair of adjacent letters. For example, the sequence

tops, tosp, tsop, stop, sotp, sopt, spot

proves that the word tops can be transformed into spot. If the proof sequence is accepted, the
child earns a point and play proceeds to the next round with a fresh pair of words.

A proof sequence is rejected if a word cannot be obtained from its predecessor by swapping an
adjacent pair of letters, or if the first word in the sequence is not the first word of the pair of
words being tested, or if the last word is not the second word in the given pair. When a
sequence is rejected, play proceeds to the next round, but the child earns no points.

The child may observe that transformation is not possible. If the child’s answer is correct, he or
she receives a point and play proceeds to the next round. If the child’s answer is incorrect and
the transformation is indeed possible, the child receives no points. In this case, however, the
program displays a correct proof sequence before moving on to the next round of the game.

A program at the heart of this game must perform several tasks.

1. The program must be able to determine if one of a given pair of words can be trans-
formed into another.

2. The program must be able to determine if one word results from another by swap-
ping an adjacent pair of letters.

3. The program must be able to produce a proof sequence when transformation of one
word into another is possible.

How can we write a program for producing proof sequences for a pair of words? One idea is to
start with the first word as the current word. Then, swap an adjacent pair of letters to obtain a

Tying It All Together: Word Transformers Game

1016 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

new current word. Repeating this strategy will generate a sequence of words. If the current
word ever turns out to be the target word, we know we have a proof sequence.

Although the approach we have just outlined is easy to think of, it is difficult to implement. An
alternative approach involves sorting. If a transformation between the two words is possible,
sorting them will yield the same word. If in addition, we use a sorting method that works by
swapping adjacent letters, the sorting process will yield a proof sequence from each of the orig-
inal words to the same word. For example, sorting tops and spot yields the same word opst
with the corresponding sequences

tops, otps, opts, opst

and

spot, psot, post, opst.

Notice that the second sequence is a sequence from opst to spot in reverse. By concatenating
this last sequence to the first and eliminating the duplicate entry in the middle, we obtain the
proof sequence from tops to spot:

tops, otps, opts, opst, spot, psot, post, spot

Let us consider some details related to the implementation of this plan. Rather than keep a list
of intermediate words generated during the sort, we can keep a list of swaps or transpositions
performed by the sort. We do this by storing the index i for each pair (i, i+1) of positions of
characters swapped by the transposition. Our program uses the well known Bubblesort sorting
algorithm. A function

sort(char str[], int size, vector<int> &tranpose)

is used to sort an array of characters of a given size while saving the list of transpositions per-
formed on the array during the sort. Once both words have been sorted, the resulting two lists
of transpositions will be applied to a copy of the first word as previously described, and the
words resulting from the application of each transposition will be printed. This strategy is
implemented in the following program.

Program 16-19

1 // This program solves the word transformation puzzle.
2 #include <iostream>
3 #include <string>
4 #include <vector>
5 #include <algorithm>
6 using namespace std;
7
8 // Prototype
9 void sort(char str[], int size, vector<int>& transpositions);
10
11 int main()
12 {
13 // The two words and a copy of the first word
14 char str1[] = "spot";
15 char str1Copy[] = "spot";

(program continues)

1017

16 char str2[] = "stop";
17
18 // These vectors hold the list of transpositions
19 vector<int> transpose;
20 vector<int> reverse_transpose;
21
22 // Sort the two words
23 cout << "The first word is " << str1 << endl
24 << "The second word is " << str2 << endl;
25 sort(str1, 4, transpose);
26 sort(str2, 4, reverse_transpose);
27
28 // Apply the first list of transpositions
29 cout << "The transformation steps are: " << endl;
30 cout << str1Copy << " ";
31 for (int k = 0; k < transpose.size(); k++)
32 {
33 int index = transpose[k];
34 swap(str1Copy[index], str1Copy[index + 1]);
35 cout << str1Copy << " ";
36 }
37 // Apply the second list of transpositions in reverse order
38 for (int k = reverse_transpose.size()-1; k >=0 ; k--)
39 {
40 int index = reverse_transpose[k];
41 swap(str1Copy[index], str1Copy[index + 1]);
42 cout << str1Copy << " ";
43 }
44 cout << endl;
45 return 0;
46 }
47
48 //***
49 // This is a version of Bubblesort that saves a list of all *
50 // transpositions that are needed to sort the list *
51 //***
52 void sort(char str[], int size, vector<int>& transpositions)
53 {
54 // Last index of portion yet to be sorted
55 int upperBound = size-1;
56
57 while (upperBound > 0)
58 {
59 for (int k = 0; k < upperBound; k++)
60 {
61 if (str[k] > str[k+1])

(program continues)

Program 16-19 (continued)

Tying It All Together: Word Transformers Game

1018

Review Questions and Exercises

Fill-in-the-Blank

1. The line containing a throw statement is known as the __________.

2. The __________ block should enclose code that directly or indirectly might cause an
exception to be thrown.

3. The __________ block handles an exception.

4. When writing function or class templates, you use a(n) __________ to specify a
generic data type.

5. The beginning of a template is marked by a(n) __________.

6. When declaring objects of class templates, the __________ you wish to pass into the
type parameter must be specified.

7. A(n)__________ container organizes data in a sequential fashion similar to an array.

8. A(n)__________ container uses keys to rapidly access elements.

9. __________ are pointer-like objects used to access information stored in a container.

C++ Language Elements

10. Modify the SimpleVector template presented in this chapter to include an over-
loaded assignment operator.

Algorithm Workbench

11. Write a function template that takes a generic array of a given size as a parameter and
reverses the order of the elements in the array. The first parameter of the function
should be the array, the second parameter should be the size of the array.

12. Write a function template that is capable of adding any two numeric values and
returning the result.

62 {
63 // Save the swap index
64 transpositions.push_back(k);
65 swap(str[k], str[k+1]);
66 }
67 }
68 upperBound--;
69 }
70 }

Program Output
The first word is spot
The second word is stop
The transformation steps are:
spot psot post opst ospt sopt sotp stop

Program 16-19 (continued)

Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Review Questions and Exercises 1019

13. Describe what will happen if you call the function of question 11 and pass it an array
of char.

14. Describe what will happen if you call the function of question 11 and pass it an array
of string.

Find the Error

15. Each of the following declarations or code segments has errors. Locate as many as
possible.

A) catch
{

quotient = divide(num1, num2);
cout << "The quotient is " << quotient << endl;

}
try (char *exceptionString)
{

cout << exceptionString;
}

B) try
{

quotient = divide(num1, num2);
}
cout << "The quotient is " << quotient << endl;
catch (char *exceptionString)
{

cout << exceptionString;
}

C) template <class T>
T square(T number)
{

return T * T;
}

D) template <class T>
int square(int number)
{

return number * number;
}

E) template <class T1, class T2>
T1 sum(T1 x, T1 y)
{

return x + y;
}

F) Assume the following declaration appears in a program that uses the SimpleVector
class template presented in this chapter.

int <SimpleVector> array(25);

G) Assume the following statement appears in a program that has defined valueSet
as an object of the SimpleVector class presented in this chapter. Assume that
valueSet is a vector of ints, and has 20 elements.

cout << valueSet<int>[2] << endl;

1020 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

Soft Skills

16. Suppose that you are part of a project team and it becomes clear to you that one of
the team members is not “pulling his weight.” What should you do if you are the
project leader? What should you do if you are not the project leader?

Programming Challenges

1. String Bound Exceptions

Write a class BCheckString that is derived from the STL string class. This new class will
have two member functions:

A) A BCheckString(string s) constructor that receives a string object passed by
value and passes it on to the base class constructor.

B) An char operator[](int k) function that throws a BoundsException object
if k is negative or is greater than or equal to the length of the string. If k is within
the bounds of the string, this function will return the character at position k in the
string.

You will need to write the definition of the BoundsException class. Test your class with a
main function that attempts to access characters that are within and outside the bounds of
a suitably initialized BCheckString object.

2. Arithmetic Exceptions

Write a function that accepts an integer parameter and returns its integer square root. The
function should throw an exception if it is passed an integer that is not a perfect square.
Demonstrate the function with a suitable driver program.

3. Min/Max Templates

Write templates for the two functions min and max. min should accept two arguments and
return the value of the argument that is the lesser of the two. max should accept two argu-
ments and return the value of the argument that is the greater of the two. Design a simple
driver program that demonstrates the templates with various data types.

4. Sequence Accumulation

Write a function

T accum(vector <T> v)

that forms and returns the “sum” of all items in the vector v passed to it. For example, if T is
a numeric type such as int or double, the numeric sum will be returned, and if T represents
the STL string type, then the result of concatenation is returned.

NOTE: For any type T, the expression T() yields the value or object created by the
default constructor. For example, T() yields the empty string object if T is the string
class. If T represents a numeric type such as int, then T() yields 0. Use this fact to
initialize your “accumulator.”

Solving the
Arithmetic
Exceptions
Problem

Review Questions and Exercises 1021

Test your function with a driver program that asks the user to enter 3 integers, uses accum
to compute the sum, and prints out the sum. The program than asks the user to enter
3 strings, uses accum to concatenate the strings, and prints the result.

5. Total Template

Write a template for a function called total. The function should keep a running total of
values entered by the user, then return the total. The argument sent into the function
should be the number of values the function is to read. Test the template in a simple driver
program that sends values of various types as arguments and displays the results.

6. Absolute Value Template

Write a function template that accepts an argument and returns its absolute value. The
absolute value of a number is its value with no sign. For example, the absolute value of –5
is 5 and the absolute value of 2 is 2. Test the template in a simple driver program.

7. SimpleVector Modification

Modify the SimpleVector class template, presented in this chapter, to include the member
functions push_back and pop_back. These functions should emulate the STL vector class
member functions of the same name. (See Table 16-4.) The push_back function should
throw an exception if the array is full. The push_back function should accept an argument
and insert its value at the end of the array. The pop_back function should accept no argu-
ment and remove the last element from the array. Test the class with a driver program.

8. SearchableVector Modification

Modify the SearchableVector class template, presented in this chapter, so it performs a
binary search instead of a linear search. Test the template in a driver program.

9. SortableVector Class Template

Write a class template named SortableVector. The class should be derived from the
SimpleVector class presented in this chapter. It should have a member function that sorts
the array elements in ascending order. (Use the sorting algorithm of your choice.) Test the
template in a driver program.

10. Two-Dimensional Data

Suppose that data representing a list of people and places they would like to visit is stored
in a file as follows:

3
0 Paul
1 Peter
2 David

0 3 Chicago Boston Memphis
1 1 Boston
2 0

The first number n in the file indicates how many people there are in the list. Here n is 3, so
there are 3 people. Each person in the list is assigned a number in the range 0.. n-1 that is

1022 Chapter 16 Exceptions, Templates, and the Standard Template Library (STL)

used to identify her. For each person, the file lists the numerical identifier of the person,
followed by the number of places the person wants to visit, followed by the names of
those places. For example, Boston is the only place that Peter cares to visit, while David
wants to visit no places.

Write a program that reads in this type of data from a file and stores it in appropriate STL
data structure. For example, you might use vectors, as well as vectors of vectors, to represent
this information. The program allows users to type in the name of a person whose list of
favorite destinations is to be printed out. The program prints an error message if the per-
son is not in the database.

11. Word Transformers Modification

Modify Program 16-19 so that it keeps lists of intermediate words during the two sorts
instead of keeping lists of swap indices.

1023

C
H

A
P

T
E

R

17 Linked Lists

17.1 Introduction to the Linked List ADT

CONCEPT: Dynamically allocated data structures may be linked together in memory
to form a chain.

A linked list is a series of connected nodes, where each node is a data structure. The nodes of
a linked list are usually dynamically allocated, used, and then deleted, allowing the linked list
to grow or shrink in size as the program runs. If new information needs to be added to a
linked list, the program simply allocates another node and inserts it into the series. If a
particular piece of information needs to be removed from the linked list, the program deletes
the node containing that information.

Advantages of Linked Lists over Arrays and Vectors
Although linked lists are more complex to code and manage than arrays, they have
some distinct advantages. First, a linked list can easily grow or shrink in size. In fact,
the programmer doesn’t need to know how many nodes will be in the list. They are simply
created in memory as they are needed.

One might argue that linked lists are not superior to vectors (found in the Standard Template
Library), because they too can expand or shrink. The advantage that linked lists have over
vectors, however, is the speed at which a node may be inserted into or deleted from the list.

TOPICS

17.1 Introduction to the Linked List ADT
17.2 Linked List Operations
17.3 A Linked List Template
17.4 Recursive Linked List Operations
17.5 Variations of the Linked List

17.6 The STL list Container
17.7 Reliable Software Systems, Inc.,

Case Study
17.8 Tying It All Together: More on Graphics

and Animation

1024 Chapter 17 Linked Lists

To insert a value into the middle of a vector requires all the elements after the insertion point
to be moved one position toward the vector’s end, thus making room for the new value.
Likewise, removing a value from a vector requires all the elements after the removal point to
be moved one position toward the vector’s beginning. When a node is inserted into or deleted
from a linked list, none of the other nodes have to be moved.

The Structure of Linked Lists
Each node in a linked list contains one or more members that hold data. (For example, the
data stored in the node may be an inventory record; or it may be a customer information
record consisting of the customer’s name, address, and telephone number.) In addition to
the data, each node contains a successor pointer that points to the next node in the list.
The makeup of a single node is illustrated in Figure 17-1.

The first node of a nonempty linked list is called the head of the list. To access the nodes in a
linked list, you need to have a pointer to the head of the list. Beginning with the head, you
can access the rest of the nodes in the list by following the successor pointers stored in each
node. The successor pointer in the last node is set to NULL to indicate the end of the list.

Because the pointer to the head of the list is used to locate the head of the list, we can think
of it as representing the list head. The same pointer can also be used to locate the entire list
by starting at the head and following the successor pointers, so it is also natural to think of
it as representing the entire list. Figure 17-2 illustrates a linked list of three nodes, showing
the pointer to the head, the three nodes of the list, and the NULL pointer that signifies the
end of the list.

C++ Representation of Linked Lists
To represent linked lists in C++, we need to have a data type that represents a single node in
the list. Looking at Figure 17-1, we see that it is natural to make this data type a structure
that contains the data to be stored, together with a pointer to another node of the same

Figure 17-1

Figure 17-2

NOTE: Figure 17-2 depicts the nodes in the linked list as being very close to each other,
neatly arranged in a row. In reality, the nodes may be scattered around various parts of
memory.

Data Members
Pointer

NULL

List Head

Introduction to the Linked List ADT 1025

type. Assuming that each node will store a single data item of type double, we can declare
the following type to hold the node:

struct ListNode
{

double value;
ListNode *next;

};

Here ListNode is the type of a node to be stored in the list, the structure member value is
the data portion of the node, and the structure member next, declared as a pointer to
ListNode, is the successor pointer that points to the next node.

The ListNode structure has an interesting property: it contains a pointer to a data structure
of the same type, and thus can be said to be a type that contains a reference to itself. Such
types are called self-referential data types, or self-referential data structures.

Having declared a data type to represent a node, we can define an initially empty linked list
by defining a pointer to be used as the list head, and initializing it to NULL:

 ListNode *head = NULL;

We can now create a linked list that consists of a single node storing 12.5 as follows:

head = new ListNode; // allocate new node
head->value = 12.5; // store the value
head->next = NULL; // signify end of list

Now let’s see how we can create a new node, store 13.5 in it, and make it the second node
in the list. We can use a second pointer to point to a newly allocated node into which the
13.5 will be stored:

ListNode *secondPtr = new ListNode;
secondPtr->value = 13.5;
secondPtr->next = NULL; // second node is end of list
head->next = secondPtr; // first node points to second

Note that we have now made the second node the end of the list by setting its successor
pointer, secondPtr->next, to NULL, and we have changed the successor pointer of the
list head to point to the second node. Program 17-1 illustrates the creation of a simple
linked list.

Program 17-1

1 // This program illustrates the creation
2 // of linked lists.
3 #include <iostream>
4 using namespace std;
5
6 struct ListNode
7 {
8 double value;
9 ListNode *next;
10 };
11

(program continues)

1026 Chapter 17 Linked Lists

Using Constructors to Initialize Nodes
Recall that C++ structures can have constructors. It is often convenient to provide the
structures that define the type for a list node with one or more constructors, to allow nodes
to be initialized as soon as they are created. Recall also that just like regular functions,
constructors can be defined with default parameters. It is very common to provide a
default parameter of NULL for the successor pointer of a node. Here is an alternative defi-
nition of the ListNode structure:

struct ListNode
{

double value;
ListNode *next;
// constructor
ListNode(double value1, ListNode *next1 = NULL)
{

value = value1;
next = next1;

}
};

With this declaration, a node can be created in two different ways:

1. by specifying just its value part and letting the successor pointer default to NULL, or
2. by specifying both the value part and a pointer to the node that is to follow this one

in the list.

12 int main()
13 {
14 ListNode *head;
15
16 // Create first node with 12.5
17 head = new ListNode; // Allocate new node
18 head->value = 12.5; // Store the value
19 head->next = NULL; // Signify end of list
20
21 // Create second node with 13.5
22 ListNode *secondPtr = new ListNode;
23 secondPtr->value = 13.5;
24 secondPtr->next = NULL; // Second node is end of list
25 head->next = secondPtr; // First node points to second
26
27 // Print the list.
28 cout << "First item is " << head->value << endl;
29 cout << "Second item is " << head->next->value << endl;
30 return 0;
31 }

Program Output
First item is 12.5
Second item is 13.5

Program 17-1 (continued)

Introduction to the Linked List ADT 1027

The first method is useful when we are creating a node to put at the end of a linked list,
while the second method is useful when the newly created node is to be inserted at a place
in the list where it will have a successor.

Using this new declaration of a node, we can create the previous list of 12.5 followed
by 13.5 with much shorter code:

ListNode *secondPtr = new ListNode(13.5);
ListNode *head = new ListNode(12.5, secondPtr);

We can actually dispense with the second pointer and write the above code as:

ListNode *head = new ListNode(13.5);
head = new ListNode(12.5, head);

This code is equivalent to what precedes it because the assignment statement

head = new ListNode(12.5, head);

is evaluated from right to left: first the old value of head is used in the constructor, and
then the address returned from the new operator is assigned to head, becoming its new
value.

Building a List
Using the constructor version of ListNode, it is very easy to create a list by reading values
from a file and adding each newly read value to the beginning of the list of values already
accumulated. For example, using numberList for the list head, and numberFile for the
input file object, the following code will read in numbers stored in a text file and arrange
them in a list:

ListNode *numberList = NULL;
double number;
while (numberFile >> number)
{

// create a node to hold this number
numberList = new ListNode(number, numberList);

}

Traversing a List
The process of beginning at the head of a list and going through the entire list while doing
some processing at each node is called traversing the list. For example, we would have to
traverse a list if we needed to print the contents of every node in the list. To traverse a list,
say one whose list head pointer is numberList, we take another pointer ptr and point it to
the beginning of the list:

ListNode *ptr = numberList;

We can then process the node pointed to by ptr by working with the expression *ptr, or
by using the structure pointer operator ->. For example, if we needed to print the value at
the node, we could write the code

cout << ptr->value;

1028 Chapter 17 Linked Lists

Once the processing at the node is done, we move the pointer to the next node, if there is
one, by writing

ptr = ptr->next;

thus replacing the pointer to a node by the pointer to the successor of the node. Thus to
print an entire list we can use code such as

ListNode *ptr = numberList;
while (ptr != NULL)
{

cout << ptr->value << " "; // process node
ptr = ptr->next; // move to next node

}

Program 17-2 illustrates these techniques by reading a file of numbers, arranging the
numbers in a linked list, and then traversing the list to print the numbers on the screen.

Program 17-2

1 // This program illustrates the building
2 // and traversal of a linked list.
3
4 #include <iostream>
5 #include <fstream>
6 using namespace std;
7
8 struct ListNode
9 {
10 double value;
11 ListNode *next;
12 // Constructor.
13 ListNode(double value1, ListNode *next1 = NULL)
14 {
15 value = value1;
16 next = next1;
17 }
18 };
19
20 int main()
21 {
22 // Open the file.
23 ListNode *numberList = NULL; // List of numbers
24
25 ifstream numberFile("numberFile.dat");
26 if (!numberFile)
27 {
28 cout << "Error in opening the file of numbers.";
29 exit(1);
30 }
31
32 // Read the file into a linked list.
33 double number; // Used to read the file
34 cout << "The contents of the file are: " << endl;
35 while (numberFile >> number)

(program continues)

Linked List Operations 1029

Checkpoint

17.1 Describe the two parts of a node.

17.2 What is a list head?

17.3 What signifies the end of a linked list?

17.4 What is a self-referential data structure?

17.2 Linked List Operations

CONCEPT: The basic linked list operations are adding an element to a list, removing
an element from the list, traversing the list, and destroying the list.

In this section we develop some simple list classes. The first of these, which we call Num-
berList, will store values of type double. It is based on the ListNode structure defined in
the preceding section, and is shown here.

36 {
37 cout << number << " ";
38 // Create a node to hold this number.
39 numberList = new ListNode(number, numberList);
40 }
41
42 // Traverse the list while printing.
43 cout << endl << "The contents of the list are: " << endl;
44 ListNode *ptr = numberList;
45 while (ptr != NULL)
46 {
47 cout << ptr->value << " "; // Process node
48 ptr = ptr->next; // Move to next node
49 }
50 return 0;
51 }

Program Output
The contents of the file are:
10 20 30 40
The contents of the list are:
40 30 20 10

Contents of NumberList.h
1 #include <iostream>
2 using namespace std;
3 class NumberList
4 {
5 protected:
6 // Declare a class for the list node.
7 struct ListNode

Program 17-2 (continued)

1030 Chapter 17 Linked Lists

Because ListNode does not need to be accessed by any code outside of NumberList, we
have declared it inside the NumberList class. We have also declared ListNode in a protected
section to make it accessible to classes that may later be derived from NumberList.

Notice that the constructor initializes the head pointer to NULL, thereby indicating that the
list starts out empty. The class has an add function that takes a value and adds it to the end of
the list, as well as a displayList function that prints to the screen all values stored in the
list. A destructor function destroys the list by deleting all its nodes. With the exception of
remove(), all of these functions are defined in NumberList.cpp. The remove() function
will be added later.

8 {
9 double value;
10 ListNode *next;
11 ListNode(double value1, ListNode *next1 = NULL)
12 {
13 value = value1;
14 next = next1;
15 }
16 };
17 ListNode *head; // List head pointer
18 public:
19 NumberList() { head = NULL; } //Constructor
20 ~NumberList(); // Destructor
21 void add(double number);
22 void remove(double number);
23 void displayList();
24 };

Contents of NumberList.cpp
1 #include "NumberList.h"
2 using namespace std;
3
4 //***
5 // add adds a new element to the end of the list. *
6 //***
7 void NumberList::add(double number)
8 {
9 if (head == NULL)
10 head = new ListNode(number);
11 else
12 {
13 // The list is not empty.
14 // Use nodePtr to traverse the list
15 ListNode *nodePtr = head;
16 while (nodePtr->next != NULL)
17 nodePtr = nodePtr->next;
18
19 // nodePtr->next is NULL so nodePtr points to the last node.
20 // Create a new node and put it after the last node.
21 nodePtr->next = new ListNode(number);
22 }
23 }
24

Linked List Operations 1031

Because the NumberList class contains pointers to dynamically allocated memory, it needs
to be equipped with both a copy constructor and an overloaded assignment operator before
it can safely be used in situations that require copies of lists to be made.

Adding an Element to the List
The add member function accepts as an argument a number of type double, creates a node
containing the number, and adds it to the end of the list. The basic idea is as follows. If the
list is empty, the newly created node becomes the only node in the list:

head = new ListNode(number);

If, on the other hand, the list is not empty, we take a pointer nodePtr, set it to the begin-
ning of the list, and walk it down the list until it points to the last node. We will know it is
pointing to the last node when nodePtr->next equals NULL. The code for starting the
pointer at the beginning of the list and walking it down to the end is

ListNode *nodePtr = head;
while (nodePtr->next != NULL)

 nodePtr = nodePtr->next;

25 //***
26 // displayList outputs a sequence of all values *
27 // currently stored in the list. *
28 //***
29 void NumberList::displayList()
30 {
31 ListNode *nodePtr = head; // Start at head of list
32 while (nodePtr)
33 {
34 // Print the value in the current node
35 cout << nodePtr->value << " ";
36 // Move on to the next node
37 nodePtr = nodePtr->next;
38 }
39 }
40
41 //**
42 // Destructor deallocates the memory used by the list. *
43 //**
44 NumberList::~NumberList()
45 {
46 ListNode *nodePtr = head; // Start at head of list
47 while (nodePtr != NULL)
48 {
49 // garbage keeps track of node to be deleted
50 ListNode *garbage = nodePtr;
51 // Move on to the next node, if any
52 nodePtr = nodePtr->next;
53 // Delete the "garbage" node
54 delete garbage;
55 }
56 }

Adding an
Element to a
Linked List

1032 Chapter 17 Linked Lists

Once nodePtr is pointing to the last node, we can add the new node after it by using the
code

nodePtr->next = new ListNode(number);

Putting all of this together, we get the add function shown in lines 7–23 of NumberList.cpp.

Displaying a List
The code for the displayList member function, in lines 29–39, is based on the algorithm
for traversing a list presented in the last section.

Destroying the List
It is important for the class’s destructor to release all the memory used by the list. It does
this by stepping through the list, deleting one node at a time. The code for doing so is
found in lines 44–56 of the NumberList.cpp file. A pointer nodePtr starts at the begin-
ning (head) of the list and steps through the list one node at a time. A second pointer, gar-
bage, follows in nodePtr’s wake, and is used to delete each node as soon as nodePtr has
passed on to the node’s successor.
Program 17–3 demonstrates the operation of the member functions of the NumberList class.

Let’s step through Program 17-3, observing how the add function builds a linked list to
store the three argument values used.

The head pointer, a member variable of the NumberList class, is automatically initialized to
NULL by the constructor when the list is created. This indicates that the list is initially empty.

Program 17-3

1 // This program demonstrates the add and
2 // display linked list operations.
3
4 #include "Numberlist.h"
5 using namespace std;
6
7 int main()
8 {
9 NumberList list;
10 list.add(2.5);
11 list.add(7.9);
12 list.add(12.6);
13 list.displayList();
14 cout << endl;
15 return 0;
16 }

Program Output
2.5 7.9 12.6

Linked List Operations 1033

The first call to add passes 2.5 as the argument. Because the list is empty at that time, the code

head = new ListNode(num);

is executed, resulting in the situation depicted in Figure 17-3:

There are no more statements to execute, so control returns to function main. In the
second call to add, 7.9 is passed as the argument. The else clause of the if statement
will be executed, setting nodePtr to point to the first node of the list, as illustrated in
Figure 17-4.

At this point, the pointer nodePtr->next has value NULL, and the while loop terminates.
The statement

nodePtr->next = new ListNode(num);

which follows the loop, is then executed, giving the situation depicted in Figure 17.5. The
function then returns.

The value 12.6 is passed on the third call to add. Again, control will flow to the else
clause of the if statement because the list is nonempty. The pointer nodePtr will be set to
the beginning of the list as shown in Figure17-6.

Figure 17-3

Figure 17-4

Figure 17-5

NULL2.5

head

2.5

7.9
num

head

nodePtr

NULL

2.5

head

nodePtr

NULL7.9

1034 Chapter 17 Linked Lists

Because nodePtr->next is not NULL, the while loop executes, resulting in the situation
illustrated in Figure 17-7.

At this point, the while loop terminates and the statement

nodePtr->next = new ListNode(num);

that comes after the while loop is executed. This gives the situation depicted in Figure 17-8.

Linked Lists in Sorted Order
It is sometimes useful to keep elements added to a linked list in sorted order. For example,
the list may maintain its elements in ascending order, meaning that each element in the list
is less than or equal to its successor. In these cases, we cannot add elements to the list by
putting them at the end of the list as in the add function of the NumberList class, because
doing so would violate the order of the elements in the list. A different approach is needed.

Consider a class SortedNumberList that maintains its elements in ascending order. It is
similar to the NumberList class, except the add function is modified so that it keeps the list
in sorted order when placing new elements. Because a sorted list is still a list, it makes sense
to use inheritance and derive it from NumberList.

Figure 17-6

Figure 17-7

Figure 17-8

2.5

head

NULL7.9

nodePtr
num=12.6

2.5

head

NULL7.9

nodePtr

num=12.6

2.5

head

7.9 NULL12.6

nodePtr

Linked List Operations 1035

Inserting a Node into a Sorted List
Suppose that we have a linked list of numbers that is sorted in ascending order. We want to
write the add function so that it inserts its argument number in the list at a position that
leaves the list sorted.

There are two cases to consider. The first case is when the new number to be inserted
should go before every node already in the list. This happens when the list is either empty,
or the first number in the list is greater or equal to num:

if (head == NULL || head->value >= number)
head = new ListNode(number, head);

Note that the order of these two tests should not be reversed: you should make sure that
head is not NULL before you try to access head->value: trying to evaluate the expression
head->value will result in a runtime error if head is NULL.

The second case that should be considered is when the new number needs to go after one
of the nodes already in the list. In this case, the new number will need to be placed just
before the first node that has a value greater or equal to the number. To locate such a node,
we use a pointer called nodePtr. We will start nodePtr at the second node, and then keep
moving it forward in the list until it falls off the end of the list (this will happen when
nodePtr becomes NULL) or it points to a node whose value is greater or equal to number
(this will happen when the expression nodePtr->value >= number becomes true). In
order to insert the new node just before nodePtr, we will need a pointer to the node that
precedes the one that nodePtr points to. To this end, we use a pointer previousNodePtr
that always points to the node previous to the one that nodePtr points to. The whole pro-
cess of finding the insertion point is accomplished by the following code:

previousNodePtr = head;
nodePtr = head->next;

// Find the insertion point.
while (nodePtr != NULL && nodePtr->value < number)
{

previousNodePtr = nodePtr;
nodePtr = nodePtr->next;

}

The entire function, including the code for creating a new node and inserting it at the point
just after previousNodePtr but before nodePtr, is given here:

Contents of SortedNumberList.h
1 #include "NumberList.h"
2 class SortedNumberList : public NumberList
3 {
4 public:
5 void add(double number);
6 };

Contents of SortedNumberList.h
1 #include "SortedNumberList.h"
2
3 //***
4 // Adds a number to the sorted list. *
5 // This function overrides add in NumberList. *
6 //***

1036 Chapter 17 Linked Lists

Here is a program that uses the add function. A discussion of how the function works fol-
lows the program.

7 void SortedNumberList::add(double number)
8 {
9 ListNode *nodePtr, *previousNodePtr;
10
11 if (head == NULL || head->value >= number)
12 {
13 // A new node goes at the beginning of the list.
14 head = new ListNode(number, head);
15 }
16 else
17 {
18 previousNodePtr = head;
19 nodePtr = head->next;
20
21 // Find the insertion point.
22 while (nodePtr != NULL && nodePtr->value < number)
23 {
24 previousNodePtr = nodePtr;
25 nodePtr = nodePtr->next;
26 }
27 // Insert the new node just before nodePtr.
28 previousNodePtr->next = new ListNode(number, nodePtr);
29 }
30 }

Program 17-4

1 // This program illustrates the NumberList append,
2 // insert, and displayList member functions.
3 #include "SortedNumberList.h"
4
5 int main()
6 {
7 SortedNumberList list;
8
9 // Add elements in order
10 list.add(2.5);
11 list.add(7.9);
12 list.add(12.6);
13 // Add a value that should go in the middle of the list
14 list.add(10.5);
15 // Display the list.
16 list.displayList();
17 cout << endl;
18 return 0;
19 }

Program Output
2.5 7.9 10.5 12.6

Linked List Operations 1037

Like Program 17-3, Program 17-4 starts out by building a list with the values 2.5, 7.9, and
12.6. Because of the order of addition to the list, each of these values is handled by the if
clause in lines 11–15 of SortedNumberList.cpp. The add function is then called with
argument 10.5. This time, the else part in lines 16–26 is executed. The statements

previousNodePtr = head;
nodePtr = head->next;

are executed, giving the situation depicted in Figure 17-9.

The while loop then executes once, leaving the state of the linked list as shown in
Figure 17-10.

At this point, nodePtr->value is greater or equal to number, so the loop terminates. The
statement after the loop is executed:

previousNodePtr->next = new ListNode(number, nodePtr);

Figure 17-9

Figure 17-10

2.5

head

7.9 NULL12.6

10.5
number

nodePtrpreviousNodePtr

2.5

head

7.9 NULL12.6

10.5
number

nodePtrpreviousNodePtr

1038 Chapter 17 Linked Lists

This final state of the list is illustrated in Figure 17-11.

This leaves the list in its final state. If you follow the links, from the head pointer to the
NULL, you will see that the nodes are stored in the order of their value members.

Checkpoint

17.5 What is the difference between appending a node to a list and inserting a node into a list?

17.6 Which is easier to code, appending or inserting?

17.7 Why does the insertNode function shown in this section use a previousNodePtr
pointer?

Removing an Element
Removing an element from a linked list requires a number of steps:

1. Locating the node containing the element to be removed.
2. Unhooking the node from the list.
3. Deleting the memory allocated to the node.

The remove member function uses a pointer nodePtr to search for a node containing the
value number that is to be removed. During this process, a second pointer previousNodePtr
trails behind nodePtr, always pointing to the node preceding the one pointed to by
nodePtr. When nodePtr points to the node to be deleted, previousNodePtr->next is set
to nodePtr->next. This causes the successor pointers in the list to bypass the node con-
taining number, allowing its memory to be freed using delete. The entire function is
shown here:

Figure 17-11

25 //**
26 // Removes a number from a list. The function *
27 // does not assume that the list is sorted. *
28 //**
29 void NumberList::remove(double number)
30 {
31 ListNode *nodePtr, *previousNodePtr;
32
33 // If the list is empty, do nothing.
34 if (!head) return;
35
36 // Determine if the first node is the one to delete.
37 if (head->value == number)

2.5

head

7.9 NULL12.6

10.5

previousNodePtr nodePtr

Removing an
Element from
a Linked List

Linked List Operations 1039

Notice that the remove() function is a member of NumberList rather than SortedNumber-
List. Unlike add(), the remove() function works with both sorted and unsorted lists, and
so does not have to be overridden. The file RNumberList.cpp, found on the student CD, is
a simple modification of the NumberList.cpp: it simply adds the implementation of
remove(). Program 17-5 demonstrates this new function by first building a list of three
values and then removing the values one by one.

38 {
39 nodePtr = head;
40 head = head->next;
41 delete nodePtr;
42 }
43 else
44 {
45 // Initialize nodePtr to the head of the list.
46 nodePtr = head;
47
48 // Skip nodes whose value member is not number
49 while (nodePtr != NULL && nodePtr->value != number)
50 {
51 previousNodePtr = nodePtr;
52 nodePtr = nodePtr->next;
53 }
54 // Link the previous node to the node after
55 // nodePtr, then delete nodePtr.
56 if (nodePtr)
57 {
58 previousNodePtr->next = nodePtr->next;
59 delete nodePtr;
60 }
61 }
62 }

Program 17-5

1 // This program demonstrates the remove member function.
2 #include "NumberList.h"
3 using namespace std;
4
5 int main()
6 {
7 NumberList list;
8
9 // Build the list.
10 list.add(2.5);
11 list.add(7.9);
12 list.add(12.6);
13
14 // Display the list.
15 cout << "Here are the initial values:\n";
16 list.displayList();
17 cout << "\n\n";

(program continues)

1040 Chapter 17 Linked Lists

To illustrate how remove works, we will step through the first call, the one that removes
7.9 from the list. This is a value that is in the middle of the list.

Look at the else part of the second if statement, lines 44–61. This is where the function
will perform its action because the list is not empty and the first node does not contain
the value 7.9. Just like the sorted list version of add(), this function uses nodePtr and
previousNodePtr to traverse the list. The while loop terminates when the value 7.9 is
located. At this point, the list head and the other pointers will be in the state depicted in
Figure 17-12.

18
19 // Demonstrate the remove function.
20 cout << "Now removing the value in the middle.\n";
21 list.remove(7.9);
22 cout << "Here are the values left.\n";
23 list.displayList();
24 cout << "\n\n";
25
26 cout << "Now removing the last value.\n";
27 list.remove(12.6);
28 cout << "Here are the values left.\n";
29 list.displayList();
30 cout << "\n\n";
31
32 cout << "Now removing the only remaining value.\n";
33 list.remove(2.5);
34 cout << "Here are the values left.\n";
35 list.displayList();
36 cout << endl;
37
38 return 0;
39 }

Program Output
Here are the initial values:
2.5 7.9 12.6

Now removing the value in the middle.
Here are the values left.
2.5 12.6

Now removing the last value.
Here are the values left.
2.5

Now removing the only remaining value.
Here are the values left.

Program 17-5 (continued)

A Linked List Template 1041

Next, the following statement executes.

previousNodePtr->next = nodePtr->next;

This statement causes the links in the list to bypass the node that nodePtr points to.
Although the node still exists in memory, this removes it from the list, as illustrated in
Figure 17-13.

The last statement uses the delete operator to free the memory used by the deleted node.

Checkpoint

17.8 What are the two steps involved in deleting a node from a linked list?

17.9 When deleting a node, why can’t you just use the delete operator to remove it
from memory? Why must you take the steps you listed in response to question 17.8?

17.10 In a program that uses several linked lists, what might eventually happen if the class
destructor does not destroy its linked list?

17.3 A Linked List Template*
A major limitation of the NumberList class is that it can only hold values of type double.
A list class is most useful when it can be used to hold values of different types. The
LinkedList class, which we will cover next, uses templates to achieve type flexibility. It
uses the same logic as the NumberList class.

Figure 17-12

Figure 17-13

* Note: This section should be skipped if Chapter 16 has not yet been covered.

2.5

head

7.9 NULL12.6

nodePtrpreviousNodePtr

2.5

head

7.9 NULL12.6

nodePtrpreviousNodePtr

1042 Chapter 17 Linked Lists

Contents of LinkedList.h
1 #include <iostream>
2 using namespace std;
3 template <class T>
4 class LinkedList
5 {
6 protected:
7 // Declare a class for the list node.
8 struct ListNode
9 {
10 T value;
11 ListNode *next;
12 ListNode(T value1, ListNode *next1 = NULL)
13 {
14 value = value1;
15 next = next1;
16 }
17 };
18 ListNode *head; // List head pointer
19 public:
20 LinkedList() { head = NULL; } // Constructor
21 ~LinkedList(); // Destructor
22 void add(T value);
23 void remove(T value);
24 void displayList();
25 };
26
27 //***
28 // Adds a new element to the end of the list. *
29 //***
30 template <class T>
31 void LinkedList<T>::add(T value)
32 {
33 if (head == NULL)
34 head = new ListNode(value);
35 else
36 {
37 // The list is not empty.
38 // Use nodePtr to traverse the list
39 ListNode *nodePtr = head;
40 while (nodePtr->next != NULL)
41 nodePtr = nodePtr->next;
42
43 // nodePtr->next is NULL so nodePtr points to the last node.
44 // Create a new node and put it after the last node.
45 nodePtr->next = new ListNode(value);
46 }
47 }
48
49 //**
50 // Removes a number from a list. The function *
51 // does not assume that the list is sorted. *
52 //**
53 template <class T>
54 void LinkedList<T>::remove(T value)

A Linked List Template 1043

55 {
56 ListNode *nodePtr, *previousNodePtr;
57
58 // If the list is empty, do nothing.
59 if (!head) return;
60
61 // Determine if the first node is the one to delete.
62 if (head->value == value)
63 {
64 nodePtr = head;
65 head = head->next;
66 delete nodePtr;
67 }
68 else
69 {
70 // Initialize nodePtr to the head of the list.
71 nodePtr = head;
72
73 // Skip nodes whose value member is not num.
74 while (nodePtr != NULL && nodePtr->value != value)
75 {
76 previousNodePtr = nodePtr;
77 nodePtr = nodePtr->next;
78 }
79 // Link the previous node to the node after
80 // nodePtr, then delete nodePtr.
81 if (nodePtr)
82 {
83 previousNodePtr->next = nodePtr->next;
84 delete nodePtr;
85 }
86 }
87 }
88
89 //***
90 // displayList outputs a sequence of all values *
91 // currently stored in the list. *
92 //***
93 template <class T>
94 void LinkedList<T>::displayList()
95 {
96 ListNode *nodePtr = head; // Start at head of list
97 while (nodePtr)
98 {
99 // Print the value in the current node
100 cout << nodePtr->value << " ";
101 // Move on to the next node
102 nodePtr = nodePtr->next;
103 }
104 }
105
106 //**
107 // Destructor deallocates the memory used by the list. *
108 //**

1044 Chapter 17 Linked Lists

Notice that the implementation of the class member functions, previously in a separate
.cpp file, have now been folded into the header file. This has been done to avoid the tre-
mendous complexities of compiling and linking a multifile program that uses templates.

The template class will work for any data type that supports comparison operators such as
== and <=. In particular, it will work for all numeric types and for string. Program 17-6
shows the template being used as list of strings.

109 template <class T>
110 LinkedList<T>::~LinkedList()
111 {
112 ListNode *nodePtr = head; // Start at head of list
113 while (nodePtr != NULL)
114 {
115 // garbage keeps track of node to be deleted
116 ListNode *garbage = nodePtr;
117 // Move on to the next node, if any
118 nodePtr = nodePtr->next;
119 // Delete the "garbage" node
120 delete garbage;
121 }
122 }

Program 17-6

1 // This program demonstrates the linked list template
2 // being used to create a linked list of strings.
3 #include <string>
4 #include "LinkedList.h"
5 using namespace std;
6
7 int main()
8 {
9 LinkedList<string> list;
10
11 // Build the list.
12 list.add("Alice");
13 list.add("Chuck");
14 list.add("Elaine");
15 list.add("Fran");
16
17 cout << "Here are the initial names:\n";
18 list.displayList();
19 cout << "\n\n";
20
21 cout << "Now removing Elaine.\n\n";
22 list.remove("Elaine");
23 cout << "Here are the remaining elements.\n";
24 list.displayList();
25 cout << endl;
26
27 return 0;
28 }

(program continues)

Recursive Linked List Operations 1045

17.4 Recursive Linked List Operations

CONCEPT: Recursion is a useful technique for working with linked lists.

Recursion is a useful approach to solving problems that can be broken down into smaller
problems of the same type. Some data structures, such as arrays and linked lists, mirror
this property of recursion in that a large array can be split into smaller arrays; and like-
wise, a nonempty linked list can be reduced to a smaller linked list by removing its first
node. Because of this, both array and linked list operations are often well suited to a recur-
sive solution. In this section, we will take a look at the recursive implementation of linked
list operations.

Let’s take a look at some examples of recursive linked list operations. We will first look at
the implementation of recursive stand-alone functions, and then later on in the section, we
will look at how member functions of a class can be made recursive. We will use for our
examples linked lists of numbers based on the node type

struct ListNode
{

double value;
ListNode *next;
ListNode(double value1, ListNode *next1 = NULL)
{

value = value1;
next = next1;

}
};

We have used a structure here to represent the node for ease of presentation only, normally,
the node would be a class type to restrict access to its private members.

Recall that the head of a nonempty list is the first item on the list. The tail of a nonempty
list is the list that remains after you remove the head. For example, any list with only one
item has the empty list for its tail. A list of numbers 2.5, 7.9, 12.6 has the list 7.9, 12.6
as its tail. With a declaration such as ListNode, if a nonempty list is represented by a
pointer ptr, the tail will be represented by ptr->next.

Finally, remember that a good recursive solution must be careful to identify and deal with
base cases of the problem, that is, the subproblems resulting from the breaking down process
that can be directly solved. In the case of linked lists, the process will often involve breaking

Program Output
Here are the initial names:
Alice Chuck Elaine Fran

Now removing Elaine.

Here are the remaining elements.
Alice Chuck Fran

Program 17-6 (continued)

1046 Chapter 17 Linked Lists

a list down by separating it into its head and tail, and then recursively solving the problem
on the tail. The base case will usually be when the list on which the operation is to be
performed is empty, or in some cases, has only one item.

Recursive List Functions
Let’s write some recursive linked list functions. The function

int size(ListNode *ptr)

takes as parameter a pointer to the head node of a linked list and returns the number of
elements stored in the list. If the list is empty, its size is zero:

if (ptr == NULL) return 0;

But if a list is nonempty, its size will be one more than the size of its tail:

if (ptr != NULL) return 1 + size(ptr->next);

Putting these two observations together, we arrive at the following code for the size()
function:

int size(ListNode *ptr)
{
 if (ptr == NULL)
 return 0;
 else
 return 1 + size(ptr->next);
}

Consider now a recursive strategy for a function

void displayList(ListNode *ptr)

that takes a pointer to the head node of a list and prints the list elements. There is nothing
to print if the list is empty. To display a nonempty list, we first display the element stored in
the head node

cout << ptr->value << " ";

and then recursively display the tail of the list. Because the tail of the list is given by ptr-
>next, we arrive at the following code:

void displayList(ListNode *ptr)
{
 if (ptr != NULL)
 {
 cout << ptr-> value << " ";
 displayList(ptr->next);
 }
}

Program 17-7 gathers these two functions together and illustrates their use. The program
reads data from a file Numberfile.dat that can be found on the student CD.

Recursive Linked List Operations 1047

Program 17-7

1 // This program illustrates recursion on linked lists.
2 #include <iostream>
3 #include <fstream>
4 using namespace std;
5
6 struct ListNode
7 {
8 double value;
9 ListNode *next;
10 // Constructor.
11 ListNode(double value1, ListNode *next1 = NULL)
12 {
13 value = value1;
14 next = next1;
15 }
16 };
17
18 // Function prototypes.
19 int size(ListNode *);
20 void displayList(ListNode *);
21
22 int main()
23 {
24 ListNode *numberList = NULL; // List of numbers
25
26 // Open the file.
27 ifstream numberFile("numberFile.dat");
28 if (!numberFile)
29 {
30 cout << "Error in opening the file of numbers.";
31 exit(1);
32 }
33
34 // Read the file into a linked list.
35 double number; // Used to read the file
36 while (numberFile >> number)
37 {
38 // Create a node to hold this number.
39 numberList = new ListNode(number, numberList);
40 }
41
42 // Print the list.
43 cout << endl << "The contents of the list are: " << endl;
44 displayList(numberList);
45
46 // Print the size of the list.
47 cout << endl << "The number of items in the list is: "
48 << size(numberList);
49 return 0;
50 }
51

(program continues)

1048 Chapter 17 Linked Lists

Recursive Member Functions
Let’s write a new version of the NumberList class in which the member functions for add-
ing an element, removing an element, and displaying the list have recursive implementa-
tions. The class will also have a size() function. Here is the class declaration:

52 //***
53 // length computes the number of nodes in *
54 // a linked list *
55 //***
56 int size(ListNode *ptr)
57 {
58 if (ptr == NULL)
59 return 0;
60 else
61 return 1 + size(ptr->next);
62 }
63
64 //***
65 // displayList prints all the values stored *
66 // in the list *
67 //***
68 void displayList(ListNode *ptr)
69 {
70 if (ptr != NULL)
71 {
72 cout << ptr-> value << " ";
73 displayList(ptr->next);
74 }
75 }

Program Output:
The contents of the list are:
40 30 20 10
The number of items in the list is: 4

Contents of NumberList2.h
1 #include <iostream>
2 using namespace std;
3 class NumberList2
4 {
5 protected:
6 // Declare a class for the list node.
7 struct ListNode
8 {
9 double value;
10 ListNode *next;
11 ListNode(double value1, ListNode *next1 = NULL)
12 {
13 value = value1;
14 next = next1;
15 }
16 };

Program 17-7 (continued)

Recursive Linked List Operations 1049

If you look at the class, you will notice that each public member function in lines 20–24
has a corresponding private member function in lines 27–30. The private member func-
tions provide recursive implementations for their public counterparts. Notice that each of
the private member functions has a parameter of type ListNode*. This parameter is
needed for the recursion to work.

You might wonder why we do not make the recursive functions public. The reason is that
the parameters of type ListNode * are implementation details, and therefore should not
be exposed to the users of the class. The user of the public interface of the class does not need
to know that the list is internally implemented using a pointer to ListNode named head.

The Recursive add Member Function
Notice that the recursive add member function

ListNode *add(ListNode *aList, double value);

takes as parameters an input list and a value and returns the list that results from adding
the value to the input list. Technically, the function takes as its first parameter a pointer to
the head of a linked list and returns a pointer to the head of the resulting list. Line 21 of the
code listing of NumberList2.h shows how the recursive function is called to add a value to
the list.

Let’s see how the add function works. If the input list is empty (base case), the function cre-
ates a new node containing the value and returns a pointer to that node:

return new ListNode(value);

If the list is not empty, the function proceeds as follows. First, it splits the input list into its
constituent head node and tail.

ListNode *tail = aList->next; // Fix the tail
aList->next = null; // aList now points to the head

The tail is shorter than the original input list, and is therefore closer to the base case. Using
recursion, the function adds the value to the tail of the list, resulting in a “bigger” tail:

ListNode *biggerTail = add(tail, value);

17 ListNode *head; // List head pointer
18 public:
19 NumberList2() { head = NULL; } // Constructor
20 ~NumberList2(); // Destructor
21 void add(double value) { head = add(head, value);}
22 void remove(double value) {head = remove(head, value);}
23 void displayList() {displayList(head);}
24 int size(){return size(head);}
25 private:
26 // Recursive implementations
27 ListNode *add(ListNode *aList, double value);
28 ListNode *remove(ListNode *aList, double value);
29 void displayList(ListNode *aList);
30 int size(ListNode *aList);
31 };

1050 Chapter 17 Linked Lists

Finally, the original head, which is being pointed to by aList, is reattached to the bigger
tail, and a pointer to the original head is returned:

aList->next = biggerTail; // Reattach the head
return aList; // Return pointer to augmented list

Putting all of this together, we get the following code for the add function:

The code in this function can be shortened. First, notice that line 50 is not needed. The
head does not have to be detached before making the recursive call on the tail in line 52, as
long as it is “reattached” in line 54. Then, we can eliminate the tail variable and just use
aList->next in line 52. The code in the else clause then gets shortened to

ListNode *biggerTail = add(aList->next, value);
aList->next = biggerTail;
return aList;

which can in turn be shortened to

aList->next = add(aList->next, value);
return aList;

The add function can therefore be written as follows:

42 NumberList2::ListNode *NumberList2::add(ListNode *aList, double value)
43 {
44 if (aList == NULL)
45 return new ListNode(value);
46 else
47 {
48 // Split into constituent head and tail
49 ListNode *tail = aList->next; // tail
50 aList->next = NULL; // Detached head
51 // Recursively add value to tail
52 ListNode *biggerTail = add(tail, value);
53 // Reattach the head
54 aList->next = biggerTail;
55 // Return pointer to head of bigger list
56 return aList;
57 }
58 }

28 NumberList2::ListNode *NumberList2::add(ListNode *aList, double value)
29 {
30 if (aList == NULL)
31 return new ListNode(value);
32 else
33 {
34 // add the value to the end of the tail
35 aList->next = add(aList->next, value);
36 return aList;
37 }
38 }

Recursive Linked List Operations 1051

The Recursive remove Member Function
The remove function

ListNode *remove(ListNode *aList, double value)

takes as parameter an input list and a value, removes the value from the input list, and
returns the resulting list. If the value to be removed is not on the list, the function returns
the input list unchanged.

The function works as follows. If the list is empty, the function returns NULL.

if(aList == NULL) return NULL;

Otherwise, the function compares the value to what is stored in the first (head) node of the
list. If the value is found there, the head node (pointed to by aList) is deleted and the func-
tion returns the tail:

if (aList->value == value)
{
 ListNode *tail = aList->next;
 delete aList;
 return tail;
}

The last case considered is when the list is not empty and the head of the list does not contain
the value to be removed. In this case, the function recursively removes the value from the tail
of the list, reattaches the original head to the modified tail, and returns a pointer to the head
of the (possibly) modified list. Using the same reasoning as in the add() function, we can
write this case as

aList->next = remove(aList->next, value);
return aList;

Again putting it all together, we get the complete function as found lines 10–60 of the
implementation file NumberList2.cpp.

Contents of NumberList2.cpp
1 #include "NumberList2.h"
2
3 //***
4 // Returns the number of elements in a list *
5 // **
6 int NumberList2::size(ListNode *aList)
7 {
8 if (aList == NULL)
9 return 0;
10 else
11 return 1 + size(aList->next);
12 }
13
14 //***
15 // Prints all elements stored in a list *
16 //***
17 void NumberList2::displayList(ListNode *aList)

1052 Chapter 17 Linked Lists

18 {
19 if (aList != NULL)
20 {
21 cout << aList->value << " ";
22 displayList(aList->next);
23 }
24 }
25 //***
26 // Adds a value at the end of a list *
27 //***
28 NumberList2::ListNode *NumberList2::add(ListNode *aList, double value)
29 {
30 if (aList == NULL)
31 return new ListNode(value);
32 else
33 {
34 // add the value to the end of the tail
35 aList->next = add(aList->next, value);
36 return aList;
37 }
38 }
39
40 NumberList2::ListNode *NumberList2::remove(ListNode *aList, double value)
41 {
42 if (aList == NULL) return NULL;
43 // The list is not empty
44
45 // See if value is first on the list.
46 // If so, delete the value and return the tail
47 if (aList->value == value)
48 {
49 ListNode *tail = aList->next;
50 delete aList;
51 return tail;
52 }
53 else
54 {
55 // value is not the first on the list.
56 // Return the list with the value removed
57 // from the tail of the list
58 aList->next = remove(aList->next, value);
59 return aList;
60 }
61 }
62
63 NumberList2::~NumberList2()
64 {
65 ListNode *ptr = head;
66 while (ptr != NULL)

Recursive Linked List Operations 1053

The following program demonstrates the use of these member functions.

67 {
68 // Point to the node to be deleted
69 ListNode *garbage = ptr;
70 // Go on to the next node
71 ptr = ptr->next;
72 // Delete the current node
73 delete garbage;
74 }
75 }
76
77

Program 17-8

1 // This program demonstrates the recursive member
2 // functions of the NumberList2 class.
3 #include "NumberList2.h"
4
5 int main()
6 {
7 NumberList2 list;
8 double number;
9 list.add(23);
10 list.add(17);
11 list.add(59);
12 cout << "The members of the list are: ";
13 list.displayList();
14 cout << "\n";
15 cout << "Enter a number to add: ";
16 cin >> number;
17 list.add(number);
18 cout << "The members of the list are: ";
19 list.displayList();
20 cout << "\n";
21 cout << "Enter a number to remove: ";
22 cin >> number;
23 list.remove(number);
24 cout << "The members of the list are: ";
25 list.displayList();
26 cout << "\n";
27 return 0;
28 }

Program Output with Example Input Shown in Bold
The members of the list are: 23 17 59
Enter a number to add: 89
The members of the list are: 23 17 59 89
Enter a number to remove: 17
The members of the list are: 23 59 89

1054 Chapter 17 Linked Lists

17.5 Variations of the Linked List

CONCEPT: There are many ways to link dynamically allocated data structures
together. Two variations of the linked list are the doubly linked list and
the circular linked list.

The linked list examples that we have discussed are singly linked lists: Each node is linked
to a single other node. A variation of this is the doubly linked list. In this type of list, each
node not only points to the next node, but also to the previous one. This is illustrated in
Figure 17-14.

In Figure 17-14, the last node and the first node in the list have pointers to the NULL
address. When the program traverses the list it knows when it has reached either end.

Another variation is the circular linked list. The last node in this type of list points to the
first, as shown in Figure 17-15.

17.6 The STL list Container*

CONCEPT: The Standard Template Library provides a linked list container.

The list container, found in the Standard Template Library, is a template version of a
doubly linked list. STL lists can insert elements or add elements within the list more
quickly than vectors can, because lists do not have to shift the other elements. Lists are also
efficient at adding elements at their back because they have a built-in pointer to the last
element in the list (no traversal required).

Figure 17-14

Figure 17-15

* Note: This section should be skipped if Chapter 16 has not yet been covered.

List Head

NULL

NULL

List Head

The STL list Container 1055

Table 17-1 describes some of the list member functions.

Table 17-1 Selected List Member Functions

Member
Function Examples and Description

back cout << list.back() << endl;
The back member function returns a reference to the last element in the list.

erase list.erase(iter);
list.erase(firstIter, lastIter)
The first form causes the list element pointed to by the iterator iter to be
removed. The second form causes all of the list elements from firstIter to
lastIter to be removed.

empty if (list.empty())
The empty member function returns true if the list is empty. It returns false if
the list has elements.

end iter = list.end();
end returns an iterator to the end of the list.

front cout << list.front() << endl;
front returns a reference to the first element of the list.

insert list.insert(iter, x)
The insert member function inserts an element into the list. The example inserts
an element with the value x, just before the element pointed to by iter.

merge list1.merge(list2);
The merge member function expects both list1 and list2 to be already sorted.
Every element of list2 will be inserted into list1 in such a way that the expanded
list1 remains sorted.

pop_back list.pop_back();
pop_back removes the last element of the list.

pop_front list.pop_front();
pop_front removes the first element of the list.

push_back list.push_back(x);
push_back inserts an element with value x at the end of the list.

push_front list.push_front(x);
push_front inserts an element with value x at the beginning of the list.

reverse list.reverse();
reverse reverses the order in which the elements appear in the list.

size() Returns the number of elements in the list.

swap list1.swap(list2)
The swap member function swaps the elements stored in two lists. For example,
assuming list1 and list2 are lists, the statement shown will exchange the values
in the two lists.

unique list.unique();
unique eliminates duplicate values by removing any element that has the same
value as the element before it.

1056 Chapter 17 Linked Lists

Program 17-9 demonstrates some simple operations with the STL lists.

17.7 Reliable Software Systems, Inc., Case Study

Problem Statement
Reliable Software Systems, Inc., writes and markets C++ class libraries for use by pro-
grammers worldwide. One of the company’s products is a library package that includes
the NumberList class introduced in section 2 of this chapter. Its customers need to use
the class in programs in which copies and assignment of NumberList objects will occur.
You have been asked to modify the class to support a copy constructor and an assign-
ment operator.

Program 17-9

1 // This program demonstrates the STL list container.
2 #include <iostream>
3 #include <list> // Include the list header
4 using namespace std;
5
6 int main()
7 {
8 list<int> myList;
9 list<int>::iterator iter;
10
11 // Add values to the list.
12 for (int x = 0; x < 100; x += 10)
13 myList.push_back(x);
14
15 // Display the values.
16 for (iter = myList.begin(); iter != myList.end(); iter++)
17 cout << *iter << " ";
18 cout << endl;
19
20 // Now reverse the order of the elements.
21 myList.reverse();
22
23 // Display the values again.
24 for (iter = myList.begin(); iter != myList.end(); iter++)
25 cout << *iter << " ";
26 cout << endl;
27 return 0;
28 }

Program Output
0 10 20 30 40 50 60 70 80 90
90 80 70 60 50 40 30 20 10 0

Reliable Software Systems, Inc., Case Study 1057

Planning for the Changes and Class Design
At least two functions need to be added to the NumberList class. Rather than modifying
the original class, you opt to use inheritance to create a new class with the requested
enhancements. Both copy constructor and assignment need to make a copy of the linked
list of nodes inside of the NumberList object being copied. To avoid duplication of code,
we will add a member function

ListNode *copyList(ListNode *aList);

that creates and returns a distinct copy of a list of nodes. In addition, the assignment oper-
ator, when applied as in the statement

x = y;

will need to deallocate storage allocated to the linked list in the NumberList object x.
Accordingly, we add a member function

void destroyList(ListNode *aList);

to the class. The result of this design work is the ReliableNumberList class shown in the
listing of the ReliableNumberList.h file.

We have added a default constructor (Line 9) to allow lists that are initially empty to be
created. Notice that the auxiliary functions copyList and destroyList are declared static.
This is because they are generic utility functions that do not require access to specific Num-
berList objects to do their job.

Implementation of Class Member Functions
We adopt a recursive strategy for implementing copyList and destroyList. If a list is
empty, copyList returns NULL. If a list is not empty, then the function creates a copy of the
head node, attaches it to recursively created copy of the tail, and returns the resulting list.

Consider now the working of destroyList. There is nothing to destroy if the argument
list is empty. If the argument list is nonempty, the functions recursively destroys the tail and
then deallocates the storage for the head node. The coding details for both copyList and
destroyList can be seen in the listing of ReliableNumberList.cpp that follows.

Contents of ReliableNumberList.h
1 #include "numberlist.h"
2
3 class ReliableNumberList : public NumberList
4 {
5 public:
6 // Copy constructor
7 ReliableNumberList(const ReliableNumberList& original);
8 // Now we need a default constructor
9 ReliableNumberList(){}
10 // Assignment operator
11 ReliableNumberList& operator=(ReliableNumberList right);
12 private:
13 static ListNode* copyList(ListNode *aList);
14 static void destroyList(ListNode *aList);
15 };

1058 Chapter 17 Linked Lists

Having the copyList function makes writing the copy constructor almost trivial: the con-
structor simply copies the linked list in the existing object and assigns the result to the head
pointer of the object being created:

head = copylist(original.head);

Coding the assignment operator is not much harder. The operator first deallocates the stor-
age for the linked list in the calling object, and then assigns a copy of the list in its right
operand to the head member of the calling object.

destroyList(head);
head = copyList(right.head);

You can find the full implementation details and an illustration of the use of this new class
in the following listing.

Contents of ReliableNumberList.h
1 #include "reliablenumberlist.h"
2
3 //***
4 // Copy constructor *
5 //***
6 ReliableNumberList::
7 ReliableNumberList(const ReliableNumberList& original)
8 {
9 head = copyList(original.head);
10 }
11
12 //**
13 // Overloaded Assignment operator *
14 //**
15 ReliableNumberList&
16 ReliableNumberList::operator=(ReliableNumberList right)
17 {
18 // First destroy the linked list in this object
19 destroyList(head);
20 // Assign a copy of the linked list in other object
21 head = copyList(right.head);
22 }
23
24 //**
25 // Make a separate copy of the linked list inside *
26 // a ReliableNumberList object *
27 //**
28 NumberList::ListNode *
29 ReliableNumberList::copyList(ListNode *aList)
30 {
31 if (aList == NULL)
32 return NULL;
33 else

Reliable Software Systems, Inc., Case Study 1059

34 {
35 // First copy the tail
36 ListNode *tailCopy = copyList(aList->next);
37 // Return copy of head attached to copy of tail
38 return new ListNode(aList->value, tailCopy);
39 }
40 }
41
42 //**
43 // Destroy a list by deallocating all of its nodes *
44 //**
45 void ReliableNumberList::destroyList(ListNode *aList)
46 {
47 if (aList != NULL)
48 {
49 ListNode *tail = aList->next;
50 // deallocate the head and then destroy the tail
51 delete aList;
52 destroyList(tail);
53 }
54 }

Program 17-10

1 // This program demonstrates the copy constructor
2 // and assignment operator added to NumberList.
3 #include "reliablenumberlist.h"
4 int main()
5 {
6 ReliableNumberList squareList, cubeList;
7 // Store values in the two lists
8 for (int k = 1; k <= 5; k++)
9 {
10 squareList.add(k*k);
11 cubeList.add(k*k*k);
12 }
13
14 // Use copy constructor to create a third list
15 ReliableNumberList otherList(squareList);
16 cout << "Result of the copy constructor is: ";
17 otherList.displayList();
18 cout << endl;
19
20 // Use the assignment operator
21 otherList = cubeList;
22 cout << "Result of assignment is: ";
23 otherList.displayList();
24 cout << endl;
25 return 0;
26 }

(program continues)

1060 Chapter 17 Linked Lists

17.8 Tying It All Together: More on Graphics
and Animation
In previous chapters you learned how to use text-based graphics to draw and animate
simple geometric shapes like straight lines, rectangles, and triangles. The techniques
you learned can be extended to more complex shapes and figures.

Before you can draw a shape, you must determine the screen coordinates of the characters
that will form both its outline and interior. For example, consider the slanted line segment
shown in Figure 17-16.

The line starts at (0, 0) and ends at (3, 3), and is drawn by placing asterisks at the screen
coordinates (0, 0), (1, 1), (2, 2), and (3, 3).

Representing Shapes with Image Maps
More generally, a figure or shape may consist of several parts. Each of the individual parts
making up the figure may be a line segment, a geometric shape such as a rectangle or triangle,
or some other type of shape. It is convenient to use an array of coordinates to specify a part
of a multi-part figure, and then combine the arrays into a single list that defines the whole
figure. We use the term image map to refer to the list of coordinates that specifies a shape
to be drawn.

Let us design the class that will be used to represent image maps. An image map is a list of
coordinates, so we make the class a subclass of the STL type list<COORD>. In addition, we
define a member function

void add(COORD coordArray[]);

to allow us to add an array of coordinates to the list. We mark the end of the coordinate
array by storing a COORD value of (-1, -1) as the last element of the array.

Here is a preliminary declaration of an ImageMap class:

class ImageMap: list<COORD>
{
public:
 // Add an array of coordinates to the image map
 void add(COORD coordArray[])

Program Output
Result of the copy constructor is: 1 4 9 16 25
Result of assignment is: 1 8 27 64 125

Figure 17-16

Program 17-10 (continued)

1061

 {
 for(int k = 0; coordArray[k].X != -1; k++)
 {
 push_back(coordArray[k]);
 }
 }
}

As an example, the line from (0, 0) to (3, 3) would be represented by the code

ImageMap line;
COORD lineCoords[] = {{0,0}, {1,1}, {2,2}, {3,3}, {-1,-1}};
line.add(lineCoords);

Initializing an array of coordinates in this manner and then adding it to the image map is
very handy, and is a vast improvement over the alternative of using push_back to add the
coordinates to the image map one at a time:

ImageMap line;
COORD pos;
pos.X = 0;
pos.Y = 0;
line.push_back(pos);
pos.X = 1;
pos.Y = 1;
line.push_back(pos);
// rest of the code is omitted

The braces { } that go around a single COORD object in the initialization of the lineCo-
ords array are tedious to insert, particularly when the array has a lot of elements. We will
therefore consider an alternative notation for initializing the image map. The alternative
will allow us to use an array of short integers to initialize an array of coordinates.

An array of two short integers and a COORD object both consist of two short integers and
C++ compilers store both in memory the same way. Once stored in memory, an array of 5
COORD objects is indistinguishable from an array of 10 short integers. If we write

short int lineShorts[] = {0, 0, 1, 1, 2, 2, 3, 3, -1, -1};

then the array lineShorts is indistinguishable from lineCoords in the way the two arrays
are stored in memory. We can use this fact to find an alternative way of initializing image
maps that does not require as many braces. We add a second add member function to
ImageMap, one that takes an array of short int as a parameter. The new add function uses
a cast to convert its parameter to an array of COORD, and then calls the first add function.

void add(short *coordAsShorts)
{
 COORD *pCoord = reinterpret_cast<COORD *>(coordAsShorts);
 add(pCoord);
}

It will help you to understand why this code works if you remember that an array of
COORD, which is what the member function add(COORD arr[]) expects, has the same type
as a pointer to COORD.

Tying It All Together: More on Graphics and Animation

1062 Chapter 17 Linked Lists

Basics of Animation
Now consider a video game in which a person has to run across the screen. The effect of
running will be achieved by creating image maps of a person in successive running position
as in Figure 17-17.

The first image is displayed briefly at a certain position and then erased. Next, the second
image is briefly displayed a little to the right of the first position and then erased. By succes-
sively displaying and erasing a progression of images at a series of positions in left to right
order, we obtain the appearance of a person running.

Implementation Details
Once an ImageMap object is created, a programmer can use its add methods to incremen-
tally build the list of coordinates that comprises the shape. Starting with an empty image
map, the programmer can initialize arrays of short integers to represent different parts of
the human body. In this way, arms, legs, torsos, and other parts of the body can be repre-
sented and added to the image map to form the shape of a complete person. Two addi-
tional methods,

void displayAt(char ch, int col, int row);
void displayAt(int col, int row);

can be used to display the image map’s shape at a given position. The first of the two meth-
ods specifies a fill character to be used for the outline and interior of the shape. The second
is a convenience method—it calls the first display method and passes it the asterisk as fill
character. Finally, the method

void eraseAt(int col, int row);

is used to erase the image map’s shape at a specified position. The full implementation of
the ImageMap class, and an illustration of its use to achieve graphics animation, are shown
in the listings that follow.

Figure 17-17

Contents of Imagemap.h
1 #include <iostream>
2 #include <list>
3 #include <windows.h>
4 using namespace std;
5
6 const HANDLE console = GetStdHandle(STD_OUTPUT_HANDLE);

Chapter 17 Linked Lists

1063

7
8 class ImageMap:list<COORD>{
9
10 public:
11 // Add an array of coordinates to the image map
12 void add(COORD coordArray[]);
13 // Convenience method for adding an array of coordinates
14 void add(short *coordAsShorts);
15 // Display a given character at a specified position
16 void displayAt(char ch, int col, int row);
17 // Display an asterisk at a given position
18 void displayAt(int col, int row)
19 {
20 displayAt('*', col, row);
21 }
22 // Erase whatever character is at a given position
23 void eraseAt(int col, int row)
24 {
25 displayAt(' ', col, row);
26 }
27 };

Contents of Imagemap.cpp
1 #include "ImageMap.h"
2
3 //**
4 // Adds an array of coordinates to the image map *
5 //**
6 void ImageMap::add(COORD coordArray[])
7 {
8 for(int k = 0; coordArray[k].X != -1; k++)
9 {
10 push_back(coordArray[k]);
11 }
12 }
13
14 //***
15 // Allows an array of shorts to be converted to *
16 // an array of COORD. That simplifies the *
17 // initialization process for an image *
18 //***
19 void ImageMap::add(short *coordAsShorts)
20 {
21 COORD *pCoord = reinterpret_cast<COORD *>(coordAsShorts);
22 add(pCoord);
23 }
24
25 //**
26 // Shows an image at a given position. The image is *
27 // is drawn using the character ch *
28 //**
29 void ImageMap::displayAt(char ch, int col, int row)
30 {
31 list<COORD>::iterator iter = this->begin();
32 for (; iter != this->end(); iter++)

Tying It All Together: More on Graphics and Animation

1064 Chapter 17 Linked ListsChapter 17 Linked Lists

33 {
34 COORD currentPos;
35 currentPos.Y = row + iter->Y;
36 currentPos.X = col + iter->X;
37 SetConsoleCursorPosition(console, currentPos);
38 cout << ch << endl;
39 }
40 }

Program 17-11

1 // This program illustrates animation using the
2 // ImageMap class.
3 #include "ImageMap.h"
4
5 int main()
6 {
7 // Figure 1 - a snapshot of a person running
8 ImageMap figure1;
9
10 // Set up the coordinates for the various body parts
11 // of the person in the first running position
12 short int lowerLeg1[] = { 1, 10, 2, 10, 3, 10, -1, -1};
13 short int thigh1[] = { 4, 9, 5, 8, 6, 7, 7, 6, -1, -1};
14 short int thigh2[] = { 6, 7, 7, 8, 8, 9, -1, -1};
15 short int lowerLeg2[] = {8, 10, 8, 11, -1, -1};
16 short int torso[] = { 8, 5, 9, 4, 10, 3, 11, 2, -1, -1};
17 short int upperArms[] = { 7, 2, 8, 3, 9,
18 4, 10, 5, 11, 6, -1, -1
19 };
20 short int foreArm1[] = { 12, 5, 13, 4, -1, -1};
21 short int foreArm2[] = {6, 3, 5, 4, -1, -1};
22 short int * figure1AllParts [] =
23 {
24 lowerLeg1, lowerLeg2, thigh1, thigh2, torso,
25 upperArms, foreArm1, foreArm2, 0
26 };
27 // Add the coordinates that make up the various body
28 // parts to the image map for the first running position
29 int k = 0;
30 for (int k = 0; figure1AllParts[k] != 0; k++)
31 figure1.add(figure1AllParts[k]);
32
33 // Figure 2- a snapshot of the person in a
34 // different running position
35 ImageMap figure2;
36 short int p2LowerLeg1[] = {1, 11, 2, 10, 3, 9, -1, -1};
37 short int p2thigh1[] = {3, 9, 3, 8, 3, 7, -1, -1};
38 short int p2thigh2[] = {4, 7, 5, 7, 6, 7, -1, -1};
39 short int p2LowerLeg2[] = {6, 8, 6, 9, -1, -1};

(program continues)

1065Tying It All Together: More on Graphics and Animation

40 short int p2torso[] = {3, 6, 3, 5, 3, 4, 3, 3,
41 3, 2, 3, 1, -1, -1
42 };
43 short int p2UpperArms[] = {1, 3, 2, 3, 4, 3, 5, 3, -1, -1};
44 short int p2foreArm1[] = { 1, 4, 1, 5, -1, -1};
45 short int p2foreArm2[] = { 5, 2, 5, 1, -1, -1};
46 short int *figure2AllParts[] =
47 {
48 p2LowerLeg1, p2thigh1, p2thigh2, p2LowerLeg2,
49 p2torso, p2UpperArms, p2foreArm1, p2foreArm2, 0
50 };
51 for (int k = 0; figure2AllParts[k] != 0; k++)
52 figure2.add(figure2AllParts[k]);
53
54 // Figure 3- a snapshot of a person in
55 // yet another running position
56 ImageMap figure3;
57 short int p3torso[] = {4, 7, 4, 6, 4, 5, 4, 4,
58 4, 3, 4, 2, 4, 1, -1, -1
59 };
60 short int p3Thigh1[] = {5, 8, 6, 9, -1, -1};
61 short int p3Thigh2[] = {3, 8, 2, 9, -1, -1};
62 short int p3LowerLeg1[] = {6, 10, 6, 11, -1, -1};
63 short int p3LowerLeg2[] = {1, 8, 0, 7, -1, -1};
64 short int p3UpperArm1[] = {3, 4, 2, 5, -1, -1};
65 short int p3UpperArm2[] = {5, 4, 6, 5, -1, -1};
66 short int p3ForeArm1[] = {3, 6, 4, 7, -1, -1};
67 short int p3ForeArm2[] = {7, 4, 8, 3, -1, -1};
68 short int * figure3AllParts[] =
69 {
70 p3torso, p3Thigh1, p3Thigh2, p3LowerLeg1,
71 p3LowerLeg2,p3UpperArm1, p3UpperArm2,
72 p3ForeArm1, p3ForeArm2, 0
73 };
74
75 for (int k = 0; figure3AllParts[k] != 0; k++)
76 figure3.add(figure3AllParts[k]);
77
78 // Ask Microsoft Windows to clear the screen
79 system("cls");
80 // Form an array of all three figures
81 ImageMap *sequence[3] = {&figure1, &figure2, &figure3};
82
83 // Animate to create the appearance of
84 // running across the screen
85 k = 0;
86 int pos = 0;
87 while (pos <= 60)
88 {
89 // Show the current image at the current position
90 sequence[k]->displayAt(pos, 3);
91 Sleep(400);

(program continues)

Program 17-11 (continued)

1066 Chapter 17 Linked ListsChapter 17 Linked Lists

Review Questions and Exercises

Fill-in-the-Blank

1. The __________ points to the first node in a linked list.

2. A data structure that points to an object of the same type as itself is known as a(n)
__________ data structure.

3. To indicate that a linked list is empty, you should set the pointer to its head to the
value __________.

4. __________ a node means adding it to the end of a list.

5. __________ a node means adding it to a list, but not necessarily to the end.

6. __________ a list means traveling through the list.

7. In a(n) __________ list, the last node has a pointer to the first node.

8. In a(n) __________ list, each node has a pointer to the one before it and the one after it.

Algorithm Workbench

9. Using the ListNode structure introduced in this chapter, write a function

void printFirst(ListNode *ptr)

that prints the value stored in the first node of a list passed to it as parameter. The
function should print an error message and terminate the program if the list passed to
it is empty.

10. Write a function

void printSecond(ListNode *ptr)

that prints the value stored in the second node of a list passed to it as parameter.
The function should print an error message and terminate the program if the list
passed to it has less than two nodes.

11. Write a function

double lastValue(ListNode *ptr)

that returns the value stored in the last node of a nonempty list passed to it as param-
eter. The function should print an error message and terminate the program if the list
passed to it is empty.

92 // Erase the current image
93 sequence[k]->eraseAt(pos, 3);
94 // Move to next image in the rotation and next position
95 k = (k+1) % 3;
96 pos = pos + 8;
97 }
98 sequence[k]->displayAt(pos, 3);
99 return 0;
100 }

Program 17-11 (continued)

Review Questions and Exercises 1067

12. Write a function

 ListNode *removeFirst(ListNode *ptr)

that is passed a linked list as parameter, and returns the tail of the list: that is, it
removes the first node and returns what is left. The function should deallocate the
storage of the removed node. The function returns NULL if the list passed to it is
empty.

13. Write a function

 ListNode *ListConcat(ListNode *list1, ListNode *list2)

That concatenates the items in list2 to the end of list1 and returns the resulting
list.

Predict the Output

For each of the following program fragments, predict what the output will be.

14. ListNode *p = new ListNode(56.4);

p = new ListNode(34.2, p);
cout << (*p).value << endl << p->value;

15. ListNode *p = new ListNode(56.4);

p = new ListNode(34.2, p);
ListNode *q = p->next;
cout << q->value;

16. ListNode *p = new ListNode(56.4, new ListNode(31.5));

ListNode *q = p;
while (q->next->next != NULL)
q = q->next;
cout << q->value;

Find the Errors

17. Each of the following member functions for performing an operation on a linked list
of type NumberList has at least one error. Explain what is wrong and how to fix it.

A) NumberList::printList()
{

while(head)
{

cout << head->value;
head = head->next;

}
}

B) NumberList::printList()
{

ListNode *p = head;
while (p->next)
{

cout << p->value;
p = p->next;

}
}

1068 Chapter 17 Linked Lists

C) NumberList::printList()
{

ListNode *p = head;
while(p)
{

cout << p->value;
p++;

}
}

D) NumberList::~NumberList()
{

ListNode *nodePtr, *nextNode;

nodePtr = head;
while (nodePtr != NULL)
{

nextNode = nodePtr->next;
nodePtr->next = NULL;
nodePtr = nextNode;

}
}

Soft Skills

18. You are the leader of a programming team. You want the programmers on your team
to attend a two-day workshop on linked lists, stacks and queues. One of the managers
points out that the STL already supplies each one of those data structures, making it
unnecessary for your programmers to write their own. Write the manager a short
memo that justifies the need for the workshop.

Programming Challenges

1. Simple Linked List Class

Using an appropriate definition of ListNode, design a simple linked list class with only
two member functions and a default constructor:

void add(double x);
boolean isMember(double x);
LinkedList();

The add function adds a new node containing x to the front (head) of the list, while the
isMember function tests to see if the list contains a node with the value x. Test your linked
list class by adding various numbers to the list and then testing for membership.

2. List Copy Constructor

Modify your list class of Programming Challenge 1 to add a copy constructor. Test your
class by making a copy of a list and then testing membership on the copy.

3. List Print

Modify the list class you created in the previous programming challenges to add a print
member function. Test the class by starting with an empty list, adding some elements, and
then printing the resulting list out.

Review Questions and Exercises 1069

4. Recursive Member Check

Modify the list class you created in the previous programming challenges to use a recursive
method to check for list membership. Test your class.

5. List Member Deletion

Modify the list class you created in the previous programming challenges by adding a func-
tion to remove an item from the list, and by adding a destructor:

void remove(double x);
~LinkedList();

Test the class by adding by a sequence of instructions that mixes operations for adding
items, removing items, and printing the list.

6. List Reverse

Modify the list class you created in the previous programming challenges by adding a
member function for reversing the list:

void reverse();

The member function rearranges the nodes in the list so that their order is reversed. You
should do this without creating or destroying nodes.

7. List Search

Modify the list class of Programming Challenge 1 (or later) to include a member function

int search(double x)

that returns the position of a number x on the list. The first node in the list is at position 0,
the second node is at position 1, and so on. If x is not found on the list, the search should
return -1. Test the new member function using an appropriate driver program.

8. Member Insertion By Position

Modify the list class you created in the previous programming challenges by adding a
member function for inserting a new item at a specified position:

void insert(double x, int pos);

A position of 0 means that x will become the first item on the list, a position of 1 means
that x will become the second item on the list, and so on. A position equal to, or greater
than, the length of the list means that the x is placed at the end of the list.

9. Member Removal by Position

Modify the list class you created in the previous programming challenges by adding a
member function for deleting a node at a specified position:

void remove(int pos);

A value of 0 for the position means that the first node on the list (the current head) is
deleted. The function does nothing if the value passed for pos is greater or equal to the
length of the list.

Solving the
Member
Insertion By
Position
Problem

1070 Chapter 17 Linked Lists

10. List Sort

Modify the list class you created in the previous programming challenges by adding a
member function that will sort the list into ascending order by the numeric value of the
item stored in the node.

void sort();

You should sort the list by moving pointers rather than by copying or swapping the con-
tents of the nodes.

11. List Template

Program 17-10 destroys linked lists in two different functions: in the destructor for Num-
berList and in the destroyList method of the ReliableNumberList class. Improve the
program by eliminating this duplication of code.

12. Running Back

Program 17-11 makes a person run from across the screen, starting near the left edge of the
screen and ending near the right edge. Modify the program so that the person turns around
and runs back to the starting point.

1071

C
H

A
P

T
E

R

18 Stacks and Queues

18.1 Introduction to the Stack ADT

CONCEPT: A stack is a data structure that stores and retrieves items in a last-in-first-out
manner.

Definition
Like an array or a linked list, a stack is a data structure that holds a sequence of elements.
Unlike arrays and lists, however, stacks are last-in-first-out (LIFO) structures. This means
that when a program retrieves elements from a stack, the last element inserted into the
stack is the first one retrieved (and likewise, the first element inserted is the last one
retrieved).

TOPICS

18.1 Introduction to the Stack ADT
18.2 Dynamic Stacks
18.3 The STL stack Container
18.4 Introduction to the Queue ADT
18.5 Dynamic Queues

18.6 The STL deque and queue Containers
18.7 Focus on Problem Solving and

Program Design: Eliminating Recursion
18.8 Tying It All Together: Converting Postfix

Expressions to Infix

1072 Chapter 18 Stacks and Queues

When visualizing the way a stack works, think of a stack of plates at the beginning of a
cafeteria line. When a cafeteria worker replenishes the supply of plates, the first one he or
she puts on the stack is the last one taken off. This is illustrated in Figure 18-1.

The LIFO characteristic of a stack of plates in a cafeteria is also the primary characteristic
of a stack data structure. The last data element placed on the stack is the first data
retrieved from the stack.

Applications of Stacks
Stacks are useful data structures for algorithms that work first with the last saved element
of a series. For example, computer systems use stacks while executing programs. When a
function is called, they save the program’s return address on a stack. They also create local
variables on a stack. When the function terminates, the local variables are removed from
the stack and the return address is retrieved. Also, some calculators use a stack for per-
forming mathematical operations.

Static and Dynamic Stacks
There are two types of stack data structure: static and dynamic. Static stacks have a fixed
size and are implemented as arrays. Dynamic stacks grow in size as needed and are
implemented as linked lists. In this section you will see examples of both static and
dynamic stacks.

Stack Operations
A stack has two primary operations: push and pop. The push operation causes a value to
be stored, or pushed onto the stack. For example, suppose we have an empty integer stack
that is capable of holding a maximum of three values. With that stack we execute the fol-
lowing push operations.

push(5);
push(10);
push(15);

Figure 18-2 illustrates the state of the stack after each of these push operations.

Figure 18-1

Last plate in,
first plate out

First plate in,
last plate out

5
4
3
2
1

Introduction to the Stack ADT 1073

The pop operation retrieves (and hence, removes) a value from the stack. Suppose we execute
three consecutive pop operations on the stack shown in Figure 18-2. Figure 18-3 depicts the
results.

As you can see from Figure 18-3, the last pop operation leaves the stack empty.

For a static stack (one with a fixed size), we will need a boolean isFull operation. The isFull
operation returns true if the stack is full, and false otherwise. This operation is necessary to
prevent a stack overflow in the event a push operation is attempted when all the stack’s ele-
ments have values stored in them.

For both static and dynamic stacks we will need a boolean isEmpty operation. The
isEmpty operation returns true when the stack is empty, and false otherwise. This prevents
an error from occurring when a pop operation is attempted on an empty stack.

A Static Stack Class
Now we examine a class IntStack that stores a static stack of integers and performs
the stack operations we have discussed. The class has the member variables described in
Table 18-1.

The class’s member functions are listed in Table 18-2.

Figure 18-2

Figure 18-3

Table 18-1 Members Variables of the Stack Class

Member Variable Description

stackArray A pointer to int. When the constructor is executed, it uses stackArray to
dynamically allocate an array for storage.

capacity An integer that holds the size of the stack. This is the maximum number of
elements the stack can hold, not the number of elements currently in the stack.

top An integer that is used to mark the top of the stack. It specifies the position of
the next item that will be added to the stack.

5

push(5); push(15);push(10);

5

10

5

10

15

5

10

15

pop;

5

10

pop;

5

pop;

1074 Chapter 18 Stacks and Queues

The code for the class is shown here:

In addition to the members of the stack described in Table 18-2, the IntStack class defines
two inner classes named Overflow and Underflow to be used as stack exceptions. Excep-
tions are covered in Chapter 16, but we will briefly explain them here for the benefit of those
who may have skipped that chapter. A section of code is said to cause an exception when, in
the course of execution, it encounters conditions that make it impossible to perform the task
the code was designed to do. In the case of a static stack, an overflow exception occurs dur-
ing a call to push if there is no more room on the stack. Likewise, an underflow exception
occurs in a call to pop if there is nothing on the stack for pop to return.

Code that detects the occurrence of an exception can notify the rest of the program by creat-
ing a value that describes the exception and passing that value to the rest of the program

Table 18-2 Members Functions of the Stack Class

Member Functions Description

Constructor The class constructor accepts an integer argument, which specifies the size of
the stack. An integer array of this size is dynamically allocated and assigned
to stackArray. Also, the variable top is initialized to 0 to indicate that the
stack is currently empty.

push The push function accepts an integer argument, which is pushed onto the
top of the stack.

pop The pop function uses an integer reference parameter. The value at the top of
the stack is removed and copied into the reference parameter.

isEmpty Returns true if the stack is empty, and false otherwise. The stack is empty
when top is set to 0.

NOTE: Even though the constructor dynamically allocates the stack array, it is still
considered a static stack since the size of the stack does not change once it is allocated.

Contents of IntStack.h
1 class IntStack
2 {
3 private:
4 int *stackArray;
5 int capacity;
6 int top;
7 public:
8 IntStack(int capacity); // Constructor
9 ~IntStack() { delete[] stackArray; }
10 void push(int value);
11 void pop(int &value);
12 bool isEmpty();
13
14 // Stack Exceptions
15 class Overflow {};
16 class Underflow {};
17 };

Introduction to the Stack ADT 1075

using a throw statement. For example, the push function announces the occurrence of an
overflow exception by executing the statement

throw InstStack::Overflow();

and the pop function executes the statement

throw IntStack::Underflow();

to notify the program that the underflow exception has occurred. By default, a program ter-
minates with an error message when any part of it throws an exception. This default behavior
can be changed through a process known as catching the exception. You can learn more
about exceptions in Chapter 16.

The IntStack constructor allocates an array of a specified capacity and sets the member
variable top to 0. All stack functions use top in such a way that it always points to the next
available slot in the stack’s array. When top equals capacity, there are no more slots avail-
able to store values, and the next call to push throws an exception. Likewise, when top is
zero, the stack is empty and a call to pop throws an exception. Because there are no provi-
sions in the program to catch either exception, the occurrence of either one will terminate the
program with an error message. Notice that push increments top after adding a value to the
stack, and pop decrements top before returning the value stored at stackArray[top].

Contents of IntStack.cpp
1 #include "intstack.h"
2 //************************************
3 // Constructor *
4 //************************************
5 IntStack::IntStack(int capacity)
6 {
7 this->capacity = capacity;
8 stackArray = new int[capacity];
9 top = 0;
10 }
11
12 //***********************************
13 // Adds a value to the stack *
14 //***********************************
15 void IntStack::push(int value)
16 {
17 if (top == capacity) throw IntStack::Overflow();
18 stackArray[top] = value;
19 top++;
20 }
21
22 //**
23 // Determines whether the stack is empty *
24 //**
25 bool IntStack::isEmpty()
26 {
27 if (top == 0)
28 return true;
29 else
30 return false;
31 }

1076 Chapter 18 Stacks and Queues

Program 18-1 illustrates the stack class and its member functions. Notice that the values
pushed onto the stack come off in reverse order when they are popped.

In Program 18-1, the constructor is called with the argument 5. This sets up the member
variables, as shown in Figure 18-4. Since top is set to 0, the stack is empty.

32
33 //**
34 // Removes a value from the stack and returns it *
35 //**
36 void IntStack::pop(int &value)
37 {
38 if (isEmpty()) throw IntStack::Underflow();
39 top --;
40 value = stackArray[top];
41 }

Program 18-1

1 // This program illustrates the IntStack class.
2 #include "intstack.h"
3 #include <iostream>
4 using namespace std;
5 int main()
6 {
7 IntStack stack(5);
8 int values[] = {5, 10, 15, 20, 25};
9 int value;
10
11 cout << "Pushing...\n";
12 for (int k = 0; k < 5; k++)
13 {
14 cout << values[k] << " ";
15 stack.push(values[k]);
16 }
17 cout << "\nPopping...\n";
18 while (!stack.isEmpty())
19 {
20 stack.pop(value);
21 cout << value << " ";
22 }
23 cout << endl;
24 return 0;
25 }

Program Output
Pushing...
5 10 15 20 25
Popping...
25 20 15 10 5

Introduction to the Stack ADT 1077

Figure 18-5 shows the state of the member variables after the push function is called the
first time (with 5 as its argument). The value of top is now 1.

Figure 18-6 shows the state of the member variables after all five calls to the push function.
Now top has value 5, and the stack is full.

Notice that the pop function uses a reference parameter, value. The value that is popped
off the stack is copied into value so it can be used later in the program. Figure 18-7
depicts the state of the class members and the value parameter, just after the first value is
popped off the stack.

The program continues to call the pop function until all the values have been removed
from the stack.

Figure 18-4

Figure 18-5

Figure 18-6

Figure 18-7

0[4]

[3]

[2]

[1]

[0]

top 5capacity

stackArray

5

1[4]

[3]

[2]

[1]

[0]

top 5capacity

stackArray

25 5[4]

20 [3]

15 [2]

10 [1]

5 [0]

top 5capacity

stackArray

25 4[4]

20 [3]

15 [2]

10 [1]

5 [0]

top25value 5capacity

stackArray

1078 Chapter 18 Stacks and Queues

Handling Stack Exceptions
As you learned in Chapter 16, the C++ try/catch statement can be used to catch and
recover from exceptions, thereby allowing the program to avoid being terminated. The fol-
lowing program shows how a program using the IntStack class can catch the exceptions
that it throws. The program tries to store in the stack more values than the stack can han-
dle, causing push to throw the Overflow exception. The main function catches the excep-
tion and prints an explanatory error message.

There is a significant difference between a stack filling up and a stack becoming empty, and
between the stack overflow and stack underflow exceptions. In stack overflow, a program
has a value to push on a stack, but cannot continue execution because the stack is full.
There is a sense in which overflow is unexpected, because a program does not normally
expect to use up every slot in the stack. On the other hand, programs are usually written to
remove and process all items stored on a stack, so they do expect that the stack will even-
tually become empty. Indeed, most algorithms that use a stack have a loop that continues
to iterate as long as the stack is not empty. This is why a stack always needs an isEmpty

Program 18-2

1 // This program illustrates IntStack exception handling.
2 #include "intstack.h"
3 #include <iostream>
4 using namespace std;
5 int main()
6 {
7 IntStack stack(5);
8 int values[] = {5, 10, 15, 20, 25};
9 int value;
10 try
11 {
12 cout << "Pushing...\n";
13 for (int k = 0; k < 5; k++)
14 {
15 cout << values[k] << " ";
16 stack.push(values[k]);
17 }
18 cout << "\nPushing value after stack is full..";
19 stack.push(30);
20 cout << "\nYou should not see this!!";
21 cout << endl;
22 }
23 catch(IntStack::Overflow)
24 {
25 cout << "\nAn Overflow exception occurred.\n";
26 }
27 return 0;
28 }

Program Output
Pushing...
5 10 15 20 25
Pushing value after stack is full..
An Overflow exception occurred.

Dynamic Stacks 1079

function, but does not need an isFull function. A well-written stack-based algorithm will
normally call isEmpty to make sure the stack is not empty before calling pop.

The difference between overflow and underflow can be summarized as follows. Stack over-
flow in push notifies the caller that the stack has run out of resources, while stack under-
flow notifies the caller of an error in the program’s logic. Unlike overflow, stack underflow
can be avoided by careful programming. Therefore, programs should not use try/catch
to handle underflow. Instead, they should ensure that underflow cannot occur by calling
isEmpty before calling pop.

Stack Templates
The stack classes shown in this chapter work only with integers. A stack template can
be easily designed to work with any data type. This is left as a Programming Challenge for
you to complete.

18.2 Dynamic Stacks

CONCEPT: A stack may be implemented as a linked list, and expand or shrink with
each push or pop operation.

A dynamic stack is built on a linked list instead of on an array. A stack based on a linked
list offers two advantages over a stack based on an array. First, there is no need to specify
the starting size of the stack. A dynamic stack simply starts as an empty linked list, then
expands by one node each time a value is pushed. Second, a dynamic stack will never be
full, as long as the system has enough free memory.

In this section we will look at a dynamic stack class, DynIntStack. This class is a dynamic
version of the IntStack class previously discussed. The class declaration is shown here:

Contents of DynIntStack.h
1 #ifndef DYNINTSTACK_H
2 #define DYNINTSTACK_H
3
4 class DynIntStack
5 {
6 private:
7 class StackNode
8 {
9 friend class DynIntStack;
10 int value;
11 StackNode *next;
12 // Constructor.
13 StackNode(int value1, StackNode *next1 = NULL)
14 {
15 value = value1;
16 next = next1;
17 }
18 };
19 StackNode *top;
20 public:
21 DynIntStack() { top = NULL; }

1080 Chapter 18 Stacks and Queues

The StackNode class is the data type of each node in the linked list. Because it is easy to
add and remove items at the beginning of the list, we make the beginning of the linked list
the top of the stack, and use a pointer top to point to the first node in the list. This pointer
is initialized to NULL by the stack constructor, to signify that the stack is created empty.

The member functions of this stack class are shown here:

22 void push(int);
23 void pop(int &);
24 bool isEmpty();
25 };
26 #endif

Contents of DynIntStack.cpp
1 #include <iostream>
2 #include "DynIntStack.h"
3 using namespace std;
4
5 //**
6 // Member function push pushes the argument onto *
7 // the stack. *
8 //**
9 void DynIntStack::push(int num)
10 {
11 top = new StackNode(num, top);
12 }
13
14 //***
15 // Member function pop removes the value at the top *
16 // of the stack and copies it into the variable *
17 // passed as an argument. *
18 //***
19 void DynIntStack::pop(int &num)
20 {
21 StackNode *temp;
22
23 if (isEmpty())
24 {
25 cout << "The stack is empty.\n";
26 exit(1);
27 }
28 else // Pop value off top of stack
29 {
30 num = top->value;
31 temp = top;
32 top = top->next;
33 delete temp;
34 }
35 }
36
37 //***
38 // Member function isEmpty returns true if the stack *
39 // is empty, or false otherwise. *
40 //***

Dynamic Stacks 1081

The push function is particularly simple. It simply creates a new node whose value is the
number to be pushed on the stack, and whose successor pointer is the node that is currently
the top of the stack, and then makes the newly created node the new top of the stack:

top = new StackNode(num, top);

Note that this works correctly even if the stack was empty previous to the push operation,
because in that case the successor to the new node at the top of the stack will be correctly
set to NULL.

Now let’s look at the pop function. Just as the push function must insert nodes at the head
of the list, pop must delete nodes at the head of the list. First, the function calls isEmpty to
determine whether there are any nodes in the stack. If not, an error message is displayed
and the program is terminated.

if (isEmpty())
{

cout << "The stack is empty.\n";
exit(1);

}

If isEmpty returns false, then the following statements are executed.

else // Pop value off top of stack
{

num = top->value;
temp = top;
top = top->next;
delete temp;

}

First, a copy of the value member of the node at the top of the stack is saved in the num
reference parameter. A temporary pointer temp is then set to point to the node that is to be
deleted, that is, the node currently at the top of the stack. The top pointer is then set to
point to the node after the one that is currently at the top. The same code will set top to
NULL if there are no nodes after the one that is currently at the top of the stack. It is then
safe to delete the top node through the temporary pointer.

Program 18-3 is a driver that demostrates the DynIntStack class.

41 bool DynIntStack::isEmpty()
42 {
43 if (!top)
44 return true;
45 else
46 return false;
47 }

Program 18-3

1 // This program demonstrates the dynamic stack
2 // class DynIntStack.
3 #include <iostream>
4 #include "DynIntStack.h"
5 using namespace std;
6

(program continues)

1082 Chapter 18 Stacks and Queues

18.3 The STL stack Container*

CONCEPT: The Standard Template Library offers a stack template, that may be
implemented as a vector, a list, or a deque.

So far, the STL containers you have learned about are vectors and lists. The STL stack
container may be implemented as a vector or a list. (It may also be implemented as a
deque, which you will learn about later in this chapter.) One class is said to adapt another
class if it provides a new interface for it. The purpose of the new interface is to make it

7 int main()
8 {
9 DynIntStack stack;
10 int catchVar;
11
12 cout << "Pushing 5\n";
13 stack.push(5);
14 cout << "Pushing 10\n";
15 stack.push(10);
16 cout << "Pushing 15\n";
17 stack.push(15);
18
19 cout << "Popping...\n";
20 stack.pop(catchVar);
21 cout << catchVar << endl;
22 stack.pop(catchVar);
23 cout << catchVar << endl;
24 stack.pop(catchVar);
25 cout << catchVar << endl;
26
27 cout << "\nAttempting to pop again... ";
28 stack.pop(catchVar);
29 return 0;
30 }

Program Output
Pushing 5
Pushing 10
Pushing 15
Popping...
15
10
5

Attempting to pop again... The stack is empty.

* This section should be skipped if Chapter 16 has not yet been covered.

Program 18-3 (continued)

The STL stack Container 1083

more convenient to use the class for specialized tasks. Because the stack container is used
to adapt the list, vector, and deque containers, it is often referred to as a container adapter.

Here are examples of how to declare a stack of ints, implemented as a vector, a list,
and a deque.

stack< int, vector<int> > iStack; // Vector stack
stack< int, list<int> > iStack // List stack
stack< int > iStack; // Deque stack (the default)

Table 18-3 lists and describes some of the stack template’s member functions.

Program 18-4 is a driver that demonstrates an STL stack implemented as a vector.

NOTE: Be sure to put spaces between the angled brackets that appear next to each
other. This will prevent the compiler from mistaking >> for the stream extraction
operator, >>.

Table 18-3 STL Stack Member Fiunctions

Member Function Examples and Description

empty if (myStack.empty())
The empty member function returns true if the stack is empty. It returns
false if the stack has elements.

pop myStack.pop();
The pop function removes the element at the top of the stack

push myStack.push(x);
The push function pushes an element with the value x onto the stack.

size cout << myStack.size() << endl;
The size function returns the number of elements currently in the stack.

top x = myStack.top();
The top function returns a reference to the element at the top of the stack.

NOTE: The pop function in the stack template does not retrieve the value from the top
of the stack, it only removes it. To retrieve the value, you must call the top function
first.

Program 18-4

1 // This program demonstrates the STL stack
2 // container adapter.
3 #include <iostream>
4 #include <vector>
5 #include <stack>
6 using namespace std;
7

(program continues)

Storing Objects
in an STL Stack

1084 Chapter 18 Stacks and Queues

Checkpoint

18.1 Describe what LIFO means.

18.2 What is the difference between static and dynamic stacks? What advantages do
dynamic stacks have over static stacks?

18.3 What are the two primary stack operations? Describe them both.

18.4 What STL types does the STL stack container adapt?

18.4 Introduction to the Queue ADT

CONCEPT: A queue is a data structure that stores and retrieves items in a first-in-first-
out manner.

Definition
Like a stack, a queue (pronounced “cue”) is a data structure that holds a sequence of
elements. A queue, however, provides access to its elements in first-in, first-out (FIFO)

8 int main()
9 {
10 stack< int, vector<int> > iStack;
11
12 for (int x = 2; x < 8; x += 2)
13 {
14 cout << "Pushing " << x << endl;
15 iStack.push(x);
16 }
17
18 cout << "The size of the stack is ";
19 cout << iStack.size() << endl;
20
21 // Print items and pop until the stack is empty.
22 while (!iStack.empty())
23 {
24 cout << "Popping " << iStack.top() << endl;
25 iStack.pop();
26 }
27 return 0;
28 }

Program Output
Pushing 2
Pushing 4
Pushing 6
The size of the stack is 3
Popping 6
Popping 4
Popping 2

Program 18-4 (continued)

Introduction to the Queue ADT 1085

order. The elements in a queue are processed like customers standing in a grocery
checkout line: The first customer in line is the first one served.

Application of Queues
Queue data structures are commonly used in computer operating systems. They are espe-
cially important in multiuser/multitasking environments where several users or tasks may
be requesting the same resource simultaneously. Printing, for example, is controlled by a
queue because only one document may be printed at a time. A queue is used to hold print
jobs submitted by users of the system, while the printer services those jobs one at a time.

Communications software also uses queues to hold information received over networks
and dial-up connections. Sometimes information is transmitted to a system faster than it
can be processed, so it is placed in a queue when it is received.

Static and Dynamic Queues
Queues, like stacks, can be implemented as arrays or linked lists. Dynamic queues offer the
same advantages over static queues that dynamic stacks offer over static stacks. In fact, the
primary difference between queues and stacks is the way data elements are accessed in each
structure.

Queue Operations
A queue has a front and a rear like a checkout line in a grocery store. This is illustrated in
Figure 18-8. When an element is added to a queue, it is added to the rear. When an element is
removed from a queue, it is removed from the front. The two primary queue operations are
enqueuing and dequeuing. To enqueue means to insert an element at the rear of a queue,
and to dequeue means to remove an element from the front of a queue. There are several
algorithms for implementing these operations. We will begin by looking at the simplest.

Suppose we have an empty static integer queue that is capable of holding a maximum of
three values. With that queue we execute the following enqueue operations:

enqueue(3);
enqueue(6);
enqueue(9);

Figure 18-9 illustrates the state of the queue after each of these enqueue operations.

Figure 18-8

front rear

1086 Chapter 18 Stacks and Queues

Notice that the front index (which is a variable holding a subscript or perhaps a pointer)
always references the same physical element. The rear index moves in the array as items
are enqueued. Now let’s see how dequeue operations are performed. Figure 18-10 illus-
trates the state of the queue after each of three consecutive dequeue operations.

In the dequeuing operation, the element at the front of the queue is removed. This is done by
moving all the elements after it forward by one position. After the first dequeue operation,
the value 3 is removed from the queue and the value 6 is at the front. After the second
dequeue operation, the value 6 is removed and the value 9 is at the front. Notice that when
only one value is stored in the queue, that value is at both the front and the rear.

When the last dequeue operation is performed in Figure 18-10, the queue is empty. An
empty queue can be signified by setting both front and rear indices to –1.

The problem with this algorithm is its inefficiency. Each time an item is dequeued, the
remaining items in the queue are copied forward to their neighboring element. The more
items there are in the queue, the longer each successive dequeue operation will take.

Here is one way to overcome the problem: Make both the front and rear indices move in
the array. As before, when an item is enqueued, the rear index is moved to make room for
it. But in this design, when an item is dequeued, the front index moves by one element

Figure 18-9

Figure 18-10

3

enqueue(3);
front rear

3 6

enqueue(6);
front rear

front rear

9

enqueue(9);

3 6

6 9

dequeue();
front rear

9

dequeue();
front rear

dequeue();
front = -1 rear = -1

Introduction to the Queue ADT 1087

toward the rear of the queue. This logically removes the front item from the queue and
eleminates the need to copy the remaining items to their neighboring elements.

With this approach, as items are added and removed, the queue gradually “crawls” toward
the end of the array. This is illustrated in Figure 18-11. The shaded squares represent the
queue elements (between the front and rear).

The problem with this approach is that the rear index cannot move beyond the last ele-
ment in the array. The solution is to think of the array as circular instead of linear. When
an item moves past the end of a circular array, it simply wraps around to the beginning.
For example, consider the queue depicted in Figure 18-12.

The value 3 is at the rear of the queue, and the value 7 is at the front of the queue. Now,
suppose an enqueue operation is performed, inserting the value 4 into the queue. Figure
18-13 shows how the rear of the queue wraps around to the beginning of the array.

So, what is the code for wrapping the rear marker around to the opposite end of the array?
One straightforward approach is to use an if statement such as

if (rear == queueSize - 1)
rear = 0;

else
rear++;

Figure 18-11

Figure 18-12

Figure 18-13

5 items have been enqueued.

1 item is dequeued.

3 more items are enqueued.

3 more items are dequeued.

 7 9 6 3

[0] [1] [2] [3] [4] [5] [6] [7] [8]

front rear

4 7 9 6 3

[0] [1] [2] [3] [4] [5] [6] [7] [8]

rear front

1088 Chapter 18 Stacks and Queues

Another approach is with modular arithmetic:

rear = (rear + 1) % queueSize;

This statement uses the % operator to adjust the value in rear to the proper position.
Although this approach appears more elegant, the choice of which code to use is yours.

Detecting Full and Empty Queues with Circular Arrays
In our implementation of a queue using a circular array, we have adopted the convention
that the front and rear indices both reference items that are still in the queue, and that the
front and rear indices will both be set to –1 to indicate an empty queue. To preserve this
convention, the operation for dequeueing an element must set both front and rear to –1
after removing an element from a queue with only one item. The dequeuing operation can
test for a queue with only one item by testing whether front is equal to rear. To avoid
overflowing the queue, the operation for enqueuing must first check that the queue is not
already full before adding another element. We can check to see if the queue is full by test-
ing the expression

(rear + 1) % queueSize == front

to see if it is true.

There is another way for detecting full and empty queues: A counter variable can be used
to keep a count of the number of items currently stored in the queue. With this convention,
the counter is incremented with each enqueue operation and decremented with each
dequeue operation. The queue is empty when the counter is zero, and is full when the
counter equals the size allocated for the queue.

Because it might be helpful to keep a count of items in the queue anyway, we will use the
second method in our implementation. Accordingly, we introduce the variables

int *queueArray;
int queueSize;
int front;
int rear;
int numItems;

with numItems being the counter variable, and queueArray the pointer to a dynamically
allocated array of size queueSize. We adopt the following two conventions:

• rear points to the place in the queue holding the item that was last added to the
queue.

• front points to the place in the queue that used to hold the item that was last
removed from the queue.

Because of the convention on where the rear index is pointing to, the enqueue operation
must first (circularly) move rear one place to the right before adding a new item num:

rear = (rear + 1) % queueSize;
queueArray[rear] = num;
numItems ++;

Similarly, because whatever is at front has already been removed, the dequeue operation
must first move front before retrieving a queue item.

Introduction to the Queue ADT 1089

A Static Queue Class
The declaration of the IntQueue class is as follows:

Notice that in addition to the operations discussed in this section, the class also declares a
member function named clear. This function clears the queue by resetting the front and
rear indices, and setting the numItems member to 0. The member function definitions are
listed here:

Contents of IntQueue.h
1 #ifndef INTQUEUE_H
2 #define INTQUEUE_H
3
4 class IntQueue
5 {
6 private:
7 int *queueArray;
8 int queueSize;
9 int front;
10 int rear;
11 int numItems;
12 public:
13 IntQueue(int);
14 ~IntQueue();
15 void enqueue(int);
16 void dequeue(int &);
17 bool isEmpty();
18 bool isFull();
19 void clear();
20 };
21 #endif

Contents of IntQueue.cpp
1 #include <iostream>
2 #include "IntQueue.h"
3 using namespace std;
4
5 //*************************
6 // Constructor. *
7 //*************************
8 IntQueue::IntQueue(int s)
9 {
10 queueArray = new int[s];
11 queueSize = s;
12 front = -1;
13 rear = -1;
14 numItems = 0;
15 }
16
17 //*************************
18 // Destructor. *
19 //*************************
20 IntQueue::~IntQueue()
21 {
22 delete [] queueArray;
23 }

1090 Chapter 18 Stacks and Queues

24
25 //**
26 // Function enqueue inserts the value in num *
27 // at the rear of the queue. *
28 //**
29 void IntQueue::enqueue(int num)
30 {
31 if (isFull())
32 {
33 cout << "The queue is full.\n";
34 exit(1);
35 }
36 else
37 {
38 // Calculate the new rear position.
39 rear = (rear + 1) % queueSize;
40 // Insert new item.
41 queueArray[rear] = num;
42 // Update item count.
43 numItems++;
44 }
45 }
46
47 //**
48 // Function dequeue removes the value at the *
49 // front of the queue, and copies it into num. *
50 //**
51 void IntQueue::dequeue(int &num)
52 {
53 if (isEmpty())
54 {
55 cout << "The queue is empty.\n";
56 exit(1);
57 }
58 else
59 {
60 // Move front.
61 front = (front + 1) % queueSize;
62 // Retrieve the front item.
63 num = queueArray[front];
64 // Update item count.
65 numItems--;
66 }
67 }
68
69 //***
70 // Function isEmpty returns true if the queue *
71 // is empty, and false otherwise. *
72 //***
73 bool IntQueue::isEmpty()
74 {
75 if (numItems > 0)
76 return false;
77 else
78 return true;
79 }

Introduction to the Queue ADT 1091

Program 18-5 is a driver that demonstrates the IntQueue class.

80
81 //**
82 // Function isFull returns true if the queue *
83 // is full, and false otherwise. *
84 //**
85 bool IntQueue::isFull()
86 {
87 if (numItems < queueSize)
88 return false;
89 else
90 return true;
91 }
92
93 //***
94 // Function clear resets the front and rear *
95 // indices, and sets numItems to 0. *
96 //***
97 void IntQueue::clear()
98 {
99 front = - 1;
100 rear = - 1;
101 numItems = 0;
102 }

Program 18-5

1 // This program demonstrates the IntQueue class
2 #include <iostream>
3 #include "IntQueue.h"
4 using namespace std;
5
6 int main()
7 {
8 IntQueue iQueue(5);
9
10 cout << "Enqueuing 5 items...\n";
11
12 // Enqueue 5 items.
13 for (int k = 1; k <= 5; k++)
14 iQueue.enqueue(k*k);
15
16 // Deqeue and retrieve all items in the queue.
17 cout << "The values in the queue were: ";
18 while (!iQueue.isEmpty())
19 {
20 int value;
21 iQueue.dequeue(value);
22 cout << value << " ";
23 }
24 cout << endl;
25 return 0;
26 }

(program continues)

1092 Chapter 18 Stacks and Queues

Overflow and Underflow Exceptions in a Static Queue
The enqueue and dequeue functions in our queue class terminate the calling program when
they cannot perform the task they are called to do. But terminating the caller is not always the
right thing to do. A better course of action is to throw an exception and allow the caller who is
prepared to handle such an exception to take appropriate action. Upon catching such an excep-
tion, some callers may indeed decide to terminate the program. Other callers, however, may be
able to recover and continue execution. For example, a program that catches a queue overflow
exception might be able to create a bigger queue and switch to the new queue.

A better design for a static queue is to have enqueue and dequeue throw overflow and
underflow exceptions. Having enqueue throw overflow eliminates the need for a public
isFull function because the caller can use a try/catch block to handle queue overflows
if and when they occur. By putting all calls to enqueue within the try block, the caller is
able to put the code to handle an exception thrown by any of those calls in a single place:
the catch block. Without exception handling, every call to enqueue would have to be pre-
ceded by a call to isFull and have code attached to it to recover in the event that isFull
returns true. One of the programming challenges at the end of this chapter asks you to
modify the queue class to use exceptions.

18.5 Dynamic Queues

CONCEPT: A queue may be implemented as a linked list, and expand or shrink with
each enqueue or dequeue operation.

Dynamic queues, which are built around linked lists, are much more intuitive to understand
than static queues. A dynamic queue starts as an empty linked list. With the first enqueue
operation, a node is added, which is pointed to by the front and rear pointers. As each new
item is added to the queue, a new node is added to the rear of the list, and the rear pointer is
updated to point to the new node. As each item is dequeued, front is made to point to the
next mode in the list, and then the node that was previously at the front of the list is deleted.
Figure 18-14 shows the structure of a dynamic queue.

Program Output
Enqueuing 5 items...
The values in the queue were: 1 4 9 16 25

Figure 18-14

Program 18-5 (continued)

front

item 1 item 2 item 3

rear

NULL

Dynamic Queues 1093

A dynamic integer queue class is listed here:

Contents of DynIntQueue.h
1 #ifndef DYNINTQUEUE_H
2 #define DYNINTQUEUE_H
3
4 class DynIntQueue
5 {
6 private:
7 class QueueNode
8 {
9 friend class DynIntQueue;
10 int value;
11 QueueNode *next;
12 QueueNode(int value1, QueueNode *next1 = NULL)
13 {
14 value = value1;
15 next = next1;
16 }
17 };
18 // These track the front and rear of the queue.
19 QueueNode *front;
20 QueueNode *rear;
21 public:
22 // Constructor and Destructor.
23 DynIntQueue();
24 ~DynIntQueue();
25
26 // Member functions.
27 void enqueue(int);
28 void dequeue(int &);
29 bool isEmpty();
30 void clear();
31 };
32 #endif

Contents of DynIntQueue.cpp
1 #include <iostream>
2 #include "DynIntQueue.h"
3 using namespace std;
4
5 //************************
6 // Constructor. *
7 //************************
8 DynIntQueue::DynIntQueue()
9 {
10 front = NULL;
11 rear = NULL;
12 }
13
14 //************************
15 // Destructor. *
16 //************************

1094 Chapter 18 Stacks and Queues

17 DynIntQueue::~DynIntQueue()
18 {
19 clear();
20 }
21
22 //**
23 // Function enqueue inserts the value in num *
24 // at the rear of the queue. *
25 //**
26 void DynIntQueue::enqueue(int num)
27 {
28 if (isEmpty())
29 {
30 front = new QueueNode(num);
31 rear = front;
32 }
33 else
34 {
35 rear->next = new QueueNode(num);
36 rear = rear->next;
37 }
38 }
39
40 //**
41 // Function dequeue removes the value at the *
42 // front of the queue, and copies it into num. *
43 //**
44 void DynIntQueue::dequeue(int &num)
45 {
46 QueueNode *temp;
47 if (isEmpty())
48 {
49 cout << "The queue is empty.\n";
50 exit(1);
51 }
52 else
53 {
54 num = front->value;
55 temp = front;
56 front = front->next;
57 delete temp;
58 }
59 }
60
61 //***
62 // Function isEmpty returns true if the queue *
63 // is empty, and false otherwise. *
64 //***
65 bool DynIntQueue::isEmpty()
66 {
67 if (front == NULL)
68 return true;
69 else
70 return false;
71 }
72

Dynamic Queues 1095

Program 18-6 is a driver that demonstrates the DynIntQueue class.

73 //**
74 // Function clear dequeues all the elements *
75 // in the queue. *
76 //**
77 void DynIntQueue::clear()
78 {
79 int value; // Dummy variable for dequeue
80
81 while(!isEmpty())
82 dequeue(value);
83 }

Program 18-6

1 // This program demonstrates the DynIntQeue class.
2 #include <iostream>
3 #include "DynIntQueue.h"
4 using namespace std;
5
6 int main()
7 {
8 DynIntQueue iQueue;
9
10 cout << "Enqueuing 5 items...\n";
11
12 // Enqueue 5 items.
13 for (int k = 1; k < = 5; k++)
14 iQueue.enqueue(k*k);
15
16 // Dequeue and retrieve all items in the queue.
17 cout << "The values in the queue were:\n";
18 while (!iQueue.isEmpty())
19 {
20 int value;
21 iQueue.dequeue(value);
22 cout << value << " ";
23 }
24 return 0;
25 }

Program Ouput
 Enqueuing 5 items...
 The values in the queue were:
 1 4 9 16 25

1096 Chapter 18 Stacks and Queues

18.6 The STL deque and queue Containers*

CONCEPT: The Standard Template Library provides two containers, deque and
queue, for implementing queue-like data structures.

In this section we will examine two ADTs offered by the Standard Template Library:
deque and queue. A deque (pronounced “deck” or “deek”) is a double-ended queue. It
similar to a vector, but allows efficient access to values at both the front and the rear. The
queue ADT is like the stack ADT: It is actually a container adapter.

The deque Container
Think of the deque container as a vector that provides quick access to the element at its
front as well as at the back. (Like vector, deque also provides access to its elements with the
[] operator.)

Programs that use the deque ADT must include the deque header. Since we are concentrating
on its queue-like characteristics, we will focus our attention on the push_back, pop_front,
and front member functions. Table 18-4 describes them.

Program 18-7 demonstrates the deque container.

* Note: This section should be skipped if Chapter 16 has not yet been covered.

Table 18-4 deque Member Functions

Member Function Examples and Description

push_back iDeque.push_back(7);
Accepts as an argument a value to be inserted into the deque. The argument is
inserted after the last element (pushed onto the back of the deque).

pop_front iDeque.pop_front();
Removes the first element of the deque and discards it.

front cout << iDeque.front() << endl;
front returns a reference to the first element of the deque.

Program 18-7

1 // This program demonstrates the STL deque
2 // container.
3 #include <iostream>
4 #include <deque>
5 using namespace std;
6

(program continues)

The STL deque and queue Containers 1097

The queue Container Adapter
The queue container adapter can be built upon vectors, lists, or deques. By default, it uses
a deque as its base.

The insertion and removal operations supported by queue are similar to those supported
by the stack ADT: push, pop, and front. There are differences in their behavior, however.
The queue version of push always inserts an element at the rear of the queue. The queue
version of pop always removes an element from the structure’s front. The front function
returns the value of the element at the front of the queue.

Program 18-8 demonstrates a queue. Since the declaration of the queue does not specify
which type of container is being adapted, the queue will be built on a deque.

7 int main()
8 {
9 deque<int> iDeque;
10
11 cout << "I will now enqueue items...\n";
12 for (int x = 2; x < 8; x += 2)
13 {
14 cout << "Pushing " << x << endl;
15 iDeque.push_back(x);
16 }
17
18 cout << "I will now dequeue items...\n";
19 while (!iDeque.empty())
20 {
21 cout << "Popping " << iDeque.front() << endl;
22 iDeque.pop_front();
23 }
24 return 0;
25 }

Program Output
I will now enqueue items...
Pushing 2
Pushing 4
Pushing 6
I will now dequeue items...
Popping 2
Popping 4
Popping 6

Program 18-8

1 // This program demonstrates the STL queue
2 // container adapter.
3 #include <iostream>
4 #include <queue>
5 using namespace std;
6

(program continues)

Program 18-7 (continued)

Storing Objects
in an STL
Queue

1098 Chapter 18 Stacks and Queues

18.7 Focus on Problem Solving and Program Design:
Eliminating Recursion
Although recursion is a very useful programming technique, it carries the overhead of
the necessity to make numerous function calls during the process of solving the problem.
The efficiency of a recursive solution can often be greatly improved by reformulating a
recursive algorithm to eliminate the recursion. In this section, we look at how a stack can
be used to eliminate recursion from the Quicksort algorithm.

The main problem in Quicksort is that of sorting a range, or a segment of an array arr,
between two indices start and end. Naturally, this has to be done only if start is less
than end. As learned in Chapter 14, this is accomplished by calling a procedure partition,
which determines an integer pivot such that

1. All array items in the segment to the left of the pivot are less than the element at the
pivot: that is,

arr[k] < arr[pivot] for all k in the range start .. pivot-1

2. All array items in the segment to the right of the pivot are greater than or equal to
the element at the pivot: that is,

arr[k] >= arr[pivot] for all k in the range pivot+1..end

7 int main()
8 {
9 queue<int> iQueue;
10
11 cout << "I will now enqueue items...\n";
12 for (int x = 2; x < 8; x += 2)
13 {
14 cout << "Pushing " << x << endl;
15 iQueue.push(x);
16 }
17 cout << "I will now dequeue items...\n";
18 while(!iQueue.empty())
19 {
20 cout << "Popping " << iQueue.front() << endl;
21 iQueue.pop();
22 }
23 return 0;
24 }

Program Output
I will now enqueue items...
Pushing 2
Pushing 4
Pushing 6
I will now dequeue items...
Popping 2
Popping 4
Popping 6

Program 18-8 (continued)

1099

Once this is done, the array item at the pivot is in its sorted position. Thus an important
effect of the partition procedure is that it gets the pivot element in its final sorted posi-
tion. By keeping track of the left and right subranges when we call partition, and then
later calling partition on those subranges, we can sort the entire array without using
recursion. We need to keep track of these subranges, and eventually partition them in the
order in which the recursive calls to Quicksort would have done them. Because the recur-
sive calls to Quicksort are invoked and return in LIFO (last-in-first-out) order, we use a
stack to keep track of the ranges that are waiting to be partitioned.

The main idea of our solution is to define a class

class Range
{

int start;
int end;

public:
Range(int s, int e)
{

start = s;
end = e;

}
};

to keep track of the ranges of the array that remain to be partitioned. Accordingly, we use
the STL stack class to define a stack of these ranges:

stack<Range> qStack;

We then use a function qSort(int arr[], int size) that sorts the array arr by initially
pushing the range from 0 to size-1 onto the stack, and then repeatedly removing ranges
from the stack, partitioning the range, and putting the left and right subrange back onto the
stack. Empty subranges removed from the stack are discarded. The algorithm is

push Range(0, size-1) onto stack
While stack not empty

pop a range r from the stack
If r is not empty

partition the range r into two smaller ranges about the pivot
push the two smaller ranges onto the stack

End if
End While

The complete solution, which reuses the partition function from Chapter 14, is given in
Program 18-9. Notice that we declare the qSort function to be a friend of Range, to allow
access to the private members of Range.

NOTE: The statement qStack.push(Range(0, size-1)); creates a Range object by
invoking the constructor. The Range object is then pushed onto the stack.

Focus on Problem Solving and Program Design: Eliminating Recursion

1100 Chapter 18 Stacks and Queues

Program 18-9

1 // This program illustrates the use of a stack to
2 // implement a nonrecursive quicksort.
3 #include <stack>
4 #include <iostream>
5 #include <fstream>
6 #include <algorithm> // needed for swap
7 using namespace std;
8
9 // Function prototypes.
10 void qSort(int a[], int size);
11 void outputArray(int a[], int size);
12 int partition(int a[], int, int);
13
14 // Range is used to indicate a segment
15 // of an array that is still to be sorted.
16 class Range
17 {
18 // Make qSort a friend.
19 friend void qSort(int a[], int);
20 int start;
21 int end;
22 public:
23 Range(int s, int e)
24 {
25 start = s;
26 end = e;
27 }
28 };
29
30 const int MAX = 100;
31 int main()
32 {
33 ifstream inputFile;
34 string filename = "sort.dat" ;
35 int array[MAX];
36 int size;
37 inputFile.open(filename.data());
38 if (!inputFile)
39 {
40 cout << "The file " << filename << " cannot be "
41 << "opened .";
42 exit(1);
43 }
44
45 // Read the file and count the number of items in the
46 // file. Take care not to overrun the array.
47 size = 0;
48 while (inputFile >> array[size])
49 {
50 size ++;
51 if (size == MAX)
52 break;
53 }

(program continues)

1101

54 // Echo the inputted array.
55 cout << "The original array is :" << endl;
56 outputArray(array, size);
57
58 // Perform the sort and output the result.
59 qSort(array, size);
60 cout << "The sorted array is: " << endl;
61 outputArray(array, size);
62 return 0;
63 }
64
65 //***
66 // qSort performs a nonrecursive quicksort *
67 // on the array a[] of the given size *
68 //***
69 void qSort(int arr[], int size)
70 {
71 // qStack holds segments of the array that have not
72 // yet been sorted.
73 stack<Range> qStack;
74 int pivot, start, end;
75
76 qStack.push(Range(0, size-1));
77 // As long as there is a range waiting to be sorted,
78 // take it off the stack, partition it, and then
79 // put the resulting two smaller ranges onto the stack.
80
81 while (!qStack.empty())
82 {
83 Range currentRange = qStack.top();
84 qStack.pop();
85
86 // Get the endpoints of the current Range
87 // and partition it.
88
89 start = currentRange.start;
90 end = currentRange.end;
91 if (start < end)
92 {
93 pivot = partition(arr, start, end);
94 // Store the resulting smaller ranges for later
95 // processing.
96 qStack.push(Range(start, pivot-1));
97 qStack.push(Range(pivot + 1, end));
98 }
99 }
100 }
101
102 //***
103 // partition rearranges the entries in the array arr from *
104 // start to end so all values greater than or equal to the *
105 // pivot are on the right of the pivot and all values less *
106 // than are on the left of the pivot. *
107 //***

(program continues)

Program 18-9 (continued)

Focus on Problem Solving and Program Design: Eliminating Recursion

1102 Chapter 18 Stacks and Queues

108 int partition(int arr[], int start, int end)
109 {
110 // The pivot element is taken to be the element at
111 // the start of the subrange to be partitioned.
112 int pivotValue = arr[start];
113 int pivotPosition = start;
114
115 // Rearrange the rest of the array elements to
116 // partition the subrange from start to end.
117 for (int pos = start + 1; pos <= end; pos++)
118 {
119 if (arr[pos] < pivotValue)
120 {
121 // arr[scan] is the "current" item.
122 // Swap the current item with the item to the
123 // right of the pivot element.
124 swap(arr[pivotPosition + 1], arr[pos]);
125 // Swap the current item with the pivot element.
126 swap(arr[pivotPosition], arr[pivotPosition + 1]);
127 // Adjust the pivot position so it stays with the
128 // pivot element.
129 pivotPosition ++;
130 }
131 }
132 return pivotPosition;
133 }
134
135 //**
136 // Output an array's elements. *
137 //**
138 void outputArray(int arr[], int size)
139 {
140 for (int k = 0; k < size; k++)
141 cout << arr[k] << " ";
142 cout << endl;
143 }

Program Output
The original array is :
34 -45 78 32 90 45
The sorted array is:
-45 32 34 45 78 90

NOTE: The friend concept should be used with caution, since it circumvents the
protection afforded the members of the class by declaring them private. Notice that in
our case, the start and end members of the Range class are never modified by the
friend function qSort.

Program 18-9 (continued)

1103Tying It All Together: Converting Postfix Expressions to Infix

18.8 Tying It All Together: Converting Postfix
Expressions to Infix

Stacks can be used to evaluate postfix expressions. Let’s see how this can be done. We
confine ourselves to postfix expressions that contain only numbers and the binary opera-
tors +, -, *, and /.

Recall from Chapter 14 that a postfix expression is either a single number or two postfix
expressions followed by an operator. Evaluation of a single-number postfix expression is easy:
we just return the number. For the nonsimple case, we must evaluate the two postfix expres-
sions in order and save their values. Then, when we come to the operator, we retrieve the two
previously saved values and apply the operator.

To see how the method works consider the example

2 5 -

Because 2 and 5 are single-number postfix expressions, we simply save their values for later
use. Then, when we encounter the minus operator, we retrieve the two saved values and apply
the operator, yielding -3 as the value of the entire expression. In general, any postfix expression
can be evaluated by reading it in left to right order. Whenever a value is encountered, it is
pushed onto the stack to await application by an operator at a later stage. Whenever an opera-
tor is encountered, its two operands are popped off the stack, and the operator is applied to
them to yield a value. This value is in turn pushed onto the stack. The procedure ends when all
of the input expression has been read. At that time, there should be only one value on the stack.
The value on the stack is the value of the postfix expression.

This same idea can be used to convert postfix expressions to infix. Again, we read the input
postfix expression from left to right. This time, though, we use a stack of strings instead of a
stack of integer. Any number that is read must be an operand: it is converted to a string and
pushed onto the stack. If an operator is encountered, the two strings at the top of the stack are
popped and the operator is placed between them. Parentheses are then placed around the
resulting string, and the parenthesized string is pushed back onto the stack. Thus, for example,
the above input postfix expression would result on the following sequence of pushes of strings
onto the stack:

"2"

"2" "5"

"(2 – 5)"

These ideas are used in Program 18–10, which follows.

Program 18-10

1 // This program converts postfix expressions to infix.
2 #include <string>
3 #include <iostream>
4 #include <sstream>

(program continues)

1104 Chapter 18 Stacks and QueuesChapter 18 Stacks and Queues

5 #include <stack>
6
7 using namespace std;
8
9 string postfixExpr(istream & inputStream);
10
11 int main()
12 {
13 string input;
14 cout << "Enter a postfix expression to convert to infix,"
15 << " \nor a blank line to quit the program:";
16 getline(cin, input);
17 while (input.size() != 0)
18 {
19 // Convert string to a string stream
20 istringstream inputExpr(input);
21 cout << "The infix equivalent is "
22 << postfixExpr(inputExpr) << endl;
23 cout << "Enter a postfix expression to evaluate: ";
24 getline(cin, input);
25 }
26 return 0;
27 }
28
29 //***
30 // Takes an istream that contains a single postfix expression p *
31 // and returns a string representing the infix equivalent of p *
32 //***
33 string postfixExpr(istream & in)
34 {
35 // Holds intermediate values in computation
36 stack<string> infixStack;
37 // Used to read characters in the expression
38 char ch;
39 // Used to read numbers in the expression
40 int number;
41 // Used to remove infix expressions from the stack
42 string lExpr, rExpr;
43
44 ch = in.peek();
45 while (ch != EOF)
46 {
47 // If we have a whitespace character skip it and
48 // continue with the next iteration of this loop
49 if (isspace(ch))
50 {
51 ch = in.get();
52 ch = in.peek();
53 continue; // Go back to top of loop
54 }

(program continues)

Program 18-10 (continued)

Tying It All Together: Converting Postfix Expressions to Infix 1105Tying It All Together: Converting Postfix Expressions to Infix

55 // Nonspace character is next in input stream
56 // If the next character is a number, read it, convert
57 // to string, and push the string onto the infix stack
58 if (isdigit(ch))
59 {
60 in >> number;
61 // Use to convert number to string
62 ostringstream numberStr;
63 // Convert number to string using stream
64 numberStr << number;
65 // Push the string representing the expression onto the stack
66 infixStack.push(numberStr.str());
67 ch = in.peek();
68 continue;
69 }
70 // If the next character is an operator,
71 // pop the two top infix expresssions stored on the
72 // stack, put the operator between the two infix expressions,
73 // and then push the result on the stack
74
75 rExpr = infixStack.top();
76 infixStack.pop();
77 lExpr = infixStack.top();
78 infixStack.pop();
79 if (ch == '+' || ch == '-' || + ch == '*' || ch == '/')
80 infixStack.push("(" + lExpr + " " + ch + " " + rExpr + ")");
81 else
82 {
83 cout << "Error in the input expression" << endl;
84 exit(1);
85 }
86 ch = in.get(); // Actually read the operator character
87 ch = in.peek(); // Prepare for the next iteration of the loop
88 }
89 return infixStack.top();
90 }

Program Output with Example Input Shown in Bold
Enter a postfix expression to convert to infix,
or a blank line to quit the program: 56
The infix equivalent is 56
Enter a postfix expression to evaluate: 56 2 +
The infix equivalent is (56 + 2)
Enter a postfix expression to evaluate: 56 2 + 12 9 - *
The infix equivalent is ((56 + 2) * (12 - 9))
Enter a postfix expression to evaluate: [Enter]

Program 18-10 (continued)

1106 Chapter 18 Stacks and Queues

Review Questions and Exercises

Short Answer

1. What does LIFO mean?

2. What element is retrieved from a stack by the pop operation?

3. What is the difference between a static stack and a dynamic stack?

4. Describe two operations that all stacks perform.

5. The STL stack is considered a container adapter. What does that mean?

6. What types may the STL stack be based on? By default, what type is an STL stack
based on?

7. What does FIFO mean?

8. When an element is added to a queue, where is it added?

9. When an element is removed from a queue, where is it removed from?

10. Describe two operations that all queues perform.

11. What two queue-like containers does the STL offer?

12. Suppose the following operations were performed on an empty stack:

 push(0);
 push(9);
 push(12);
 push(1);

Insert numbers in the following diagram to show what will be stored in the static
stack after the operations have executed.

13. Suppose the following operations were performed on an empty stack:

 push(8);
 push(7);
 pop();
 push(19);
 push(21);
 pop();

top of stack

bottom of stack

Review Questions and Exercises 1107

Insert numbers in the following diagram to show what will be stored in the static
stack after the operations have executed.

14. Suppose the following operations are performed on an empty queue:

 enqueue(5);
 enqueue(7);
 enqueue(9);
 enqueue(12);

Insert numbers in the following diagram to show what will be stored in the static
queue after the operations have executed.

15. Suppose the following operations are performed on an empty queue:

 enqueue(5);
 enqueue(7);
 dequeue();
 enqueue(9);
 enqueue(12);
 dequeue();
 enqueue(10);

Insert numbers in the following diagram to show what will be stored in the static
queue after the operations have executed.

16. What problem is overcome by using a circular array for a static queue?

Algorithm Workbench

17. Give pseudocode that implements a queue using two stacks. The queue operations
enqueue, dequeue, and empty must be implemented in terms of the push, pop, and
empty stack operations.

top of stack

bottom of stack

front rear

front rear

1108 Chapter 18 Stacks and Queues

Soft Skills

18. A common real-life example used to explain stacks is the stack of plates in a cafeteria.
Find at least two other real-life examples in which items are added and removed from
a container in last-in-first-out order, and use these examples to explain the concept of
a stack.

Programming Challenges

1. Static Stack Template

In this chapter you studied IntStack, a class that implements a static stack of integers.
Write a template that will create a static stack of any data type. Demonstrate the class with
a driver program.

2. Dynamic Stack Template

In this chapter you studied DynIntStack, a class that implements a dynamic stack of
integers. Write a template that will create a dynamic stack of any data type. Demonstrate
the class with a driver program.

3. Static Queue Template

In this chapter you studied IntQueue, a class that implements a static queue of integers.
Write a template that will create a static queue of any data type. Demonstrate the class
with a driver program.

4. Dynamic Queue Template

In this chapter you studied DynIntQueue, a class that implements a dynamic queue of inte-
gers. Write a template that will create a dynamic queue of any data type. Demonstrate the
class with a driver program.

5. Error Testing

The DynIntStack and DynIntQueue classes shown in this chapter are abstract data types
using a dynamic stack and dynamic queue, respectively. The classes do not currently test
for memory allocaton errors. Modify the classes so they determine if new nodes cannot be
created, and handle the error condition in an appropriate way. (You will need to catch the
predefined exception bad_alloc.)

6. Dynamic String Queue

Design a class that stores strings on a dynamic queue. The strings should not be fixed in
length. Demonstrate the class with a driver program.

NOTE: If you have already done Programming Challenges 2 and 4, modify the
templates you created.

Review Questions and Exercises 1109

7. Queue Exceptions

Modify the static queue class used in Program 18-5 as follows.

1. Make the isFull member private.

2. Define a queue overflow exception and modify enqueue so that it throws this excep-
tion when the queue runs out of space.

3. Define a queue underflow exception and modify dequeue so that it throws this excep-
tion when the queue is empty.

4. Rewrite the main program so that it catches overflow exceptions when they occur.
The exception handler for queue overflow should print an appropriate error message
and then terminate the program.

8. Evaluating Postfix Expressions

Write a program that reads postfix expressions and prints their values. Each input
expression should be entered on its own line, and the program should terminate when
the user enters a blank line.

Assume only binary operators, and that the expressions contain no variables. Note that
you will need to use parentheses to indicate the order of application of the operators in
the expression. Here are sample input–output pairs:

78 78

78 6 + 84

78 6 + 9 2 - / 12

9. File Reverser

Write a program that opens a text file and reads its contents into a stack of characters. The
program should then pop the characters from the stack and save them in a second text file.
The order of the characters saved in the second file should be the reverse of their order in
the first file.

10. Balanced Parentheses

A string of characters has balanced parentheses if each right parentheses occurring in the
string is matched with a preceding left parentheses in the same way each right brace in a
C++ program is matched with a preceding left brace. Write a program that uses a stack to
determine whether a string entered at the keyboard has balanced parentheses.

11. Balanced Multiple Delimiters

A string may use more than one type of delimiter to bracket information into “blocks.”
For example, A string may use braces { }, parentheses (), and brackets [] as delimiters. A
string is properly delimited if each right delimiter is matched with a preceding left delimiter
of the same type in such a way that the either the resulting blocks of information are dis-
joint, or one of them is completely nested within the other. Write a program that uses a sin-
gle stack to check whether a string containing braces, parentheses, and brackets is properly
delimited.

Solving the
File Reverser
Problem

1110 Chapter 18 Stacks and Queues

12. Inventory Bin Stack

Design an inventory class that stores the following members.

serialNum: an integer that holds a part’s serial number
manufactDate: a member that holds the date the part was manufactured
lotNum: an integer that holds the part’s lot number

The class should have appropriate member functions for storing data into, and retrieving
data from, these members.

Next, design a stack class that can hold objects of the class. If you wish, you may use the
template you designed in Programming Challenge 1 or 2.

Last, design a program that uses the stack class. The program should have a loop that asks
the user whether he or she wishes to add a part to inventory or take a part from inventory.
The loop should repeat until the user is finished.

If the user wishes to add a part to inventory, the program should ask for the serial number,
date of manufacture, and lot number. The information should be stored in an inventory
object and pushed onto the stack.

If the user wishes to take a part from inventory, the program should pop the topmost part
from the stack and display the contents of its member variables.

When the user finishes, the program should display the contents of the member values of
all the objects that remain on the stack

13. Inventory Bin Queue
Modify the program you wrote for Programming Challenge 12 so it uses a queue instead of a
stack. Compare the order in which the parts are removed from the bin for each program.

1111

C
H

A
P

T
E

R

19 Binary Trees

19.1 Definition and Applications of Binary Trees

CONCEPT: Binary trees differ from linked lists in that where a node in a linked list
may have at most one successor, a node in a binary tree can have up to
two successors.

A binary tree is a collection of nodes in which each node is associated with up to two suc-
cessor nodes, respectively called the left and right child. Not every node in the binary tree
will have two children: one or both nodes may be omitted. A node in a binary tree that has
no children is called a leaf node.

A node that has children is said to be the parent of its children. For a nonempty collection
of nodes to qualify as a binary tree, every node must have at most one parent, and there
must be exactly one node with no parent. The one node that has no parent is called the
root of the binary tree. An empty collection of nodes is regarded as constituting an empty
binary tree.

There is some similarity between a linked list and a binary tree. The root of a binary tree
corresponds to the head of a list, a child of a binary tree node corresponds to a successor
node in a list, and the parent of a binary tree node corresponds to the predecessor of a
node in the list. And of course, the analog of the empty list is the empty binary tree.

TOPICS

19.1 Definition and Applications of
Binary Trees

19.2 Binary Search Tree Operations

19.3 Template Considerations for
Binary Search Trees

19.4 Tying It All Together: Genealogy Trees

1112 Chapter 19 Binary Trees

Implementation of Binary Trees
Binary trees are used to store values in their nodes. A node in a binary tree will therefore be
a structure or class object that contains a member for storing the value, as well as two
members that point to nodes that are the left and right children of that node:

struct TreeNode
{

int value;
TreeNode *left;
TreeNode *right;

};

A binary tree is itself represented by a pointer to the node that is the root of the tree. An
example binary tree, with the values stored in the nodes not shown, is illustrated in
Figure 19-1. The left or right pointer in a node is set to NULL if that node does not pos-
sess the corresponding child.

Binary trees are called trees because they resemble an upside-down tree. Any nonempty
tree can be partitioned into its root node, its left subtree, and its right subtree. Intuitively, a
subtree is an entire branch of the tree, from one particular node down. Figure 19-2 shows
the left subtree of the binary tree shown in Figure 19-1.

Applications of Binary Trees
Searching any linear data structure, such as an array or a standard linked list, is slow when
the structure holds a large amount of information. This is because of the sequential nature
of linear data structures. Binary trees and their generalizations are excellent data structures
for searching large amounts of information. They are commonly used in database applica-
tions to organize key values that index database records. When used to facilitate searches,

Figure 19-1

root
pointer

left right

left right

left right left right

left right

NULLNULL

NULL NULL NULL NULL

Definition and Applications of Binary Trees 1113

a binary tree is called a binary search tree. Binary search trees are the primary focus of this
chapter.

Information is stored in binary search trees in a way that makes searching for information
in the tree simple. For example, look at Figure 19-3.

Figure 19-2

Figure 19-3

root
Pointer

left right

left right

left right left right

left right

NULLNULL

NULL NULL NULL NULL

Left Subtree

root
Pointer

left right

left right

left right left right

left right

NULLNULL

NULL NULL NULL NULL

M

F R

PB

1114 Chapter 19 Binary Trees

The figure depicts a binary search tree where each node stores a letter of the alphabet.
Notice that the root node holds the letter M. The left child of the root node holds the letter
F, and the right child holds R. Values are stored in a binary search tree so that a node’s left
child holds data whose value is less than the node’s data, and the node’s right child holds
data whose value is greater than the node’s data. This is true for all nodes in the tree that
have children.

In fact, in a binary search tree, all the nodes to the left of a node hold values less than the
node’s value. Likewise, all the nodes to the right of a node hold values that are greater than
the node’s data. When an application is searching a binary search tree, it starts at the root
node. If the root node does not hold the search value, the application branches either to the
left or right child, depending on whether the search value is less than or greater than the
value at the root node. This process continues until the value is found or it is determined
that the search value is not in the tree. Figure 19-4 illustrates the search pattern for finding
the letter P in the binary tree shown.

This manner of searching a binary tree is reminiscent of the binary search technique that is
used on sorted arrays. Assuming that the binary tree is balanced (meaning that at each
node, the left and right subtrees have approximately the same number of nodes), the search
will reduce the size of the tree remaining to be searched by one half at each step. This
makes it possible to search trees with very large amounts of information in a relatively
small number of steps.

Checkpoint

19.1 Describe the difference between a binary tree and a linked list.

19.2 What is a root node?

19.3 What is a child node?

Figure 19-4

root
pointer

left right

left right

left right left right

left right

NULLNULL

NULL NULL NULL NULL

M

F R

PB

1

2

3

Binary Search Tree Operations 1115

19.4 What is a leaf node?

19.5 What is a subtree?

19.6 Why are binary trees suitable for algorithms that must search large amounts
of information?

19.2 Binary Search Tree Operations

CONCEPT: There are many operations that may be performed on a binary search
tree, including creating a binary search tree, inserting, finding, and
deleting nodes.

In this section you will learn some basic operations that may be performed on a binary
search tree. We will study a simple class that implements a binary tree for storing integer
values.

Creating a Binary Search Tree
We will demonstrate the fundamental binary tree operations using a simple ADT: the
IntBinaryTree class. The basis of our binary tree node is the following class declaration:

class TreeNode
{

friend class IntBinaryTree;
int value;
TreeNode *left;
TreeNode *right;
TreeNode(int value1,

 TreeNode *left1 = NULL,
 TreeNode *right1 = NULL
)

{
value = value1;
left = left1;
right = right1;

}
};

Notice that each node of the tree has a value member, as well as two pointers to keep
track of the left and right children of the node. The class will only be used by methods of
IntBinaryTree, which is declared a friend of TreeNode to allow it access to all of the
members of TreeNode.

The entire IntBinaryTree class follows:

Contents of IntBinaryTree.h
1 #ifndef INTBINARYTREE_H
2 #define INTBINARYTREE_H
3
4 class IntBinaryTree
5 {

1116 Chapter 19 Binary Trees

6 private:
7 // The TreeNode class is used to build the tree.
8 class TreeNode
9 {
10 friend class IntBinaryTree;
11 int value;
12 TreeNode *left;
13 TreeNode *right;
14 TreeNode(int value1, TreeNode *left1 = NULL,
15 TreeNode *right1 = NULL)
16 {
17 value = value1;
18 left = left1;
19 right = right1;
20 }
21 };
22
23 TreeNode *root; // Pointer to the root of the tree
24
25 // Various helper member functions.
26 void insert(TreeNode *&, int);
27 void destroySubtree(TreeNode *);
28 void remove(TreeNode *&, int);
29 void makeDeletion(TreeNode *&);
30 void displayInOrder(TreeNode *);
31 void displayPreOrder(TreeNode *);
32 void displayPostOrder(TreeNode *);
33
34 public:
35 // These member functions are the public interface.
36 IntBinaryTree() // Constructor
37 { root = NULL; }
38 ~IntBinaryTree() // Destructor
39 { destroySubtree(root); }
40 void insert(int num)
41 { insert(root, num); }
42 bool search(int);
43 void remove(int num)
44 { remove(root, num);}
45 void showInOrder(void)
46 { displayInOrder(root); }
47 void showPreOrder()
48 { displayPreOrder(root); }
49 void showPostOrder()
50 { displayPostOrder(root); }
51 };
52 #endif

Binary Search Tree Operations 1117

Besides the TreeNode class declaration, the class has a root member. This is a pointer to
the root node of the binary tree, and plays a role similar to that of the head pointer in the
linked list class of Chapter 17. In many instances, it is useful to think of the pointer to the
node that is the root of a binary tree as the binary tree itself. Thus, we may write

TreeNode *tree;

or

TreeNode *root;

and think of both as representing a binary tree because the root provides access to the
entire tree. On the other hand, it is also useful to think of an object of the IntBinaryTree
class as a binary tree, and write

IntBinaryTree Tree;

To avoid confusion, we will use identifiers with an initial capital letter for a binary tree that
is represented by an object of the IntBinaryTree class, and use identifiers with initial low-
ercase letters for a binary tree represented by a pointer to its root node.

The public member functions of IntBinaryTree include a constructor, a destructor, and
member functions for inserting a new number into the tree, for searching a tree to deter-
mining whether a given number is in the tree, for removing a number from the tree, and for
displaying the numbers stored in the tree according to different orders. All of these member
functions are discussed in the sections that follow.

Program 19-1 demonstrates the creation of an IntBinaryTree object, and the use of the
public insert member function to build a binary search tree. The implementation code for
the member functions are in the IntBinaryTree.cpp file; the contents of that file will be
discussed later. The tree that results from the execution of Program 19-1 is shown in
Figure 19-5.

Program 19-1

1 // This program builds a binary tree with 5 nodes.
2 #include <iostream>
3 #include "IntBinaryTree.h"
4 using namespace std;
5
6 int main()
7 {
8 IntBinaryTree tree;
9
10 cout << "Inserting numbers. ";
11 tree.insert(5);
12 tree.insert(8);
13 tree.insert(3);
14 tree.insert(12);
15 tree.insert(9);
16 cout << "Done.\n";
17 return 0;
18 }

1118 Chapter 19 Binary Trees

Implementation of the Binary Search Tree Operations
Many binary tree operations have very natural recursive implementations. This is because
a binary tree is an inherently recursive data structure: every nonempty binary tree consists
of a root node together with the left and right subtrees, which are of course, binary trees.
Many binary tree operations can be implemented by performing some processing at the
root node and then recursively performing the operation on the left and right subtrees. For
example, if the root node is represented by a pointer

TreeNode *tree;

Then the value in the root node will be tree->value, and the left and right subtrees will
be given by tree->left and tree->right. A recursive operation might first process
tree->value, and then the recursively operate on tree->left and tree->right.

Inserting an Element
The work of inserting a number into a binary search tree is performed by the private mem-
ber function

insert(TreeNode *&tree, int num)

which is passed a pointer tree to the root node of a binary search tree and a number num
to be inserted into the tree. It uses a recursive strategy: if the binary tree is empty (this is the
base case for the recursion), it creates a new TreeNode object whose value member is the
given number, and makes it the root of the tree:

Figure 19-5

root
pointer

left right

left right

left right

left right

NULL NULLNULL

NULL

5

3 8

12

left right

NULLNULL

9

Inserting an
Element into a
Binary Tree

Binary Search Tree Operations 1119

if (!tree)
{

tree = new TreeNode(num);
return;

}

If, however, the binary search tree is not empty, the insert function compares num to the
tree->value, the value in the root node. Depending on the outcome of this comparison,
the new value is recursively inserted into the left or right subtree:

if (num < tree->value)
insert(tree->left, num);

else
insert(tree->right, num);

The entire function is given here:

void IntBinaryTree::insert(TreeNode * &tree, int num)
{

// If the tree is empty, make a new node and make it
// the root of the tree.
if (!tree)

{
 tree = new TreeNode(num);
 return;
}

// If num is already in tree: return.
if (tree->value == num)
 return;

// The tree is not empty: insert the new node into the
// left or right subtree.
if (num < tree->value)
 insert(tree->left, num);
else
 insert(tree->right, num);

}

Note that the function is passed a reference to a pointer because the pointer passed may
need to be modified by the function. This is also the reason the remove and makeDeletion
functions are passed their parameters by reference.

Traversing the Tree
There are three common methods for traversing a nonempty binary tree and processing the
value of each node: inorder, preorder, and postorder. Each of these methods is best imple-
mented as a recursive function. The algorithms are described as follows.

NOTE: The shape of the tree shown in Figure 19-5 is determined by the order in which
the values are inserted. The root node holds the value 5 because that was the first value
inserted. By stepping through the function, you can see how the other nodes came to
appear in their depicted positions.

1120 Chapter 19 Binary Trees

• Inorder traversal
1. The node’s left subtree is traversed.
2. The node’s data is processed.
3. The node’s right subtree is traversed.

• Preorder traversal
1. The node’s data is processed.
2. The node’s left subtree is traversed.
3. The node’s right subtree is traversed.

• Postorder traversal
1. The node’s left subtree is traversed.
2. The node’s right subtree is traversed.
3. The node’s data is processed.

The IntBinaryTree class can display all the values in the tree using all three of these algo-
rithms. The algorithms are initiated by the following inline public member functions:

void showInOrder(void)
{ displayInOrder(root); }

void showPreOrder()
{ displayPreOrder(root); }

void showPostOrder()
{ displayPostOrder(root); }

Each of the public member functions calls a recursive private member function and passes the
root pointer as an argument. The recursive functions are very simple and straightforward:

void IntBinaryTree::displayInOrder(TreeNode *tree)
{

if (tree)
{

displayInOrder(tree->left);
cout << tree->value << " ";
displayInOrder(tree->right);

}
}

void IntBinaryTree::displayPreOrder(TreeNode *tree)
{

if (tree)
{

cout << tree->value << " ";
displayPreOrder(tree->left);
displayPreOrder(tree->right);

}
}

void IntBinaryTree::displayPostOrder(TreeNode *tree)
{

if (tree)
{

displayPostOrder(tree->left);
displayPostOrder(tree->right);
cout << tree->value << " ";

}
}

Binary Search Tree Operations 1121

Program 19-2, which is a modification of Program 19-1, demonstrates each of these tra-
versal methods.

Searching the Binary Search Tree
The IntBinarySearchTree class has a public member function search, which returns
true if a given value is found in the tree and returns false otherwise. The function simply
starts out searching the entire tree. The function compares num, the value being searched
for, to the value in the root of the tree it is currently searching. If the value matches, the
function returns true. If the value does not match, the function replaces the tree with
either its left subtree or its right subtree and continues the search. The search will terminate
when the function finds the value or when the tree being searched becomes empty.

Program 19-2

1 // This program builds a binary tree with 5 nodes.
2 // The nodes are displayed with inorder, preorder,
3 // and postorder algorithms.
4 #include <iostream>
5 #include "IntBinaryTree.h"
6 using namespace std;
7
8 int main()
9 {
10 IntBinaryTree tree;
11 cout << "Inserting the numbers 5 8 3 12 9.\n\n";
12 tree.insert(5);
13 tree.insert(8);
14 tree.insert(3);
15 tree.insert(12);
16 tree.insert(9);
17
18 cout << "Inorder traversal: ";
19 tree.showInOrder();
20
21 cout << "\n\nPreorder traversal: ";
22 tree.showPreOrder();
23
24 cout << "\n\nPostorder traversal: ";
25 tree.showPostOrder();
26 return 0;
27 }

Program Output
Inserting the numbers 5 8 3 12 9.

Inorder traversal: 3 5 8 9 12

Preorder traversal: 5 3 8 12 9

Postorder traversal: 3 9 12 8 5

1122 Chapter 19 Binary Trees

bool IntBinaryTree::search(int num)
{

TreeNode *tree = root;

while (tree)
{

if (tree->value == num)
return true;

else if (num < tree->value)
tree = tree->left;

else
tree = tree->right;

}
return false;

}

Program 19-3 demonstrates this function.

Removing an Element
To remove an element, we first locate the node containing the element, and then delete the
node. The procedure for deleting a node X depends on the number of its children. If X has
no children, we first find its parent, set the parent’s child pointer that links to X to NULL,

Program 19-3

1 // This program builds a binary tree with 5 nodes.
2 // The search function determines if the
3 // value 3 is in the tree.
4 #include <iostream>
5 #include "IntBinarytree.h"
6 using namespace std;
7
8 int main()
9 {
10 IntBinaryTree tree;
11 cout << "Inserting the numbers 5 8 3 12 9.\n\n";
12 tree.insert(5);
13 tree.insert(8);
14 tree.insert(3);
15 tree.insert(12);
16 tree.insert(9);
17
18 if (tree.search(3))
19 cout << "3 is found in the tree.\n";
20 else
21 cout << "3 was not found in the tree.\n";
22 return 0;
23 }

Program Output
Inserting the numbers 5 8 3 12 9.

3 is found in the tree.

Removing an
Element from
a Binary Tree

Binary Search Tree Operations 1123

and then free the memory allocated to X. If X is the root of the tree, the procedure we have
just described will not work. In that case, we simply delete X and set the pointer to the root
of the tree to NULL.

A procedure for deleting a nonleaf node must ensure that the subtrees that the node links
to remain as parts of the tree. The procedure varies according to whether the node being
deleted has one or two children. Figure 19-6 shows a tree in which we are about to delete a
node with one subtree.

Figure 19-7 shows how we will link the node’s subtree with its parent.

Figure 19-6

Figure 19-7

root
pointer

left right

left right

left right

left right

NULL NULL

NULLNULL

left right

NULLNULL

This node will
be deleted

root
pointer

left right

left right

left right

left right

NULL NULL

NULLNULL

left right

NULLNULL

1124 Chapter 19 Binary Trees

The problem is not as easily solved, however, when the node we are about to delete has
two subtrees. For example, look at Figure 19-8.

Obviously, we cannot attach both of the node’s subtrees to its parent, so there must be an
alternative solution. One way of addressing this problem is to attach the node’s right sub-
tree to the parent, then find a position in the right subtree to attach the left subtree. The
result is shown in Figure 19-9. Note that in attaching the left subtree to the right subtree,
we must take care to preserve the binary tree’s search property.

Figure 19-8

Figure 19-9

root
pointer

left right

left right

left right

left right

NULL

NULLNULL

left right

NULLNULL

left right

NULLNULL

This node will
be deleted

root
pointer

left right

left right

left right

left right

NULL

NULLNULL

left right

NULLNULL

left right

NULL

This node will
be deleted

Binary Search Tree Operations 1125

The deletion of a value from an IntBinaryTree object is accomplished by calling the pub-
lic member function remove, which in turn calls the private member function of the same
name. This latter function is passed (the root of) a binary search tree tree, and a value num
to be removed from the tree:

remove(TreeNode *&tree, int num)

The function uses a recursive strategy. If the tree is empty, it returns immediately. Other-
wise, if num is less than the value stored in the root node, the function recursively removes
num from the left subtree; but if num is greater, the function recursively removes num from
the right subtree. The case where num is found in the root node is handed off to a function

makeDeletion(TreeNode *&tree)

Here is the code for remove:

void IntBinaryTree::remove(TreeNode *&tree, int num)
{

if (tree == NULL) return;
if (num < tree->value)

remove(tree->left, num);
else if (num > tree->value)

remove(tree->right,num);
else

// We have found the node to delete.
makeDeletion(tree);

}

The makeDeletion function is designed to remove the root node of the binary search
tree passed to it as an argument, leaving a binary search tree consisting of the remaining
nodes. Let us take a look at the logic behind makeDeletion. There are a number of cases
to consider:

1. The root of the tree passed to makeDeletion has no children. In this case, we delete
the root node and replace the tree with NULL.

2. The root of the tree has only one child. In this case we delete the root node and
replace the tree with the child of the deleted root:

TreeNode *nodeToDelete = tree;
if (tree->right == NULL)

tree = tree->left;
else if (tree->left == NULL)

tree = tree->right;

Note that this code works for the first case as well.
3. The tree passed to makeDelete has two children. The deletion of the root node

would leave two subtrees, and we need to do something with both of them. The strat-
egy we adopt is to combine the two subtrees into one binary search tree, and then
replace the original tree with the tree built from the combined subtrees. As shown in
Figure 19-9, we can do this by attaching the left subtree of the original tree as the left
subtree of the least node in the right subtree of the original tree. Here is the code for
the entire function.

1126 Chapter 19 Binary Trees

void IntBinaryTree::makeDeletion(TreeNode *&tree)
{

// Used to hold node that will be deleted.
TreeNode *nodeToDelete = tree;

// Used to locate the point where the
// left subtree is attached.
TreeNode *attachPoint;

if (tree->right == NULL)
{

// Replace tree with its left subtree.
tree = tree->left;

}
else if (tree->left == NULL)
{

// Replace tree with its right subtree.
tree = tree->right;

}
else

//The node has two children
{

// Move to right subtree.
attachPoint = tree->right;

// Locate the smallest node in the right subtree
// by moving as far to the left as possible.
while (attachPoint->left != NULL)
attachPoint = attachPoint->left;

// Attach the left subtree of the original tree
// as the left subtree of the smallest node
// in the right subtree.
attachPoint->left = tree->left;

// Replace the original tree with its right subtree.
tree = tree->right;

}

// Delete root of original tree
delete nodeToDelete;

}

Program 19-4 demonstrates these functions.

Program 19-4

1 // This program builds a binary tree with 5 nodes.
2 // The deleteNode function is used to remove 2 of them.
3 #include <iostream>
4 #include "IntBinaryTree.h"
5 using namespace std;
6

(program continues)

Binary Search Tree Operations 1127

For your reference, the entire contents of IntBinaryTree file are shown here:

7 int main()
8 {
9 IntBinaryTree tree;
10
11 cout << "Inserting the numbers 5 8 3 12 9.";
12 tree.insert(5);
13 tree.insert(8);
14 tree.insert(3);
15 tree.insert(12);
16 tree.insert(9);
17
18 cout << "\nHere are the values in the tree:\n";
19 tree.showInOrder();
20
21 cout << "\nDeleting 8...\n";
22 tree.remove(8);
23
24 cout << "Deleting 12...\n";
25 tree.remove(12);
26
27 cout << "Now, here are the nodes:\n";
28 tree.showInOrder();
29 return 0;
30 }

Program Output
Inserting the numbers 5 8 3 12 9.
Here are the values in the tree:
3 5 8 9 12
Deleting 8...
Deleting 12...
Now, here are the nodes:
3 5 9

Contents of IntBinaryTree.cpp
1 #include <iostream>
2 #include "IntBinaryTree.h"
3 using namespace std;
4
5 //**
6 // This version of insert inserts a number into *
7 // a given subtree of the main binary search tree. *
8 //**
9 void IntBinaryTree::insert(TreeNode * &tree, int num)
10 {
11 // If the tree is empty, make a new node and make it
12 // the root of the tree.
13 if (!tree)
14 {
15 tree = new TreeNode(num);

Program 19-4 (continued)

1128 Chapter 19 Binary Trees

16 return;
17 }
18
19 // If num is already in tree: return.
20 if (tree->value == num)
21 return;
22
23 // The tree is not empty: insert the new node into the
24 // left or right subtree.
25 if (num < tree->value)
26 insert(tree->left, num);
27 else
28 insert(tree->right, num);
29 }
30
31 //***
32 // destroySubTree is called by the destructor. It *
33 // deletes all nodes in the tree. *
34 //***
35 void IntBinaryTree::destroySubtree(TreeNode *tree)
36 {
37 if (!tree) return;
38 destroySubtree(tree->left);
39 destroySubtree(tree->right);
40 // Delete the node at the root.
41 delete tree;
42 }
43
44 //***
45 // searchNode determines if a value is present in *
46 // the tree. If so, the function returns true. *
47 // Otherwise, it returns false. *
48 //***
49 bool IntBinaryTree::search(int num)
50 {
51 TreeNode *tree = root;
52
53 while (tree)
54 {
55 if (tree->value == num)
56 return true;
57 else if (num < tree->value)
58 tree = tree->left;
59 else
60 tree = tree->right;
61 }
62 return false;
63 }
64
65 //**
66 // remove deletes the node in the given tree *
67 // that has a value member the same as num. *
68 //**

Binary Search Tree Operations 1129

69 void IntBinaryTree::remove(TreeNode *&tree, int num)
70 {
71 if (tree == NULL) return;
72 if (num < tree->value)
73 remove(tree->left, num);
74 else if (num > tree->value)
75 remove(tree->right,num);
76 else
77 // We have found the node to delete.
78 makeDeletion(tree);
79 }
80
81 //***
82 // makeDeletion takes a reference to a tree whose root *
83 // is to be deleted. If the tree has a single child, *
84 // the tree is replaced by the single child after the *
85 // removal of its root node. If the tree has two children *
86 // the left subtree of the deleted node is attached at *
87 // an appropriate point in the right subtree, and then *
88 // the right subtree replaces the original tree. *
89 //***
90 void IntBinaryTree::makeDeletion(TreeNode *&tree)
91 {
92 // Used to hold node that will be deleted.
93 TreeNode *nodeToDelete = tree;
94
95 // Used to locate the point where the
96 // left subtree is attached.
97 TreeNode *attachPoint;
98
99 if (tree->right == NULL)
100 {
101 // Replace tree with its left subtree.
102 tree = tree->left;
103 }
104 else if (tree->left == NULL)
105 {
106 // Replace tree with its right subtree.
107 tree = tree->right;
108 }
109 else
110 //The node has two children
111 {
112 // Move to right subtree.
113 attachPoint = tree->right;
114
115 // Locate the smallest node in the right subtree
116 // by moving as far to the left as possible.
117 while (attachPoint->left != NULL)
118 attachPoint = attachPoint->left;
119
120 // Attach the left subtree of the original tree
121 // as the left subtree of the smallest node
122 // in the right subtree.
123 attachPoint->left = tree->left;
124

1130 Chapter 19 Binary Trees

125 // Replace the original tree with its right subtree.
126 tree = tree->right;
127 }
128
129 // Delete root of original tree
130 delete nodeToDelete;
131 }
132
133 //***
134 // This function displays the values stored in a tree *
135 // in inorder. *
136 //***
137 void IntBinaryTree::displayInOrder(TreeNode *tree)
138 {
139 if (tree)
140 {
141 displayInOrder(tree->left);
142 cout << tree->value << " ";
143 displayInOrder(tree->right);
144 }
145 }
146
147 //***
148 // This function displays the values stored in a tree *
149 // in inorder. *
150 //***
151 void IntBinaryTree::displayPreOrder(TreeNode *tree)
152 {
153 if (tree)
154 {
155 cout << tree->value << " ";
156 displayPreOrder(tree->left);
157 displayPreOrder(tree->right);
158 }
159 }
160
161 //***
162 // This function displays the values stored in a tree *
163 // in postorder. *
164 //***
165 void IntBinaryTree::displayPostOrder(TreeNode *tree)
166 {
167 if (tree)
168 {
169 displayPostOrder(tree->left);
170 displayPostOrder(tree->right);
171 cout << tree->value << " ";
172 }
173 }

1131

Checkpoint

19.7 Describe the sequence of events in an inorder traversal.

19.8 Describe the sequence of events in a preorder traversal.

19.9 Describe the sequence of events in a postorder traversal.

19.10 Describe the steps taken in deleting a leaf node.

19.11 Describe the steps taken in deleting a node with one child.

19.12 Describe the steps taken in deleting a node with two children.

19.3 Template Considerations for Binary Search Trees

CONCEPT: Binary search trees may be implemented as templates, but any data types
used with them must support the <, >, and == operators.

The actual implementation of a binary tree template has been left as a Programming Chal-
lenge for students who have covered Chapters 16 and 19. When designing your template,
remember that any data types stored in the binary tree must support the <, >, and == oper-
ators. If you use the tree to store class objects, these operators must be overridden.

19.4 Tying It All Together: Genealogy Trees
Say we want to write a program that will trace peoples' ancestries and build genealogy
trees. To keep track of each person’s biological parents, we might use a class such as the
following:

class Person
{
 string name;
 Person *father;
 Person *mother;
};

This simple class is very similar to the “node” classes we have been using to build binary
trees. In maintaining genealogies, however, we are interested in recording not only a per-
son’s ancestors, but their descendants as well. We also want to keep track of gender infor-
mation to enable people using the program to distinguish between maternal and paternal
relatives. The Person class, as shown above, is not adequate for these needs. We therefore
modify it as shown here:

enum Gender {male, female};
class Person
{
 string name;
 Gender gender;
 vector<Person *> parents;
 vector<Person *> children;
};

Tying It All Together: Genealogy Trees

1132 Chapter 19 Binary Trees

We now have a “node” that can have any number of children and any number of parents.
Because each person can have at most two parents, the size of the parents vector will
never exceed two.

We can make the Person class more useful by adding a constructor and several member
functions. The method

Person *addChild(string name, Gender g);

creates a Person object with the specified name and gender, adds a pointer p to the created
object to the children of “this” Person object, and returns p to the caller. Another
method,

Person *addChild(Person *p);

adds a pointer to an already created Person object to the children vector of "this"
Person object. The following code shows the use of these member functions to record the
fact that a father f and a mother m have a child named "Charlie":

Person f("Frank", male);
Person m("Mary", female);
Person *pChild = m.addChild("Charlie", male);
f.addChild(pChild);

There is also a method

void addParent(Person *p);

that is used to record the fact that one person is the parent of another. The class also has an
overloaded stream operator that outputs the data in a Person object using an XML-like
format. Finally, the class has several methods that can be used to access information about
various members of the class objects. These additional functions can be seen in Lines 29–34
of the program listing.

Program 19-5

1 // This program uses a generalization of binary trees to build
2 // genealogy trees.
3 #include <vector>
4 #include <string>
5 #include <iostream>
6 using namespace std;
7 enum Gender{male, female};
8
9 // Person class represents a person participating in a genealogy.
10 class Person
11 {
12 string name;
13 Gender gender;
14 vector<Person *> parents;
15 vector<Person *> children;
16 void addParent(Person *p){ parents.push_back(p); }
17 public:
18 Person (string name, Gender g)

(program continues)

1133

19 {
20 this->name = name;
21 gender = g;
22 }
23 Person *addChild(string name, Gender g);
24 Person *addChild(Person *p);
25
26 friend ostream &operator << (ostream &out, Person p);
27
28 // Member functions for getting various Person info
29 string getName(){ return name; };
30 Gender getGender(){ return gender; };
31 int getNumChildren(){ return children.size(); }
32 int getNumParents(){ return parents.size(); }
33 Person *getChild(int k);
34 Person *getParent(int k);
35 };
36
37 //**
38 // Create a child with specified name and gender, and *
39 // set one of the parents to be this person. *
40 // Add the new child to the list of children for this person *
41 //**
42 Person *Person::addChild(string name, Gender g)
43 {
44 Person *child = new Person(name, g);
45 child->addParent(this); // I am a parent of this child
46 children.push_back(child); // This is one of my children
47 return child;
48 }
49
50 //**
51 // Add a child to the list of children for this person *
52 //**
53 Person *Person::addChild(Person* child)
54 {
55 child->addParent(this); // I am a parent of this child
56 children.push_back(child); // This is one of my children
57 return child;
58 }
59
60 //***
61 // Return a pointer to the specified parent *
62 //***
63 Person *Person::getParent(int k)
64 {
65 if (k < 0 || k >= parents.size())
66 {
67 cout << "Error indexing parents vector." << endl;
68 exit(1);
69 }
70 return parents[k];
71 }

(program continues)

Program 19-5 (continued)

Tying It All Together: Genealogy Trees

1134 Chapter 19 Binary Trees

72
73 //**
74 // Return a pointer to a specified child *
75 //**
76 Person *Person::getChild(int k)
77 {
78 if (k < 0 || k >= children.size())
79 {
80 cout << "Error indexing children's vector." << endl;
81 exit(1);
82 }
83 return children[k];
84 }
85
86 //**
87 // Overloaded stream output operator *
88 //**
89 ostream & operator<<(ostream & out, Person p)
90 {
91 out << "<person name = " << p.name << ">" << '\n';
92 if (p.parents.size() > 0)
93 out << " <parents>" << ' ';
94 for (int k = 0; k < p.parents.size(); k++)
95 {
96 out << " " << p.parents[k]->name << ' ';
97 }
98 if (p.parents.size() > 0)
99 out << " </parents>" << "\n";
100 if (p.children.size() > 0)
101 out << " <children>" << ' ';
102 for (int k = 0; k < p.children.size(); k++)
103 {
104 out << " " << p.children[k]->name << ' ';
105 }
106 if (p.children.size() > 0)
107 out << " </children>" << "\n";
108 out << "</person>" << "\n";
109 return out;
110 }
111
112
113 int main(int argc, char** argv)
114 {
115 // Here are the people
116 Person adam("Adam", male);
117 Person eve("Eve", female);
118 Person joan("Joan", female);
119

(program continues)

Program 19-5 (continued)

1135

120 // Adam and Eve are parents of Abel
121 Person *pAbel = eve.addChild(new Person("Abel", male));
122 adam.addChild(pAbel);
123
124 // Abel and Joan are parents of Missy
125 Person *pMissy = joan.addChild("Missy", female);
126 pAbel->addChild(pMissy);
127
128 // Output all the people
129 cout << "Here are all the people:\n\n";
130 cout << adam << eve";
131 cout << *pAbel << joan;
132 cout << *pMissy << "\n";
133
134 // Print parents of Missy
135 cout << "Missy's parents are: " << endl;
136 for (unsigned int k = 0; k < pMissy->getNumParents(); k++)
137 {
138 Person * p = pMissy->getParent(k);
139 switch(p->getGender())
140 {
141 case female : cout << "\tMother: "; break;
142 case male: cout << "\tFather: "; break;
143 }
144 cout << p->getName() << endl;
145 }
146 return 0;
147 }

Program Output
Here are all the people:

<person name = Adam>
 <children> Abel </children>
</person>
<person name = Eve>
 <children> Abel </children>
</person>
<person name = Abel>
 <parents> Eve Adam </parents>
 <children> Missy </children>
</person>
<person name = Joan>
 <children> Missy </children>
</person>
<person name = Missy>
 <parents> Joan Abel </parents>
</person>

Missy's parents are:
 Mother: Joan
 Father: Abel

Program 19-5 (continued)

Tying It All Together: Genealogy Trees

1136 Chapter 19 Binary Trees

Review Questions and Exercises

Fill-in-the-Blank and Short Answer

1. The first node in a binary tree is called the __________.

2. A binary tree node’s left and right pointers point to the node’s __________.

3. A node with no children is called a(n) __________.

4. A(n)__________ is an entire branch of the tree, from one particular node down.

5. The three common types of traversal with a binary tree are __________, __________,
and __________.

6. In what ways is a binary tree similar to a linked list?

7. A ternary tree is like a binary tree, except each node in a ternary tree may have three
children: a left child, a middle child, and a right child. Write an analogue of the
TreeNode declaration that can be used to represent the nodes of a ternary tree.

8. Imagine a tree in which each node can have up to a hundred children. Write an analog
of the TreeNode declaration that can be used to represent the nodes of such a tree. A
declaration such as

TreeNode
{

int value;
TreeNode *child1;
TreeNode *child2;
TreeNode *child3;
.
.
.

};

that simply lists all the pointers to the hundred children is not acceptable.

Algorithm Workbench

9. Propose a definition of a preorder traversal for ternary trees, and give pseudocode for
accomplishing such a traversal.

10. Propose a definition of a postorder traversal for ternary trees, and give pseudocode
for accomplishing such a traversal.

11. What problems do you encounter when you try to define the concept of an inorder
traversal for ternary trees?

12. Assume that data is stored in a binary tree, but that unlike in the case of binary search
tree, no attempt is made to maintain any sort of order in the data stored. Give an
algorithm for a function search that searches a binary tree for a particular value num
and returns true or false according to whether the value num is found in the tree.

13. Give an algorithm for a function

int largest(TreeNode *tree)

that takes a pointer to a root of a binary search tree as parameter and returns the
largest value stored in the tree.

Review Questions and Exercises 1137

14. Give an algorithm for a function

int smallest(TreeNode *tree)

that takes a pointer to a root of a binary search tree as parameter and returns the
smallest value stored in the tree.

15. Give an algorithm for a function

void increment (TreeNode *tree)

that increments the value in every node of a binary tree by one.

16. Suppose the following values are inserted into a binary search tree, in the order given:

12, 7, 9, 10, 22, 24, 30, 18, 3, 14, 20

Draw a diagram of the resulting binary tree.

17. How would the values in the tree you sketched for queston 16 be displayed in an
inorder traversal?

18. How would the values in the tree you sketched for queston 16 be displayed in a
preorder traversal?

19. How would the values in the tree you sketched for queston 16 be displayed in a
postorder traversal?

Soft Skills

20. All three binary tree traversal methods studied in this chapter traverse the left subtree
before the right subtree. This is an artifact of western culture, where people are accus-
tomed to reading material printed on a page from left to right. In a world of increas-
ing globalization, products and services that will be offered in foreign markets must
be designed so that they can be easily altered to target different markets. Discuss with
your classmates some of the ways these internationalization considerations are affect-
ing the design of computer software and hardware today. Discuss this with a friend
who has had a course in International Business, or take such a course yourself, to
become better aware of some of the problems businesses face when they enter inter-
national markets.

Programming Challenges

1. Simple Binary Search Tree Class

Write a class for implementing a simple binary search tree capable of storing numbers. The
class should have member functions

void insert(double x)
bool search(double x)
void inorder(vector <double> & v)

The insert function should not use recursion directly, or indirectly by calling a recursive
function. The search function should work by calling a private recursive member function

bool search(double x, BtreeNode *t)

1138 Chapter 19 Binary Trees

The inorder function is passed an initially empty vector v: it fills v with the inorder list of
numbers stored in the binary search tree. Demonstrate the operation of the class using a
suitable driver program.

2. Tree Size

Modify the binary search tree created in the previous programming challenge to add a
member function

int size()

that returns the number of items (nodes) stored in the tree. Demonstrate the correctness of
the new member function with a suitable driver program.

3. Leaf Counter

Modify the binary search tree you created in the preceding programming challenges to add
a member function

int leafCount()

that counts and returns the number of leaf nodes in the tree. Demonstrate that the function
works correctly in a suitable driver program.

4. Tree Height

Modify the binary search tree created in the preceding programming challenges by adding
a member function that computes and returns the height of the tree.

int height()

The height of the tree is the number of levels it contains. For example, the tree shown in
Figure 19-10 has three levels. Demonstrate the function with a suitable driver program.

5. Tree Width

Modify the binary search tree created in the preceding programming challenges by adding
a member function that computes the width of the tree.

int width()

Figure 19-10

left right

left right

left right left right

left right

NULLNULL

NULL NULL NULL NULL

Solving the
Tree Size
Problem

Review Questions and Exercises 1139

The width of a tree is the largest number of nodes at the same level. Demonstrate correct-
ness in a suitable driver program.

6. Tree Copy Constructor

Design and implement a copy constructor for the binary search tree created in the preced-
ing programming challenges. Use a driver program to demonstrate correctness.

7. Tree Assignment Operator

Design and implement an overloaded assignment operator for the binary search tree cre-
ated in the preceding programming challenges.

8. Employee Tree

Design an EmployeeInfo class that holds the following employee information:

Employee ID Number: an integer
Employee Name: a string

Implement a binary tree whose nodes hold an instance of the EmployeeInfo class. The
nodes should be sorted on the Employee ID number.

Test the binary tree by inserting nodes with the following information.

Your program should allow the user to enter an ID number, then search the tree for the
number. If the number is found, it should display the employee’s name. If the node is not
found, it should display a message indicating so.

9. Cousins

Building on Program 19-5, write a function that takes a pointer to a Person object and
produces a list of that person’s cousins.

Employee
ID Number Name

1021
1057
2487
3769
1017
1275
1899
4218

John Williams
Bill Witherspoon
Jennifer Twain
Sophia Lancaster
Debbie Reece
George McMullen
Ashley Smith
Josh Plemmons

This page intentionally left blank

1141

A
P

P
E

N
D

IX

A The ASCII Character Set

Nonprintable ASCII Characters

Dec Hex Oct Name of Character
0 0 0 NULL
1 1 1 SOTT
2 2 2 STX
3 3 3 ETY
4 4 4 EOT
5 5 5 ENQ
6 6 6 ACK
7 7 7 BELL
8 8 10 BKSPC
9 9 11 HZTAB
10 a 12 NEWLN
11 b 13 VTAB
12 c 14 FF
13 d 15 CR
14 e 16 SO
15 f 17 SI
16 10 20 DLE
17 11 21 DC1
18 12 22 DC2
19 13 23 DC3
20 14 24 DC4
21 15 25 NAK
22 16 26 SYN
23 17 27 ETB
24 18 30 CAN
25 19 31 EM
26 1a 32 SUB
27 1b 33 ESC
28 1c 34 FS
29 1d 35 GS
30 1e 36 RS
31 1f 37 US
127 7f 177 DEL

Printable ASCII Characters

Dec Hex Oct Character
32 20 40 (Space)
33 21 41 !
34 22 42 “
35 23 43 #
36 24 44 $
37 25 45 %
38 26 46 &
39 27 47 ‘
40 28 50 (
41 29 51)
42 2a 52 *
43 2b 53 +
44 2c 54 ’
45 2d 55 -
46 2e 56 .
47 2f 57 /
48 30 60 0
49 31 61 1
50 32 62 2
51 33 63 3
52 34 64 4
53 35 65 5
54 36 66 6
55 37 67 7
56 38 70 8
57 39 71 9
58 3a 72 :
59 3b 73 ;
60 3c 74 <
61 3d 75 =
62 3e 76 >
63 3f 77 ?
64 40 100 @

1142 Appendix A The ASCII Character Set

65 41 101 A
66 42 102 B
67 43 103 C
68 44 104 D
69 45 105 E
70 46 106 F
71 47 107 G
72 48 110 H
73 49 111 I
74 4a 112 J
75 4b 113 K
76 4c 114 L
77 4d 115 M
78 4e 116 N
79 4f 117 O
80 50 120 P
81 51 121 Q
82 52 122 R
83 53 123 S
84 54 124 T
85 55 125 U
86 56 126 V
87 57 127 W
88 58 130 X
89 59 131 Y
90 5a 132 Z
91 5b 133 [
92 5c 134 \
93 5d 135]
94 5e 136 ^
95 5f 137 _
96 60 140 `
97 61 141 a
98 62 142 b
99 63 143 c
100 64 144 d
101 65 145 e
102 66 146 f
103 67 147 g
104 68 150 h
105 69 151 i
106 6a 152 j
107 6b 153 k
108 6c 154 l
109 6d 155 m
110 6e 156 n
111 6f 157 o
112 70 160 p
113 71 161 q
114 72 162 r
115 73 163 s
116 74 164 t
117 75 165 u
118 76 166 v
119 77 167 w
120 78 170 x

Printable ASCII Characters

Dec Hex Oct Character
121 79 171 y
122 7a 172 z
123 7b 173 {
124 7c 174 |
125 7d 175 }
126 7e 176 ~

Extended ASCII Characters

Dec Hex Oct Character
128 80 200 Ç
129 81 201 ü
130 82 202 é
131 83 203 â
132 84 204 ä
133 85 205 à
134 86 206 å
135 87 207 ç
136 88 210 ê
137 89 211 ë
138 8a 212 è
139 8b 213 ï
140 8c 214 î
141 8d 215 ì
142 8e 216 Ä
143 8f 217 Å
144 90 220 É
145 91 221 æ
146 92 222 Æ
147 93 223 ô
148 94 224 ö
149 95 225 ò
150 96 226 û
151 97 227 ù
152 98 230 ÿ
153 99 231 Ö
154 9a 232 Ü
155 9b 233 ¢
156 9c 234 £
157 9d 235 ù
158 9e 236 û
159 9f 237 ƒ
160 a0 240 á
161 a1 241 í
162 a2 242 ó
163 a3 243 ú
164 a4 244 ñ
165 a5 245 Ñ
166 a6 246 ª
167 a7 247 º
168 a8 250 ¿
169 a9 251 ©
170 aa 252 Ñ
171 ab 253 ´

Printable ASCII Characters

Dec Hex Oct Character

The ASCII Character Set 1143

172 ac 254 ¨
173 ad 255 ¡
174 ae 256
175 af 257 »
176 b0 260 ∞
177 b1 261 ±
178 b2 262 ≤
179 b3 263 ≥
180 b4 264 ¥
181 b5 265 μ
182 b6 266 ∂
183 b7 267 ∑
184 b8 270 ∏
185 b9 271 π
186 ba 272 ∫
187 bb 273 a
188 bc 274 o
189 bd 275 Ω
190 be 276 æ
191 bf 277 ø
192 c0 300 ¿
193 c1 301 ¡
194 c2 302 ¬
195 c3 303 √
196 c4 304 ƒ
197 c5 305 ≈
198 c6 306 Δ
199 c7 307
200 c8 310 »
201 c9 311 …
202 ca 312 _
203 cb 313 À
204 cc 314 Ã
205 cd 315 Õ
206 ce 316 Œ
207 cf 317 œ
208 d0 320 –
209 d1 321 ——
210 d2 322 “
211 d3 323 ”
212 d4 324 ‘
213 d5 325 ’

Extended ASCII Characters

Dec Hex Oct Character
214 d6 326 ÷
215 d7 327 ◊
216 d8 330 ÿ
217 d9 331 Ÿ
218 da 332 ⁄
219 db 333
220 dc 334 ‹
221 dd 335 ›
222 de 336 fi
223 df 337 fl
224 e0 340 ‡
225 e1 341 ·
226 e2 342 ‚
227 e3 343 ”
228 e4 344 ‰
229 e5 345 Â
230 e6 346 Ê
231 e7 347 Á
232 e8 350 Ë
233 e9 351 È
234 ea 352 Í
235 eb 353 Î
236 ec 354 Ï
237 ed 355 Ì
238 ee 356 Ó
239 ef 357 Ô
240 f0 360 
241 f1 361 Ò
242 f2 362 Ú
243 f3 363 Û
244 f4 364 Ù
245 f5 365 ı
246 f6 366 ˆ
247 f7 367 ˜
248 f8 370 ¯
249 f9 371 ˘
250 fa 372 ˙
251 fb 373 •
252 fc 374 ¸
253 fd 375 ˝
254 fe 376 ˛
255 ff 377

Extended ASCII Characters

Dec Hex Oct Character

This page intentionally left blank

1145

A
P

P
E

N
D

IX

B Operator Precedence
and Associativity

The operators are shown in order of precedence, from highest to lowest.

Operator Associativity

 :: unary: left to right
 binary: right to left
 () [] -> . left to right
 ++ – + - ! ~ (type) * &
sizeof

right to left

 * / % left to right
 + - left to right
 << >> left to right
 < <= > >= left to right
 == != left to right
 & left to right
 ^ left to right
 | left to right
 && left to right
 || left to right
 ?: right to left
 = += -= *= /= %= &= ^= |=
<<= >>=

right to left

 , left to right

This page intentionally left blank

1147

INDEX

Symbols and Numerics
symbol, 10, 28, 30, 81, 99
$ (delimiter), 853
%= (combined assignment operator),

102
% (modulus operator), 61, 62, 83,

1088
&& (AND operator), 187–189
& (address operator), 620, 628
& (reference variable), 351
*= (combined assignment operator),

102, 710
* (indirection operator), 621
* (multiplication operator), 61, 83
* (pointer variable), 621
++ (increment operator), 243–248
+= (combined assignment operator),

102, 807
+ (addition operator), 61, 83, 712,

716
+ (concatenation operator), 120, 807
() (parentheses), 30, 84
:: (scope resolution operator), 396
; (semicolon), 30, 36, 100
<< (stream insertion operator), 32,

133, 832, 863
<= (less than or equal to operator),

158, 159, 815–817
< (less than operator), 158, 712,

713
<> (angle brackets), 427, 1083
== (equal to operator), 158, 168,

713
= (assignment operator), 14, 39, 59
{} (braces), 29, 30, 66
-- (decrement operator), 243–248
/ (forward slash), 35

/ (division operator), 61–62
// (double slash), 28, 30
/= (combined assignment operator),

102
/* */ (multi-line comments), 64
\ (backslash), 34, 35
\\ (backslash escape sequence), 35
\' (single quote escape sequence),

35
\" (double quote escape sequence),

35
- (negation operator), 61
- (subtraction operator), 61, 83,

713
-> (structure pointer operator),

653, 659–660
-= (combined assignment operator),

102
"" (quotation marks), 30, 39, 50
>= (greater than or equal to

operator), 158, 159,
815–817

> (greater than operator), 158
>> (stream extraction operator), 76,

134–136, 832
! (NOT operator), 187, 191–193
!= (not equal to operator), 158,

159, 815–817
[] operator, 721–727
?: (conditional operator), 206–209
? (question mark), 488
~ (tilde character), 407
| (bitwise OR operator), 832,

Appendix H
|| (OR operator), 187, 189–191
2D arrays. See two-dimensional

arrays

A
\a (alarm escape sequence), 35
abs function, 126
abstract base classes, 946–949
abstract data types (ADTs), 387–388
abstract functions, 946
access specification

base class, 742, 745–748
member, 747
private, 745, 748
protected, 748
public, 745, 748

access specifiers, 392
accessors, 395
accumulators, 269–270

summing values with, 505
Ackermann’s function, 912
actual arguments, 317
actual parameters, 317
add member function, 710

NumberList class, 1030–1031,
1033, 1036–1037

recursive, 1049–1050
addition operator (+), 61, 83, 712,

716
addNumber function, 413
address operator (&), 620, 628
addresses

array, 518–519, 637
defined, 4
pointer, 628, 632–633
print format, 620
string literal, 773
variable, 620

ADTs. See abstract data types
Advanced Software Enterprises case

study, 817–818

1148 INDEX

aggregation
defined, 734
has-a relation, 734, 739
through pointers, 736–737

algorithm header file, 989, 1009
algorithms

analysis of, 601–609
asymptotic complexity, 607–609
average case complexity, 607
complexity, 603–605
computational problems,

602–603
defined, 7
efficiency of, 601
encryption, 957
enumeration, 922–926
exhaustive, 922–926
programmer-defined, 537
QuickSort, 915–918
run time, 609
search, 577–584
sorting, 587–595
STL, 1008–1009
worst case complexity, 605–607

ALU (arithmetic and logic unit), 3
American Standard Code for

Information Interchange.
See ASCII

ampersand (&)
address operator, 620, 628
reference variables, 351

analysis of algorithms
basic steps, 602–603
big O notation, 607–609
experimental approach,

601–602
introduction to, 601–609
space criterion, 601
time criterion, 601

AND operator (&&), 187–189
defined, 187
precedence, 194
short circuit evaluation, 190
truth table, 188

angle brackets (<>), 427, 1083
animation, 1062
append function, 809
application frameworks, 957, 958
application software, 5
arguments

actual, 317
command line, Appendix F
default, 347–350
defined, 85, 316

floating-point, 85
formal, 317
passing, 319
passing array addresses as, 637
passing arrays as, 517–526
passing by reference, 351,

354–356
passing by value, 321–324,

354–356, 444
passing C-strings as, 776, 803–805
passing objects as, 413–420
passing structures as, 444–446
passing to base class

constructors, 751–753
arithmetic and logic unit (ALU), 3
arithmetic assignment operators. See

combined assignment
operators

arithmetic operators, 61–63
associativity, 84
list of, 61
overloading, 712–715
precedence, 83

arithmetic, pointer, 629–630
array contents

accessing, 487–489
copying, 504
displaying, 489–493
inputting, 489–492
processing, 502–513
writing to files, 493

arrays, 485–561
accessing elements, 487–489
addresses, 518–519, 637
bounds checking, lack of,

493–494, 627
circular, 1088
of class objects, 549–555
comparing, 504–505
copying from one to another,

504
C-string defined as, 774
defined, 120, 485
defining, 486
elements, 486, 487–489
finding average value in,

505–506
finding highest value in,

506–508
finding lowest value in,

506–508
as function arguments, 517–526
functions, 523–525
implicit sizing, 501–502

initialization, 496–502
initialization list, 497, 502
initialization, partial, 500–501
linked lists versus, 1023–1024
memory requirements, 486–487
name, 486
name, as pointer constant, 629
off-by-one errors, 495
one-dimensional, 526
parallel, 513–516
partially-filled, 508
pointer relationship, 625–629
reading data from files into,

491–492
reasons for use, 509–511
searching for an element,

577–587
size declarators, 486, 487, 488
sorting data in, 587–595
string processing, 511–513
of structures, 555–558
subscripts, 487
summing values in, 505
three or more dimensional,

534–537
two-dimensional, 526–533
typedef statement with,

516–517
vectors versus 537–549
writing data to files, 493

ascending order, 587, 591–592
ASCII (American Standard Code for

Information Interchange),
48, 51

character set table, 1141–1143
character values, 202
numbers, 787

assign function, 809
assignment

arithmetic, 102
combined, 102–104
copy constructors and, 705
default arguments, 348
derived class pointers, 936–937
initialization versus, 695
memberwise, 694–695, 699
multiple, 101–102
type cast, 936
variable, 59–60

assignment operator (=), 694
defined, 14, 39
operands, 59
overloading, 704–710, 814
return value, 709–710

INDEX 1149

assignment statements, 38, 81
associative containers, 538,

1003–1004. See also
containers

defined, 538, 1003
map, 1003
multimap, 1003
multiset, 1004
set, 1004
STL, 1003

associativity
of arithmetic operators, 84
defined, 84
of logical operators, 194
operators, 1145
of relational operators, 158

asymptotic complexity, 607–609
at member function, 548, 809, 1006
atof library function, 790
atoi library function, 790
atol library function, 790
attributes

class, 456
defined, 389, 456
defining, 456
object, 389

average-case complexity function, 607
avgVector function, 546

B
\b (backspace escape sequence), 35
back member function, 1006, 1055
backslash (\), 34, 35
bad member function, 847
bad_alloc exception, 645, 983
base case, 904, 913
base classes, 458

abstract, 946–949
access specification, 742,

745–748
constructors, 750
constructors, passing arguments to,

751–753
destructor, 750
functions, overriding, 755–757
inheritance and, 740
member functions, 747, 757
for multiple derived classes, 742
pointers, 936, 937, 939–940
protected members, 745–748

BASIC, 9
basic steps, 602–603
begin member function, 809,

1004, 1006

behaviors
class, 457
polymorphic, 943

bidirectional iterator, 1004
big O notation, 607–609
binary digits (bits), 4
binary files, 862–866

defined, 683
binary numbers, 7, Appendix H
binary operators, 61

infix, 927
postfix, 927
prefix, 927

binary search, 580–583. See also
search algorithms

in array of objects, 584–587
efficiency, 583–584
index variables, 581
pseudocode, 580–581
as recursive function, 913–914
worst case complexity, 605

binary search trees
creating, 1115–1118
defined, 1113
deleting nodes, 1122, 1123
illustrated, 1114
information storage, 1113
inorder traversal, 1119, 1120
inserting elements into,

1118–1119
left subtree, 1124
nodes, 1114
nonempty, 1118, 1119
operation implementation, 1118
operations, 1115–1131
postorder traversal, 1119, 1120
preorder traversal, 1119, 1120
removing elements from,

1122–1130
right subtree, 1124
root nodes, 1114, 1118, 1119
searching, 1114, 1121–1122
templates, 1131
traversing, 1119–1121

binary trees
applications of, 1112–1114
child nodes, 1111
defined, 1111
empty, 1111
implementation, 1112
leaf nodes, 1111
parent, 1111
pointer representation, 1112

root, 1111
subtrees, 1112
templates, 1131

binary_search algorithm (STL),
1008, 1011

binarySearch function, 581
bit flags, 847
bit patterns, 44
bits (binary digits), 4
bitwise operations, Appendix H

bitwise OR (|), 832
blank spaces, 106
block scope, 198
body

function, 307
loop, 250

bool data type, 57
Boole, George, 57
Boolean expressions, 57, 158
Boolean values, 332–334, 427
Boolean variables, 57, 165

as flags, 169
and the ! operator, 192–193

bounds checking, lack of, 493–494,
627

braces ({}), 29, 30, 66
in if statements, 164, 165, 167
in if/else if statements,

177
in if/else statements, 173
in loops, 252–253

break statements
for early loop termination,

279–280
in nested loops, 281
in switch statements,

211–212
bubble sort, 587–591. See also

sorting algorithms
bubbleSort function, 599
buffer overruns, 123
buffers

file, 137
flushing, 843
input, 77
keyboard, 77
output, 843

byteNum function, 876
bytes

in binary numeric representation,
863

defined, 4
number of, 865

1150 INDEX

C
C# programming language, 9
C++

case sensitivity, 29
defined, 9
portability, 9
prestandard, 37
program parts, 27–31
programming language, 2, 7, 9
standard, 37

C programming language, 9
calling functions. See function calls
capacity member function, 548,

809, 1006
case conversion, 797–799
case sensitivity, 29, 43
case statements, 210–211, 212
case studies

Advanced Software Enterprises,
817–818

Central Mountain Credit Union,
287–291

Crazy Al’s Computer Emporium,
229

Creating an Abstract Array Data
Type, 561, 609

Demetris Leadership Center, 609
General Crates, Inc., 142
Green Fields Landscaping (part 1),

140–142
Green Fields Landscaping (part 2),

225–229
High Adventure Travel Agency,

373
Home Software Company,

449–455
Lightening Lanes, 291
Little Lotto, 368–373
National Commerce Bank,

559–561
Online Friendship Connections,

883–888
Reliable Software Systems, Inc.,

1056–1060
Secure Encryption Systems, Inc.,

957–960
Set Intersection, 561
United Cause Relief Agency,

661–669
casts. See typecast expressions
cctype header file, 431
CD (compact disc) drives, 5
cells, 464

placing cursor in, 465

Central Mountain Credit Union
case study, 287–291

central processing unit (CPU), 3–4, 7
char data type, 48–52

pointers to, 772, 775–776
size, 48

character data types, 43, 48–52
character testing functions,

793–797
defined, 793
isalnum, 793
isalpha, 192–193, 793, 796
isdigit, 793, 797
islower, 793
isprint, 793
ispunct, 794
isspace, 794
isupper, 794

characters
alphabetic, testing for, 193
ASCII values, 202
case conversion, 797–799
comparing, 202–204
constants, 49–52
fill, 843
inputting, 117
memory storage, 48
null, 50, 121, 771
printable, 853
special, 30
valid range, 433
value assignment, 115
whitespace, 115, 849
working with, 115–120

CharRange input validation class,
432–435

cin.get, 117–119
cin.ignore, 119
cin object, 75–81

>> (stream extraction operator),
76, 117, 118–119

C-strings and, 121
entering multiple values, 78–79
field widths and, 124
getline function, 124–125
ignore function, 119
input, 77
iostream file and, 78
mixing cin >> and cin.get,

118–119
prompt, 76
reading single characters with, 117
width function, 123

cipher text, 957

Circle class, 392–395
circular arrays, 1088
circular linked lists, 1054
class templates, 993–1002

declaration, 993
defined, 993
derived from class templates,

1000–1001
inheritance and, 999–1001
member function definition, 994

classes. See also member functions;
member variables

abstract, 429, 946–949
access, 458
access specifiers, 392
aggregation, 734–739
attributes, 389, 456
base, 458, 740, 742
behaviors, 457
composition, 734–739,

952–957
constructors, 402–407, 440
declaration format, 391
declarations, 393, 424,

450–451, 742
defined, 391
defining by inheritance, 741
derived, 458, 740–741
destructors, 407–410
exception, 977, 981–982
finding, 458–461
friends of, 689–693
identifying, 456
implementation, 391, 452–455
implementation file, 424, 430
inheritance, 458, 952–957
inline functions, 395, 401
input validation, 432–435
instances, 393
instantiation, 393
interface, 452
introduction to, 391–392
I/O, 430
inline functions, 395, 401
member variables, 389
member functions, 389,

395–401
name, 391
object-oriented exception

handling with, 977–978
ownership, 458
pointer declaration to, 652
private member functions,

410–413

INDEX 1151

private members, 392
public members, 392
relationships between, 421,

457–458
responsibilities, 461–463
specification file, 424, 425, 430
subclass, 744
superclass, 744

clear member function
file bit flags, 847
IntQueue class, 1089
string class, 809
vector class, 545, 548, 1006

close function, 137
cmath header file, 86, 126
COBOL, 9
code reuse, 306
columns, two-dimensional array,

533
combined assignment operators,

102–104
overloaded, 710, 814

command line arguments,
Appendix F

comments, 64–65
/* as beginning indication, 64
// as beginning indication, 28,

30, 64
defined, 64
function, 309
multi-line, 64–65
single-line, 64

compact disc (CD) drives, 5
compare function, 809
comparisons

addresses, 663
array, 504–505
bubble sort, 588, 589
characters, 202–204
C-strings, 206, 778–779
enumerated variables, 220
floating-point numbers,

169–171
pointers, 632–634
strings, 204–205
structure members, 438

compilation errors, 20
compilers, 10, 65–66

convert constructor invocation,
732

dynamic binding and, 946
Microsoft Visual C++ tutorial,

Appendix M

MinGW C++ tutorial,
Appendix L

prestandard, 109
static binding and, 945–946
string literals and, 772, 779

compiling, 10, 11, 20
multi-file programs, 127–128

complexity, 603–609
asymptotic, 607–608
average case, 607
classes, 608
measurement, 603–605
time, 609
worst case, 605–607

composition
aggregation and, 737
class, 734–739
class relationship, 457
defined, 737
inheritance versus, 952–957
object, 420–424

compound operators. See combined
assignment operators

computational problems, 602–603
computers

hardware, 2–5
software, 5–6
systems, 2–6
usefulness of, 1–2

concatenation
defined, 120
operator (+), 120, 807

condition
 if statement, 163–165
 while statement, 249–251
conditional execution, 163
conditional expressions, 206–209
conditional operator (?:), 206–209
consoles

defined, 31
input, 75
operating system functions, 464
output, 31

const key word, 98, 99, 641, 680
const parameters, 703
const pointers, 641–643
constant factor, 607
constant member functions, 677,

680–681
constant pointers

to constants, 642–643
defined, 641
initializing, 642

constant reference parameters,
416–417

constant time, 609
constant variables. See named

constants
constants

address, passing, 640
character, 49–52
constant pointers to, 642–643
defined, 37
floating-point, 55–56
global, 340–343
hexadecimal, 47
integer, 40, 47
named, 97–101
octal, 47
pointers to, 639–640
string, 40, 49–52
uses, 40

Constructor function, 1074
constructors, 402–407

base class, 750–753
convert, 715, 731–734, 995
copy, 695–704
default, 405, 406–407
defined, 402
defining, 402–404
derived class, 750, 753
file stream, 835
as inline function, 403
overloading, 405–406

containers. See also Standard
Template Library (STL)

associative, 538, 1003–1004
defined, 538, 1002
deque, 1003, 1096–1097
list, 1003, 1054–1056
queue, 1097–1098
sequential, 538, 1002–1003
stack, 1082–1084
vector, 1003, 1005–1007

continue statement, 281–284
control unit, 3
control structures
 branching, 162–164,172, 176, 210
 looping, 249, 259, 263–264
control variables, 511
conversion

algebraic expression to C++,
84–85

character case, 431–432,
797–799

data type, 89–94

1152 INDEX

conversion (continued)
explicit type, 90–94
floating-point to integer, 56–57,

90, 91
implicit type, 89–90
integer to floating-point, 90
number to string, 40
type conversion operators,

728–730
string/numeric functions,

790–792
convert constructors, 715, 731–734,

995
C-strings and, 734
defined, 731
examples, 731
invocation, 731
uses, 733–734

coordinates, cell, 464
copy constructors

assignment and, 705
calling, 703–704
default, 696–697
default, deficiencies, 697–700
defined, 695, 696
invocation of, 703–704
object initialization and, 704
parameter, 702
passing by value and, 702
programmer-defined, 700–703

copy function, 809
cos function, 126
count algorithm (STL), 1008, 1011
countChars function, 803–805
count-controlled loops, 263
counters, 256–258

defined, 256
for loop, 264–265

cout object
C-strings and, 121
defined, 31
endl stream manipulator and,

33–34
expression value display, 82
in formatting data, 105–114
iostream object and, 36
output display with, 32
as stream object, 32

.cpp file, 424–429
CPU (central processing unit),

3–4, 7
Crazy Al’s Computer Emporium

case study, 229
createItem function, 417

Creating an Abstract Array Data
Type case study, 561, 609

cstdlib header file, 128, 364
c_str function, 809
C-strings

arguments, passing, 776
arguments, passing with

pointers, 803–805
assigning values to, 122
comparing, 206, 778–779
convert constructors and, 734
defined, 120, 771
defined as array, 774
displaying, 121
forms, 772
functions, writing, 800–805
inputting, 121
library functions, 776–787
memory allocation, 122–124
pointer to char, 772,

775–776
reading line of input, 124–125
reasons for using, 121
size declarator, 120
storage, 512
string literals holding, 773
using, 120–125

C-style type cast expressions, 93
ctime header file, 129
current directory, 832
cursors, positioning on screen,

464–467

D
dangling pointers, 646
data abstraction, 388
data hiding, 390
data types

abstract, 387–388
bool, 57
char, 48–52
character, 43, 48–52
conversion, 728
defined, 43
demoted values, 89–90
double, 54, 55
enumerated, 219–222
float, 54, 55
floating-point, 43, 54–57
fstream, 131
ifstream, 131, 274
int, 45
integer, 43–48
long, 45

long double, 55
numeric, 43–47
ofstream, 131
programmer-defined, 537
promoted values, 89–90
ranking, 89
return values, 329, 331
selecting, 44
self-referential, 1025
short, 45
size, 44
size determination, 45, 58–59
string class used as, 52–54
structure, 435
unsigned int, 45
unsigned long, 45
unsigned short, 44, 45
vector, 537

database management systems
(DBMSs), 829

debugging, 17, 21
hand tracing, 138–140
nested if/else statements, 185
using good test data, 284–286
validating output results,

223–225
dec manipulator, 841
decimal notation, 55–56, 111
decision structure

defined, 163
nested, 184

declaration
class, 391, 393, 424, 450–451, 742
class template, 993
definition versus, 685
enumerated data type, 219
friend function, 689
linked list nodes, 1026–1027
named constants, 97–98
pointer, 621–622
static member, 685
structure, 435–436
union, 447
virtual function, 943

decrement, 243
decrement operator (--)

with arrays, 502
in cout statements, 246
defined, 244
in mathematical expressions,

247–248
postfix mode, 244, 245–247
prefix mode, 244, 245–247
in relational expressions, 248

INDEX 1153

decryption, 957, 958
default arguments

assignment, 348
defined, 347
example use, 348–349
overriding, 348
parameter mixture of, 350
summary, 350
uses, 348
values, 350

default constructors, 405, 406–407
default copy constructors, 696–700
default directory, 832
#define directive, 98–100
definition statements, 393
delete operator, 645, 646–648,

649, 657
Demetris Leadership Center case

study, 609
demoted values, 89–90
deque container, 1003, 1096–1097

defined, 1003
member functions, 1096

dequeue, 1085, 1086
dequeue function, 1092
dereferencing pointers, 623
derived classes, 458

constructors, 750, 753
destructor, 750
inheritance and, 740–741
objects, 743
overriding base class member

functions, 757
pointers, 936, 937

descending order, 587, 591–592
deserializing objects, 884
design

object-oriented, 455–463
program, 17–21
top-down, 18, 21

desk-checking, 20–21
destructors

base class, 750
characteristics, 408
defined, 407
derived class, 750
inheritance and, 740
tilde character (~), 407
uses, 408

direct recursion, 907
directives

#define, 98–100
defined, 10

#endif, 425
#include, 28, 35–36, 425, 427
#ifndef, 425
preprocessor, 28, 36

directories, 832
disk drives, 5
display function, 884
displayList function, 1032
displayMenu function, 336
displayMessage function, 307, 308
displayStars function, 349
displayValue function,

316–317, 318, 319
divide and conquer, 305
divide function, 975, 976
division, 61, 62
 integer, 62
division operator (/), 61

precedence, 83
division-by-zero error, 973
documentation, 2, 64, 97–98, 309.

See also comments
dot operator (.), 394, 436, 438
double data type, 54, 55
double precision, 54
doubleArray function, 521
doubleNum function, 351, 353
doubleValue function, 635, 637
doubly linked lists, 1054
do-while loops. See also loops

defined, 258
flowchart, 259
format, 259
iteration, 259
with menus, 260–262
as post test loop, 259
termination, 259
use decision, 277
uses, 259
while loop versus, 259

drivers, 367–368
dummy functions, 366
dummy names, 321
DVD (digital versatile disc) drives, 5
dynamic binding, 946
dynamic memory allocation,

643–648. See also memory
in class objects, 652, 653–655
defined, 643, 644
requests, 644, 645
throwing an exception, 645

dynamic queues, 1092–1095. See
also queues

linked list implementation,
1092

dynamic stacks, 1072, 1073,
1079–1082. See also stacks

linked list implementation,
1079–1082

DynIntStack class, 1079–1082

E
E notation, 54
EBCDIC, 48
elements, array, 486

accessing, 487–489
address, obtaining, 628
assignment statements, 488
class objects, 549–559
initialization, 497
number of, 487
passed to functions, 517
processing, 502–513
in relational expressions, 503
sorting, 596–599
structures, 555–558
subscripts, 487
two-dimensional array, 532
unknown contents, 488

elements, vector, 541
adding, 541–542
number of, 543
removing, 544–546

empty member function
list container, 1055
stack container, 1083
string class, 809
vector class, 546–548, 1006

empty queues, 1086, 1088
encapsulation, 389, 955
encryption, 957, 958
end member function, 809, 1004,

1006, 1055
end of file mark, 273
#endif directive, 425
endl stream manipulator, 33–34,

39, 841, 843
enqueue, 1085
enqueue function, 1092
enumerated data types, 219–222

declaration, 219
defined, 219
relational operator comparison,

220
symbolic names, 219, 220
symbols, 220
values, 219

1154 INDEX

enumeration algorithms, 922–926
defined, 922, 923
recursive techniques in, 923–924

environment variables, 819
eof function, 275, 836, 837, 847
equal to operator (==), 158, 168

overloading, 713
erase function, 810, 1006, 1055
errors

buffer overrun, 123
compiler reported, 10, 20
correcting, 20
division-by-zero, 973
file open, 222
if statement, 166–168
logical, 20
off-by-one, 495
round-off, 291
run-time, 20
syntax, 20
testing for, 973

escape sequences, 34–35
exception handlers, 974
exceptions, 973–985

bad_alloc, 645, 983
catch block, 975
classes, 977
classes, information extraction

from, 981–982
default action, 645
defined, 645, 973, 974
handling, 975–976
multiple, 979–980
object-oriented handling with

classes, 977–978
overflow, 1074, 1092
rethrowing, 984–985
stack, 1078–1079
static queue, 1092
throw point, 974
throwing, 974
try block, 975
try/catch construct, 975–976
uncaught, 976
underflow, 1074, 1092

executable code, 10
executable files, 10

linking programs to create, 20
exhaustive algorithms, 922–926

recursive techniques in, 923–924
exit function, 363–364
EXIT_FAILURE, 364

EXIT_SUCCESS, 364
exp function, 126
explicit type conversion, 90–94
expressions

algebraic, 84, 85
Boolean, 57, 158
conditional, 206–209
defined, 81
infix, 927, 1103
initialization, 263, 266, 267–268
mathematical, 81–89
multiplication, 84
postfix, 927, 1103
prefix, 927
relational, 158, 159
test, 263
type cast, 90–94
update, 263, 266, 267–268

F
factorial function, 908–910
factorials, 908
fail member function, 222, 836, 847
false, 159, 274, 275, 332–333
fetch/decode/execute cycle, 4
Fibonacci numbers, 911
Fibonacci sequence, 911–912
field widths, 843

cin object and, 124
defined, 106
floating-point numbers, 108
specifying, 107
strings, 108

fields
defined, 866
information organization in, 867
key, 584

file access
random, 871–878
sequential, 871

file buffers, 137
file names, 133

conventions, 830
extensions, 830
string objects for, 831
variable, using, 831

file positioning flags, 872
file stream objects. See also

ifstream class;
ofstream class

classes, 830
constructors, 835
defined, 131, 830

defining, 131–132
extraction operator (>>) and, 832
insertion operator (<<) and, 832
passing to functions, 845–846
read position, 135
testing for file open errors, 222

files. See also ifstream class;
ofstream class

binary, 862–866
class implementation, 424
class specification, 424
closing, 137
.cpp, 424–429
end of, testing for, 836–837
executable, 10, 20
fstream, 831, 832
.h, 424–429
header, 28, 37
ifstream, 831
including in another file, 28, 35–36
input, 131, 831
introduction, 130–138
ios::app, 834, 835
ios::badbit, 847
ios::beg, 872
ios::binary, 835, 864, 867
ios::cur, 872
ios::end, 872
ios::eofbit, 847
ios::failbit, 847
ios::goodbit, 847
ios::hardfail, 847
ios::in, 832, 833, 835, 878
ios::out, 833, 834, 835, 864, 878
ios::trunc, 835
iostream, 28, 29, 36
moving around in, 859
multi-file projects, 424–430,

Appendix J
naming conventions, 424
object, 10
ofstream, 831
open errors, testing for, 222
open limits, 137
open modes, 832
opening, 132–133, 834
opening, for input and output,

878–882
operation errors, testing for,

835–836
output, 131, 831
passing, to functions, 356–357

INDEX 1155

path, 132
program location, 831–832
random-access, 871–878
reading, 134–137, 832–835
reading data into arrays, 491–492
reading, member functions,

849–862
reading with loops, 273–276
rewinding, 858–860
source, 10
text, 863
use steps, 130–131
using, 133–137, 830–831
writing, 133–134, 832–835
writing array contents to, 493
writing, member functions,

849–862
fill character, 843
find algorithm (STL), 1008, 1013
find function, 810
finding classes, 456, 458–461
first-in, first-out (FIFO) order,

1084–1085
fixed manipulator, 111, 841
fixed-point notation, 111
flags

bit, 847
defined, 169
file open modes, 832
file positioning, 872
format, 843, 844
manipulator, 843
mode, 872

flash memory, 5
float data type, 54, 55
floating-point

arguments, 85
constants, 55–56
data types, 43, 54–57
division, 710
output, 111
representions, 54
values, assigning to integer

variables, 56–57
floating-point numbers

comparing, 169–171
defined, 54
double-precision, 16
field width, 108
identifying, 44
precision, 843

floppy disk drives, 5

flowcharts, 19, Appendix O
decision structure, 163
do-while loop, 259
for loop, 264
if/else if statement, 176
if/else statement, 172
nested if statements, 183
while loop, 249

flush manipulator, 841, 843
flushing buffers, 843
fmod function, 126
for loops, 263–269. See also loops

body, 250
counter, 264–265
defined, 263
event sequence, 264
expressions, omitting, 268
flowchart, 264
format, 263
header, 263
initialization expression, 263,

267–268
defining variable in, 266

as pretest loop, 265
test expression, 263
update expression, 263, 266
use decision, 277
user-controlled, 267

for_each algorithm (STL), 1008,
1014–1015

formal arguments, 317
formal parameters, 317
format flags, 843, 844
formatting

defined, 105, 863
member functions, 843–844
output, 105–114, 838–844

FORTRAN, 9
forward iterator, 1004
friend classes, 693
friend functions, 689–693

declaration, 689
defined, 689
list, 689

front member function
deque container, 1096
list container, 1055
queue container, 1097
vector class, 1006

fstream class
data type, 878–882
objects, 831, 832

fstream header file, 131
function calls

defined, 306
overloaded functions, 360
recursive, 902
statements, 307, 309
static member functions, 688
syntax, 321
value-returning function,

328–331
function prototypes

defined, 314, 315
dummy names, 321
main and, 316
parameter data type, 320
placement, 315
value-returning functions, 328

function templates
defined, 985
defining, 993
example, 986
as function specification, 988
with multiple types, 991
operators in, 990–991
overloading with, 992–993
placement, 988
prefix, 986
type parameters, 985–986, 987,

990, 992
uses, 985

functional notation, 93
functions

abstract, 946
arguments, 316, 319, 320–321,

337, 347–350, 354–356,
517–526

array, 523–525
average-case complexity, 607
base class overriding, 755–757
body, 307
calling, 306–313
character conversion, 797
character testing, 793–797
comments, 309
constructor, 402–407
C-string, writing, 800–805
default arguments, 347–350
defined, 29, 305
defining, 306–307
drivers, 367–368
dummy, 366
execution, 307

1156 INDEX

functions (continued)
friend, 689–693
global variables, 339–340,

343–344
header, 307, 308
implementation section, 395
inline, 395, 400–401
library, 85, 126–130,

Appendix G
local variables, 337–339,

343–347
member, 120, 389, 395–401
in menu-driven programs,

334–337
name, 306
operator, 705, 706
overloading, 359–363
parameter list, 306
parameters, 314, 316, 635–639
passing data by reference,

350–358
passing data by value, 321–324,

354–358, 444
passing file stream objects to,

845–846
passing files to, 356–357
passing objects to, 413–420
passing structures to, 444–446
passing two-dimensional arrays

to, 530–532
polymorphic, 941
recursive, 901–907, 1046–1049
return type, 307
return values, 326–331
returning Boolean values,

332–334
returning objects from,

417–419
returning pointers from,

648–650
returning structures from,

446–447
sending data into, 316–321
signature, 360
static local variables, 344–347
static member, 685–688
stubs, 366–367
termination, 325
uses, 305–306
value-returning, 326–331
virtual, 941–946
void, 307
worst-case complexity, 605–607

G
gcd recursive function, 910–911
General Crates, Inc. case study, 142
generalization, 740
get (getter) functions, 395
get member function, 854–855

cin object, 118
peek member function versus, 855
versions, 855

getArea function, 391, 395, 397, 400
getBasePay function, 341, 343
getChar function, 434
getChoice function, 336
getFeet function, 712
getHighest function, 523
getInches function, 712
getInput function, 979
getLength function, 397
getline library function

arguments, 125
cin object, 124–125
defined, 116
file stream objects and, 832

getline member function, 774,
851–854

arguments, 851, 852
delimiter use, 854
file stream objects and, 832
function call, 851

getLowest function, 523
getName function, 649, 755, 942
getNum function, 352
getNumber function, 637
getOvertimePay function, 341
getPrice method, 584
getQuality function, 682
getRadius function, 329, 331
getRandomNumbers function, 649
getSales function, 639
getValue function, 678
getWidth function, 397
global constants, 340–343
global variables, 339–340. See also

variables
defined, 337
initializing, 340
problems, 341
with same name, 343–344
scope, 339

good member function, 847
greater than operator (>), 158
greater than or equal to operator (>=),

158, 159, 815–817

Green Fields Landscaping case study
part 1, 140–142
part 2, 225–229

grouping, with parentheses, 84

H
.h file, 424–429
hand tracing, 138–140
hard copy, 5
hardware

components, 2
CPU, 3–4
defined, 2
input devices, 5
main memory, 4
output devices, 5
secondary storage, 4–5

has-a relationship
class composition, 953
defined, 734

head, linked list, 1024, 1045
header files, Appendix G

algorithm, 989, 1009
cctype, 431
cmath, 86, 126
cstdlib, 128, 364
ctime, 129
defined, 28
for file input/output, 131
fstream, 131
.h, 424–429
iomanip, 107, 110
iostream, 78
older style, 37
string, 52, 806
table, Appendix G
vector, 538

heap, 645
hex manipulator, 841
hexadecimal constants, 47
hierarchies, inheritance, 935–936
hierarchy charts, 18, 19, 369
High Adventure Travel Agency case

study, 373
high-level languages, 8
Hoare, C. A. R., 915
Home Software Company case

study, 449–455

I
identifiers

defined, 41
legal, 42–43
rules, 42–43

INDEX 1157

IDEs (integrated development
environments), 11, 132

Microsoft Visual C++ IDE
tutorial, Appendix M

wxDev-C++ IDE tutorial,
Appendix L

if statements, 162–172
braces, 164, 165, 167
conditions, 165
defined, 163
errors, 166–168
example, 164, 165
flags and, 169
floating-point number

comparison, 169–171
nested, 183–187
programming style and, 166
relational expressions and,

168–169
semicolons and, 166–167

if/else if statement, 175–181
braces, 177
characteristics, 177–178
construction, 176
defined, 175
flowchart, 176
nested, 185
paths, 178
trailing else, 179–181

if/else statements, 172–175
braces, 173
defined, 172
flowchart, 172
paths of execution, 173
programming style, 173

#ifndef directive, 425
ifstream class. See also file

stream objects
data type, 131, 274
file open mode, 834
get member function, 854
getline member function, 851
objects, 831
peek member function,

853–857, 928
read member function, 865
seekg member function, 859, 878
tellg member function,

876–878
ignore function, 119
image maps, 1060–1061
implementation file, class, 424, 430
implicit array sizing, 501–502

implicit pointers, 870
implicit type conversion, 89–90
#include directive, 28, 35–36

in multi-file programs, 424–429,
Appendix J

preprocessor and, 36
include file directory, 427
include guard, 425
increment, 243
increment operator (++)

with arrays, 502
in cout statements, 246
defined, 244
in mathematical expressions,

247–248
postfix mode, 25–27, 244
prefix mode, 244, 245–247
in relational expressions, 248

indentation, 167
index variables, 581
indirect recursion, 907
indirection operator (*)

defined, 14
in pointer declaration, 621–622,

637
infinite loops, 252
infix expressions, 927, 1103
inheritance, 740–745

base class, 740
class access, 745–748
class relationship, 458
class templates and, 999–1001
composition versus, 952–957
constructors, destructors, and,

750–754
defined, 952
defining classes by, 741
derived class, 740–741
hierarchies, 935–936
is-a relationship, 740–744
multiple, 744, Appendix K
overriding base class functions,

756–757
private base class, 747–748
protected base class,

747–748
public base class, 747–748
type compatibility in, 936–939
virtual, Appendix K

initialization
array, 488, 496–498, 529–530
array of objects, 552–553
array of structures, 557–558

array, partial, 500–501
assignment versus, 695
constant pointer, 642
with constructors, 402–407
expression, 263–264
global variable, 340
with initialization list,

438–440, 497–498,
529–530

linked list node, 1026–1027
local variable, 339
member variable, 440
named constant, 97
object, 402–407
pointer, 630–631
static local variable, 346
structure, 438–440
two-dimensional array, 529
variable, 59–60
vector, 538–539

initialization expressions
defined, 263
multiple statements in,

267–268
omitting, 268
variable definition in, 266

initialization lists
array, 497, 502
array of objects, 552
defined, 438
drawbacks, 440
items, 439
member, 734–736
specifying, 502
structure, 438–440
two-dimensional array, 530

inline expansion, 401
inline member functions, 395,

400–401
inner loops, 277, 279
inorder traversal, 1119, 1120
input

buffer, 77
cin object, 77
in class object, 430
console, 75
defined, 16
devices, 5
file, 131, 831
iterator, 1004
opening files for, 878–882
reading line of, 124–125
test data, 20

1158 INDEX

input validation, 183
class, 432–435
defined, 196, 253
examples, 196
logic, 254
objects, 431–435
user, 196–197
while loops for, 253–256

inputFile object, 132
input-output stream library, 36
inputting

array contents, 489–492
characters, 117
C-strings, 121
strings, 115–117

insert function, 810, 1055
instance members, 678, 685
instances

computational problem, 602
defined, 393, 678
member variable, 420

instantiation, 393
instructions, 3, 4, 6
int data type, 45, 729
IntArray class, 724
IntBinarySearchTree class,

1121
IntBinaryTree class,

1115–1117, 1120
IntClass class, 731–732
integers

constants, 40, 47
data types, 43–48
division, 62, 710
variables, 56–57

integrated development
environments (IDEs), 11, 132

wxDev-C++ IDE tutorial,
Appendix L

Microsoft Visual C++ IDE
tutorial, Appendix M

IntQueue class, 1089–1092
IntRange class, 981
IntStack class, 1073–1079
I/O manipulators. See manipulators
iomanip header file, 107, 110
ios::app, 834, 835
ios::ate, 835
ios::badbit, 847
ios::beg, 872
ios::binary, 835, 864, 867
ios::cur, 872
ios::end, 872

ios::eofbit, 847
ios::failbit, 847
ios::goodbit, 847
ios::hardfail, 847
ios::in, 832, 833, 835, 878
ios::nocreate, 878
ios::out, 833, 834, 835, 864, 878
ios::trunc, 835
ios class, 832
iostream header file, 28, 36
is-a relationship, 740–744

class inheritance, 952–953
defined, 740
examples, 740

isalnum library function, 793
isalpha library function,

192–193, 793, 796
isdigit library function, 793, 797
isEmpty function, 1074, 1078
isEven function, 332, 333
isFull function, 1079
islower library function, 793
isprint library function, 793
ispunct library function, 794
isspace library function, 794
istream class, 865
istringstream class, 788
isupper library function, 794
isValid function, 332
iteration

defined, 251
loop, 251, 259, 279
overhead, 926
recursion versus, 926

iterators. See also Standard
Template Library (STL)

defined, 1002
defining, 1004–1005
types, 1004
use of, 1004–1005

itoa library function, 790, 791

J
Java, 9
JavaScript, 9

K
key fields, 584
key words. See also specific

key words
defined, 13
list of, 42
use of, 13–14

keyboard buffers, 77

L
last-in-first-out (LIFO) structures,

1071
leaf nodes, 1111
leaks, memory

defined, 646, 657
in loops, 646
stopping, 657

left child node, 1111
left manipulator, 112–113, 841
left to right associativity, 84
left-justified output, 113
length function, 120, 400, 512,

810
less than operator (<), 158

overloaded, 712, 713
less than or equal to operator (<=),

158, 159, 815–817
libraries. See also Standard

Template Library (STL)
input-output stream, 36
run-time, 10, 126

library functions, 124–125,
Appendix G

abs, 126
atof, 790
atoi, 790
atol, 790
cos,126
for C-strings, 776–787
defined, 85
exp, 126
fmod, 126
isalnum, 793
isalpha, 192–193, 793, 796
isdigit, 793, 797
islower, 793
isprint, 793
ispunct, 794
isspace, 794
isupper, 794
itoa, 790, 791
log10, 126
log, 126
mathematical, 126–130
pow, 85, 128
rand, 128
round, 126
sin, 126
sqrt, 126, 127
srand, 128
strcat, 776–777, 783
strcmp, 779–782, 783, 792

INDEX 1159

strcpy, 122, 778, 783
strlen, 776, 783
strncpy, 783
strstr, 783
tan, 126
time, 129
tolower, 797–798
toupper, 431–432, 433,

797–798
lifetime, local variable, 339
Lightening Lanes case study, 291
linear search. See also search

algorithms
advantage, 580
in array of objects, 584–587
defined, 577
inefficiency, 580
pseudocode, 578

linear time, 609
lines, 14
linked lists, 1023–1060

adding elements to, 1031–1032
advantages, 1023–1024
building, 1027
C++ representation,

1024–1026
circular, 1054
defined, 1023
deleting nodes, 1030, 1032
destroying, 1032–1034
displaying, 1032
doubly, 1054
empty, 1031, 1032
head, 1024, 1045
initializing nodes, 1026–1027
inserting nodes into sorted list,

1035–1038
nodes, 1023, 1024
operations, 1029–1041
queues, 1092
recursive list functions,

1046–1048
recursive member functions,

1048–1049
recursive operations, 1045–1053
removing nodes from,

1038–1041
singly, 1054
in sorted order, 1034–1035
stacks, 1079–1082
structure, 1024
tail, 1046
template, 1041–1045

traversing, 1027–1029
variations, 1054

LinkedList class, 1041–1045
linkers, 10
linking, 10, 11, 20
Linux, 337
list STL container

defined, 1003
member functions, 1055
operations, 1056

ListNode structure, 1025, 1030
literals, See string literals
Little Lotto case study, 368–373
load function, 885
local scope, 198
local variables, 337–339. See also

variables
defined, 337
initializing, 339
lifetime, 339
with same name, 343–344
shadowing global variable, 343
static, 344–346

log10 function, 126
log function, 126
logarithmic time, 609
logical errors, 20
logical operators, 187–195

&& (AND), 187–189
! (NOT), 187, 191–193
|| (OR), 187, 189–191
associativity, 194
defined, 187
list of, 187
numeric range checking with,

194–195
parentheses and, 194
precedence, 194

long data type, 45
long double data type, 55
long integer constants, 47
looping control structures, 249
loops

body, 250
braces and, 252–253
breaking out of, 279–281
condition, 249–250
conditional, 263
continue statement, 281–284
control variables, 251
count-controlled, 263
counters, 256–258
defined, 249

do-while, 258–262
early termination, 279
exit, 251, 280
for, 263–269
header, 249, 263
infinite, 252
inner, 277, 279
introduction, 249–253
iteration, 251, 259
nested, 277–279
outer, 277, 279
post test, 259
pretest, 251, 265
programming style and, 253
for reading data, 273–276
running totals, 269–271
sentinels, 271–273
use decision, 276–277
user control, 257–258
while, 249–256

low-level languages, 8
lvalue, 59

M
Mac OS operating system, 31, 337
machine language, 7
main function, 307, 308

defined, 29
execution, 307
function calls and, 309
function prototypes and, 316
opening/closing braces, 66

main memory, 4
makeDeletion function, 1125
Managed C++, Appendix N
manipulators

dec, 841
endl, 33–34, 39, 841, 843
fixed, 111, 841
flush, 841, 843
hex, 841
left, 112–113, 841
noshowpoint, 842
noshowpos, 842
oct, 842
output, 106–114, 114
right, 112–113, 842
scientific, 842, 843
setfill, 842, 843
setprecision, 108–111, 842
setw, 105, 106, 107, 838, 842
showpoint, 111–112, 842
showpos, 842

mantissa, 54

1160 INDEX

map STL container, 1003
mathematical expressions, 81–89

associativity, 84
converting to programming

statements, 84–85
decrement operator (--) in,

247–248
evaluation, 81–83, 89–90
grouping with parentheses, 84
increment operator (++) in,

247–248
operator precedence, 82–83
parentheses around, 82
value display, 82

mathematical library functions,
126–130

max_element algorithm (STL),
1009, 1012

member access specification, 747
member functions. See also specific

member functions and
specific classes

base class, 747, 757
bit flag reporting, 847
calling, 394
class template, 994
constant, 677, 680–681
constructors, 402–407
defined, 120, 389
defining, 395–401
destructors, 407–410
double colon (::), 396
get (getter), 395
implementation, 395
inline, 400–401
mutator, 395
name, 396
naming conventions, 397–400
operator overloading, 715–716
output formatting with,

843–844
overloaded, 711
overridden, 756, 757
private, 410–413
protected, 747
public, 392, 450
reading/writing fields, 849–862
recursive, 1048–1049
set (setter), 395
static, 685–688
virtual, 941–946

member variables
defined, 389
initializing, 440

instance of another class, 420
key field, 584
private, 392, 450
public, 392
safeguarding, 400

members
accessing, 394–395
comparing, 438
inherited, 747
instance, 678, 685
pointers as, 659–660
private, 392
protected, 745–748
public, 392
selecting, 659–661
static, 681–688
structure, 436–438

memberwise assignment, 694–695,
699

memory
array requirements, 486–487
C-strings, 122–124
dynamic allocation, 643–652
flash, 5
freeing, 645
heap, 645
leaks, 646, 657
main, 4
pointer, 700
random-access (RAM), 4, 15, 38
secondary storage, 4–5
stack, 401
union, 447
variable location, 619–620

menu-driven programs, 181–183
defined, 181
functions in, 334–337

menus
defined, 181
do-while loops with, 260–262
switch statement and,

215–217
merge member function, 1055
message function, 901–903
methods, 389
Microsoft Visual C++, 132, 429,

Appendix M
milliseconds, 465
min_element algorithm (STL),

1009, 1012
mkChange recursive function,

923–924
mod operation, 130
mode flags, 872

modular programming, 305
modulus operator (%), 61, 62, 83,

1088
MS-DOS, 5, 6
multidimensional arrays, 534–536.

See also arrays
multi-file programs, 424–430,

Appendix J
multi-line comments, 64–65. See

also comments
multimap STL container, 1003
multiple assignment, 101–102
multiple exceptions, 979–980
multiple inheritance, 744,

Appendix K
multiplication expressions, 84
multiplication operator (*), 61, 83
multiset STL container, 1003,

1004
multitasking operating systems, 6
multiuser operating systems, 6
mutators, 395
MyString class, 811–817

N
\n (newline escape sequence), 34,

35
n log n time, 609
named constants. See also constants

declaring, 97–98
#define directive, 98–100
defined, 97
initialization, 97

nameSlice function, 801–802
namespaces, 29, Appendix E
National Commerce Bank case

study, 559–561
negation operator (-), 61
negative offsets, 873
nested if statements, 183–187. See

also if statements
defined, 183
flowchart, 183

nested loops, 277–279. See also
loops

break statement in, 281
defined, 277
inner loop, 277, 279
outer loop, 277, 279
use examples, 277

nested structures. See also
structures

attribute relatedness, 441
defined, 440

INDEX 1161

member access, 441
use decision, 441

.NET, Appendix N
new operator

bad_alloc exception, 983
in memory allocation, 644, 645,

647, 649
nodes (binary tree). See also binary

search trees and binary trees
child, 1111
defined, 1111
deleting, 1122, 1123
empty collection, 1111
leaf, 1111
left child, 1111
left subtree, 1124
linking with parent, 1123
parent, 1111
processing, 1119
right child, 1111
right subtree, 1124
root, 1114, 1118, 1119
search tree, 1114
value storage in, 1112

nodes (linked list). See also linked lists
data type, 1024–1025
declaration, 1026–1027
defined, 1023
deleting, 1030, 1032
dynamic allocation, 1023
illustrated, 1024
initializing, 1026–1027
inserting into sorted lists,

1035–1038
processing, 1027–1028
successor pointer, 1024

noshowpoint manipulator, 842
noshowpos manipulator, 842
not equal to operator (!=), 158, 159,

815–817
NOT operator (!), 191–192

Boolean variables and, 192–193
defined, 187, 191
precedence, 194
truth table, 191

nouns. See also finding classes
identifying, 459
list, refining, 459
meaning, 459–460
plural versus singular, 461
representation, 460–461

null characters
defined, 50, 121, 771
storing in character variable, 771

null pointers, 631
null statements, 166
null terminator

defined, 50, 121
loops and, 802–803
placement, 51
space replacement with, 801
string object termination, 512

NumberArray class, 700–702,
704, 706

NumberList class, 1030, 1031,
1032, 1034

numbers
binary, 7
conversion to strings, 787–793
Fibonacci, 911
floating-point, 16, 44, 54
negative, 94
pseudorandom, 128
random, 128–130
real, 16
stored as strings, 39–40

numeric arrays, 505–508. See also
arrays

numeric data, 15–16
numeric data types, 43–47
numeric ranges, checking, 194–195

O
object code, 10
object composition, 420–424
object files, 10
object serialization

defined, 883
member functions for, 884
scheme determination, 885–888

object-based programming, 463
object-oriented analysis and design,

455–463
attribute definition, 456
behavior definition, 457
class relationship definition,

457–458
class/object identification, 456,

458–461
defined, 455
process steps, 456

object-oriented exception handling,
977–978

object-oriented programming
(OOP)

basis, 389
case study, 449–455
data hiding, 390

encapsulation, 389
in general-purpose object design,

431
methods, 389
objects, 389
procedural programming versus,

389
tutorial, Appendix C

objects
array of, 549–555
attributes, 389
cin, 75–81
cout, 31–35
creating, 393
defined, 389, 393
derived class, 743
deserializing, 884
dynamic allocation of, 653–655
file stream, 131–132, 830–831
general purpose, 431
identifying, 456
input validation, 431–435
input/output in, 430
instantiation, 393
introduction to, 393–395
lifetime, 737–739
member functions, 389, 390
 calling, 394, 653
member variables, 389, 390
members, accessing, 394–395
passing, to functions, 413–417
pointers to, 655–657
returning, from functions,

417–419
reusability, 463
selecting members of, 659–661
serializing, 883, 884
stream, 32
string, 53, 204–206
subset, 953
vector, 538

oct manipulator, 842
octal constants, 47
off-by-one errors, 495
ofstream class. See also file stream

objects
data type, 131
file open mode, 834
put member function, 857
seekp member function, 872
tellp member function, 876–878
write member function, 864

one-dimensional arrays, 526. See
also arrays

1162 INDEX

Online Friendship Connections case
study, 883–888

OOP. See object-oriented
programming

open function, 132, 222, 831
operands

defined, 59
lvalue, 59
rvalue, 59

operating systems. See also software
defined, 5
functions, 464
multitasking, 6
multiuser, 6
single tasking, 5
single user, 6

operator= function, 705, 706,
711

operator[] function, 723, 724
operator functions

calling, 706
defined, 705
implementation, 706
parameters to, 706

operator overloading, 704–728
approaches to, 711–712
arithmetic operators, 712–715
assignment operator, 704–710
general issues, 710–711
member-function, 715–716
relational operators, 712–715
stand-alone, 715–716

operators
addition, 61, 83, 712, 716
address, 620, 628
arithmetic, 61–63, 83–84,

712–715
assignment, 14, 39, 168, 694,

704–710
associativity, 84, 1145
binary, 61, 927
combined assignment, 102–104
conditional, 207–209
decrement, 243–249
defined, 13
delete, 645, 646–648, 649, 657
division, 61, 62, 83, 710
dot, 394, 436, 438
in function templates, 990–991
increment, 243–249
indirection, 14, 621–622, 637
logical, 187–195
modulus, 61, 62, 83
multiplication, 61, 83

negation, 61
new, 644, 645, 647, 649
overloaded, 704–727, 815–817
postfix, 717
precedence, 82–83, 161, 194,

1145
prefix, 716–717
relational, 157–162, 202–206
scope resolution, 396
sizeof, 45, 58, 865, 867
stream extraction, 76, 117–119,

134–136, 275, 717–721,
837

stream insertion, 32, 133,
717–721, 832, 863

string class, 120, 807
structure pointer, 653, 659–660
subtraction, 61, 83
ternary, 61
type conversion, 728–730
unary, 61

optical devices, 5
OR operator (||), 189–191

defined, 187, 189
precedence, 194
short circuit evaluation, 190
truth table, 190

ostream class, 864
ostringstream class, 788, 840
outer loops, 277, 279
OutOfRange class, 981
output

buffers, 843
in class object, 430
console, 31
defined, 16–17
devices, 5
display, 32
file, 131, 831
floating-point, 111
iterator, 1004
left-justified, 113
manipulators, 106–114
opening files for, 878–882
right-justified, 106
validating, 223–225

output formatting, 105–114,
838–844

defined, 838
with member functions,

843–844
with sstream objects,

839–843
outputFile object, 132

overflow, 94–95
defined, 94
exceptions, 1074, 1075, 1092
stack, 1079

overloaded functions
calling, 360
defined, 359
return values, 361
uses, 360–361

overloaded operators. See also
operators

++ (postfix) operator, 717
++ (prefix) operator, 716–717
+= operator, 710, 814
+ operator, 712, 716
<< operator, 717–721
< operator, 712, 713, 815–817
== operator, 815–817
= operator, 704–710, 814
!= operator, 815–817
>= operator, 815–817
>> operator, 717–721
> operator, 815
[] operator, 721–727
behavior, 710
as member function, 711
types of, 711

overloading
constructors, 405–406
defined, 757
with function templates,

992–993
overriding versus, 756–757

overridden functions
base class versus derived class

versions, 756
gaining access to, 757

overriding
base class functions, 755–757
default arguments, 348
overloading versus, 756–757

ownership, class relationship, 458

P
padding, 106
parallel arrays, 513–516. See also

arrays
defined, 513
subscript, 514

parameter list, 306, 317
parameters

actual, 317
const, 703
constant reference, 416–417

INDEX 1163

copy constructor, 702
data type, 320
default arguments, 348
default constructor, 407
defined, 314, 316, 321
formal, 317
initializing local variables with,

339
multiple, 321
number of, 314
to operator functions, 706
order of, 321
pointers as, 635–639
pointers to class objects as,

655–657
reference, 706
reference variables as,

350–358
scope, 321
storage location, 323
type, 985–986
types of, 314

parent node, 1111
parentheses (), 30

arguments in, 318
conditional expressions and,

160, 209
data passed into functions, 309
grouping with, 84
if statements and, 164, 165
logical operators and, 194
loops and, 249, 259, 263
pointers and, 626
relational expressions and, 160

parsing, 863
partial array initialization, 500–501
partially-filled arrays, 508
partition function, 916–917
Pascal, 9
passing

file stream objects to functions,
845–846

files to functions, 356–357
objects to functions, 413–417
structures to functions, 444–446
two-dimensional arrays to

functions, 530–532
passing by reference

arguments, 351
defined, 635
files, 845–846
objects, 416–417
pointers versus, 635

structures, 444
when to use, 354–356

passing by value, 321–324
copy constructors and, 702
defined, 321
when to use, 354–356

peek member function, 855–857
pivot, 915
plain text, 957
pointer constants, 629
pointers

addresses, 628, 632–633
aggregation through, 736–737
arithmetic, 629–630
array addresses as arguments, 637
array relationship, 625–629
asterisk (*), 621, 637
base class, 936, 937, 939–940
to char, 772, 775–776
to class objects, 655–657
comparing, 632–634
constant, 641–643
to constants, 639–640
dangling, 646
declaration, 621–622
decrementing, 629, 630
defined, 619, 621
dereferencing, 623
dereferencing to structures, 660
derived class, 936, 937
as function parameters, 635–639
identification, 621
implicit, 870
incrementing, 629, 630
initializing, 630–631
as members, 659–660
memory allocation, 700
notation, 626, 627, 637
null, 631
parentheses and, 626
passing by reference versus, 635
passing C-string arguments with,

803–805
returning from functions, 648–650
to structures, 652–655
in structures, 870
successor, 1024
this, 677–680
variables, 621–624

pointer-to-a-pointer, 662
polymorphism

behavior, 943
defined, 941

dynamic binding, 946
static binding, 945–946

pop member function
dynIntStack class, 1079
IntStack class, 1074, 1077,

1081
queue container, 1097
stack container, 1083

pop operation, 1072, 1073
pop_back function

list container, 1055
vector class, 544, 545, 548,

1007
pop_front member function

deque container, 1096
list container, 1055

positive offsets, 873
post test loops, 259
postfix (++) operator, 717
postfix expressions, 927, 1103
postfix mode

defined, 244
prefix mode versus, 245–247

postorder traversal, 1119, 1120
pound sign (#), 10, 28, 30
pow function, 85, 128, 169, 316,

326
precedence

arithmetic operators, 82–83
logical operators, 194
relational operators, 160
table, 1145

precision, 108, 843
precision member function, 843,

844
prefix (++) operator, 716–717
prefix expressions, 927
prefix mode

defined, 244
postfix mode versus, 245–247

prefix notation, 93
preorder traversal, 1119, 1120
preprocessor, 10, 11
preprocessor directives, 10, 28, 36
prestandard C++, 37
prestandard compilers, 109
prestandard type cast expressions,

93
pretest loops, 251, 265
priming read, 254
print member function, 739
printable characters, 853
printing queues, 1085

1164 INDEX

private access specification, 392,
745, 748

private member functions, 410–413
defined, 410
example, 410–413

private member variables, 392
private members, 392
problem domain, 458–459
procedural programming, 389
processing, 16
program, 6–8
programmer-defined data types, 537
programmer-defined identifiers,

13, 14
programming

as art and science, 2
modular, 305
object-based, 463
object-oriented, 389–391
procedural, 389
process, 17–21

programming languages, 6–9
BASIC, 9
C#, 9
C++, 9, 29, 37
C, 9
COBOL, 9
elements, 12–14
FORTRAN, 9
high-level, 8
Java, 9
JavaScript, 9
low-level, 8
Pascal, 9
Python, 9
Ruby, 9
Visual Basic, 9

programming style
consistency, 66
defined, 65
if statement, 166
if/else statement, 173
multi-line statements, 67
visual arrangement, 66
while loop and, 253

programs
defined, 6
designing and creating, 17–21
elements, 2, 12–16
file location, 831–832
function definition, 18
hand tracing, 138–140
input, 16
language elements, 12–14

lines and statements, 14–15
linking, 20
menu-driven, 181–183, 334–337
model creation, 18–19
multi-file, 424–430, Appendix J
older style, 37
output, 16–17
parts of, 27–31
processing, 16
results validation, 21, 223–225
running with test data, 20,

284–286
steps for writing, 17
three-step process, 16–17
top-down design, 18, 21
variable definitions, 15–16
variables, 15
visualization, 18

promoted values, 89–90
prompts, 76
protected access specification, 748
protected members, 745–748
prototypes. See function prototypes
pseudocode, 19
pseudorandom numbers, 128
public access specification, 392,

742, 745, 748
public member functions, 392
public member variables, 392
punctuation, 13, 14
pure virtual functions, 946–949
push member function

IntStack class, 1074, 1075,
1077, 1081

queue container, 1097
stack container, 1083

push operation, 1072
push_back member function

deque container, 1096
list container, 1055
vector class, 541–542, 548, 1007

push_front member function,
1055

put member function, 857–858
Pythagorean theorem, 127
Python, 9

Q
qSort function, 1099
quadratic time, 609
question mark (?), 488
queue container, 1097–1098
queues

applications of, 1085
based on circular arrays, 1088

defined, 1084–1085
dequeue, 1085, 1086
dynamic, 1085, 1092–1095
empty, 1086, 1088
enqueue, 1085
expanding/shrinking, 1092
FIFO order, 1084–1085
full, 1088
introduction to, 1084–1092
linked list implementation, 1092
operations, 1085–1088
printing, 1085
static, 1085, 1092
testing, 1088

QuickSort algorithm
defined, 915
functioning of, 915
implementation, 916
partitioning, 915
pivot, 915
recursive calls to, 1099

quotation marks (""), 30, 39, 50

R
\r (return escape sequence), 35
RAM (random-access memory), 4,

15, 38
rand function, 128
random access

container, 1003
files, 871–878
iterator, 1004
modes, 872

random numbers, 128–130
random-access memory (RAM), 4,

15, 38
random_shuffle algorithm

(STL), 1009, 1011
ranking, data types, 89
read

position, 135
priming, 254

read member function, 865
reading

data with loops, 273–276
files, 134–137, 832–835
files, member functions,

849–862
line of input, 124–125
multiple values, 79–80
single characters, 117

real numbers, 16
records

creating with structures,
866–871

INDEX 1165

fields, 866
information organization in,

867
recursion, 901–933

depth of, 902
direct, 907
eliminating, 1098–1102
indirect, 907
introduction to, 901–908
iteration versus, 926
overhead, 926, 1098
uses, 905

recursive algorithms
binary search, 913–914
enumeration, 922–926
exhaustive, 922–926
factorial, 908–910
gcd, 910–911
linked list operations,

1045–1053
QuickSort, 915–918
Towers of Hanoi, 919–922

recursive functions. See also
recursive algorithms

base case, 904, 913
defined, 901
number of recursive call and, 902

recursively defined problems,
solving, 911–912

reference, passing arguments by, 351
reference parameters, 706
reference variables

ampersand (&), 351
changes to, 521
defined, 350, 351
definition, 351
as parameters, 350–358
pointers and, 635
use instances, 355

reinterpret_cast, 864
relational expressions

array elements in, 503
as Boolean expressions, 158
decrement operator (--) in, 248
defined, 158
example, 159
if statements and, 168–169
increment operator (++) in, 248
in parentheses, 160
statements including, 161

relational operators, 157–162
as binary operators, 158
in comparing characters, 202–204

in comparing enumerated
variables, 220

in comparing pointers,
632–634

in comparing strings, 204–205
defined, 157
function templates and, 990
list of, 158
overloading, 712–715
precedence, 160, 161
string class, 807

relationships
access, 458
class, 457–458
composition, 457
has-a, 734, 739
inheritance, 458
is-a, 740–744
ownership, 458
value of, 158–159

Reliable Software Systems, Inc. case
study, 1056–1060

remainder, 62
remove member function, 1030,

1038–1040
recursive, 1051–1053
sorted/unsorted lists, 1039

replace function, 810
reserved words. See key words
resize member function

string class, 810
vector class, 548, 1007

responsibilities, class, 461–463
rethrowing exceptions, 984–985
return statements, 325–326

defined, 325
format, 327
value-returning functions, 327

return types, 307
char *, 648
structure variable, 446
void, 307, 709

return values
assignment operator (=),

709–710
Boolean, 332–334
data types, 329, 331
functions, 326–331
multiple, 326, 327, 447
object as, 417–419
structure as, 446–447
using, 329

reusability, object, 463

reverse member function, 548,
1007, 1055

rewinding files, 858–860
right child node, 1111
right manipulator, 112–113, 842
right to left associativity, 84
right-justified output, 106
root, binary tree, 1111
root nodes, binary search tree,

1114, 1118, 1119
round function, 126
round-off errors, 291
rows, two-dimensional array,

532–533
Ruby, 9
running totals

accumulator, 269–270
defined, 269
example use, 271
logic, 269

run-time errors, 20
run-time libraries, 10
run-time type identification,

Appendix I
rvalue, 59

S
scientific manipulator, 842, 843
scientific notation, 54, 843
scope

block, 198
coming into, 199
defined, 60, 198
of global variables, 339
leaving, 199
local, 198
of parameters, 321
resolution operator, 396, 757
variable, 60–61, 197–199

scope resolution operator (::),
396, 757

screens
clearing, 337
control, 464–469
input form, controlling,

467–469
positioning cursor on,

464–467
search algorithms. See also

algorithms
binary search, 580–584
defined, 577
introduction to, 577–584
linear search, 577–580

1166 INDEX

SearchableVector class, 1000,
1001

searching
arrays of objects, 584–587
binary search trees, 1114,

1121–1122
vectors, 599–601

searchList function, 578
secondary storage, 4–5
Secure Encryption Systems, Inc. case

study, 957–960
seekg member function, 859,

872–876
seekp member function, 872–876
selection sort, 591–595. See also

sorting algorithms
worst case complexity, 607

selectSort function, 663,
664–665

self-referential data types, 1025
semicolons (;), 30, 36, 100

if statements and, 166–167
infinite loops and, 252

sentinels, 271–273
sequence structure, 162–163
sequential containers, 538,

1002–1003
STL, 1003

sequential file access, 871
sequential search. See linear search
set (setter) functions, 395
Set Intersection case study, 561
set STL container, 1003, 1004
SetConsoleCursorPosition

function, 464
SetConsoleTextAttribute

function, 464
setf member function, 843, 844
setfill manipulator, 842, 843
setLength function, 397, 427,

712
setName function, 745
setprecision manipulator

defined, 108, 842
iomanip header file and, 110
output, 109
value display and, 109

setRadius function, 391, 395
setValue function, 679, 680
setw manipulator, 105, 106, 107,

838, 842
setWidth function, 397, 427
short circuit evaluation, 188, 190
short data type, 45

show member function, 663, 665
showArea function, 348
showArray function, 530, 532
showFees function, 336, 366, 367
showLocal function, 345
showpoint manipulator, 111–112,

842
showpos manipulator, 842
showRec function, 876
showSorted function, 663,

665–666
showState function, 847–848
showStatic function, 346
showSum function, 320–321
showValues function, 414, 417,

517–518, 520
significant digits, 108
sin function, 126
single precision data type, 54
single tasking operating systems, 5
single user operating systems, 6
single-line comments, 64
singly linked lists, 1054
size, data type, 44, 45, 58–59
size declarators. See also arrays

compiler requirement, 490
defined, 120, 486
example, 487
subscripts versus, 488
two-dimensional arrays, 527
vector, 538

size member function
list container, 1055
stack container, 1083
string class, 810
vector class, 543, 548, 601,

1007
sizeof operator, 45, 58, 865, 867
soft copy, 5
software

abstraction and, 388
application, 5
defined, 5
engineering, 21
operating system, 5, 6

sort algorithm (STL), 1009, 1011
sorting

ranges, 1098
strings, 782–783
sublists, 915–916

sorting algorithms. See also
algorithms

array of objects, 596–599
bubble sort, 587–591

defined, 587
introduction to, 587–595
QuickSort, 915–918
selection sort, 591–595
for vectors, 599–601

source code
compiling, 20
defined, 10
writing, 20

source files
defined, 10
translation process, 11

spaces
blank, 106
file names and, 133

spacing, 167
special characters, 30
specialization, 740
specification file, class, 424, 425,

430
spreadsheets, 829
sqrt function, 126, 127, 388
square function, 329, 331,

359–360, 986
srand function, 128
sstream objects, 839–843
stack container (STL), 1083
stack, memory, 401
stacks

applications of, 1072
becoming empty, 1078
Constructor function, 1074
dynamic, 1072, 1079–1082
exception handling, 1078–1079
filling up, 1078
isEmpty function, 1074, 1078
isEmpty operation, 1073
isFull function, 1079
as LIFO structures, 1071
linked list, 1079–1082
operations, 1072–1073
overflow, 1079
pop function, 1074, 1077, 1081
pop operation, 1072, 1073
push function, 1074, 1075,

1077, 1081
push operation, 1072
static, 1072
templates, 1079
underflow, 1079
unwinding, 983–984

stale data, avoiding, 400
stand-alone operator overloading,

715–716

INDEX 1167

standard C++, 37
Standard Template Library (STL)

algorithms, 1008–1009
containers, 538, 1002–1004,

1054–1056, 1082–1084
defined, 537, 1002
introduction to, 1002–1015
iterators, 1002, 1004–1005

statements
assignment, 38–39, 59–60, 81
break, 211–212
case, 210–211, 212
continue, 281–284
converting algebraic expressions

to, 84–85
defined, 14–15
definition, 393
function call, 307, 309
if, 162–172
if/else, 172–175
if/else if, 175–181
multi-line, 67
multiple, 267–268
null, 166
return, 325–326
switch, 210–218
typedef, 516–517
variable definition, 16
while loop, 250

static binding, 945–946
static key word, 685
static local variables, 344–347
static members. See also members

declarations, 685
defined, 681
defining, 685
functions, 685–688
variables, 682–685

static queues. See also queues
defined, 1085
exceptions, 1092

static stacks. See also stacks
defined, 1072
isEmpty operation, 1073

static_cast type cast
expression, 92, 93

std namespace, 29
STL. See Standard Template Library
storage. See memory
store function, 885
strcat library function, 776–777,

783
strcmp library function, 779–782

case sensitivity, 780–781
defined, 779, 783
example use, 780
NOT (!) operator with, 782
prototype, 779
return value, 780, 782, 792
summary, 783

strcpy library function, 122, 778,
783

stream extraction operator (>>)
cin object, 76–79
defined, 76
in end of file test, 837
file stream objects and, 832
overloading, 717–721
in reading from files, 134–137
returning value, 275

stream insertion operator (<<)
cout object , 32
defined, 32
file stream objects and, 832
in number formatting, 863
overloading, 717–721
in writing to files, 133–134

stream manipulators. See
manipulators

stream objects
defined, 32
writing to, 839

string class, 52–53, 805–810
advantages, 805
append function, 809
assign function, 809
at function, 809
begin function, 809
capacity function, 809
clear function, 809
compare function, 809
constructors, 806
copy function, 809
creating, 810–817
c_str function, 809
data function, 809
defined, 52
empty function, 809
end function, 809
erase function, 810
find function, 810
header file, 52, 806
insert function, 810
length function, 512, 810
member functions, 805–806,

809–810

operators, 807
replace function, 810
resize function, 810
size function, 810
substr function, 810
swap function, 810
using, 52–53

string constants, See string literals
string header file, 52
string literals, 29, 40, 49–52,

772–773
addresses, 773
compilers and, 772, 779
holding C-strings, 773
numbers represented as, 39–40

stringCopy function, 801
strings. See also string class

comparing, 204–206
converting to numbers,

787–793
defined, 29
field width, 108
inputting, 115–117
numbers stored as, 39–40
objects, 53
operators, 120
processing, 511–513
sorting, 782–783
storage, 512

strlen library function, 776, 783
strncpy library function, 783
strstr library function, 783–786
structure pointer operator (->),

659–660
defined, 653
in node processing, 1027

structure variables
comparing, 438
displaying, 438
names, 436
passing to functions, 444–446
returning from functions,

446–447
structures

arrays of, 555–559
declaring, 435–436
defined, 435
dereferencing pointers to, 660
initializing, 438–440
member access, 436–438
members, 440
nested, 440–442
passing to functions, 444–446

1168 INDEX

structures (continued)
pointers in, 870
pointers to, 653–655
record creation with, 866–871
returning, from functions,

446–447
stubs, 366–367
subclasses, 744
sublists, 915–916
subscripts. See also arrays

accessing array elements with,
487

defined, 487
out of bounds, 493
parallel arrays, 514
size declarators versus, 488
starting number, 487

substr function, 810
subtraction operator (-), 61, 83,

713
successor pointers, 1024
sum function, 327, 328
sumArray function, 523
superclasses, 744
swap, 917, 989

list container, 1055
string class, 810
vector class, 548, 1007

switch statements, 210–218
break statements, 211–212
case statements, 210–211, 212
defined, 210
fall-through capability, 213, 214
format, 210
in menu-driven systems, 215–217

syntax
defined, 13
errors, 10, 65

T
\t (horizontal tab escape sequence),

35
tail, linked lists, 1046
tan function, 126
tellg member function, 876–878
tellp member function, 876–878
templates. See also Standard

Template Library (STL)
binary search tree, 1131
class, 993–1002
function, 985–993
linked list, 1041–1045
stack, 1079
type parameters, 985–986, 987,

990, 992, 994

ternary operators, 61
test data, 284–286
test expressions, 263
testing

alphabetic characters, 193
Boolean variables, 192–193
character, 793–797
for end of file, 836–837
error, 973
for file open errors, 222
for file operation errors,

835–836
with good test data, 284
queues, 1088

testNum function, 796–797
text

cipher, 957
editors, 10
files, 863
plain, 957

this pointer, 677–680
defined, 677
use example, 680

three-dimensional arrays, 534–536.
See also arrays

throw point, 974
throw statement, 981
throwing exceptions. See also

exceptions
defined, 974
rethrowing, 984–985
throw point, 974

tilde character (~), 407
time function, 129
time sharing, 6
tolower library function, 797–798
top member function, 1083
top-down design, 18, 21
totals, running, 269–271
toupper library function,

431–432, 433, 797–798
Towers of Hanoi recursion example,

919–922
trailing else, 179–181
transform virtual function, 958
traversing

binary search trees, 1119–1121
lists, 1027–1029

true, 159, 274, 332–333
truncation, 56, 90
try/catch construct, 975–976
two-dimensional arrays. See also

arrays
braces and, 530
column information, 532

defined, 526
defining, 527
element access, 532
information processing, 527
initialization, 529
initialization list, 530
passing to functions, 530–532
processing, 527
size declarators, 527
summing all elements, 532
summing columns, 533
summing rows, 532–533
typedef statement with, 532

type cast expressions, 90–93,
Appendix I

assignment, 936
with base class pointers,

939–940
C-style, 93
defined, 90
example, 90–91
format, 90
prestandard, 93
reinterpret_cast, 864
static_cast, 92, 93

type coercion, 89
type compatibility, 936–939
type conversion

explicit, 90–94
implicit, 89–90

type parameters. See also class
templates; function
templates

declaration, use of, 992
defined, 985–986
definition of, 987
list of, 994
multiple types, 991

typedef statement
with arrays, 516–517
defined, 516
with 2D arrays, 532
uses, 517

U
UML (Unified Modeling Language),

391, Appendix D
unary operators, 61
underflow, 94–95

defined, 94
exceptions, 1074, 1092
stack, 1079

Unified Modeling Language (UML),
391, Appendix D

unions, 447–449

INDEX 1169

unique member function, 1055
United Cause Relief Agency case

study, 661–669
UNIX, 6
unsetf member function, 844
unsigned int data type, 45
unsigned long data type, 45
unsigned short data type, 44, 45
unwinding the stack, 983–984
update expressions

defined, 263
forms, 266
multiple statements in, 267–268
omitting, 268

USB flash drives, 5
user-controlled for loops, 267
uses-a, 457
using namespace std;

statement, 37

V
validation

input, 183, 196–197
output results, 223–225

value, passing arguments by,
321–323

value-returning functions, 326–331
calling, 328–331
defined, 326
defining, 327–328
prototype, 328
return statement, 327
return values, 329

variable definitions
defined, 15–16, 38
definition location, 38,

197–201
in for loop initialization

expression, 266
requirement, 38

variables
accumulator, 269
address, 620
assignments, 59–60
Boolean, 192–193
concept, 37–38
constant, 97–101
control, 511
counter, 256–258, 264–265, 266
data types, 43–48
defined, 15, 37
enumerated, 220
environment, 819
flag, 169
floating-point, 44, 54–55

global, 337, 339–340, 343–344
index, 581
initialization, 59–60
integer, 38, 43–47, 56–57
local, 337–339, 343–347
loop control, 251
member, 389
memory location, 619–620
names, 41–42, 43
nested block definitions, 200
parameter, 317, 318
pointer, 621–624
reference, 350–358
with same name, 199–200
scope, 60–61, 197–199
static member, 682–685
structure, 436, 438
union, 448

vector data type, 537
header file, 538
member functions, 548

vector header file, 538
vector member functions

at, 548, 809, 1006
back, 1006
begin, 1006
capacity, 548, 1006
clear, 545, 548, 1006
empty, 548, 1006
end, 1004, 1006
erase, 1006
front, 1006
insert, 1007
pop_back, 544, 545, 548,

1007
push_back, 541–542, 548,

1007
resize, 548, 1007
reverse, 548, 1007
size, 543, 548, 1007
summary table, 548
swap, 548, 1007

vector STL container, 1003,
1005–1007

vectors, 537–549
advantages, 538
clearing, 545–546
defined, 538
defining, 538–539
elements, 541
elements, number of, 543
elements, removing, 544–545
empty, detecting, 546–547
example definitions, 539
function summary table, 548

initializing, 539
linked lists versus, 1023–1024
objects, 538
searching, 599–601
size declarator, 538
size determination, 543–544
sorting, 599–601
starting size, 538
values, storing and retrieving,

539–541
virtual functions

declaration, 943
defined, 941
polymorphism and, 941–946
pure, 946–949
tagging, 943
uses, 943

virtual inheritance, Appendix K
virtual key word, 943
Visual Basic, 9
Visual C++, 132, 429, Appendix M
void functions, 307
void return type, 709

W
while loops. See also loops

body, 250
braces and, 252–253
break statement, 280
condition, 249–250
continue statement, 282
control variable, 511
defined, 249
do-while loop versus, 259
flowchart, 249
format, 249
header, 249
for input validation, 253–256
iteration, 251
as pretest loop, 251
programming style and, 253
use decision, 276

whitespace characters, 115, 849
width function, 123, 843, 844
Windows operating system, 31
withdraw member function, 451
word processors, 829
words, 4
worst-case complexity function,

605–607
write member function, 864
writing

files, 133–134, 832–835,
849–862

programs, 17

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents
	Preface
	CHAPTER 1 Introduction to Computers and Programming
	1.1 Why Program?
	1.2 Computer Systems: Hardware and Software
	1.3 Programs and Programming Languages
	1.4 What Is a Program Made of?
	1.5 Input, Processing, and Output
	1.6 The Programming Process
	1.7 Tying It All Together: Hi! It’s Me

	CHAPTER 2 Introduction to C++
	2.1 The Parts of a C++ Program
	2.2 The cout Object
	2.3 The #include Directive
	2.4 Standard and Prestandard C++
	2.5 Variables, Constants, and the Assignment Statement
	2.6 Identifiers
	2.7 Integer Data Types
	2.8 The char Data Type
	2.9 The C++ string Class
	2.10 Floating-Point Data Types
	2.11 The bool Data Type
	2.12 Determining the Size of a Data Type
	2.13 More on Variable Assignments and Initialization
	2.14 Scope
	2.15 Arithmetic Operators
	2.16 Comments
	2.17 Focus on Software Engineering: Programming Style
	2.18 Tying It All Together: Smile!

	CHAPTER 3 Expressions and Interactivity
	3.1 The cin Object
	3.2 Mathematical Expressions
	3.3 Implicit Type Conversion
	3.4 Explicit Type Conversion
	3.5 Overflow and Underflow
	3.6 Named Constants
	3.7 Multiple and Combined Assignment
	3.8 Formatting Output
	3.9 Working with Characters and String Objects
	3.10 Using C-Strings
	3.11 More Mathematical Library Functions
	3.12 Introduction to Files
	3.13 Focus on Debugging: Hand Tracing a Program
	3.14 Green Fields Landscaping Case Study—Part 1
	3.15 Tying It All Together: Word Game

	CHAPTER 4 Making Decisions
	4.1 Relational Operators
	4.2 The if Statement
	4.3 The if/else Statement
	4.4 The if/else if Statement
	4.5 Menu-Driven Programs
	4.6 Nested if Statements
	4.7 Logical Operators
	4.8 Validating User Input
	4.9 More About Variable Definitions and Scope
	4.10 Comparing Characters and Strings
	4.11 The Conditional Operator
	4.12 The switch Statement
	4.13 Enumerated Data Types
	4.14 Testing for File Open Errors
	4.15 Focus on Testing and Debugging: Validating Output Results
	4.16 Green Fields Landscaping Case Study—Part 2
	4.17 Tying It All Together: Fortune Teller

	CHAPTER 5 Looping
	5.1 The Increment and Decrement Operators
	5.2 Introduction to Loops: The while Loop
	5.3 Using the while Loop for Input Validation
	5.4 Counters
	5.5 The do-while Loop
	5.6 The for Loop
	5.7 Keeping a Running Total
	5.8 Sentinels
	5.9 Using a Loop to Read Data from a File
	5.10 Focus on Software Engineering: Deciding Which Loop to Use
	5.11 Nested Loops
	5.12 Breaking Out of a Loop
	5.13 The continue Statement
	5.14 Focus on Testing and Debugging: Creating Good Test Data
	5.15 Central Mountain Credit Union Case Study
	5.16 Tying It All Together: What a Colorful World

	CHAPTER 6 Functions
	6.1 Modular Programming
	6.2 Defining and Calling Functions
	6.3 Function Prototypes
	6.4 Sending Data into a Function
	6.5 Passing Data by Value
	6.6 The return Statement
	6.7 Returning a Value from a Function
	6.8 Returning a Boolean Value
	6.9 Using Functions in a Menu-Driven Program
	6.10 Local and Global Variables
	6.11 Static Local Variables
	6.12 Default Arguments
	6.13 Using Reference Variables as Parameters
	6.14 Overloading Functions
	6.15 The exit () Function
	6.16 Stubs and Drivers
	6.17 Little Lotto Case Study
	6.18 Tying It All Together: Glowing Jack-o-lantern

	CHAPTER 7 Introduction to Classes and Objects
	7.1 Abstract Data Types
	7.2 Object-Oriented Programming
	7.3 Introduction to Classes
	7.4 Introduction to Objects
	7.5 Defining Member Functions
	7.6 Constructors
	7.7 Destructors
	7.8 Private Member Functions
	7.9 Passing Objects to Functions
	7.10 Object Composition
	7.11 Focus on Software Engineering: Separating Class Specification, Implementation, and Client Code
	7.12 Input Validation Objects
	7.13 Structures
	7.14 Home Software Company OOP Case Study
	7.15 Introduction to Object-Oriented Analysis and Design
	7.16 Screen Control
	7.17 Tying It All Together: Yoyo Animation

	CHAPTER 8 Arrays
	8.1 Arrays Hold Multiple Values
	8.2 Accessing Array Elements
	8.3 Inputting and Displaying Array Contents
	8.4 Array Initialization
	8.5 Processing Array Contents
	8.6 Using Parallel Arrays
	8.7 The typedef Statement
	8.8 Arrays as Function Arguments
	8.9 Two-Dimensional Arrays
	8.10 Arrays with Three or More Dimensions
	8.11 Vectors
	8.12 Arrays of Class Objects
	8.13 National Commerce Bank Case Study
	8.14 Tying It All Together: Rock, Paper, Scissors

	CHAPTER 9 Searching, Sorting, and Algorithm Analysis
	9.1 Introduction to Search Algorithms
	9.2 Searching an Array of Objects
	9.3 Introduction to Sorting Algorithms
	9.4 Sorting an Array of Objects
	9.5 Sorting and Searching Vectors
	9.6 Introduction to Analysis of Algorithms
	9.7 Case Studies
	9.8 Tying It All Together: Secret Messages

	CHAPTER 10 Pointers
	10.1 Pointers and the Address Operator
	10.2 Pointer Variables
	10.3 The Relationship Between Arrays and Pointers
	10.4 Pointer Arithmetic
	10.5 Initializing Pointers
	10.6 Comparing Pointers
	10.7 Pointers as Function Parameters
	10.8 Pointers to Constants and Constant Pointers
	10.9 Focus on Software Engineering: Dynamic Memory Allocation
	10.10 Focus on Software Engineering: Returning Pointers from Functions
	10.11 Pointers to Class Objects and Structures
	10.12 Focus on Software Engineering: Selecting Members of Objects
	10.13 United Cause Relief Agency Case Study
	10.14 Tying It All Together: Pardon Me, Do You Have the Time?

	CHAPTER 11 More About Classes and Object-Oriented Programming
	11.1 The this Pointer and Constant Member Functions
	11.2 Static Members
	11.3 Friends of Classes
	11.4 Memberwise Assignment
	11.5 Copy Constructors
	11.6 Operator Overloading
	11.7 Type Conversion Operators
	11.8 Convert Constructors
	11.9 Aggregation and Composition
	11.10 Inheritance
	11.11 Protected Members and Class Access
	11.12 Constructors, Destructors, and Inheritance
	11.13 Overriding Base Class Functions
	11.14 Tying It All Together: Putting Data on the World Wide Web

	CHAPTER 12 More About Characters, Strings, and the string Class
	12.1 C-Strings
	12.2 Library Functions for Working with C-Strings
	12.3 Conversions Between Numbers and Strings
	12.4 Character Testing
	12.5 Character Case Conversion
	12.6 Writing Your Own C-String Handling Functions
	12.7 More About the C++ string Class
	12.8 Creating Your Own String Class
	12.9 Advanced Software Enterprises Case Study
	12.10 Tying It All Together: Program Execution Environments

	CHAPTER 13 Advanced File and I/O Operations
	13.1 Files
	13.2 Output Formatting
	13.3 Passing File Stream Objects to Functions
	13.4 More Detailed Error Testing
	13.5 Member Functions for Reading and Writing Files
	13.6 Binary Files
	13.7 Creating Records with Structures
	13.8 Random-Access Files
	13.9 Opening a File for Both Input and Output
	13.10 Online Friendship Connections Case Study
	13.11 Tying It All Together: File Merging and Color-Coded HTML

	CHAPTER 14 Recursion
	14.1 Introduction to Recursion
	14.2 The Recursive Factorial Function
	14.3 The Recursive gcd Function
	14.4 Solving Recursively Defined Problems
	14.5 A Recursive Binary Search Function
	14.6 Focus on Problem Solving and Program Design: The QuickSort Algorithm
	14.7 The Towers of Hanoi
	14.8 Focus on Problem Solving: Exhaustive and Enumeration Algorithms
	14.9 Focus on Software Engineering: Recursion Versus Iteration
	14.10 Tying It All Together: Infix and Prefix Expressions

	CHAPTER 15 Polymorphism and Virtual Functions
	15.1 Type Compatibility in Inheritance Hierarchies
	15.2 Polymorphism and Virtual Member Functions
	15.3 Abstract Base Classes and Pure Virtual Functions
	15.4 Focus on Object-Oriented Programming: Composition Versus Inheritance
	15.5 Secure Encryption Systems, Inc., Case Study
	15.6 Tying It All Together: Let’s Move It

	CHAPTER 16 Exceptions, Templates, and the Standard Template Library (STL)
	16.1 Exceptions
	16.2 Function Templates
	16.3 Class Templates
	16.4 Class Templates and Inheritance
	16.5 Introduction to the Standard Template Library
	16.6 Tying It All Together: Word Transformers Game

	CHAPTER 17 Linked Lists
	17.1 Introduction to the Linked List ADT
	17.2 Linked List Operations
	17.3 A Linked List Template
	17.4 Recursive Linked List Operations
	17.5 Variations of the Linked List
	17.6 The STL list Container
	17.7 Reliable Software Systems, Inc., Case Study
	17.8 Tying It All Together: More on Graphics and Animation

	CHAPTER 18 Stacks and Queues
	18.1 Introduction to the Stack ADT
	18.2 Dynamic Stacks
	18.3 The STL Stack Container
	18.4 Introduction to the Queue ADT
	18.5 Dynamic Queues
	18.6 The STL deque and queue Containers
	18.7 Focus on Problem Solving and Program Design: Eliminating Recursion
	18.8 Tying It All Together: Converting Postfix Expressions to Infix

	CHAPTER 19 Binary Trees
	19.1 Definition and Applications of Binary Trees
	19.2 Binary Search Tree Operations
	19.3 Template Considerations for Binary Search Trees
	19.4 Tying It All Together: Genealogy Trees

	Appendix A: The ASCII Character Set
	Appendix B: Operator Precedence and Associativity
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

