S ur i (G

Early Objects

TONY GADDIS = JUDY WALTERS = GODFREY MUGANDA

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

LOCATION OF VIDEONOTES IN THE TEXT

Designing a Program with Pseudocode, p. 19
Designing the Account Balance Program, p. 24
Predicting the Output of Problem 30, p. 24
Solving the Candy Bar Sales Problem, p. 25

Using cout to Display Output, p. 32
Assignment Statements, p. 59

Arithmetic Operators, p. 61

Solving the Restaurant Bill Problem, p. 72

Using cin to Read Input, p. 75

Evaluating Mathematical Expressions, p. 81
Combined Assignment Operators, p. 102
Solving the Stadium Seating Problem, p. 151

Using an if Statement, p. 162

Using an if/else Statement, p. 172

Using an if/else if Statement, p. 175
Solving the Time Calculator Problem, p. 236

The while Loop, p. 249

The for Loop, p. 263

Nested Loops, p. 277

Solving the Ocean Levels Problem, p. 299

Defining and Calling Functions, p. 306
Using Function Arguments, p. 316
Value-Returning Functions, p. 326
Solving the Markup Problem, p. 380

Creating a Class, p. 391

Creating and Using Class Objects, p. 393
Creating and Using Structures, p. 436
Solving the car Class Problem, p. 480

Accessing Array Elements, p. 487

Passing an Array to a Function, p. 517
Two-Dimensional Arrays, p. 526

Solving the Chips and Salsa Problem, p. 567

Performing a Binary Search, p. 580
Sorting a Set of Data, p. 587
Solving the Lottery Winners Problem, p. 616

it
=

(continued on next page)

LOCATION OF VIDEONOTES IN THE TEXT (continued)

Chapter 10 Pointer Variables, p. 621
Dynamically Allocating an Array, p. 645
Solving the Days in Current Month Problem, p. 676

Chapter 11 Operator Overloading, p. 704
Aggregation and Composition, p. 734
Overriding Base Class Functions, p. 755
Solving the Number of Days Worked Problem, p. 768

Chapter 12 Converting Strings to Numbers, p. 788
Writing a C-String Handling Function, p. 800
Solving the Backward String Problem, p. 823

Chapter 13 Passing File Stream Obijects to Functions, p. 845
Rewinding a File, p. 858
Solving the File Encryption Filter Problem, p. 897

Chapter 14 Recursive Binary Search, p. 913
QuickSort, p. 915
Solving the Recursive Multiplication Problem, p. 933

Chapter 15 Polymorphism, p. 941
Composition Versus Inheritance, p. 952
Solving the Sequence Sum Problem, p. 970

Chapter 16 Throwing and Handling Exceptions, p. 975
Writing a Function Template, p. 986
Iterators, p. 1004
Solving the Arithmetic Exceptions Problem, p. 1020

Chapter 17 Adding an Element to a Linked List, p. 1031
Removing an Element from a Linked List, p. 1038
Solving the Member Insertion by Position Problem, p. 1069

Chapter 18 Storing Objects in an STL Stack, p. 1083
Storing Objects in an STL Queue, p. 1097
Solving the File Reverser Problem, p. 1109

Chapter 19 Inserting an Element into a Binary Tree, p. 1118
Removing an Element from a Binary Tree, p. 1122
Solving the Tree Size Problem, p. 1138

it
=

Pl Starting Out with

C++
Early Objects

Tony Gaddis
Judy Walters
Godfrey Muganda

Addison-Wesley

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editor-in-Chief: Michael Hirsch

Editorial Assistant: Stephanie Sellinger

Director of Marketing: Margaret Whaples
Marketing Coordinator: Kathryn Ferranti
Managing Editor: Jeffrey Holcomb

Production Project Manager: Heather McNally
Senior Manufacturing Buyer: Carol Melville

Media Manufacturing Buyer: Ginny Michaud

Art Director: Linda Knowles

Cover and Interior Designer: Joyce Cosentino Wells
Cover Art: © 2010 Dmitriy Ustyujanin/iStockphoto
Media Project Manager: Katelyn Boller

Full-Service Project Management: Peggy Kellar, Aptara®, Inc.
Composition: Aptara®, Inc.

Copyeditor: Evelyn Perricone

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook
appear on appropriate page within text.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other
countries. Screen shots and icons reprinted with permission from the Microsoft Corporation. This book is not
sponsored or endorsed by or affiliated with the Microsoft Corporation.

The programs and applications presented in this book have been included for their instructional value. They
have been tested with care, but are not guaranteed for any particular purpose. The publisher does not offer any
warranties or representations, nor does it accept any liabilities with respect to the programs or applications.

Copyright © 2011, 2008, 2006, 2005. Pearson Education, Inc., publishing as Addison-Wesley, 501 Boylston
Street, Suite 900, Boston, Massachusetts 02116. All rights reserved. Manufactured in the United States of
America. This publication is protected by Copyright, and permission should be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material
from this work, please submit a written request to Pearson Education, Inc., Permissions Department, 501
Boylston Street, Suite 900, Boston, Massachusetts 02116.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Gaddis, Tony.
Starting out with C++ : early objects/ Tony Gaddis, Judy Walters, Godfrey Muganda.—Seventh ed.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-13-607774-9 (alk. paper)
1. C++ (Computer program language) I. Walters, Judy. II. Muganda, Godfrey. III. Title.
QA76.73.C153G33 2010
005.13'3—dc22 2010004498

1098765432 1—EB—1413121110

Addison-Wesley
is an imprint of

PEARSON

ISBN 10: 0-13-607774-9

/\
www.pearsonhighered.com ISBN 13: 978-0-13-607774-9

www.pearsonhighered.com

10000
oooooo
0000000

=]
000
Oo0oao
1000
1000

CHAPTER 1
CHAPTER 2
CHAPTER 3
CHAPTER 4
CHAPTER 5
CHAPTER 6
CHAPTER 7
CHAPTER 8
CHAPTER 9
CHAPTER 10
CHAPTER 11
CHAPTER 12
CHAPTER 13
CHAPTER 14
CHAPTER 15
CHAPTER 16
CHAPTER 17
CHAPTER 18
CHAPTER 19

Contents at a Glance

Preface xv

Introduction to Computers and Programming 1
Introduction to C++ 27

Expressions and Interactivity 75

Making Decisions 157

Looping 243

Functions 305

Introduction to Classes and Objects 387

Arrays 485

Searching, Sorting, and Algorithm Analysis 577

Pointers 619

More About Classes and Object-Oriented Programming 677
More About Characters, Strings, and the string Class 771
Advanced File and 1/0 Operations 829

Recursion 901

Polymorphism and Virtual Functions 935

Exceptions, Templates, and the Standard Template Library (STL) 973
Linked Lists 1023

Stacks and Queues 1071

Binary Trees 1111

Appendix A: The ASCII Character Set 1141
Appendix B: Operator Precedence and Associativity 1145
Index 1147

vi Contents at a Glance

Student CD The following appendices are on the accompanying Student CD.

Appendix C:
Appendix D:
Appendix E:
Appendix F:
Appendix G:
Appendix H:
Appendix I:

Appendix J:

Appendix K:
Appendix L:

Appendix M:
Appendix N:
Appendix O:
Appendix P:
Appendix Q:

A Brief Introduction to Object-Oriented Programming
Using UML in Class Design

Namespaces

Passing Command Line Arguments

Header File and Library Function Reference

Binary Numbers and Bitwise Operations

C++ Casts and Run-Time Type Identification
Multi-Source File Programs

Multiple and Virtual Inheritance

Introduction to the MinGW C++ Compiler and
the wxDev-C++ IDE

Introduction to Microsoft Visual C++ 2008 Express Edition
.NET and Managed C++

Introduction to Flowcharting

Answers to Checkpoints

Answers to Odd-Numbered Review Questions

00000
O EE 2EEB
O o 4 0 B o o
B 88 EEBEE

1000
0000
O0 00
Ooo0og
10000

CHAPTER 1

1.1
1.2
1.3
1.4
1.5
1.6
1.7

CHAPTER 2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18

Contents

Preface xv

Introduction to Computers and Programming 1

Why Program? 1

Computer Systems: Hardware and Software 2
Programs and Programming Languages 6
What Is a Program Made of? 12

Input, Processing, and Output 16

The Programming Process 17

Tying It All Together: Hi! I#’s Me 22

Introduction to C++ 27

The Parts of a C++ Program 27

The cout Object 31

The #include Directive 35

Standard and Prestandard C++ 37

Variables, Constants, and the Assignment Statement 37
Identifiers 41

Integer Data Types 43

The char Data Type 48

The C++ string Class 52

Floating-Point Data Types 54

The bool Data Type 57

Determining the Size of a Data Type 58

More on Variable Assignments and Initialization 59
Scope 60

Arithmetic Operators 61

Comments 64

Focus on Software Engineering: Programming Style 65
Tying It All Together: Smile! 67

vii

viii Contents

CHAPTER 3 Expressions and Interactivity 75

3.1 The cin Object 75

3.2 Mathematical Expressions 81

3.3 Implicit Type Conversion 89

3.4 Explicit Type Conversion 90

3.5 Overflow and Underflow 94

3.6 Named Constants 97

3.7 Multiple and Combined Assignment 101

3.8 Formatting Output 105

3.9 Working with Characters and String Objects 115
3.10 Using C-Strings 120

3.11 More Mathematical Library Functions 126

3.12 Introduction to Files 130

3.13 Focus on Debugging: Hand Tracing a Program 138
3.14 Green Fields Landscaping Case Study—Part 1 140
3.15 Tying It All Together: Word Game 142

CHAPTER 4 Making Decisions 157

4.1 Relational Operators 157

4.2 The if Statement 162

4.3 The if/else Statement 172

4.4 The if/else if Statement 175

4.5 Menu-Driven Programs 181

4.6 Nested if Statements 183

4.7 Logical Operators 187

4.8 Validating User Input 196

4.9 More About Variable Definitions and Scope 197
4.10 Comparing Characters and Strings 202

4.11 The Conditional Operator 206

4.12 The switch Statement 210

4.13 Enumerated Data Types 219

4.14 Testing for File Open Errors 222

4.15 Focus on Testing and Debugging: Validating Output Results 223
4.16 Green Fields Landscaping Case Study—Part 2 225
4.17 Tying It All Together: Fortune Teller 229

CHAPTER 5 Looping 243

5.1 The Increment and Decrement Operators 243
5.2 Introduction to Loops: The while Loop 249
5.3 Using the while Loop for Input Validation 253
54 Counters 256

5.5 The do-while Loop 258

5.6 The for Loop 263

5.7 Keeping a Running Total 269

5.8 Sentinels 271

5.9 Using a Loop to Read Data from a File 273
5.10 Focus on Software Engineering: Deciding Which Loop to Use 276
5.11 Nested Loops 277

5.12 Breaking Out of a Loop 279

5.13 The continue Statement 281

5.14
5.15
5.16

CHAPTER 6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18

CHAPTER 7

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11

7.12
7.13
7.14
7.15
7.16
7.17

CHAPTER 8

8.1
8.2
8.3
8.4
8.5

Contents

Focus on Testing and Debugging: Creating Good Test Data 284
Central Mountain Credit Union Case Study 287
Tying It All Together: What a Colorful World 291

Functions 305

Modular Programming 305

Defining and Calling Functions 306

Function Prototypes 314

Sending Data into a Function 316

Passing Data by Value 321

The return Statement 325

Returning a Value from a Function 326
Returning a Boolean Value 332

Using Functions in a Menu-Driven Program 334
Local and Global Variables 337

Static Local Variables 344

Default Arguments 347

Using Reference Variables as Parameters 350
Overloading Functions 359

The exit () Function 363

Stubs and Drivers 366

Little Lotto Case Study 368

Tying It All Together: Glowing Jack-o-lantern 373

Introduction to Classes and Objects 387

Abstract Data Types 387

Object-Oriented Programming 389

Introduction to Classes 391

Introduction to Objects 393

Defining Member Functions 395

Constructors 402

Destructors 407

Private Member Functions 410

Passing Objects to Functions 413

Object Composition 420

Focus on Software Engineering: Separating Class Specification,
Implementation, and Client Code 424

Input Validation Objects 431

Structures 435

Home Software Company OOP Case Study 449

Introduction to Object-Oriented Analysis and Design 455

Screen Control 464

Tying It All Together: Yoyo Animation 469

Arrays 485

Arrays Hold Multiple Values 485

Accessing Array Elements 487

Inputting and Displaying Array Contents 489
Array Initialization 496

Processing Array Contents 502

ix

Contents

8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14

CHAPTER 9

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

CHAPTER 10

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13
10.14

CHAPTER 11

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11

Using Parallel Arrays 513

The typedef Statement 516

Arrays as Function Arguments 517
Two-Dimensional Arrays 526

Arrays with Three or More Dimensions 534
Vectors 537

Arrays of Class Objects 549

National Commerce Bank Case Study 559
Tying It All Together: Rock, Paper, Scissors 561

Searching, Sorting, and Algorithm Analysis 577

Introduction to Search Algorithms 577
Searching an Array of Objects 584
Introduction to Sorting Algorithms 587
Sorting an Array of Objects 596

Sorting and Searching Vectors 599
Introduction to Analysis of Algorithms 601
Case Studies 609

Tying It All Together: Secret Messages 610

Pointers 619

Pointers and the Address Operator 619

Pointer Variables 621

The Relationship Between Arrays and Pointers 625

Pointer Arithmetic 629

Initializing Pointers 630

Comparing Pointers 632

Pointers as Function Parameters 635

Pointers to Constants and Constant Pointers 639

Focus on Software Engineering: Dynamic Memory Allocation 643
Focus on Software Engineering: Returning Pointers from Functions 648
Pointers to Class Objects and Structures 652

Focus on Software Engineering: Selecting Members of Objects 659
United Cause Relief Agency Case Study 661

Tying It All Together: Pardon Me, Do You Have the Time? 669

More About Classes and Object-Oriented Programming 677

The this Pointer and Constant Member Functions 677
Static Members 681

Friends of Classes 689

Memberwise Assignment 694

Copy Constructors 695

Operator Overloading 704

Type Conversion Operators 728

Convert Constructors 731

Aggregation and Composition 734
Inheritance 740

Protected Members and Class Access 745

11.12
11.13
11.14

CHAPTER 12

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10

CHAPTER 13

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10
13.11

CHAPTER 14

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10

CHAPTER 15

15.1
15.2
15.3
15.4
15.5
15.6

Contents

Constructors, Destructors, and Inheritance 750
Overriding Base Class Functions 755
Tying It All Together: Putting Data on the World Wide Web 757

More About Characters, Strings, and the string Class 771

C-Strings 771

Library Functions for Working with C-Strings 776
Conversions Between Numbers and Strings 787

Character Testing 793

Character Case Conversion 797

Writing Your Own C-String Handling Functions 800

More About the C++ string Class 805

Creating Your Own string Class 810

Advanced Software Enterprises Case Study 817

Tying It All Together: Program Execution Environments 819

Advanced File and 1/0 Operations 829

Files 829

Output Formatting 838

Passing File Stream Objects to Functions 8435

More Detailed Error Testing 847

Member Functions for Reading and Writing Files 849
Binary Files 862

Creating Records with Structures 866
Random-Access Files 871

Opening a File for Both Input and Output 878
Online Friendship Connections Case Study 883
Tying It All Together: File Merging and Color-Coded HTML 888

Recursion 901

Introduction to Recursion 901

The Recursive Factorial Function 908

The Recursive ged Function 910

Solving Recursively Defined Problems 911

A Recursive Binary Search Function 913

Focus on Problem Solving and Program Design: The QuickSort Algorithm 915
The Towers of Hanoi 919

Focus on Problem Solving: Exhaustive and Enumeration Algorithms 922
Focus on Software Engineering: Recursion Versus Iteration 926

Tying It All Together: Infix and Prefix Expressions 927

Polymorphism and Virtual Functions 935

Type Compatibility in Inheritance Hierarchies 935

Polymorphism and Virtual Member Functions 941

Abstract Base Classes and Pure Virtual Functions 946

Focus on Object-Oriented Programming: Composition Versus Inheritance 952
Secure Encryption Systems, Inc., Case Study 957

Tying It All Together: Let’s Move It 961

xi

xii Contents

CHAPTER 16 Exceptions, Templates, and the Standard Template Library (STL) 973

16.1 Exceptions 973

16.2 Function Templates 985

16.3 Class Templates 993

16.4 Class Templates and Inheritance 999

16.5 Introduction to the Standard Template Library 1002
16.6 Tying It All Together: Word Transformers Game 1015

CHAPTER 17 Linked Lists 1023

17.1 Introduction to the Linked List ADT 1023

17.2 Linked List Operations 1029

17.3 A Linked List Template 1041

17.4 Recursive Linked List Operations 1045

17.5 Variations of the Linked List 1054

17.6 The STL 1ist Container 1054

17.7 Reliable Software Systems, Inc., Case Study 1056

17.8 Tying It All Together: More on Graphics and Animation 1060

CHAPTER 18 Stacks and Queues 1071

18.1 Introduction to the Stack ADT 1071

18.2 Dynamic Stacks 1079

18.3 The STL Stack Container 1082

18.4 Introduction to the Queue ADT 1084

18.5 Dynamic Queues 1092

18.6 The STL deque and queue Containers 1096

18.7 Focus on Problem Solving and Program Design: Eliminating Recursion 1098
18.8 Tying It All Together: Converting Postfix Expressions to Infix 1103

CHAPTER 19 Binary Trees 1111

19.1 Definition and Applications of Binary Trees 1111

19.2 Binary Search Tree Operations 1115

19.3 Template Considerations for Binary Search Trees 1131
19.4 Tying It All Together: Genealogy Trees 1131

Appendix A: The ASCII Character Set 1141
Appendix B: Operator Precedence and Associativity 1145
Index 1147

Contents xiii

Student CD The following appendices are on the accompanying Student CD.
Appendix C: A Brief Introduction to Object-Oriented Programming
Appendix D: Using UML in Class Design
Appendix E: Namespaces
Appendix F: Passing Command Line Arguments
Appendix G: Header File and Library Function Reference
Appendix H: Binary Numbers and Bitwise Operations
Appendix I: C++ Casts and Run-Time Type Identification
Appendix J: Multi-Source File Programs
Appendix K: Multiple and Virtual Inheritance

Appendix L: Introduction to the MinGW C++ Compiler and
the wxDev-C++ IDE

Appendix M: Introduction to Microsoft Visual C++ 2008 Express Edition
Appendix N: .NET and Managed C++

Appendix O: Introduction to Flowcharting

Appendix P: Answers to Checkpoints

Appendix Q: Answers to Odd-Numbered Review Questions

This page intentionally left blank

OO
100
OO0
8 i
1000
Oogogag
OoooOoag

[0 1 0
OOo00ogd
ooooo
EliEf=jalls

Preface

Welcome to Starting Out with C++: Early Objects, 7th Edition. This book is intended for use
in a two-term or three-term C++ programming sequence, or an accelerated one-term course.
Students new to programming, as well those with prior course work in other languages, will
find this text beneficial. The fundamentals of programming are covered for the novice, while
the details, pitfalls, and nuances of the C++ language are explored in-depth for both the
beginner and more experienced student. The book is written with clear, easy-to-understand
language and it covers all the necessary topics for an introductory programming course. This
text is rich in example programs that are concise, practical, and real world oriented, ensuring
that the student not only learns how to implement the features and constructs of C++, but
why and when to use them.

What's New in the Seventh Edition

This book’s pedagogy, organization, and clear writing style remain the same as in the
previous edition. However, many improvements have been made to make it even more
student-friendly and to keep it state of the art for introductory programming using the
C++ programming language.

e Updated Material
Material has been updated throughout the book to reflect changes in technology,
operating systems, and software development environments, as well as to improve
clarity and incorporate best practices in object-oriented programming.

* New Material
New material has been added on a number of topics including embedding operating
system calls in program code, using object composition and aggregation, and creating
text-based graphics.

e Completely Revised Chapter 7
Chapter 7, Introduction to Classes and Objects, has been reorganized and almost
entirely rewritten to start right in with classes and objects, instead of introducing
structures first.

XV

xvi

Preface

e Greater Focus on Object-Oriented Programming
Many examples throughout the text have been rewritten to incorporate appropriate
use of classes and objects.

e Reusability
Material has been added illustrating how to create general classes that can be appro-
priately reused in multiple applications.

* Improved Diagrams
Many diagrams have been improved and new diagrams added to better illustrate
important concepts.

® Online VideoNotes
An extensive set of online videos have been developed to accompany this text.
Throughout the book, VideoNotes icons alert the student to videos covering specific
topics they are studying. Additionally, one Programming Challenge at the end of each
chapter now has an accompanying video explaining how to develop the problem’s
solution. The videos are available at http://www.pearsonhighered.com/gaddis/

e New Tying It All Together Sections
A new Tying It All Together section has been added at the end of every chapter that
shows the student how to do something clever and fun with the material covered in
that chapter.

e New Programming Challenges
New Programming Challenges have been added to every chapter, including a number
of Challenges that ask students to develop object-oriented solutions and to create
solutions that reuse, modify, and build on previously written code.

e New Compiler and IDE Bundled with the Book
The MinGW C++ Compiler and wxDev-C++ Software Development Environment
now come bundled, for free, with the book.

e New Appendices
An Appendix has been added on using the MinGW C++ Compiler and wxDev-C++
IDE that accompany the book. Additional new appendices cover the Microsoft
Visual C++ 2008 Express Edition IDE and Multiple and Virtual Inheritance.

Organization of the Text

This text teaches C++ in a step-by-step fashion. Each chapter covers a major set of topics
and builds knowledge as the student progresses through the book. Although the chapters
can be easily taught in their existing sequence, flexibility is provided. The following
dependency diagram (Figure P-1) suggests possible sequences of instruction.

Chapter 1 covers fundamental hardware, software, and programming concepts. The
instructor may choose to skip this chapter if the class has already mastered those topics.
Chapters 2 through 6 cover basic C++ syntax, data types, expressions, selection structures,
repetition structures, and functions. Each of these chapters builds on the previous chapter
and should be covered in the order presented.

http://www.pearsonhighered.com/gaddis/

Chapter 7 introduces object-oriented programming. It can be covered any time after Chapter 6,
but before Chapter 11. Instructors who prefer to introduce arrays before classes can cover
Chapter 8 before Chapter 7. In this case it is only necessary to postpone section 8.12

(Arrays of Class Objects) until Chapter 7 has been covered.

As Figure P-1 illustrates, in the second half of the book Chapters 11, 12, 13, and 14 can
be covered in any order. Chapters 11, 15, and 16, however, should be done in sequence.
Instructors who wish to introduce data structures at an earlier point in the course, with-
out having first covered advanced C++ and OOP features, can cover Chapter 17 (Linked
Lists), followed by Chapters 18 and 19 (Stacks & Queues and Binary Trees), any time
after Chapter 14 (Recursion). In this case it is necessary to simply omit the sections in
Chapters 17-19 that deal with templates and the Standard Template Library.

Figure P-1

Chapter 1
Introduction

v

Chapters 2-6
Basic
Language
Elements

v

v

Chapter 7 Chapter 8
OOP Introduction Arrays
I
Chapter 9 Chapter 10
Searching, Sorting, Pointers
and Algorithm Analysis
I I I
Chapter 11 Chapter 12 Chapter 13 Chapter 14
More OOP Advanced Advanced Files Recursion
Strings and I/0
Chapter 15 Chapter 17
Adv. OOP Linked Lists
Chapter 16 £ l
Exceptions, Chapter 18
Templates, Stacks and
and STL Queues

Chapter 19
Binary Trees

xvii

xviii

Preface

Brief Overview of Each Chapter

Chapter 1: Introduction to Computers and Programming

This chapter provides an introduction to the field of computer science and covers the
fundamentals of hardware, software, operating systems, programming, problem solving,
and software engineering. The components of programs, such as key words, variables,
operators, and punctuation are covered. The tools of the trade, such as hierarchy charts
and pseudocode, are also presented. The new Tying It All Together section shows stu-
dents how to use the cout statement to create a personalized output message. Two new
Programming Challenges help students see how the same basic input, processing, and
output structure can be used to create multiple programs.

Chapter 2: Introduction to C++

This chapter gets the student started in C++ by introducing the basic parts of a C++ program,
data types, variable definitions, assignment statements, constants, comments, program output,
and simple arithmetic operations. The C++ string class is presented and string objects are used
from this point on in the book as the primary method of handling strings. Programming style
conventions are introduced and good programming style is modeled here, as it is throughout
the text. An optional section explains the difference between ANSI standard and prestandard
C++ programs. The new Tying It All Together section lets the student play with simple text-
based graphics.

Chapter 3: Expressions and Interactivity

In this chapter the student learns to write programs that input and handle numeric, character,
and string data. The use of arithmetic operators and the creation of mathematical expressions
are covered, with emphasis on operator precedence. Debugging is introduced, with a section
on hand tracing a program. Sections are also included on using random numbers, on reading
and writing sequential files, on simple output formatting, on data type conversion and type
casting, and on using library functions that work with numbers. For those who wish to
cover them, there is also a section on C-strings. The new Tying It All Together section
shows students how to create a simple interactive word game.

Chapter 4: Making Decisions

Here the student learns about relational expressions and how to control the flow of a
program with the if, if/else, and if/else if statements. Logical operators, the
conditional operator, and the switch statement are also covered. Applications of these
constructs, such as menu-driven programs, are illustrated. This chapter also continues
the theme of debugging with a section on validating output results. The new Tying It
All Together section uses random numbers and branching statements to create a for-
tune telling game.

Chapter 5: Looping

This chapter covers C++’s repetitive control mechanisms. The while loop, do-while loop,
and for loop are taught, along with a variety of methods to control them. These include
using counters, user input, end sentinels, and end-of-file testing. Applications utilizing
loops, such as keeping a running total and performing data validation, are covered. The
emphasis on testing and debugging continues, with a section on creating good test data.
The new Tying It All Together section introduces students to Windows commands to cre-
ate colorful output and uses a loop to create a multi-colored display.

Preface

Chapter 6: Functions

In this chapter the student learns how and why to modularize programs, using both void and
value-returning functions. Parameter passing is covered, with emphasis on when arguments
should be passed by value versus when they need to be passed by reference. Scope of variables
is covered and sections are provided on local versus global variables and on static local
variables. Overloaded functions are also introduced and demonstrated. The new Tying It All
Together section includes a modular, menu-driven program that emphasizes the versatility of
functions, illustrating how their behavior can be controlled by the arguments sent to them.

Chapter 7: Introduction to Classes and Objects

In this chapter the text begins to focus on the object-oriented paradigm. Students learn
how to define classes and to create and use objects. Careful attention is paid to illustrating
which functions belong in a class versus which functions belong in a client program that
uses the class. Good object-oriented practices are discussed and modeled, such as protecting
member data through carefully constructed accessor and mutator functions and hiding class
implementation details from client programs. Once students are comfortable working with
classes and objects, the chapter provides a brief introduction to the topic of object-oriented
analysis and design. The chapter also introduces structures and uses them in this chapter’s
Tying It All Together section, where students learn to use screen control techniques to create
an animation that simulates the motion of a yoyo.

Chapter 8: Arrays

In this chapter the student learns to create and work with single and multidimensional
arrays. Many examples of array processing are provided, including functions to compute
the sum, average, highest and lowest values in an array. Students also learn to create tables
using two-dimensional arrays, and to analyze the array data by row or by column. Pro-
gramming techniques using parallel arrays are also demonstrated, and the student is shown
how to use a data file as an input source to populate an array. STL vectors are introduced
and compared to arrays. Sections on arrays of objects and structures are located at the end
of the chapter, so they can be covered now or saved for later if the instructor wishes to
cover this chapter before Chapter 7. The new Tying It All Together section uses arrays to
create a game of Rock, Paper, Scissors between a human player and the computer.

Chapter 9: Searching, Sorting, and Algorithm Analysis

Here the student learns the basics of searching for information stored in arrays and of sorting
arrays, including arrays of objects. The chapter covers the Linear Search, Binary Search,
Bubble Sort, and Selection Sort algorithms, and has an optional section on sorting and
searching STL vectors. A brief introduction to algorithm analysis is included and students
are shown how to determine which of two algorithms is more efficient. The new Tying It
All Together section uses both a table lookup and a searching algorithm to encode and
decode secret messages.

Chapter 10: Pointers

This chapter explains how to use pointers. The topics include pointer arithmetic, initializa-
tion of pointers, comparison of pointers, pointers and arrays, pointers and functions,
dynamic memory allocation, and more. The new Tying It All Together section demonstrates
the use of pointers to access library data structures and functions that return calendar and
wall clock time.

xix

XX

Preface

Chapter 11: More about Classes and Object-Oriented Programming

This chapter continues the study of classes and object-oriented programming. It covers
object aggregation and composition, as well as inheritance, and illustrates the difference
between is-a and has-a relations. Constant member functions, static members, friends,
memberwise assignment, copy constructors, object type conversion operators, convert con-
structors, and a newly rewritten section on operator overloading are also included. The
new Tying It All Together section brings together the concepts of inheritance and convert
constructors to build a program that formats the contents of an array to form an HTML
table for display on a Web site.

Chapter 12: More about Characters, Strings, and the string Class

This chapter covers standard library functions for working with characters and C-strings,
covering topics such as passing C-strings to functions and using the C++ sstream classes to
convert between numeric and string forms of numbers. Additional material about the C++
string class and its member functions and operators is presented and a new, improved
program illustrates how to write your own string class. The new Tying It All Together
section shows students how to access string-based program environments to obtain information
about the computer and the network on which the program is running.

Chapter 13: Advanced File and 1/0 Operations

This chapter covers sequential access, random access, text, and binary files. Various modes
for opening files are discussed, as well as the many methods for reading and writing file
contents. Advanced output formatting is also covered. The new Tying It All Together pro-
gram applies many of the techniques covered in the chapter to merge two text files into an
HTML document for display on the Web, with different colors used to illustrate which file
each piece of data came from.

Chapter 14: Recursion

In this chapter recursion is defined and demonstrated. A visual trace of recursive calls is
provided, and recursive applications are discussed. Many recursive algorithms are pre-
sented, including recursive functions for computing factorials, finding a greatest common
denominator (GCD), performing a binary search, sorting QuickSort, and solving the
famous Towers of Hanoi problem. For students who need more challenge, there is a section
on exhaustive and enumeration algorithms. The new Tying It All Together section uses
recursion to evaluate prefix expressions.

Chapter 15: Polymorphism and Virtual Functions

The study of classes and object-oriented programming continues in this chapter with the
introduction of more advanced concepts such as polymorphism and virtual functions.
Information is also presented on abstract base classes, pure virtual functions, type com-
patibility within an inheritance hierarchy, and virtual inheritance. The material on multiple
inheritance previously in the chapter has been rewritten and moved to an appendix. The
new Tying It All Together section illustrates the use of inheritance and polymorphism to
display and animate graphical images.

Preface

Chapter 16: Exceptions, Templates, and the Standard Template Library (STL)

Here the student learns to develop enhanced error trapping techniques using exceptions.
Discussion then turns to function and class templates as a method for writing generic code.
Finally, the student is introduced to the containers, iterators, and algorithms offered by the
Standard Template Library (STL). The new Tying It All Together section uses various con-
tainers in the Standard Template Library to create an educational children’s game.

Chapter 17: Linked Lists

This chapter introduces concepts and techniques needed to work with lists. A linked list
ADT is developed and the student is taught to code operations such as creating a linked
list, appending a node, traversing the list, searching for a node, inserting a node, deleting a
node, and destroying a list. A linked list class template is also demonstrated. The new
Tying It All Together section brings together many of the most important concepts of OOP
by using objects, inheritance, and polymorphism to animate a collection of images.

Chapter 18: Stacks and Queues

In this chapter the student learns to create and use static and dynamic stacks and queues.
The operations of stacks and queues are defined, and templates for each ADT are demon-
strated. The static array-based stack uses exception-handling to handle stack overflow and
underflow, providing a realistic and natural example of defining, throwing, and catching
exceptions. The new Tying It All Together section discusses strategies for evaluating postfix
expressions and for converting them to infix.

Chapter 19: Binary Trees

This chapter covers the binary tree ADT and demonstrates many binary tree operations. The
student learns to traverse a tree, insert an element, delete an element, replace an element, test
for an element, and destroy a tree. The new Tying It All Together section introduces a tree
structure versatile enough to create genealogy trees.

Appendices
Appendix A: The ASCII Character Set A list of the ASCII and extended ASCII charac-
ters and their codes.

Appendix B: Operator Precedence and Associativity A list of the C++ operators with
their precedence and associativity.

The following appendices are on the accompanying student CD
Appendix C: A Brief Introduction to Object-Oriented Programming An introduction to

the concepts and terminology of object-oriented programming.

Appendix D: Using UML in Class Design A brief introduction to the Unified Modeling
Language (UML) class diagrams with examples of their use.

Appendix E: Namespaces An explanation of namespaces and their purpose, with exam-
ples provided on how to define a namespace and access its members.

xXXi

xxii

Preface

Appendix F: Passing Command Line Arguments An introduction to writing C++
programs that accept command-line arguments. This appendix will be useful to students
working in a command-line environment, such as UNIX or Linux.

Appendix G: Header File and Library Function Reference A reference for the C++
library functions and header files used in the book.

Appendix H: Binary Numbers and Bitwise Operations A guide to the binary number
system and the C++ bitwise operators, as well as a tutorial on the internal storage of
integers.

Appendix I: C++ Casts and Run-Time Type Identification An introduction to the
different ways of doing type casting in C++ and to run-time type identification.

Appendix J: Multi-Source File Programs A tutorial on how to create, compile, and
link programs with multiple source files. Includes the use of function header files, class
specification files, and class implementation files.

Appendix K: Multiple and Virtual Inheritance A self-contained discussion of the
C++ concepts of multiple and virtual inheritance for anyone already familiar with single
inheritance.

Appendix L: Introduction to the MinGW C++ Compiler and the wxDev-C++ IDE A
tutorial on how to start a wxDev-C++ project, compile and run a program, save source
files, and more.

Appendix M: Introduction to Microsoft Visual C++ 2008 Express Edition A tutorial
on how to start a project using Microsoft Visual C++ 2008, compile and run a program,
save source files, and more.

Appendix N: .NET and Managed C++ A short introduction to Microsoft .NET and
managed C++.

Appendix O: Introduction to Flowcharting A tutorial that introduces flowcharting
and its symbols. Includes handling sequence, selection, case, repetition, and calls to other
modules. Sample flowcharts for several of the book’s example programs are presented.

Appendix P: Answers to Checkpoints A tool students can use to assess their under-
standing by comparing their answers to the Checkpoint exercises found throughout the
book. The answers to all Checkpoint exercises are included.

Appendix Q: Answers to Odd-Numbered Review Questions Another tool students can
use to gauge their understanding and progress.

"

e Q

Preface

Features of the Text

Concept Statements

Example Programs

Program Output

Tying It All Together

VideoNotes

Checkpoints

Notes

Warnings

Case Studies

Review Questions
and Exercises

Programming Challenges

Each major section of the text starts with a concept statement. This
statement summarizes the key idea of the section.

The text has over 350 complete example programs, each designed to
highlight the topic currently being studied. In most cases, these are
practical, real-world examples. Source code for these programs is
provided so that students can run the programs themselves.

After each example program there is a sample of its screen output.
This immediately shows the student how the program should
function.

This special section, found at the end of every chapter, shows the
student how to do something clever and fun with the material
covered in that chapter.

A series of online videos, developed specifically for this book, are
available for viewing at http://www.pearsonhighered.com/
gaddis/. VideoNotes icons appear throughout the text, alerting the
student to videos about specific topics.

Checkpoints are questions placed throughout each chapter as a self-
test study aid. Answers for all Checkpoint questions are provided on
the student CD so students can check how well they have learned a
new topic.

Notes appear at appropriate places throughout the text. They are
short explanations of interesting or often misunderstood points
relevant to the topic at hand.

Warnings caution the student about certain C++ features, programming
techniques, or practices that can lead to malfunctioning programs or
lost data.

Case studies that simulate real-world applications appear in many
chapters throughout the text, with complete code provided for each
one. Additional case studies are provided on the student CD. These
case studies are designed to highlight the major topics of the chapter
in which they appear.

Each chapter presents a thorough and diverse set of review questions,
such as fill-in-the-blank and short answer, that check the student’s
mastery of the basic material presented in the chapter. These are
followed by exercises requiring problem solving and analysis, such
as the Algorithm Workbench, Predict the Output, and Find the Errors
sections. Each chapter ends with a Soft Skills exercise that focuses on
communication and group process skills. Answers to the odd num-
bered review questions and review exercises are provided on the
student CD.

Each chapter offers a pool of programming exercises designed to
solidify the student’s knowledge of the topics currently being
studied. In most cases the assignments present real-world problems
to be solved. When applicable, these exercises include input valida-
tion rules.

xxiii

http://www.pearsonhighered.com/gaddis/
http://www.pearsonhighered.com/gaddis/

XXiv

Preface

Group Projects There are several group programming projects throughout the text,
intended to be constructed by a team of students. One student
might build the program’s user interface, while another student
writes the mathematical code, and another designs and implements
a class the program uses. This process is similar to the way many
professional programs are written and encourages team work
within the classroom.

C++ Quick For easy access, a quick reference guide to the C++ language is printed

Reference Guide on the inside front and back covers.

Supplements

Student CD

This CD includes:

e MinGW C++ Compiler

¢ wxDev-C++ IDE

e Answers to all Checkpoint questions (Appendix P)

e Answers to all odd-numbered Review Questions and Exercises (Appendix Q)
e Complete source code for every program included in the book

e Additional case studies, complete with source code

e Serendipity Booksellers ongoing software development project

e A full set of appendices (including several tutorials) that accompany the book

If a CD did not come with your book or you can’t locate your CD, you can access most of
these items at http://www.pearsonhighered.com/cssupport

Other CDs Upon Request Professors should contact their campus Pearson Education/
Addison-Wesley representative for the specific ISBN to order this book packaged with
Microsoft Visual C++.

MyCodeMate—Your Own T.A. Just a Click Away @I

Addison-Wesley’s MyCodeMate is a book-specific Web resource that provides tutorial help
and evaluation of student programs. Example programs throughout the book and selected
Programming Challenges from every chapter have been integrated into MyCodeMate.
Using this tool, a student is able to write and compile programs from any computer with
Internet access and receive guidance and feedback on how to proceed and on how to
address compiler error messages. Instructors can track each student’s progress on Program-
ming Challenges from the text or can develop projects of their own. A complimentary
subscription to MyCodeMate is offered when the access code is ordered in a package with
a new copy of this text. Subscriptions can also be purchased online. For more information
visit www.mycodemate.com, or contact your campus Pearson Education/Addison-Wesley
representative.

Instructor Resources
The following supplements are available to qualified instructors only.
* Answers to all Review Questions in the text

e Solutions for all Programming Challenges in the text
e PowerPoint presentation slides for every chapter

http://www.pearsonhighered.com/cssupport
www.mycodemate.com

Preface

* A computerized test bank
e A collection of lab materials
e Source code files

Visit the Pearson Education Instructor Resource Center (http: //www.pearsonhighered.com/
ire) or send an email to computing@aw.com for information on how to access them.

Textbook Web Site
A Web site for the Starting Out with C++ series of books is located at the following URL:

http://www.pearsonhighered.com/gaddis/

Get This Book the Way You Want It!

This book is part of the Pearson Custom Computer Science Library. Use our online Pubse-
lect system to select just the chapters you need from this, and other, Pearson Education
CS textbooks. You can edit the sequence to exactly match your course organization and

teaching approach. Visit www.pearsoncustom.com/cs for details.

Which Gaddis C++ Book Is Right for You?

The Starting Out with C++ Series includes three books, one of which is sure to fit your

course:

o Starting Out with C++: Control Structures through Objects;

o Starting Out with C++: Early Objects;

o Starting Out with C++: Brief Version.

The following chart will help you determine which book is right for your course.

® FROM CONTROL STRUCTURES

THROUGH OBJECTS
® BRIEF VERSION

LATE INTRODUCTION OF OBJECTS

Classes are introduced in Chapter 13 of the standard
text and Chapter 11 of the brief text, after control
structures, functions, arrays, and pointers.
Advanced OOP topics, such as inheritance and
polymorphism, are covered in the following two
chapters.

USE OF C-STRINGS
Null-terminated C-strings are used throughout, with
the C++ string class covered briefly.

INTRODUCTION OF DATA STRUCTURES

AND RECURSION

Linked lists, stacks and queues, and binary trees are
introduced in the final chapters of the standard text.
Recursion is covered after stacks and queues, but
before binary trees. These topics are not covered in
the brief text, though it does have appendices
dealing with linked lists and recursion.

" EARLY OBJECTS

EARLIER INTRODUCTION OF OBJECTS

Classes are introduced in Chapter 7, after control
structures and functions, but before arrays and
pointers. Their use is then integrated into the
remainder of the text. Advanced OOP topics, such
as inheritance and polymorphism, are covered in
Chapters 11 and 15.

USE OF string OBJECTS
Standard library string class objects are used
throughout, with C-strings covered briefly.

INTRODUCTION OF DATA STRUCTURES

AND RECURSION

Linked lists, stacks and queues, and binary trees are
introduced in the final chapters of the text, after the
chapter on recursion.

XXV

http://www.pearsonhighered.com/irc
http://www.pearsonhighered.com/irc
http://www.pearsonhighered.com/gaddis/
www.pearsoncustom.com/cs

XXVi

Preface

Acknowledgments

There have been many helping hands in the development and publication of this text. We
would like to thank the following faculty reviewers for their helpful suggestions and

expertise.

Reviewers of the Seventh Edition or Its Previous Versions

Ahmad Abuhejleh

University of Wisconsin, River Falls
David Akins

El Camino College

Steve Allan
Utah State University

[jaz A. Awan
Savannah State University

John Bierbauer
North Central College

Don Biggerstaff
Fayetteville Technical Community College

Paul Bladek
Spokane Falls Community College

Chuck Boehm

Dean Foods, Inc.

Bill Brown

Pikes Peak Community College
Richard Cacace

Pensacola Junior College
Randy Campbell

Morningside College

Stephen P. Carl
Wright State University

Wayne Caruolo

Red Rocks Community College
Thomas Cheatham

Middle Tennessee State University
James Chegwidden

Tarrant County College

John Cigas

Rockhurst University

John Cross

Indiana University of Pennsylvania
Joseph DeLibero

Arizona State University

Dennis Fairclough

Utah Valley State College

Larry Farrer
Guilford Technical Community College

Richard Flint
North Central College

Sheila Foster
California State University Long Beach

David E. Fox

American River College
Cindy Fry

Baylor University

Peter Gacs

Boston University
Cristi Gale

Sterling College

James Gifford
University of Wisconsin, Stevens Point
Leon Gleiberman
Touro College

Simon Gray

Ashland University—Ohio

Margaret E. Guertin

Tufts University

Jamshid Haghighi

Guilford Technical Community College
Ranette H. Halverson

Midwestern State University,

Wichita Falls, TX

Dennis Heckman

Portland Community College

Ric Heishman

Northern Virginia Community College
Patricia Hines

Brookdale Community College

Mike Holland

Northern Virginia Community College
Lister Wayne Horn

Pensacola Junior College

Richard Hull

Lenoir-Rhyne College

Norman Jacobson

University of California, Irvine

Eric Jiang

San Diego State University

David Kaeli
Northeastern University

Chris Kardaras
North Central College

Eugene Katzen

Montgomery College—Rockuille
Willard Keeling

Blue Ridge Community College
A. J. Krygeris

Houston Community College
Ray Larson

Inver Hills Community College
Stephen Leach

Florida State University

Parkay Louie
Houston Community College

Zhu-qu Lu

University of Maine, Presque Isle
Tucjer Maney

George Mason University

Bill Martin

Central Piedmont Community College
Debbie Mathews

J. Sargeant Reynolds

Ron McCarty

Penn State Erie, The Behrend College
Robert McDonald

East Stroudsburg University

James McGuffee

Austin Community College

M. Dee Medley

Augusta State University

Cathi Chambley-Miller

Aiken Technical College

Sandeep Mitra

SUNY Brockport

Frank Paiano

Southwestern Community College
Theresa Park

Texas State Technical College
Mark Parker

Shoreline Community College
Robert Plantz

Sonoma State University

Tino Posillico

SUNY Farmingdale

M. Padmaja Rao
Francis Marion University

Preface

Timothy Reeves

San Juan College

Ronald Robison

Arkansas Tech University
Caroline St. Clair

North Central College

Dolly Samson

Weber State University

Kate Sanders

Rhode Island College

Lalchand Shimpi

Saint Augustine’s College

Sung Shin

South Dakota State University
Garth Sorenson

Snow College

Daniel Spiegel

Kutztown University

Ray Springston

University of Texas at Arlington
Kirk Stephens

Southwestern Community College
Cherie Stevens

South Florida Community College
Hong Sung

University of Central Oklabhoma
Mark Swanson

Red Wing Technical College
Martha Tillman

College of San Mateo

Delores Tull

TItawamba Community College
Rober Tureman

Paul D. Camp Community College
Jane Turk

LaSalle University

Sylvia Unwin

Bellevue Community College
Stewart Venit

California State University, Los Angeles
Doug White

University of Northern Colorado
Chris Wild

Old Dominion University
Catherine Wyman

DeVry Institute of Technology, Phoenix

Sherali Zeadally
University of the District of Columbia

XXVii

xxviii Preface

The authors would like to thank their students at Haywood Community College and
North Central College for inspiring them to write student-friendly books. They would also
like to thank their families for their tremendous support throughout this project, as well as
North Central College for providing Prof. Walters and Muganda with the sabbatical term
during which they worked on this book. An especially big thanks goes to our terrific edito-
rial, production, and marketing team at Addison-Wesley. In particular we want to thank
our editor Michael Hirsch and our production project manager Heather McNally, who
have been instrumental in guiding the production of this book. We also want to thank our
project manager, Peggy Kellar, who helped everything run smoothly, and our meticulous
and knowledgable copyeditor, Evelyn Perricone, who dedicated many hours to making this
book the best book it could be. You are great people to work with!

About the Authors

Tony Gaddis is the principal author of the Starting Out With . . . series of textbooks. He is
a highly acclaimed instructor with twenty years of experience teaching computer science
courses at Haywood Community College. Tony was previously selected as the North Carolina
Community College “Teacher of the Year” and has received the Teaching Excellence
award from the National Institute for Staff and Organizational Development. The Starting
Out With . . . series includes introductory books covering C++, Java™, Microsoft® Visual
Basic®, Microsoft® C#, and Alice, all published by Addison-Wesley.

Judy Walters is an Associate Professor of Computer Science at North Central College in
Naperville, Illinois. In addition to her many computer science courses, she also teaches two
film-related courses she developed for the college’s interdisciplinary freshman seminar pro-
gram. She recently returned from her second semester teaching in Costa Rica, where she
hopes to retire some day.

Godfrey Muganda is an Associate Professor of Computer Science at North Central College.
He teaches a wide variety of courses at both the undergraduate and graduate levels, including
courses in Algorithms, Computer Organization, Web Applications, and Web Services. His
primary research interests are in the area of Fuzzy Sets and Systems.

oooQ
Ooogoon

0 o e e
i L i) i

Introduction to Computers
and Programming

o
(NN]
—
o
<
I
)

TOPICS

1.1 Why Program? 1.4 What Is a Program Made of?

1.2 Computer Systems: Hardware and 1.5 Input, Processing, and Output
Software 1.6 The Programming Process

1.3 Programs and Programming Languages 1.7 Tying It All Together: Hi! It's Me

E
1.1) Why Program?

1 CONCEPT: Computers can do many different jobs because they are programmable.

Every profession has tools that make its job easier to do. Carpenters use hammers, saws,
and measuring tapes. Mechanics use wrenches, screwdrivers, and ratchets. Electronics
technicians use probes, scopes, and meters. Some tools are unique and can be categorized
as belonging to a single profession. For example, surgeons have certain tools that are
designed specifically for surgical operations. Those tools probably aren’t used by anyone
other than surgeons. There are some tools, however, that are used in several professions.
Screwdrivers, for instance, are used by mechanics, carpenters, and many others.

The computer is a tool that is used by so many professions, it cannot be easily categorized.
It can perform so many different jobs that it is perhaps the most versatile tool ever made.
For the accountant, computers balance books, analyze profits and losses, and prepare tax
reports. For the factory worker, computers control manufacturing machines and track pro-
duction. For the mechanic, computers analyze the various systems in an automobile and
pinpoint hard-to-find problems.

What makes the computer so useful? Quite simply, the computer can do such a wide variety of
tasks because it can be programmed. It is a machine specifically designed to follow instructions.

2

Chapter 1

LE

Introduction to Computers and Programming

Because of the computer’s programmability, it doesn’t belong to any single profession.
Computers are designed to do whatever job their programs, or software, tell them to do.

Computer programmers do a very important job. They create software that transforms
computers into the specialized tools of many trades. Without programmers, the users of
computers would have no software, and without software, computers would not be able to
do anything.

Computer programming is both an art and a science. It is an art because every aspect of a
program should be designed with care and judgment. Listed below are a few of the things
that must be designed for any real-world computer program:

e The logical flow of the instructions

The mathematical procedures

The appearance of the screens

The way information is presented to the user

The program’s “user-friendliness”

Manuals and other forms of written documentation

There is also a scientific, or engineering side to programming. Because programs rarely
work right the first time they are written, a lot of experimentation, correction, and rede-
signing is required. This demands patience and persistence of the programmer. Writing
software demands discipline as well. Programmers must learn special languages like C++
because computers do not understand English or other human languages. Languages such
as C++ have strict rules that must be carefully followed.

Both the artistic and scientific nature of programming makes writing computer software
like designing a car. Both cars and programs should be functional, efficient, powerful, easy
to use, and pleasing to look at.

Computer Systems: Hardware and Software

CONCEPT: All computer systems consist of similar hardware devices and software
components. This section provides an overview of standard computer
hardware and software organization.

Hardware

Hardware refers to the physical components that a computer is made of. A computer, as
we generally think of it, is not an individual device, but a system of devices. Like the instru-
ments in a symphony orchestra, each device plays its own part. A typical computer system
consists of the following major components:

1. The central processing unit (CPU)

Main memory (random-access memory, or RAM)
Secondary storage devices

Input devices

Output devices

Rl

Computer Systems: Hardware and Software

The organization of a computer system is depicted in Figure 1-1.

Figure 1-1
Central Processing —
Unit
- Output s
‘ Devices
-~ ! /
\‘
Devices
Main Memory
(RAM)

¢ Secondary
Storage Devices

The CPU

At the heart of a computer is its central processing unit, or CPU. The CPU’s job is to fetch
instructions, follow the instructions, and produce some result. Internally, the central processing
unit consists of two parts: the control unit and the arithmetic and logic unit (ALU). The control
unit coordinates all of the computer’s operations. It is responsible for determining where to get
the next instruction and regulating the other major components of the computer with control
signals. The arithmetic and logic unit, as its name suggests, is designed to perform mathemati-
cal operations. The organization of the CPU is shown in Figure 1-2.

Figure 1-2

Central processing unit

(CPU)
Arithmetic and
logic unit
. Al
Instruction (“U) Result
input output
—_—e v IR

Control unit

4

Chapter 1

Introduction to Computers and Programming

A program is a sequence of instructions stored in the computer’s memory. When a com-
puter is running a program, the CPU is engaged in a process known formally as the fetch/
decodelexecute cycle. The steps in the fetch/decode/execute cycle are as follows:

Fetch The CPU’s control unit fetches, from main memory, the next instruction in the
sequence of program instructions.

Decode The instruction is encoded in the form of a number. The control unit decodes
the instruction and generates an electronic signal.

Execute The signal is routed to the appropriate component of the computer (such as
the ALU, a disk drive, or some other device). The signal causes the component
to perform an operation.

These steps are repeated as long as there are instructions to perform.

Main Memory

Commonly known as random-access memory, or RAM, the computer’s main memory is a
device that holds information. Specifically, RAM holds the sequences of instructions in the
programs that are running and the data those programs are using.

Memory is divided into sections, or cells, that each hold an equal amount of data. Each cell
typically contains eight “switches” that may be either on or off. A switch that is in the on
position usually represents the number 1, while a switch in the off position usually represents
the number 0. The computer stores data by setting the switches in a memory cell to a pattern
that represents a piece of information. Each of these switches is known as a bit, which stands
for binary digit. Each cell, which is a collection of eight bits, is known as a byte.

Bytes are grouped together to make words. On most computers a word contains four
bytes. Each word is assigned a unique number known as an address. The addresses are
ordered from lowest to highest. A word is identified by its address in much the same way a
post office box is identified by an address. Figure 1-3 shows a group of memory words
with their addresses. In the illustration, sample data is stored in memory. The number 149
is stored in the word with the address 16, and the number 72 is stored at address 23.

Figure 1-3

o]

1]

149

20)

=]
B] [E] o]
B] [&] [
R] [2]
B8] [&] [v]
5] [5] [2]
5] 5] 4]
B[] [&] [
B] [&] [

72

RAM is usually a volatile type of memory, used only for temporary storage. When the
computer is turned off, the contents of RAM are erased.

Secondary Storage

Secondary storage is a type of memory that can hold data for long periods of time—even
when there is no power to the computer. Frequently used programs are stored in second-
ary memory and loaded into main memory as needed. Important information, such as

Computer Systems: Hardware and Software

word processing documents, payroll data, and inventory figures, is saved to secondary
storage as well.

The most common type of secondary storage device is the disk drive. A disk drive stores data
by magnetically encoding it onto a circular disk. Most computers have a disk drive mounted
inside their case. External disk drives, which connect to one of the computer’s communica-
tion ports, are also available. External disk drives can be used to create backup copies of
important data or to move data to another computer.

In addition to external disk drives, many types of devices have been created for copying data
and for moving it to other computers. For many years floppy disk drives were popular. A
floppy disk drive records data onto a small, flexible (“floppy”) disk, which can be removed
from the drive. The use of floppy disk drives has declined dramatically in recent years, in
favor of superior devices such as USB flash drives. USB flash drives are small devices that
plug into the computer’s USB (universal serial bus) port and appear to the system as a disk
drive. These drives, which use flash memory to store data, are inexpensive, reliable, and
small enough to be carried in your pocket.

Optical devices such as the CD (compact disc) and the DVD (digital versatile disc) are also
popular for data storage. Data is not recorded magnetically on an optical disc, but rather is
encoded as a series of pits on the disc surface. CD and DVD drives use a laser to detect the
pits and thus read the encoded data. Optical discs hold large amounts of data, and because
recordable CD and DVD drives are now commonplace, they are good media for creating
backup copies of data.

Input Devices

Input is any information the computer collects from the outside world. The device that col-
lects the information and sends it to the computer is called an input device. Common input
devices are the keyboard, mouse, scanner, digital camera, and microphone. Disk drives,
CD/DVD drives, and USB flash drives can also be considered input devices because pro-
grams and information are retrieved from them and loaded into the computer’s memory.

Output Devices

Output is any information the computer sends to the outside world. It might be a sales report,
a list of names, or a graphic image. The information is sent to an output device, which formats
and presents it. Common output devices are computer screens, printers, and speakers. Output
sent to a computer screen is sometimes called soft copy, while output sent to a printer is called
hard copy. Disk drives, USB flash drives, and CD/DVD recorders can also be considered out-
put devices because the CPU sends information to them so it can be saved.

Software

As previously mentioned, software refers to the programs that run on a computer. There
are two general categories of software: operating systems and application software. An
operating system is a set of programs that manages the computer’s hardware devices and
controls their processes. Operating systems fall into one of the following categories.

Single tasking A single tasking operating system is capable of running only one pro-
gram at a time. The computer devotes all its hardware resources and
CPU time to each program as it executes. MS-DOS is an example of a
single tasking operating system.

6

Chapter 1 Introduction to Computers and Programming

Multitasking

A multitasking operating system is capable of running multiple pro-
grams at once. Through a technique called time sharing, the system
divides the allocation of hardware resources and the attention of the
CPU among all the executing programs. UNIX, Windows XP, and Win-
dows Vista are multitasking operating systems.

In addition, operating systems fall into one of the following categories, which describe the
number of users they can accommodate.

Single user

Multiuser

This type of system allows only one user to operate the computer at a
time. MS-DOS and older versions of Windows are single user operating
systems.

Multiuser systems allow several users to run programs and operate the
computer at once. Most variations of the UNIX operating system are
multiuser systems.

Application software refers to programs that make the computer useful to the user. These
programs solve specific problems or perform general operations that satisfy the needs of
the user. Word processing, spreadsheet, and database programs are all examples of applica-

tion software.

Checkpoint

1.1 Why is the computer used by so many different people, in so many different
professions?

1.2 List the five major hardware components of a computer system.

1.3 Internally, the CPU consists of what two units?

1.4 Describe the steps in the fetch/decode/execute cycle.

1.5 What is a memory address?

1.6 Explain why computers have both main memory and secondary storage.

1.7 What are the two general categories of software?

1.8 What is the difference between a single tasking system and a multitasking system?

1.9 What is the difference between a single user system and a multiuser system?

—

13 Programs and Programming Languages

1 CONCEPT: A program is a set of instructions a computer follows in order to perform

a task. A programming language is a special language used to write
computer programs.

What Is a Program?

Computers are designed to follow instructions. A computer program is a set of instructions
that tells the computer how to solve a problem or perform a task. For example, suppose we
want the computer to calculate someone’s gross pay. Here is a list of things the computer

might do:

1. Display a message on the screen asking “How many hours did you work?”

<&

Programs and Programming Languages

2. Wait for the user to enter the number of hours worked. Once the user enters a num-

ber, store it in memory.

Display a message on the screen asking “How much do you get paid per hour?”

4. Wait for the user to enter an hourly pay rate. Once the user enters a number, store it
in memory.

5. Multiply the number of hours by the amount paid per hour, and store the result in
memory.

6. Display a message on the screen that tells the amount of money earned. The message
must include the result of the calculation performed in step 5.

(O8]

Collectively, these instructions are called an algorithm. An algorithm is a set of well-
defined steps for performing a task or solving a problem. Notice these steps are sequen-
tially ordered. Step 1 should be performed before step 2, and so forth. It is important that
these instructions be performed in their proper sequence.

Although a person might easily understand the instructions in the pay-calculating algorithm,
it is not ready to be executed on a computer. A computer’s CPU can only process instructions
that are written in machine language. A machine language program consists of a sequence of
binary numbers (numbers consisting of only 1s and Os) which the CPU interprets as com-
mands. Here is an example of what a machine language instruction might look like:

1011010000000101

As you can imagine, the process of encoding an algorithm in machine language is very
tedious and difficult. In addition, each different type of CPU has its own machine language.
If you wrote a machine language program for computer A and then wanted to run it on a
computer B that has a different type of CPU, you would have to rewrite the program in
computer B’s machine language.

Programming languages, which use words instead of numbers, were invented to ease the
task of programming. A program can be written in a programming language such as
C++, which is much easier to understand than machine language. Programmers save
their programs in text files, and then use special software to convert their programs to
machine language.

Program 1-1 shows how the pay-calculating algorithm might be written in C++.

NOTE: The line numbers shown in Program 1-1 are not part of the program. This
book shows line numbers in all program listings to help point out specific parts of the
program.

Program 1-1

//

This program calculates the user's pay.

#include <iostream>
using namespace std;

int main()

{

double hours, rate, pay;

(program continues)

7

Chapter 1 Introduction to Computers and Programming

Program 1-1 (continued)

// Get the number of hours worked.
cout << "How many hours did you work? ";
cin >> hours;

// Get the hourly pay rate.
cout << "How much do you get paid per hour? ";
cin >> rate;

// Calculate the pay.
pay = hours * rate;

// Display the pay.
cout << "You have earned $" << pay << endl;
return 0;

}

Program Output with Example Input Shown in Bold

How many hours did you work? 10 [Enter]
How much do you get paid per hour? 15 [Enter]
You have earned $150

The “Program Output with Example Input Shown in Bold” shows what the program will dis-
play on the screen when it is running. In the example, the user enters 10 for the number of
hours worked and 15 for the hourly pay. The program displays the earnings, which are $150.

Programming Languages

In a broad sense, there are two categories of programming languages: low-level and high-
level. A low-level language is close to the level of the computer, which means it resembles
the numeric machine language of the computer more than the natural language of humans.
The easiest languages for people to learn are high-level languages. They are called “high-
level” because they are closer to the level of human-readability than computer-readability.
Figure 1-4 illustrates the concept of language levels.

Figure 1-4

High level (close to human language)

cout << "How many hours ";

cout << "did you work? "; Low level (machine language)

cin >> hours;

10100010 11101011

cout << "How much do you ";
cout << "get paid per hour? ";
cin >> rate;

Programs and Programming Languages

Many high-level languages have been created. Table 1-1 lists a few of the well-known ones.

Table 1-1 Well-Known High-Level Programming Languages

Language Description

BASIC Beginners All-purpose Symbolic Instruction Code. A general programming
language originally designed to be simple enough for beginners to learn.

C A structured, general-purpose language developed at Bell Laboratories. C offers
both high-level and low-level features.

C++ Based on the C language, C++ offers object-oriented features not found in C. Also
invented at Bell Laboratories.

C# Pronounced “C sharp.” A language invented by Microsoft for developing
applications based on the Microsoft .NET platform.

COBOL Common Business-Oriented Language. A language designed for business
applications.

FORTRAN Formula Translator. A language designed for programming complex
mathematical algorithms.

Java An object-oriented language invented at Sun Microsystems. Java may be used to
develop programs that run over the Internet in a Web browser.

JavaScript A language used to write small programs that run in Web pages. Despite its name,
JavaScript is not related to Java.

Pascal A structured, general-purpose language designed primarily for teaching
programming.

Python A general purpose language created in the early 1990s. It has become popular for
both business and academic applications.

Ruby A general purpose language created in the 1990s. It is becoming increasingly

Visual Basic

popular for programs that run on Web servers.

A Microsoft programming language and software development environment that
allows programmers to quickly create Windows-based applications.

C++ is a widely used language because, in addition to the high-level features necessary
for writing applications such as payroll systems and inventory programs, it also has
many low-level features. C++ is based on the C language, which was invented for pur-
poses such as writing operating systems and compilers. Because C++ evolved from C, it
carries all of C’s low-level capabilities with it.

C++ is also popular because of its portability. This means that a C++ program can be written
on one type of computer and then run on many other types of systems. This usually requires

10

Chapter 1

<&

Introduction to Computers and Programming

that the program is recompiled on each type of system, but the program itself may need little or
no change.

NOTE: Programs written for specific graphical environments often require significant
changes when moved to a different type of system. Examples of such graphical
environments are Windows, the X-Window System, and the Mac OS X operating system.

Source Code, Object Code, and Executable Code

When a C++ program is written, it must be typed into the computer and saved to a file. A
text editor, which is similar to a word processing program, is used for this task. The state-
ments written by the programmer are called source code, and the file they are saved in is
called the source file.

After the source code is saved to a file, the process of translating it to machine language
can begin. During the first phase of this process, a program called the preprocessor reads
the source code. The preprocessor searches for special lines that begin with the # symbol.
These lines contain commands, or directives, that cause the preprocessor to amend
or process the source code in some way. During the next phase the compiler steps through
the preprocessed source code, translating each source code instruction into the appropriate
machine language instruction. This process will uncover any syntax errors that may be in
the program. Syntax errors are illegal uses of key words, operators, punctuation, and other
language elements. If the program is free of syntax errors, the compiler stores the trans-
lated machine language instructions, which are called object code, in an object file.

Although an object file contains machine language instructions, it is not a complete pro-
gram. Here is why. C++ is conveniently equipped with a library of prewritten code for
performing common operations or sometimes-difficult tasks. For example, the library
contains hardware-specific code for displaying messages on the screen and reading input
from the keyboard. It also provides routines for mathematical functions, such as calcu-
lating the square root of a number. This collection of code, called the run-time library, is
extensive. Programs almost always use some part of it. When the compiler generates an
object file, however, it does not include machine code for any run-time library routines
the programmer might have used. During the last phase of the translation process,
another program called the linker combines the object file with the necessary library rou-
tines. Once the linker has finished with this step, an executable file is created. The exe-
cutable file contains machine language instructions, or executable code, and is ready to
run on the computer.

Figure 1-5 illustrates the process of translating a C++ source file into an executable file.
The entire process of invoking the preprocessor, compiler, and linker can be initiated with a
single action. For example, on a Linux system, the following command causes the C++
program named hello.cpp to be preprocessed, compiled, and linked. The executable code
is stored in a file named hello.

g++ -o hello hello.cpp

Programs and Programming Languages 11

Figure 1-5

Source code | <= Source code is entered
hello.cpp with a text editor by
the programmer.

2 // hello.cpp

#include <iostream>

Preprocessor

using namespace std;

int main()
{
Modified cout << "Hello World\n";
source code return 0;

L] J

Compiler

Object code
hello.obj

Linker

Executable code

hello.exe

Appendix M on the student CD explains how compiling works in Microsoft Visual C++.

Many development systems, particularly those on personal computers, have integrated
development environments (IDEs). These environments consist of a text editor, compiler,
debugger, and other utilities integrated into a package with a single set of menus. Prepro-
cessing, compiling, linking, and even executing a program is done with a single click of a
button, or by selecting a single item from a menu. Figure 1-6 shows a screen from the
Microsoft Visual C++ IDE.

12

Chapter 1

Figure 1-6

Introduction to Computers and Programming

@9 GrossPay - Microsoft Visual Studio

'/ Checkpoint

1.10 What is an algorithm?

1.11 Why were computer programming languages invented?

File Edit View Project Build Debug Tools Test Window Help
El-El-G bl ol % B3 @9 -®~ - 5| B ebuyg - Win3z ‘_-
FEC I RE- — 2|03 06 8L
Solution Explorer - Solution .., » [X pri-01.cpp - X
‘éj 5‘2’ |(GIObaIScope) v|| v
mSDIution'GrossPay'(l prafect) 1E|l/.-"’ This progrsm calculates the user's pay. a
= (& GrossPay ' zi| #include <iostresm: =
- [Header Files X
- [Resource Files 3| using namespace std:
= | Source Files ki
" €4 pri-01.cpp SEint main()
S
7 doukle hours, rate, pay; =
g
9 /¢ Get the number of hours worked.
10 cout << "How many hours did you work?)
11 cin »> hours:
1z)
13 /¢ Get the hourly pay rate.
14 cout << "How much do you get paid per hour? ™)
15 cin »> rate;
16
17 /4 Calculate the pay.
15 pay = hours * rate;
19
z0 /¢ Display the pay.
zZ1 cout << "You have earned §7 << pay << endl;
2z return 0O;
23t} v
@Solution Explorer @Class Wiew £ i} > -
Cutput >~ 1 x

1.12 What is the difference between a high-level language and a low-level language?
1.13 What does portability mean?

1.14 Explain the operations carried out by the preprocessor, compiler, and linker.

1.15 Explain what is stored in a source file, an object file, and an executable file.

1.16 What is an integrated development environment?

What Is a Program Made of?

-

14
{ CONCEPT: There are certain elements that are common to all programming
languages.

Language Elements

All programming languages have a few things in common. Table 1-2 lists the common ele-
ments found in almost every language.

What Is a Program Made of?

Table 1-2 Programming Language Elements

Language Element Description

Key Words Words that have a special meaning. Key words may only be used for their

intended purpose. Key words are also known as reserved words.

Programmer-Defined ~ Words or names defined by the programmer. They are symbolic names
Identifiers that refer to variables or programming routines.

Operators Operators perform operations on one or more operands. An operand is

usually a piece of data, like a number.

Punctuation Punctuation characters that mark the beginning or ending of a statement,

Syntax

or separate items in a list.

Rules that must be followed when constructing a program. Syntax dictates
how key words and operators may be used, and where punctuation
symbols must appear.

Let’s look at some specific parts of Program 1-1 (the pay-calculating program) to see examples
of each element listed in the table above. For convenience, Program 1-1 is listed again.

Program 1-1

// This program calculates the user's pay.
#include <iostream>
using namespace std;

int main()

{

double hours, rate, pay;

// Get the number of hours worked.
cout << "How many hours did you work? ";
cin >> hours;

// Get the hourly pay rate.
cout << "How much do you get paid per hour? ";
cin >> rate;

// Calculate the pay.
pay = hours * rate;

// Display the pay.
cout << "You have earned $" << pay << endl;
return 0;

Key Words (reserved words)

Three of C++’s key words appear on lines 3 and 5: using, namespace, and int. The word
double, which appears on line 7, is also a C++ key word. These words, which are always
written in lowercase, each have a special meaning in C++ and can only be used for their
intended purposes. As you will see, the programmer is allowed to make up his or her own

13

14

Chapter 1

<&
<&

Introduction to Computers and Programming

names for certain things in a program. Key words, however, are reserved and cannot be
used for anything other than their designated purposes. Part of learning a programming
language is learning what the key words are, what they mean, and how to use them.

NOTE: The #include <iostream> statement in line 2 is a preprocessor directive.

NOTE: In C++, key words are written in all lowercase.

Programmer-Defined Identifiers

The words hours, rate, and pay that appear in the program on lines 7, 11, 15, 18, and 21
are programmer-defined identifiers. They are not part of the C++ language but rather are
names made up by the programmer. In this particular program, these are the names of
variables. As you will learn later in this chapter, variables are the names of memory loca-
tions that may hold data.

Operators

On line 18 the following statement appears:
pay = hours * rate;

The = and * symbols are both operators. They perform operations on pieces of data,
known as operands. The * operator multiplies its two operands, which in this example
are the variables hours and rate. The = symbol is called the assignment operator. It
takes the value of the expression on the right and stores it in the variable whose name
appears on the left. In this example, the = operator stores in the pay variable the result of
the hours variable multiplied by the rate variable. In other words, the statement says,
“Make the pay variable equal to hours times rate” or “pay is assigned the value of
hours times rate.”

Punctuation

Notice that many lines end with a semicolon. A semicolon in C++ is similar to a period in
English. It marks the end of a complete sentence (or statement, as it is called in program-
ming). Semicolons do not appear at the end of every line in a C++ program, however.
There are rules that govern where semicolons are required and where they are not. Part of
learning C++ is learning where to place semicolons and other punctuation symbols.

Lines and Statements

Often, the contents of a program are thought of in terms of lines and statements. A line
is just that—a single line as it appears in the body of a program. Program 1-1 is shown
with each of its lines numbered. Most of the lines contain something meaningful; how-
ever some of the lines are empty. The blank lines are only there to make the program
more readable.

A statement is a complete instruction that causes the computer to perform some action.
Here is the statement that appears in line 10 of Program 1-1:

cout << "How many hours did you work? ";

<&

What Is a Program Made of?

It causes the computer to display the message “How many hours did you work?” on the
screen. Statements can be a combination of key words, operators, and programmer-defined
symbols. Statements usually occupy only one line in a program, but sometimes they are
spread out over more than one line.

Variables

A variable is a named storage location in the computer’s memory for holding a piece of data.
The data stored in variables may change while the program is running (hence the name
“variable”). Notice that in Program 1-1 the words hours, rate, and pay appear in several
places. All three of these are the names of variables. The hours variable is used to store the
number of hours the user worked. The rate variable stores the user’s hourly pay rate. The
pay variable holds the result of hours multiplied by rate, which is the user’s gross pay.

NOTE: Notice the variables in Program 1-1 have names that reflect their purpose. In
fact, it would be easy to guess what the variables were used for just by reading their
names. This is discussed further in Chapter 2.

Variables are symbolic names that represent locations in the computer’s random-access
memory (RAM). When information is stored in a variable, it is actually stored in RAM.
Assume a program has a variable named length. Figure 1-7 illustrates the way the vari-
able name represents a memory location.

Figure 1-7

o]

1] 2]

10]

20)

B
I .

R] E] =

5]
15]
23]

B] 5] [=
&) & &
B]] [=
B] 2] le

72
N

length

In Figure 1-7 the variable length is holding the value 72. The number 72 is actually stored
in RAM at address 23, but the name length symbolically represents this storage location.
You can think of a variable as a box that holds information. In Figure 1-7, the number 72 is
stored in the box named length. Only one item may be stored in the box at any given time.
If the program stores another value in the box, it will take the place of the number 72.

Variable Definitions

In programming, there are two general types of data: numbers, such as 3, and characters,
such as the letter ‘A’. Numbers are used to perform mathematical operations and charac-
ters are used to print information on the screen or on paper.

15

16

Chapter 1

52

Introduction to Computers and Programming

Numeric data can be categorized even further. For instance, the following are all whole
numbers, or integers:

5

7
-129
32154

The following are real, or floating-point, numbers:

3.14159
6.7
1.0002

When creating a variable in a C++ program, you must know what type of data the pro-
gram will be storing in it. Look at line 7 of Program 1-1:

double hours, rate, pay;

The word double in the statement indicates that the variables hours, rate, and pay will be
used to hold double precision floating-point numbers. This statement is called a variable defini-
tion. In C++, all variables must be defined before they can be used because the variable definition
is what causes the variables to be created in memory. If you review the listing of Program 1-1,
you will see that the variable definitions come before any other statements using those variables.

Input, Processing, and Output

CONCEPT: The three primary activities of a program are input, processing,
and output.

Computer programs typically perform a three-step process of gathering input, performing
some process on the information gathered, and then producing output. Input is information
a program collects from the outside world. It can be sent to the program by the user, who is
entering data at the keyboard or using the mouse. It can also be read from disk files or hard-
ware devices connected to the computer. Program 1-1 allows the user to enter two items of
information: the number of hours worked and the hourly pay rate. Lines 11 and 15 use the
cin (pronounced “see in”) object to perform these input operations:

cin >> hours;
cin >> rate;

Once information is gathered from the outside world, a program usually processes it in
some manner. In Program 1-1, the hours worked and hourly pay rate are multiplied in
line 18 to produce the value assigned to the variable pay:

pay = hours * rate;

Output is information that a program sends to the outside world. It can be words or graphics
displayed on a screen, a report sent to the printer, data stored in a file, or information sent to
any device connected to the computer.

—
1.6

The Programming Process

Lines 10, 14, and 21 in Program 1-1 all use the cout (pronounced “see out”) object to dis-
play messages on the computer’s screen.

cout << "How many hours did you work? ";
cout << "How much do you get paid per hour? ";
cout << "You have earned $" << pay << endl;

You will learn more about objects later in the book and about the cin and cout objects in
Chapters 2 and 3.

Checkpoint

1.17 Describe the difference between a key word and a programmer-defined symbol.
1.18 Describe the difference between operators and punctuation symbols.

1.19 Describe the difference between a program line and a statement.

1.20 Why are variables called “variable”?

1.21 What happens to a variable’s current contents when a new value is stored there?
1.22 What must take place in a program before a variable is used?

1.23 What are the three primary activities of a program?

The Programming Process

1 CONCEPT: The programming process consists of several steps, which include design,

creation, testing, and debugging activities.

Designing and Creating a Program

Now that you have been introduced to what a program is, it’s time to consider the process
of creating a program. Quite often, when inexperienced students are given programming
assignments, they have trouble getting started because they don’t know what to do first. If
you find yourself in this dilemma, the steps listed in Figure 1-8 may help. These are the
steps recommended for the process of writing a program.

Figure 1-8

. Define what the program is to do.

. Visualize the program running on the computer.

. Use design tools to create a model of the program.
. Check the model for logical errors.

. Write the program source code.

. Compile the source code.

. Correct any errors found during compilation.

. Link the program to create an executable file.

. Run the program using test data for input.

. Correct any errors found while running the program.
Repeat steps 4 through 10 as many times as necessary.

11. Validate the results of the program.

© 00 N O O w N =

—_
o

17

18

Chapter 1

Introduction to Computers and Programming

The steps listed in Figure 1-8 emphasize the importance of planning. Just as there are good
ways and bad ways to paint a house, there are good ways and bad ways to create a pro-
gram. A good program always begins with planning.

With the pay-calculating program as our example, let’s look at each of the steps in more detail.

1. Define what the program is to do.

This step requires that you clearly identify the purpose of the program, the information
that is to be input, the processing that is to take place, and the desired output. Here are the
requirements for the example program:

Purpose To calculate the user’s gross pay.
Input Number of hours worked, hourly pay rate.

Processing Multiply number of hours worked by hourly pay rate. The result is the
user’s gross pay.

Output Display a message indicating the user’s gross pay.

2. Visualize the program running on the computer.

Before you create a program on the computer, you should first create it in your mind.
Step 2 is the visualization of the program. Try to imagine what the computer screen looks
like while the program is running. If it helps, draw pictures of the screen, with sample
input and output, at various points in the program. For instance, here is the screen pro-
duced by the pay-calculating program:

How many hours did you work? 10
How much do you get paid per hour? 15
You earned $ 150

In this step, you must put yourself in the shoes of the user. What messages should the pro-
gram display? What questions should it ask? By addressing these issues, you will have
already determined most of the program’s output.

3. Use design tools to create a model of the program.

While planning a program, the programmer uses one or more design tools to create a
model of the program. Three common design tools are hierarchy charts, flowcharts, and
pseudocode. A hierarchy chart is a diagram that graphically depicts the structure of a pro-
gram. It has boxes that represent each step in the program. The boxes are connected in a
way that illustrates their relationship to one another. Figure 1-9 shows a hierarchy chart
for the pay-calculating program.

A hierarchy chart begins with the overall task, and then refines it into smaller subtasks.
Each of the subtasks is then refined into even smaller sets of subtasks, until each is small
enough to be easily performed. For instance, in Figure 1-9, the overall task “Calculate
Gross Pay” is listed in the top-level box. That task is broken into three subtasks. The first
subtask, “Get Payroll Data from User,” is broken further into two subtasks. This process
of “divide and conquer” is known as top-down design.

The Programming Process

Figure 1-9

VideoNote
Designing a
Program with
Pseudocode

Calculate
gross pay
Set pay to)
Get payroll data hours worked Display
from user times pay rate pay
Read number of Read hourly
hours worked pay rate

A flowchart is a diagram that shows the logical flow of a program. It is a useful tool for
planning each operation a program must perform, and the order in which the operations
are to occur. For more information see Appendix O, Introduction to Flowcharting.

Pseudocode is a cross between human language and a programming language. Although
the computer can’t understand pseudocode, programmers often find it helpful to write an
algorithm using it. This is because pseudocode is similar to natural language, yet close
enough to programming language that it can be easily converted later into program source
code. By writing the algorithm in pseudocode first, the programmer can focus on just the
logical steps the program must perform, without having to worry yet about syntax or
about details such as how output will be displayed.

Pseudocode can be written at a high level or at a detailed level. Many programmers use
both forms. High level pseudocode simply lists the steps a program must perform. Here is
high level pseudocode for the pay-calculating program.

Get payroll data
Calculate gross pay
Display gross pay

High level pseudocode can be expanded to produce detailed pseudocode. Here is the
detailed pseudocode for the same program. Notice that it even names variables and tells
what mathematical operations to perform.

Ask the user to input the number of hours worked
Input hours

Ask the user to input the hourly pay rate

Input rate

Set pay equal to hours times rate

Display pay

19

20

Chapter 1

Introduction to Computers and Programming

4. Check the model for logical errors.

Logical errors, also called logic errors, are mistakes that cause a program to produce errone-
ous results. Examples of logical errors would be using the wrong variable’s value in a compu-
tation or performing order-dependent actions in the wrong order. Once a model of the
program has been created, it should be checked for logical errors. The programmer should
trace through the charts or pseudocode, checking the logic of each step. If an error is found,
the model can be corrected before the actual program source code is written. In general, the
earlier an error is detected in the programming process, the easier it is to correct.

5. Write the program source code.

Once a model of the program (hierarchy chart, flowchart, or pseudocode) has been cre-
ated, checked, and corrected, the programmer is ready to write the source code, using an
actual computer programming language, such as C++. Many programmers write the code
directly on the computer, typing it into a text editor. Some programmers, however, prefer
to write the program on paper first, then enter it into the computer. Once the program has
been entered, the source code is saved to a file.

6. Compile the source code.

Next the saved source code is ready to be compiled. The compiler will translate the source
code to machine language.

7. Correct any errors found during compilation.
If the compiler reports any errors, they must be corrected and the code recompiled. This
step is repeated until the program is free of compile-time errors.

8. Link the program to create an executable file.

Once the source code compiles with no errors, it can be linked with the libraries specified
by the program #include statements to create an executable file. If an error occurs during
the linking process, it is likely that the program has failed to include a needed library file.
The needed file must be included and the program relinked.

9. Run the program using test data for input.

Once an executable file is generated, the program is ready to be tested for run-time and logic
errors. A run-time error occurs when the running program asks the computer to do something
that is impossible, such as divide by zero. Normally a run-time error causes the program to
abort. If the program runs, but fails to produce correct results, it likely contains one or more
logic errors. To help identify such errors, it is important that the program be executed with
carefully selected sample data that allows the correct output to be predicted.

10. Correct any errors found while running the program.

When run-time or logic errors occur in a program, they must be corrected. You must iden-
tify the step where the error occurred and determine the cause.

Desk-checking is a process that can help locate these types of errors. The term desk-checking
means the programmer starts reading the program, or a portion of the program, and steps
through each statement. A sheet of paper is often used in this process to jot down the current
contents of all variables and sketch what the screen looks like after each output operation.

The Programming Process

When a variable’s contents change, or information is displayed on the screen, this is noted. By
stepping through each statement in this manner, many errors can be located and corrected.

If the error is a result of incorrect logic (such as an improperly stated math formula), you
must correct the statement or statements involved in the logic. If the error is due to an
incomplete understanding of the program requirements, then you must restate the
program’s purpose and modify all affected charts, pseudocode, and source code. The pro-
gram must then be saved, recompiled, relinked, and retested. This means steps 4 though 10
must be repeated until the program reliably produces satisfactory results.

11. Validate the results of the program.

When you believe you have corrected all errors, enter test data to verify that the program
solves the original problem.

What Is Software Engineering?

The field of software engineering encompasses the complete process of crafting computer
software. It includes designing, writing, testing, debugging, documenting, modifying, and
maintaining complex software development projects. Like traditional engineers, software
engineers use a number of tools in their craft. Here are a few examples:

Program specifications

Charts and diagrams of screen output
Hierarchy charts

Pseudocode

e Examples of expected input and desired output
e Special software designed for testing programs

Most commercial software applications are very large. In many instances one or more
teams of programmers, not a single individual, develop them. It is important that the
program requirements be thoroughly analyzed and divided into subtasks that are handled
by individual teams or individuals within a team.

In step 3 of the programming process, you were introduced to the hierarchy chart as a tool
for top-down design. When the subtasks identified in a top-down design are long or
complex, they can be developed as modules, or separate components, of a program. If
the program is very large or complex, a team of software engineers can be assigned to
work on the individual modules. As the project develops, the modules are coordinated to
become a single software application.

Checkpoint

1.24 What four items should you identify when defining what a program is to do?

1.25 What does it mean to “visualize a program running”? What is the value of
doing this?

1.26 What is a hierarchy chart?

1.27 What is pseudocode?

1.28 What is the difference between high level pseudocode and detailed pseudocode?

1.29 Describe what a compiler does with a program’s source code.

21

22 Chapter 1 Introduction to Computers and Programming

1.30 What is a logic error?
1.31 What is a run-time error?

1.32 Describe the process of desk-checking.

1

1.7 Tying It All Together: Hi! It’s Me

L

Most programs, as you have learned, have three primary activities: input, processing, and
output. But it is possible to write a program that has only output. Program 1-2, shown
below, displays the message:

Hi! It's me.
I'm learning to program!

Program 1-2 can be found in the Chapter 1 folder on the student CD that came with your
textbook. Open the program in whatever C++ development environment your class is
using. Then compile it and run it. Your instructor will show you how to do this.

Program 1-2
//This program prints a message with your name in it.
#include <iostream>

using namespace std;

int main()

{
cout << "Hi! It\'s me.\n";
cout << "I\'m learning to program!\n";
return 0;

}

Once you have run it, change the word me on line 7 to your name to personalize the
message. Then recompile and rerun the program.

In the next chapter you will learn what the * and \n do.

Review Questions and Exercises
Fill-in-the-Blank and Short Answer

1. Computers can do many different jobs because they can be

2. The job of the is to fetch instructions, carry out the operations com-
manded by the instructions, and produce some outcome or resultant information.

3. Internally, the CPU consists of the and the

4. A(n) is an example of a secondary storage device.

9.
10.
11.

12.

13.
14.

15.

16.
17.
18.
19.

20.
21.
22.
23.

24.
25.

Review Questions and Exercises

The two general categories of software are and

A program is a set of

Since computers can’t be programmed in natural human language, algorithms must be
written in a(n) language.

is the only language computers really process.
languages are close to the level of humans in terms of readability.
languages are close to the level of the computer.

A program’s ability to run on several different types of computer systems is called

Words that have special meaning in a programming language are called
words.

Words or names defined by the programmer are called

are characters or symbols that perform operations on one or more
operands.

characters or symbols mark the beginning or ending of programming
statements, or separate items in a list.

The rules that must be followed when constructing a program are called

A(n) is a named storage location.
A variable must be before it can be used in a program.
The three primary activities of a program are , , and

is information a program gathers from the outside world.
is information a program sends to the outside world.
A(n) is a diagram that graphically illustrates the structure of a program.

Both main memory and secondary storage are types of memory. Describe the differ-
ence between the two.

What is the difference between operating system software and application software?

What is the difference between a syntax error and a logical error?

Algorithm Workbench

26.

Available Credit

Design a hierarchy chart for a program that calculates a customer’s available credit.
The program should carry out the following steps:

1. Display the message “Enter the customer’s maximum credit.”

2. Wiait for the user to enter the customer’s maximum credit.

3. Display the message “Enter the amount of credit used by the customer.”
4. Wait for the user to enter the customer’s credit used.
S

Subtract the used credit from the maximum credit to get the customer’s available
credit.

6. Display a message that shows the customer’s available credit.

23

24

Chapter 1

VideoNote

Designing the
Account
Balance
Program

VideoNote
Predicting the
Output of
Problem 30

Introduction to Computers and Programming

27.

28.

Account Balance

Werite high-level and detailed psuedocode for a program that calculates the current
balance in a bank account. The program must ask the user for

e The starting balance
e The total dollar amount of deposits made
e The total dollar amount of withdrawals made

Once the program calculates the current balance, it should be displayed on the screen.
Sales Tax

Werite high-level and detailed psuedocode for a program that calculates the total of a
retail sale. The program should ask the user for

o The retail price of the item being purchased
e The sales tax rate

Once these items have been entered, the program should calculate and display

e The sales tax for the purchase
e The total of the sale

Predict the Output

Questions 29-32 are programs expressed as English statements. What would each display
on the screen if they were actual programs?

29.

30.

31.

The variable sum starts with the value 0.
Add 10 to sum.
Add 15 to sum.
Add 20 to sum.

Display the value of sum on the screen.

The variable x starts with the value 0.
The variable y starts with the value 5.
Add 1 to x.

Add1toy.

Add x and y, and store the result in y.
Display the value in y on the screen.

The variable j starts with the value 10.
The variable k starts with the value 2.
The variable 1 starts with the value 4.
Store the value of j times k in j.

Store the value of k times 1 in 1.

Add j and 1, and store the result in k.
Display the value in k on the screen.

VideoNote
Solving the
Candy Bar Sales
Problem

Review Questions and Exercises

32. The variable a starts with the value 1.
The variable b starts with the value 10.
The variable c starts with the value 100.
The variable x starts with the value 0.
Store the value of ¢ times 3 in x.
Add the value of b times 6 to the value already in x.
Add the value of a times 5 to the value already in x.
Display the value in x on the screen.

Find the Error

33. The following pseudocode algorithm has an error. It is supposed to use values input
for a rectangular room’s length and width to calculate and display its area. Find the
error.

area = width X length.

Display "What is the room's width?".
Input width.

Display "What is the room's length?".
Input length.

Display area.

Soft Skills

Before a programmer can design a program he or she must have some basic knowledge
about the domain, or area, the program will deal with and must understand exactly what it
is that the client wants the program to do. Otherwise the final program may not work cor-
rectly or may not meet the client’s needs.

34. Suppose one of your friends, who paints the insides of houses, has asked you to
develop a program that determines and displays how much paint is needed to paint a
room if the length and width of the room is input. What information are you lacking
that you need to write this program? Write at least three questions that you would
need to ask your friend before starting the project.

Programming Challenges

1. Candy Bar Sales

Using Program 1-1 as an example, write a program that calculates how much a student
organization earns during its fund raising candy sale. The program should prompt the user
to enter the number of candy bars sold and the amount the organization earns for each bar
sold. It should then calculate and display the total amount earned.

2. Baseball Costs

Using Program 1-1 as an example, write a program that calculates how much a little league
baseball team spent last year to purchase new baseballs. The program should prompt the
user to enter the number of baseballs purchased and the cost of each baseball. It should
then calculate and display the total amount spent to purchase the baseballs.

25

This page intentionally left blank

Introduction to C++

CHAPTER

2.1 The Parts of a C++ Program 2.171 The bool Data Type
2.2 The cout Object 2.12 Determining the Size of a Data Type
2.3 The #include Directive 2.13 More on Variable Assignments and
2.4 Standard and Prestandard C++ Initialization
2.5 \Variables, Constants, and the 2.14 Scope
Assignment Statement 2.15 Arithmetic Operators
2.6 Identifiers 2.16 Comments
2.7 Integer Data Types 2.17 Focus on Software Engineering:
2.8 The char Data Type Programming Style
2.9 The C++ string Class 2.18 Tying It All Together: Smile!
2.10 Floating-Point Data Types

The Parts of a C++ Program

CONCEPT: C++ programs have parts and components that serve specific purposes.

Every C++ program has an anatomy. Unlike human anatomy, the parts of C++ programs
are not always in the same place. Nevertheless, the parts are there and your first step in
learning C++ is to learn what they are. We will begin by looking at Program 2-1.

27

28 Chapter 2

Introduction to C++

Program 2-1

// A simple C++ program
#include <iostream>
using namespace std;

int main()

{

}

cout << "Programming is great fun!";
return 0;

The output of the program is shown below. This is what appears on the screen when the program runs.

Program Output
Programming is great fun!

Let’s examine the program line by line. Here’s the first line:
// A simple C++ program

The // marks the beginning of a comment. The compiler ignores everything from the
double-slash to the end of the line. That means you can type anything you want on that
line and the compiler will never complain! Although comments are not required, they are
very important to programmers. Most programs are much more complicated than the
example in Program 2-1, and comments help explain what’s going on.

Line 2 looks like this:

#include <iostream>

This line must be included in a C++ program in order to get input from the keyboard or
print output to the screen. Since the cout statement (on line 7) will print output to the
computer screen, we need to include this line. When a line begins with a # it indicates it
is a preprocessor directive. The preprocessor reads your program before it is compiled
and only executes those lines beginning with a # symbol. Think of the preprocessor as a
program that “sets up” your source code for the compiler.

The #include directive causes the preprocessor to include the contents of another file in
the program. The word inside the brackets, iostream, is the name of the file that is to be
included. The iostrean file contains code that allows a C++ program to display output on
the screen and read input from the keyboard. Because this program uses cout to display
screen output, the iostream file must be included. Its contents are included in the program
at the point the #include statement appears. The iostream file is called a header file, so it
should be included at the head, or top, of the program.

Line 3 reads
using namespace std;

Programs usually contain various types of items with unique names. In this chapter you
will learn to create variables. In Chapter 6 you will learn to create functions. In Chapter
7 you will learn to create objects. Variables, functions, and objects are examples of

The Parts of a C++ Program

program entities that must have names. C++ uses namespaces to organize the names of
program entities. The statement using namespace std; declares that the program will
be accessing entities whose names are part of the namespace called std. (Yes, even
namespaces have names.) The program needs access to the std namespace because
every name created by the iostream file is part of that namespace. In order for a pro-
gram to use the entities in iostream, it must have access to the std namespace. More
information on namespaces can be found in Appendix E.

Line § reads
int main()

This marks the beginning of a function. A function can be thought of as a group of one or
more programming statements that has a name. The name of this function is main, and the
set of parentheses that follows the name indicates that it is a function. The word int
stands for “integer.” It indicates that the function sends an integer value back to the oper-
ating system when it is finished executing.

Although most C++ programs have more than one function, every C++ program must
have a function called main. It is the starting point of the program. If you’re ever read-
ing someone else’s program and want to find where it starts, just look for the function
called main.

NOTE: C++ is a case-sensitive language. That means it regards uppercase letters as
being entirely different characters than their lowercase counterparts. In C++, the name
of the function main must be written in all lowercase letters. C++ doesn’t see “main” the
same as “Main” or “MAIN.”

Line 6 contains a single, solitary character:

{

This is called a left-brace, or an opening brace, and it is associated with the beginning of
the function main. All the statements that make up a function are enclosed in a set of
braces. If you look at the third line down from the opening brace you’ll see the closing
brace. Everything between the two braces is the contents of the function main.

WARNING! Make sure you have a closing brace for every opening brace in
your program.

After the opening brace you see the following statement in line 7:
cout << "Programming is great fun!";

To put it simply, this line displays a message on the screen. You will read more about cout
and the << operator later in this chapter. The message “Programming is great fun!” is
printed without the quotation marks. In programming terms, the group of characters
inside the quotation marks is called a string literal, a string constant, or simply a string.

29

30 Chapter 2 Introduction to C++

@ NOTE: This is the only line in the program that causes anything to be printed on the

screen. The other lines, like #include <iostream>and int main(), are necessary for
the framework of your program, but they do not cause any screen output. Remember, a
program is a set of instructions for the computer. If something is to be displayed on the
screen, you must use a programming statement for that purpose.

Notice that line 7 ends with a semicolon. Just as a period marks the end of a sentence, a semi-
colon is required to mark the end of a complete statement in C++. But many C++ lines do not
end with semicolons. Some of these include comments, preprocessor directives, and the
beginning of functions. Here are some examples of when to use, and not use, semicolons.

// Semicolon examples // This is a comment

include <iostream> // This is a preprocessor directive
int main() // This begins a function

cout << "Hello"; // This is a complete statement

As you spend more time working with C++ you will get a feel for where you should
and should not use semicolons. For now don’t worry about it. Just concentrate on
learning the parts of a program.

Line 8 reads
return 0;

This sends the integer value 0 back to the operating system upon the program’s comple-
tion. The value 0 usually indicates that a program executed successfully.

The last line of the program, line 9, contains the closing brace:

}

This brace marks the end of the main function. Because main is the only function in this
program, it also marks the end of the program.

In the sample program you encountered several sets of special characters. Table 2-1 provides
a short summary of how they were used.

Table 2-1 Special Characters

Character Name Description

/7 Double slash Marks the beginning of a comment.

Pound sign Marks the beginning of a preprocessor directive.

< > Opening and closing Encloses a filename when used with the #include
brackets directive.

() Opening and closing Used in naming a function, as in int main().
parentheses

{1} Opening and closing Encloses a group of statements, such as the contents of a
braces function.

"o Opening and closing Encloses a string of characters, such as a message that is to
quotation marks be printed on the screen.

; Semicolon Marks the end of a complete programming statement.

The cout Object

Checkpoint
2.1 The following C++ program will not compile because the lines have been mixed up.

int main()

}

// A crazy mixed up program

#include <iostream>

return 0;

cout << "In 1492 Columbus sailed the ocean blue.";

{

using namespace std;
When the lines are properly arranged the program should display the following on
the screen:
In 1492 Columbus sailed the ocean blue.
Rearrange the lines in the correct order. Test the program by entering it on the
computer, compiling it, and running it.

2.2 On paper, write a program that will display your name on the screen. Use

Program 2-1 as your guide. Place a comment with today’s date at the top of the
program. Test your program by entering, compiling, and running it.

The cout Object

Ak

CONCEPT: cout is used to display information on the computer’s screen.

In this section you will learn to write programs that produce output on the screen. The
simplest type of screen output that a program can display is console output, which is
merely plain text. The word console is an old computer term. It comes from the days when
a computer operator interacted with the system by typing on a terminal. The terminal,
which consisted of a simple screen and keyboard, was known as the console.

On modern computers, running graphical operating systems such as Windows or Mac OS X,
console output is usually displayed in a window such as the one shown in Figure 2-1. C++
provides an object named cout that is used to produce console output. (You can think of
the word cout as meaning console output.)

Figure 2-1 A Console Window

s the area of a circle.
radius of the circle? 18
The area is 314.159
Press any key to continue . . .

31

32 Chapter 2 Introduction to C++

cout is classified as a stream object, which means it works with streams of data. To print a
message on the screen, you send a stream of characters to cout. Let’s look at line 7 from
Progam 2-1:

VideoNote cout << "Programming is great fun!";

Using cout to

X The << operator is used to send the string “Programming is great fun!” to cout. When the <<
Display Output

symbol is used this way, it is called the stream-insertion operator. The item immediately to
the right of the operator is sent to cout and then displayed on the screen.

@ NOTE: The stream insertion operator is always written as two less-than signs with no

space between them. Because you are using it to send a stream of data to the cout object,
you can think of the stream insertion operator as an arrow that must point toward cout,
as shown here.

cout << "Hello";
cout ¢« "Hello";

Program 2-2 shows another way to write the same program.
Program 2-2

// A simple C++ program
#include <iostream>
using namespace std;

int main()

{

cout << "Programming is " << "great fun!";
return 0;

Program Output
Programming is great fun!

As you can see, the stream-insertion operator can be used to send more than one item to
cout. The output of this program is identical to Program 2-1. Program 2-3 shows yet
another way to accomplish the same thing.

Program 2-3
// A simple C++ program
#include <iostream>

using namespace std;

int main()

{
cout << "Programming is ";
cout << "great fun!";
return 0;

}

Program Output
Programming is great fun!

The cout Object

An important concept to understand about Program 2-3 is that although the output is broken
into two programming statements, this program will still display the message on a single line.
Unless you specify otherwise, the information you send to cout is displayed in a continuous
stream. Sometimes this can produce less-than-desirable results. Program 2-4 illustrates this.

Program 2-4

// An unruly printing program
#include <iostream>
using namespace std;

int main()

{

cout << "The following items were top sellers";
cout << "during the month of June:";

cout << "Computer games";

cout << "Coffee";

cout << "Aspirin";

return 0;

Program Output

The following items were top sellersduring the month of June:Computer
gamesCoffeeAspirin

The layout of the actual output looks nothing like the arrangement of the strings in
the source code. First, notice there is no space displayed between the words “sellers” and
“during,” or between “June:” and “Computer.” cout displays messages exactly as they are
sent. If spaces are to be displayed, they must appear in the strings.

Second, even though the output is broken into five lines in the source code, it comes out as
one long line of output. Because the output is too long to fit on one line of the screen, it
wraps around to a second line when displayed. The reason the output comes out as one
long line is that cout does not start a new line unless told to do so. There are two ways to
instruct cout to start a new line. The first is to send cout a stream manipulator called
endl (pronounced “end-line” or “end-L”). Program 2-5 does this.

Program 2-5

// A well-adjusted printing program
#include <iostream>
using namespace std;

int main()

{

cout << "The following items were top sellers" << endl;
cout << "during the month of June:" << endl;

cout << "Computer games" << endl;

cout << "Coffee" << endl;

cout << "Aspirin" << endl;

return 0;

(program continues)

33

34 Chapter 2

Introduction to C++

Program 2-5 (continued)

Program Output

The following items were top sellers
during the month of June:

Computer games

Coffee

Aspirin

<&

NOTE: The last character in endl is the lowercase letter L, zot the number one.

Every time cout encounters an endl stream manipulator it advances the output to the
beginning of the next line for subsequent printing. The manipulator can be inserted any-
where in the stream of characters sent to cout, outside the double quotes. Notice that an
endl is also used at the end of the last line of output.

Another way to cause subsequent output to begin on a new line is to insert a \n in the
string that is being output. Program 2-6 does this.

Program 2-6

// Another well-adjusted printing program
#include <iostream>
using namespace std;

int main()

{

cout << "The following items were top sellers\n";
cout << "during the month of June:\n";

cout << "Computer games\nCoffee";

cout << "\nAspirin\n";

return 0;

Program Output

The following items were top sellers
during the month of June:

Computer games

Coffee

Aspirin

\n is an example of an escape sequence. Escape sequences are written as a backslash char-
acter (\) followed by one or more control characters and are used to control the way out-
put is displayed. There are many escape sequences in C++. The newline escape sequence
(\n) is just one of them.

When cout encounters \n in a string, it doesn’t print it on the screen but interprets it as a
special command to advance the output cursor to the next line. You have probably noticed
inserting the escape sequence requires less typing than inserting endl. That’s why some
programmers prefer it.

Escape sequences give you the ability to exercise greater control over the way information
is output by your program. Table 2-2 lists a few of them.

The #include Directive

Table 2-2 Common Escape Sequences

Escape

Sequence Name Description

\n Newline Causes the cursor to go to the next line for subsequent printing.

\t Horizontal tab Causes the cursor to skip over to the next tab stop.

\a Alarm Causes the computer to beep.

\b Backspace Causes the cursor to back up, or move left one position.

\r Return Causes the cursor to go to the beginning of the current line, not the
next line.

\\ Backslash Causes a backslash to be printed.

\! Single quote Causes a single quotation mark to be printed.

\ " Double quote Causes a double quotation mark to be printed.

—
23

A common mistake made by beginning C++ students is to use a forward slash (/) instead of
a back slash (\) when trying to write an escape sequence. This will not work. For example,
look at the following line of code.

cout << "Four score/nAnd seven/nYears ago./n"; // Error!

Because the programmer accidentally wrote /n instead of \n, cout will simply display the
/n characters on the screen, rather than starting a new line of output. This code will create
the following output:

Four score/nAnd seven/nYears ago./n

Another common mistake is to forget to put the \n inside quotation marks. For example,
the following code will not compile.

cout << "Good" << \n; // Error!
cout << "Morning" << \n; // This code will not compile.

We can correct the code by placing the \n sequences inside the string literals, as shown here:

cout << "Good\n"; // This will work.
cout << "Morning\n";

To summarize, do not confuse the backslash (\) with the forward slash (/). An escape
sequence must start with a backslash, be placed inside quotation marks, and have no
spaces between the backslash and the control character.

The #include Directive

{ CONCEPT: The #include directive causes the contents of another file to be inserted

into the program.

Now is a good time to expand our discussion of the #include directive. The following line
has appeared near the top of every example program.

#include <iostream>

35

36

Chapter 2

Introduction to C++

The header file iostream must be included in any program that uses the cout object. This
is because cout is not part of the “core” of the C++ language. Specifically, it is part of the
input-output stream library. The header file, iostream, contains information describing
iostream objects. Without it, the compiler will not know how to properly compile a pro-
gram that uses cout.

Preprocessor directives are not C++ statements. They are commands to the preprocessor,
which runs prior to the compiler (hence the name “preprocessor”). The preprocessor’s job
is to set programs up in a way that makes life easier for the programmer.

For example, any program that uses the cout object must contain the extensive setup
information found in the iostream file. The programmer could type all this information
into the program, but it would be too time consuming. An alternative would be to use an
editor to “cut and paste” the information into the program, but that would still be ineffi-
cient. The solution is to let the preprocessor insert the contents of iostream automatically.

WARNING! Do not use semicolons at the end of preprocessor directives. Because
preprocessor directives are not C++ statements, they do not require them. In fact, in
many cases an error will result if a preprocessor directive is terminated with a
semicolon.

An #include directive must always contain the name of a file. The preprocessor inserts the
entire contents of the file into the program at the point it encounters the #include direc-
tive. The compiler doesn’t actually see the #include directive. Instead it sees the code that
was inserted by the preprocessor, just as if the programmer had typed it there.

The code contained in header files is C++ code. Typically it describes complex objects like
cout. Later you will learn to create your own header files.

Checkpoint

2.3 The following cout statement contains errors.
cout << "red /n" << "blue \ n" << "yellow" \n << "green";

Correct it so that it will display a list of colors, with one item per line.

2.4 What output will the following lines of code display on the screen?

cout << "The works of Wolfgang\ninclude the following";
cout << "\nThe Turkish March" << endl;

cout << "and Symphony No. 40 ";

cout << "in G minor." << endl;

2.5 On paper, write a program that will display your name on the first line, your street
address on the second line, your city, state, and ZIP code on the third line, and your
telephone number on the fourth line. Test your program by entering, compiling, and
running it.

—
24

Variables, Constants, and the Assignment Statement

Standard and Prestandard C++

{ CONCEPT: C++ programs written before the language became standardized may

&

appear slightly different from programs written today.

C++ is now a standardized programming language, but it hasn’t always been. The language
has evolved over the years and, as a result, there is a “newer style” and an “older style” of
writing C++ code. The newer style is the way programs are written with standard C++,
while the older style is the way programs were typically written using prestandard C++.
Although the differences between the older and newer styles are subtle, it is important that
you recognize them. When you go to work as a computer science professional, it is likely
that you will see programs written in the older style.

Older Style Header Files

In older style C++, all header files end with the “.h” extension. For example, in a prestandard
C++ program the statement that includes the iostream header file is written as

#include <iostream.h>

Absence of using namespace std;

Another difference between the newer and older styles is that older style programs typically do
not use the using namespace std; statement. In fact, some older compilers do not support
namespaces at all and will produce an error message if a program has that statement.

An Older Style Program

To illustrate these differences, look at the following program. It is a modification of
Program 2-1, written in the older style.

// A simple C++ program
#include <iostream.h>

void main(void)
{

cout << "Programming is great fun!";

}

Some standard C++ compilers do not support programs written in the older style, and
prestandard compilers normally do not support programs written in the newer style.

Variables, Constants, and the Assignment
Statement

CONCEPT: Variables represent storage locations in the computer’s memory.
Constants are data items whose values cannot change while the program
is running.

The concept of a variable in computer programming is somewhat different from the concept
of a variable in mathematics. In programming, as you learned in Chapter 1, a variable is a

37

38

Chapter 2

Introduction to C++

named storage location for holding data. Variables allow you to store and work with data in
the computer’s memory. They provide an “interface” to RAM. Part of the job of program-
ming is to determine how many variables a program will need and what type of information
each will hold. Program 2-7 is an example of a C++ program with a variable.

Program 2-7

//

This program has a variable.

#include <iostream>
using namespace std;

int main()

{

int number;
number = 5;
cout << "The value of number is " << "number" << endl;

cout << "The value of number is " << number << endl;

number = 7;
cout << "Now the value of number is " << number << endl;

return 0;

Program Output

The value of number is number
The value of number is 5

Now the value of number is 7

Let’s look more closely at this program. Start by looking at line 7.
int number;

This is called a variable definition. Tt tells the compiler the variable’s name and the type of data
it will hold. Notice that the data type is written first, followed by the name of the variable. This
variable’s name is number. The word int stands for integer, so number may only be used to
hold integer numbers. Later in this chapter you will learn all the types of data that C++ allows.

NOTE: You must have a definition for every variable you use in a program. In C++, a
variable definition can appear at any point in the program as long as it occurs before
the variable is ever used. Later in this chapter, and throughout the book, you will
learn the best places to define variables. Notice that variable definitions end with a
semicolon.

Now look at line 9.
number = 5;

This is called an assignment statement and the = sign is called the assignment operator. This
operator copies the value on its right (5) into the variable named on its left (number).
This line does not print anything on the computer’s screen. It runs silently behind the
scenes, storing a value in RAM. After this line executes, number will be set to 5.

Variables, Constants, and the Assignment Statement

NOTE: The item on the left hand side of an assignment statement must be a variable. It
would be incorrect to say 5 = number;

Now look at lines 10 and 11. Notice that in line 10 the word number has double quotation
marks around it and in line 11, it does not.

cout << "The value of number is " << "number" << endl;
cout << "The value of number is " << number << endl;

Now compare these two lines with the output they produce. In the first cout statement,
the string constant "number" is inserted into the output stream, so the output produced is

The value of number is number

In the second cout statement, because there are no quotation marks around it, it is the
variable name number that is inserted into the output stream, causing its value to print.

The value of number is 5

Recall from Chapter 1 that variables are called variables because their values can change.
The assignment statement on line 13 replaces the previous value stored in number with a 7.

number = 7;
Therefore the final cout statement on line 14

cout << "Now the value of number is " << number << endl;
causes the following output to print.

Now the value of number is 7

Sometimes a Number Isn’'t a Number

As shown in Program 2-7, placing quotation marks around a variable name made it a
string constant, or string literal. When string literals are sent to cout, they are printed
exactly as they appear inside the quotation marks. You’ve probably noticed by now that
the endl stream manipulator is written with no quotation marks around it. If we were
to put the following line in a program, it would print out the word end1, rather than cause
subsequent output to begin on a new line.

cout << "endl"; // Wrong!

In fact, placing double quotation marks around anything that is not intended to be a string
literal will create an error of some type. For example, in Program 2-7 the number 5 was
assigned to the variable number. It would have been incorrect to write the assignment
this way:

number = "5"; // Wrong!

In this line, 5 is no longer an integer, but a string literal. Because number was defined to be
an integer variable, you can only store integers in it. The integer 5 and the string literal “5”
are not the same thing.

39

40 Chapter 2 Introduction to C++

The fact that numbers can be represented as strings frequently confuses people who are
new to programming. Just remember that strings are intended for humans to read. They
are to be printed on computer screens or paper. Numbers, however, are intended primarily
for mathematical operations. You cannot perform math on strings, and you cannot display
numbers on the screen without first converting them to strings. (Fortunately, cout handles
the conversion automatically when you send a number to it.)

Constants

Unlike a variable, a constant is a data item whose value cannot change during the program’s
execution. Program 2-8 contains integer constants, string constants (i.e., string literals), and
a variable.

Program 2-8
// This program has constants and a variable.
#include <iostream>

using namespace std;

int main()

{
int apples;
apples = 20;
cout << "On Sunday we sold " << apples << " bushels of apples. \n";
apples = 15;
cout << "On Monday we sold " << apples << " bushels of apples. \n";
return 0;

¥

Program Output

On Sunday we sold 20 bushels of apples.
On Monday we sold 15 bushels of apples.

Of course, the variable is apples. Table 2-3 lists the constants found in the program.

Table 2-3 Program 2-8 Constants

Integer Constants String Literals

20 "On Sunday we sold"

15 "On Monday we sold"

0 "bushels of apples. \n"

What are constants used for? As you can see from Program 2-8, they are commonly used
to store known values in variables and to display messages on the screen.

Identifiers

Checkpoint

2.6 Which of the following are legal C++ assignment statements?

a. a=17;
b. 7 = a;
c. 7 =17;

2.7 List all the variables and constants that appear below.

int main()

{
int little;
int big;
little = 2;
big = 2000;

cout << "The little number is " << little << endl;
cout << "The big number is " << big << endl;
return 0;

}

2.8 When the above program is run, what will display on the screen?

2.9 What will the following program display on the screen?

#include <iostream>
using namespace std;

int main()

{

int number;

number = 712;
cout << "The value is " << "number" << endl;
return 0;

—
26 Identifiers

1 CONCEPT: A variable name should indicate what the variable is used for.

An identifier is a programmer-defined name that represents some element of a program.
Variable names are examples of identifiers. You may choose your own variable names in
C++, as long as you do not use any of the C++ key words. The key words make up the
“core” of the language and have specific purposes. Table 2-4 shows a complete list of the
C++ key words. Note that they are all lowercase.

41

Chapter 2 Introduction to C++

Table 2-4 C++ Key Words

and continue goto public try
and_eq default if register typedef
asm delete inline reinterpret_cast typeid
auto do int return typename
bitand double long short union
bitor dynamic_cast mutable signed unsigned
bool else namespace sizeof using
break enum new static virtual
case explicit not static_cast void
catch export not_eq struct volatile
char extern operator switch wchar t
class false or template while
compl float or_eq this Xor
const for private throw Xor_eq
const_cast friend protected true

You should always choose names for your variables that give an indication of what the
variables are used for. You may be tempted to give variables names like this:

int x;

However, the rather nondescript name, x, gives no clue as to the variable’s purpose. Here is
a better example.

int itemsOrdered;

The name itemsOrdered gives anyone reading the program an idea of the variable’s use. This
way of coding helps produce self-documenting programs, which means you can get an under-
standing of what the program is doing just by reading its code. Because real-world programs
usually have thousands of lines, it is important that they be as self-documenting as possible.

You probably have noticed the mixture of uppercase and lowercase letters in the variable
name itemsOrdered. Although all of C++’s key words must be written in lowercase, you
may use uppercase letters in variable names.

The reason the 0 in itemsOrdered is capitalized is to improve readability. Normally
“items ordered” is two words. However, you cannot have spaces in a variable name, so the
two words must be combined into one. When “items” and “ordered” are stuck together
you get a variable definition like this:

int itemsordered;

Capitalization of the first letter of the second word and any succeeding words makes variable
names like itemsordered easier to read and is the convention we use for naming variables
in this book. However, this style of coding is not required. You are free to use all lowercase
letters, all uppercase letters, or any combination of both. In fact, some programmers use the
underscore character to separate words in a variable name, as in the following.

int items_ordered;

Legal Identifiers

Regardless of which style you adopt, be consistent and make your variable names as sensi-
ble as possible. Here are some specific rules that must be followed with all C++ identifiers.

e The first character must be one of the letters a through z, A through Z, or an under-
score character (_).

Integer Data Types

o After the first character you may use the letters a through z or A through Z, the digits
0 through 9, or underscores.

e Uppercase and lowercase characters are distinct. This means ItemsOrdered is not
the same as itemsordered.

Table 2-5 lists variable names and indicates whether each is legal or illegal in C++.

Table 2-5 Some C++ Variable Names

Variable Name Legal or Illegal

dayofWeek Legal.

3dGraph Illegal. Variable names cannot begin with a digit.

_employee num Legal.

Junel997 Legal.

Mixture#3 Illegal. Variable names may only use letters, digits, and underscores.

—
27

1

Figure 2

Integer Data Types

CONCEPT: There are many different types of data. Variables are classified according
to their data type, which determines the kind of information that may be
stored in them. Integer variables can only hold whole numbers.

Computer programs collect pieces of data from the real world and manipulate them in var-
ious ways. There are many different types of data. In the realm of numeric information, for
example, there are whole numbers and fractional numbers. There are negative numbers
and positive numbers. And there are numbers so large, and others so small, that they don’t
even have a name. Then there is textual information. Names and addresses, for instance,
are stored as groups of characters. When you write a program you must determine what
types of information it will be likely to encounter.

If you are writing a program to calculate the number of miles to a distant star, you’ll
need variables that can hold very large numbers. If you are designing software to record
microscopic dimensions, you’ll need to store very small and precise numbers. Addition-
ally, if you are writing a program that must perform thousands of intensive calculations,
you’ll want data stored in variables that can be processed quickly. The data type of a
variable determines all of these factors.

Although C++ offers many data types, in the very broadest sense there are only two:
numeric and character. Numeric data types are broken into two additional categories:
integer and floating-point, as shown in Figure 2-2.

-2 Basic C++ Data Types

C++ Data Types

numeric character

integer floating-point

43

44

Chapter 2

Introduction to C++

Integers are whole numbers like =2, 19, and 24. Floating-point numbers have a decimal
point like —=2.35, 19.0, and 0.024. Additionally, the integer and floating-point data types
are broken into even more classifications.

Your primary considerations for selecting the best data type for a numeric variable are
the following:

e whether the variable needs to hold integers or floating-point values,

o the largest and smallest numbers that the variable needs to be able to store,

e whether the variable needs to hold signed (both positive and negative) or only
unsigned (just zero and positive) numbers, and

e the number of decimal places of precision needed for values stored in the variable.

Let’s begin by looking at integer data types. C++ has six different data types for storing
integers. On most computers each of these has either two or four bytes of memory. The
number of bytes a data type can hold is called its size. Typically, the larger the size a
data type is, the greater the range of values it can hold.

Recall from Chapter 1 that a byte is made up of 8 bits. So a data type that stores data in
two bytes of memory can hold 16 bits of information. This means it can store 2'° bit patterns,
which is 65,536 different combinations of zeros and ones. A data type that uses 4 bytes of
memory has 32 bits, so it can hold 23% different bit patterns, which is 4,294,967,296
different combinations. What these different combinations are used for depends on the
data type. For example, the unsigned short data type, which is for storing non-negative
integers such as ages or weights, uses its 16 bits to represent the values 0 through +65,535.
The short data type, on the other hand, stores both positive and negative numbers, so it
uses its 16 bits to represent the values from —-32,768 to +32,767. Figure 2-3 shows how
numbers are stored in an unsigned short variable.

Figure 2-3 Unsigned Short Data Type Storage

Example value = binary 25

[ofofofofofofofofofojof1]1fofof1]

Smallest value that can be stored = binary 0

[ofofofofofojofoofofofofofofo]o]

Largest value that can be stored = binary 65,535

[2fefefafafaafafafafafafafafa]s]

Table 2-6 shows all six C++ integer data types with their typical sizes and ranges.
Depending on your operating system, the sizes and ranges may be different.

Integer Data Types

Table 2-6 Integer Data Types, Sizes, and Ranges

Data Type Size Range

short 2 bytes -32,768 to +32,767

unsigned short 2 bytes 0 to +65,535

int 4 bytes -2,147,483,648 to +2,147,483,647
unsigned int 4 bytes 0 to 4,294,967,295

long 4 bytes -2,147,483,648 to +2,147,483,647
unsigned long 4 bytes 0 to 4,294,967,295

Here are some examples of integer variable definitions. Notice that an unsigned int vari-
able can also be defined using only the word unsigned, as shown below.

short

count;
unsigned short age;
int speed;

unsigned int days;

unsigned days;
long deficit;

unsigned long insects;

// These two definitions
// are equivalent.

Notice also that in Table 2-6 the int and long data types have the same sizes and ranges,
and the unsigned int data type has the same size and range as the unsigned long data
type. This is not always true because the size of integers is dependent on the type of system
you are using. Here are the only guarantees:

e Integers are at least as big as short integers.
e Long integers are at least as big as integers.

Unsigned short integers are the same size as short integers.

e Unsigned integers are the same size as integers.
e Unsigned long integers are the same size as long integers.

Later in this chapter you will learn to use the sizeof operator to determine how large all
the data types are on your computer.

Program 2-9 uses integer, unsigned integer, and long integer variables.

Program 2-9

// This program has variables of several of the integer types.
#include <iostream>
using namespace std;

int main()

{

int checking;

unsigned int miles;

long days;

(program continues)

45

46 Chapter 2

Introduction to C++

Program 2-9 (continued)
checking = -20;
miles = 4276;
days = 190000;
cout << "We have made a long journey of " << miles << " miles.";
cout << "\nOur checking account balance is " << checking;
cout << "\nAbout " << days << " days ago Columbus ";
cout << "stood on this spot.\n";

return 0;

Program Output

We have made a long journey of 4276 miles.

Our checking account balance is -20

About 190000 days ago Columbus stood on this spot.

In most programs you will need more than one variable of any given data type. If a pro-
gram uses two integers, length and width, they can be defined separately, like this:

int length;
int width;
It is also possible to combine both variable definitions in a single statement:
int length, width;
Many instructors, however, prefer that each variable be placed on its own line:
int length,
width;

Whether you place multiple variables on the same line or each variable on its own line,
when you define several variables of the same type in a single statement, simply separate
their names with commas. A semicolon is used at the end of the entire definition.
Program 2-10 illustrates this. This program also shows how it is possible to give an initial
value to a variable at the time it is defined.

Program 2-10

// This program defines three variables in the same statement.
// They are given initial values at the time they are defined.
#include <iostream>
using namespace std;

int main()

{

int floors = 15,
rooms = 300,
suites = 30;

cout << "The Grande Hotel has " << floors << " floors\n";
cout << "with " << rooms << " rooms and " << suites;

cout << " suites.\n";

return 0;

(program continues)

Integer Data Types 47

Program 2-10 (continued)

Program Output

The Grande Hotel has 15 floors
with 300 rooms and 30 suites.

Integer and Long Integer Constants
Look at the following statement from Program 2-10:

int floors = 15,
rooms = 300,
suites = 30;
This statement contains three integer constants. In C++, integer constants are normally
stored in memory just as an int.

One of the pleasing characteristics of the C++ language is that it allows you to control almost
every aspect of your program. If you need to change the way something is stored in memory,
the tools are provided to do that. For example, what if you are in a situation where you have
an integer constant, but you need it to be stored in memory as a long integer? (Rest assured,
this is a situation that does arise.) C++ allows you to force an integer constant to be stored as
a long integer by placing the letter L at the end of the number. Here is an example:

32L

On a computer that uses 2-byte integers and 4-byte long integers, this constant will use 4
bytes. This is called a long integer constant.

O NOTE: Although C++ allows you to use either an uppercase or lowercase L, the
lowercase | looks too much like the number 1, so you should always use the uppercase L.

Hexadecimal and Octal Constants (enrichment)

Programmers commonly express values in numbering systems other than decimal (or base
10). Hexadecimal (base 16) and octal (base 8) are popular because they make certain pro-
gramming tasks more convenient than decimal numbers do.

By default, C++ assumes that all integer constants are expressed in decimal. You express
hexadecimal numbers by placing 0x in front of them. (This is zero-x, not oh-x.) Here is
how the hexadecimal number F4 would be expressed in C++:

0xF4

Octal numbers must be preceded by a 0 (zero, not oh). For example, the octal 31 would
be written

031

0 NOTE: You will not be writing programs for some time that require this type of

manipulation. However, good programmers develop the skills for reading other people’s
source code. You may find yourself reading programs that use items like long integer,
hexadecimal, or octal constants.

48

Chapter 2

Y

Introduction to C++

Checkpoint
2.10 Which of the following are illegal C++ variable names, and why?

X

99bottles

july97
theSalesFigureForFiscalYear98
r&d

grade_report

2.11 Is the variable name sales the same as sales? Why or why not?

2.12 Refer to the data types listed in Table 2-6 for these questions.
A) If a variable needs to hold numbers in the range 32 to 6,000, what data type
would be best?
B) If a variable needs to hold numbers in the range —40,000 to +40,000, what data
type would be best?
C) Which of the following constants use more memory, 20 or 20L?

2.13 Which integer data types can only hold non-negative values?
2.14 How would you consolidate the following variable definition and assignment state-

ment into a single statement?

int apples;
apples = 20;

The char Data Type

CONCEPT: A variable of the char data type holds only a single character.

You might be wondering why there isn’t a 1-byte integer data type. Actually there is. It is
called the char data type, which gets its name from the word “character.” A variable defined
as a char can hold a single character, but strictly speaking, it is an integer data type.

NOTE: On some systems the char data type is larger than 1 byte.

The reason an integer data type is used to store characters is because characters are internally
represented by numbers. Each printable character, as well as many nonprintable characters,
are assigned a unique number. The most commonly used method for encoding characters is
ASCII, which stands for the American Standard Code for Information Interchange. (There
are other codes, such as EBCDIC, which is used by many IBM mainframes.)

When a character is stored in memory, it is actually the numeric code that is stored. When
the computer is instructed to print the value on the screen, it displays the character that
corresponds with the numeric code.

You may want to refer to Appendix A, which shows the ASCII character set. Notice that
the number 65 is the code for A, 66 is the code for B, and so on. Program 2-11 demon-
strates that when you work with characters, you are actually working with numbers.

The char Data Type 49

Program 2-11

// This program demonstrates the close relationship between
// characters and integers.

#include <iostream>

using namespace std;

int main()

{

char letter;

letter = 65;
cout << letter << endl;

letter = 66;

cout << letter << endl;
return 0;

Program Output

A
B
Figure 2-4 illustrates that when you think of characters, such as A, B, and C, being stored
in memory, it is really the numbers 65, 66, and 67 that are stored.
Figure 2-4
|A| |B| |C|
ey ¢
is stored in memory as
Y
65 66 67

Character and String Constants

Although Program 2-11 nicely illustrates the way characters are represented by numbers, it
isn’t necessary to work with the ASCII codes themselves. Program 2-12 is another version
that works the same way.

Program 2-12

// This program uses character constants.
#include <iostream>
using namespace std;

int main()
{
char letter;
(program continues)

50 Chapter 2

Introduction to C++

Program 2-12 (continued)

}

letter = 'A';
cout << letter << endl;

letter = 'B';
cout << letter << endl;
return 0;

Program Output

A

B

Program 2-12 assigns character constants to the variable letter. Anytime a program
works with a character, it internally works with the code used to represent that character,
so this program is still assigning the values 65 and 66 to letter.

Character constants can only hold a single character. To store a series of characters in a
constant we need a string constant. In the following example, 'H' is a character constant
and "Hello" is a string constant. Notice that a character constant is enclosed in single
quotation marks whereas a string constant is enclosed in double quotation marks.

cout << 'H' << endl;
cout << "Hello" << endl;

Strings, which allow a series of characters to be stored in consecutive memory locations,
can be virtually any length. This means that there must be some way for the program to
know how long the string is. In C++ this is done by appending an extra byte to the end of
string constants. In this last byte, the number 0 is stored. It is called the null terminator or
null character and marks the end of the string.

Don’t confuse the null terminator with the character '0'. If you look at Appendix A you
will see that the character '0' has ASCII code 48, whereas the null terminator has ASCII
code 0. If you want to print the character 0 on the screen, you use ASCII code 48. If you
want to mark the end of a string, you use ASCII code 0.

Let’s look at an example of how a string constant is stored in memory. Figure 2-5 depicts
the way the string "Sebastian" would be stored.

Figure 2-5

First, notice the quotation marks are not stored with the string. They are simply a way of
marking the beginning and end of the string in your source code. Second, notice the very last
byte of the string. It contains the null terminator, which is represented by the \O character.
The addition of this last byte means that although the string "sebastian" is 9 characters
long, it occupies 10 bytes of memory.

The char Data Type

The null terminator is another example of something that sits quietly in the background. It
doesn’t print on the screen when you display a string, but nevertheless, it is there silently
doing its job.

& NOTE: C++ automatically places the null terminator at the end of string constants.

Now let’s compare the way a string and a char are stored. Suppose you have the constants 'A"
and "A" in a program. Figure 2-6 depicts their internal storage.

Figure 2-6

'A' is stored as
"A" is stored as

As you can see, 'A' is a 1-byte element and "A" is a 2-byte element. Since characters are
really stored as ASCII codes, Figure 2-7 shows what is actually being stored in memory.

Figure 2-7

'A' is stored as
"A" is stored as “

Because a char variable can only hold a single character, it can be assigned the character 'a',
but not the string "a".

char letterOne 'A'; // This will work.
char letterTwo = "A"; // This will NOT work!

You have learned that some strings look like a single character but really aren’t. It is also
possible to have a character that looks like a string. A good example is the newline charac-
ter, \n. Although it is represented by two characters, a slash and an n, it is internally repre-
sented as one character. In fact, all escape sequences, internally, are just 1 byte.

Program 2-13 shows the use of \n as a character constant, enclosed in single quotation
marks. If you refer to the ASCII chart in Appendix A, you will see that ASCII code 10 is
the linefeed character. This is the code C++ uses for the newline character.

Program 2-13

// This program uses character constants.
#include <iostream>
using namespace std;

int main()
{
char letter;
(program continues)

52 Chapter 2

Introduction to C++

Program 2-13 (continued)

}

letter = 'A';
cout << letter << '\n';

letter = 'B';
cout << letter << '\n';
return 0;

Program Output

A

B

- |

29 The C++ string Class

1 CONCEPT: Standard C++ provides a special data type for storing and working with

Let’s review some important points regarding characters and strings:

e Printable characters are internally represented by numeric codes. Most computers use
ASCII codes for this purpose.

e Characters normally occupy a single byte of memory.

e Strings are consecutive sequences of characters that occupy consecutive bytes of

memory.

e String constants have a null terminator at the end. This marks the end of the string.
e Character constants are enclosed in single quotation marks.

e String constants are enclosed in double quotation marks.

e Escape sequences such as '\n' are stored internally as a single character.

strings.

Because a char variable can store only one character in its memory location, another data
type is needed for a variable able to hold an entire string. While C++ does not have a built-
in data type able to do this, Standard C++ provides something called the string class that
allows the programmer to create a string type variable.

Using the string Class

The first step in using the string class is to #include the string header file. This is
accomplished with the following preprocessor directive:

#include <string>

The next step is to define a string type variable, called a string object. Defining a string
object is similar to defining a variable of a primitive type. For example, the following state-
ment defines a string object named movieTitle.

string movieTitle;

The C++ string Class

You can assign a string literal to movieTitle with the assignment operator:
movieTitle = "Wheels of Fury";

The contents of movieTitle can be displayed on the screen with cout, as shown in the
next statement:

cout << "My favorite movie is " << movieTitle << endl;

Program 2-14 is a complete program that demonstrates the preceding statements.
Program 2-14
// This program demonstrates the string class.
#include <iostream>
#include <string> // Required for the string class.

using namespace std;

int main()

{
string movieTitle;
movieTitle = "Wheels of Fury";
cout << "My favorite movie is " << movieTitle << endl;
return 0;
}

Program Output
My favorite movie is Wheels of Fury

As you can see, working with string objects is similar to working with variables of other types.
Throughout this text we will continue to discuss string class features and capabilities.

Checkpoint

2.15 What are the ASCII codes for the following characters? (Refer to Appendix A)
C
F
w

2.16 Which of the following is a character constant?
L} B "
ngn

2.17 Assuming the char data type uses 1 byte of memory, how many bytes do each of
the following constants use?

lQl

ngn
"Sales"
] \nl

2.18 What is wrong with the following program statement?

char letter = "Z";

53

54 Chapter 2 Introduction to C++

2.19 What header file must you include in order to use string objects?

2.20 Write a program that stores your name, address, and phone number in three separate
string objects. Display the contents of the string objects on the screen.

—
210 Floating-Point Data Types

1 CONCEPT: Floating-point data types are used to define variables that can hold real
numbers.

Whole numbers are not adequate for many jobs. If you are writing a program that works
with dollar amounts or precise measurements, you need a data type that allows fractional
values. In programming terms, these are called floating-point numbers.

Internally, floating-point numbers are stored in a manner similar to scientific notation.
Take the number 47,281.97. In scientific notation this number is 4.728197 x 10*. (10* is
equal to 10,000, and 4.728197 x 10,000 is 47,281.97.) The first part of the number,
4.728197, is called the mantissa. The mantissa is multiplied by a power of 10.

Computers typically use E notation to represent floating-point values. In E notation, the
number 47,281.97 would be 4.728197E4. The part of the number before the E is the man-
tissa, and the part after the E is the power of 10. When a floating-point number is stored in
memory, it is stored as the mantissa and the power of 10.

Table 2-7 shows other numbers represented in scientific and E notation.

Table 2-7 Floating-Point Representations

Decimal Notation Scientific Notation E Notation
247.91 2.4791 x 10% 2.4791E2
0.00072 7.2x 107 7.2E-4
2,900,000 2.9%10° 2.9E6

In C++ there are three data types that can represent floating-point numbers. They are

float
double
long double

The float data type is considered single precision. The double data type is usually twice
as big as float, so it is considered double precision. As you’ve probably guessed, the 1ong
double is intended to be larger than the double. The exact sizes of these data types is
dependent on the computer you are using. The only guarantees are

® A double is at least as big as a float.
* A long double is at least as big as a double.

Table 2-8 shows the sizes and ranges of floating-point data types usually found on PCs.

Floating-Point Data Types

Table 2-8 Floating-Point Data Types on PCs

Significant
Data Type Key Word Size Range Digits
Single precision float 4 bytes Numbers between +3.4E-38 and 7
+3.4E38
Double precision double 8 bytes Numbers between =1.7E-308 and 16
+1.7E308
Long double precision long double 8 bytes* Numbers between +1.7E-308 and 16
+1.7E308

*Some compilers use more than 8 bytes for long doubles. These allow greater ranges.

You will notice there are no unsigned floating-point data types. On all machines, variables
of the float, double, and long double data type can store both positive and negative
numbers. Program 2-15 uses floating-point data types.

Program 2-15
// This program uses two floating-point data types, float and double.
#include <iostream>

using namespace std;

int main()

{
float distance = 1.496ES8; // in kilometers
double mass = 1.989E30; // in kilograms
cout << "The Sun is " << distance << " kilometers away.\n";
cout << "The Sun\'s mass is " << mass << " kilograms.\n";
return 0;

b

Program Output

The Sun is 1.496e+008 kilometers away.
The Sun's mass is 1.989e+030 kilograms.

Floating-Point Constants

Floating-point constants may be expressed in a variety of ways. As shown in Program
2-15, E notation is one method. When you are writing numbers that are extremely large or
extremely small, this will probably be the easiest way. E notation numbers may be
expressed with an uppercase E or a lowercase e. Notice in the source code the constants
were written as 1.496E8 and 1.989E30, but the program printed them as 1.496e+008 and
1.989e+030. The uppercase E and lowercase e are equivalent. The plus sign in front of the
exponent is also optional.

You can also express floating-point constants in decimal notation. The constant 1.496E8
could have been written as

149600000.0

56

Chapter 2

Introduction to C++

Obviously the E notation is more convenient for lengthy numbers; but for numbers like
47.39, decimal notation is preferable to 4.739E1.

All of the following floating-point constants are equivalent:

.496E8
.496e8
.496E+8
.496e+8
49600000.0

e

Floating-point constants are normally stored in memory as doubles. Just in case you need
to force a constant to be stored as a £loat, you can append the letter F or £ to the end of
it. For example, the following constants would be stored as £1oat numbers:

1.2F
45.907f

NOTE: Because floating-point constants are normally stored in memory as doubles,
some compilers issue a warning message when you assign a floating-point constant to a
float variable. For example, assuming num is a £loat, the following statement might
cause the compiler to generate a warning message:

num = 14.725;

You can suppress the error message by appending the £ suffix to the floating-point
constant, as shown here:

num = 14.725f;

If you want to force a value to be stored as a long double, append an L to it, as
shown here:

1034.56L

The compiler won’t confuse this with a long integer because of the decimal point. A lower-
case letter 1 can also be used to define a floating-point constant to be a long double, but
an uppercase L is preferable, as the lowercase letter 1 is easily confused with the digit 1.

Assigning Floating-Point Values to Integer Variables

When a floating-point value is assigned to an integer variable, the fractional part of the
value (the part after the decimal point) is discarded. This occurs because an integer variable
cannot hold any value containing decimals. For example, look at the following code.

int number;
number = 7.8; // Assigns 7 to number

This code attempts to assign the floating-point value 7.8 to the integer variable number.
Because this is not possible, the value 7 is assigned to number, and the fractional part is
discarded. When part of a value is discarded in this manner, the value is said to be
truncated.

The bool Data Type

Assigning a floating-point variable to an integer variable has the same effect. For example,
look at the following code.

int intVar;

double doublevar = 7.8;

intvVar = doubleVar; // Assigns 7 to intVar
// doubleVar remains 7.8

@ WARNING! Floating-point variables can hold a much larger range of values than

integer variables can. If a floating-point value is stored in an integer variable, and the
whole part of the value (the part before the decimal point) is too large for the integer
variable, an invalid value will be stored in the integer variable.

=
211 The bool Data Type

{ CONCEPT: Boolean variables are set to either true or false.

Expressions that have a true or false value are called Boolean expressions, named in
honor of English mathematician George Boole (1815-1864).

The bool data type allows you to create variables that hold true or false values.
Program 2-16 demonstrates the definition and use of a bool variable. Although it appears
that it is storing the words true and false, it is actually an integer variable that stores 0 for
false and 1 for true, as you can see from the program output.

Program 2-16

// This program uses Boolean variables.
#include <iostream>
using namespace std;

int main()

{
bool boolValue;

boolvValue = true;
cout << boolvValue << endl;

boolvalue = false;
cout << boolValue << endl;
return 0;

}

Program Output

1
0

58

Chapter 2 Introduction to C++

=
212 Determining the Size of a Data Type

1 CONCEPT: The sizeof operator may be used to determine the size of a data type on
any system.

Chapter 1 discussed the portability of the C++ language. As you have seen in this chapter,
one of the problems of portability is the lack of common sizes of data types on all
machines. If you are not sure what the sizes of data types are on your computer, C++ pro-
vides a way to find out.

A special operator called sizeof will report the number of bytes of memory used by any
data type or variable. Program 2-17 illustrates its use. The first line that uses the operator
is line 9.

cout << "The size of an integer is " << sizeof(int);

The name of the data type or variable is placed inside the parentheses that follow the oper-
ator. The operator “returns” the number of bytes used by that item. This operator can be
used anywhere you can use an unsigned integer, including in mathematical operations.

Program 2-17
// This program displays the size of various data types.
#include <iostream>

using namespace std;

int main()

{
long double apple;
cout << "The size of an integer is " << sizeof(int);
cout << " bytes.\n";
cout << "The size of a long integer is " << sizeof(long);
cout << " bytes.\n";
cout << "An apple can be eaten in " << sizeof (apple);
cout << " bytes!\n";
return 0;
}

Program Output

The size of an integer is 4 bytes.
The size of a long integer is 4 bytes.
An apple can be eaten in 8 bytes!

Checkpoint

2.21 How would the following number in scientific notation be represented in E notation?

6.31 x 10%7

—
213

More on Variable Assignments and Initialization

2.22 What will the following code display?

int number;
number = 3.625:
cout << number;

2.23 Write a program that defines an integer variable named age and a double variable
named weight. Store your age and weight, as constants, in the variables. The pro-
gram should display these values on the screen in a manner similar to the following:

Program Output
My age is 26 and my weight is 168.5 pounds.

(Feel free to lie to the computer about your age and weight. It will never know!)

More on Variable Assignments and Initialization

1 CONCEPT: An assignment operation assigns, or copies, a value into a variable. When

VideoNote
Assignment
Statements

a value is assigned to a variable as part of the variable’s definition, it is
called an initialization.

As you have already seen in several examples, a value is stored in a variable with an
assignment statement. For example, the following statement copies the value 12 into the
variable unitssold.

unitsSold = 12;

The = symbol, as you recall, is called the assignment operator. Operators perform opera-
tions on data. The data that operators work with are called operands. The assignment
operator has two operands. In the previous statement, the operands are unitsSold and 12.

It is important to remember that in an assignment statement, C++ requires the name of the
variable receiving the assignment to appear on the left side of the operator. The following
statement is incorrect.

12 = unitsSold; // Incorrect!

In C++ terminology, the operand on the left side of the = symbol must be an Ivalue. An
lvalue is something that identifies a place in memory whose contents may be changed, so a
new value can be stored there. Most of the time the lvalue will be a variable name. It is
called an Ivalue because it is a value that may appear on the left-hand side of an assignment
operator.

The operand on the right side of the = symbol must be an rvalue. An rvalue is any expres-
sion that has a value. This could be a single number, like 12, or the result of a calculation,
such as 4 + 8. The assignment statement evaluates the expression on the right-hand side to
get the value of the rvalue and then puts it in the memory location identified by the lvalue.
Both of the following statements assign the value 12 to the unitsSold variable.

unitsSold = 12;
unitsSold 4 + 8;

You have also seen that it is possible to assign values to variables when they are defined.
This is called initialization. When multiple variables are defined in the same statement, it is

59

60 Chapter 2 Introduction to C++

possible to initialize some of them without having to initialize all of them. Program 2-18
illustrates this.

Program 2-18
// This program shows variable initialization.
#include <iostream>
#include <string>

using namespace std;

int main()

{
string month = "February"; // month is initialized to "February"
int year, // year is not initialized
days = 28; // days is initialized to 28
year = 2007; // Now year is assigned a value
cout << "In " << year << " " << month
<< " had " << days << " days.\n";
return 0;
}

Program Output
In 2007 February had 28 days.

=
2.14 Scope

1 CONCEPT: A variable’s scope is the part of the program that has access to the variable.

Every variable has a scope. The scope of a variable is the part of the program where it may
be used. The rules that define a variable’s scope are complex, and we will just introduce the
concept here. Later in the book we will cover this topic in more depth.

The first rule of scope is that a variable cannot be used in any part of the program before it
is defined. Program 2-19 illustrates this.

Program 2-19

// This program can't find its variable.
#include <iostream>
using namespace std;

int main()

{

cout << value; // ERROR! value has not been defined yet!

int value = 100;
return 0;

—
215

Arithmetic Operators

The program will not work because line 7 attempts to send the contents of the variable value
to cout before the variable is defined. The compiler reads a program from top to bottom. If it
encounters a statement that uses a variable before the variable is defined, an error will result.
To correct the program, the variable definition must be put before any statement that uses it.

Arithmetic Operators

1 CONCEPT: There are many operators for manipulating numeric values and

VideoNote
Arithmetic
Operators

performing arithmetic operations.

C++ provides many operators for manipulating data. Generally, there are three types of
operators: unary, binary, and ternary. These terms reflect the number of operands an oper-
ator requires.

Unary operators only require a single operand. For example, consider the following
expression: —5

Of course, we understand this represents the value negative five. The constant 5 is preceded
by the minus sign. The minus sign, when used this way, is called the negation operator.
Since it only requires one operand, it is a unary operator.

Binary operators work with two operands. Ternary operators, as you may have guessed, require
three operands. C++ only has one ternary operator, which will be discussed in Chapter 4.

Arithmetic operations occur frequently in programming. Table 2-9 shows the common
arithmetic operators in C++. All are binary operators.

Table 2-9 Fundamental Arithmetic Operators

Operator Meaning Example

+ Addition total = cost + tax;

- Subtraction cost = total - tax;

* Multiplication tax = cost * rate;

/ Division salePrice = original / 2;
% Modulus remainder = value % 3;

Here is an example of how each of these operators works.
The addition operator returns the sum of its two operands.
total = 4 + 8; // total is assigned the value 12

The subtraction operator returns the value of its right operand subtracted from its left
operand.

candyBars = 8 - 3; // candyBars is assigned the value 5
The multiplication operator returns the product of its two operands.

points = 3 * 7 // points is assigned the value 21

61

62

Chapter 2

Introduction to C++

The division operator works differently depending on whether its operands are integer or
floating-point numbers. When both numbers are integers, the division operator performs
integer division. This means that the result is always an integer. If there is any remainder, it
is discarded.

fullBoxes = 26 / 8; // fullBoxes is assigned the value 3

The variable fullBoxes is assigned the value 3 because 8 goes into 26 three whole times
with a remainder of 2. The remainder is discarded.

If you want the division operator to perform regular division, you must make sure at least
one of the operands is a floating-point number.

boxes = 26.0 / 8; // boxes is assigned the value 3.25
The modulus operator computes the remainder of doing an integer divide.
leftOver = 26 % 8; // leftOver is assigned the value 2

Figure 2-8 illustrates the use of the integer divide and modulus operations.

Figure 2-8 Integer Divide and Modulus Operations

3 R2
8 | 26 “\\26%8

26 /8

In Chapter 3 you will learn how to use these operators in more complex mathematical for-
mulas. For now we will concentrate on their basic usage. For example, suppose we need to
write a program that calculates and displays an employee’s total wages for the week. The
regular hours for the work week are 40, and any hours worked over 40 are considered
overtime. The employee earns $18.25 per hour for regular hours and $27.38 per hour for
overtime hours. The employee has worked 50 hours this week. The following pseudocode
algorithm shows the program’s logic.

Regular wages = base pay rate X regular hours
Overtime wages = overtime pay rate X overtime hours
Total wages = regular wages + overtime wages
Display the total wages

Program 2-20 shows the C++ code for the program.

Program 2-20

//

This program calculates hourly wages, including overtime.

#include <iostream>
using namespace std;

int main()

{

double basePayRate = 18.25, // Base pay rate
overtimePayRate = 27.38, // Overtime pay rate
regularHours = 40.0, // Regular hours worked}

(program continues)

Arithmetic Operators

Program 2-20 (continued)

overtimeHours = 10, // Overtime hours worked
regularWages, // Computed regular wages
overtimeWages, // Computed overtime wages
totalWages; // Computed total wages

// Calculate regular wages
regularWages = basePayRate * regularHours;

// Calculate overtime wages
overtimeWages = overtimePayRate * overtimeHours;

// Calculate total wages
totalWages = regularWages + overtimeWages;

// Display total wages
cout << "Wages for this week are $" << totalWages << endl;
return 0;

Program Output
Wages for this week are $1003.8

Notice that the output displays the wages as $1003.8, with just one digit after the decimal
point. In Chapter 3 you will learn to format output so you can control how it displays.

Checkpoint

2.24 Is the following assignment statement valid or invalid? If it is invalid, why?
72 = amount;
2.25 What is wrong with the following program? How would you correct it?

#include <iostream>
using namespace std;
int main()
{
critter = 62.7;
double critter;
cout << critter << endl;
return 0;

}
2.26 What will be assigned to x in each of the following statements?
+ 3;

%

’

WX XM
[

0 0 0 0o

wwww

2.27 Is the following an example of integer division or floating-point division? What
value will be stored in portion?

portion = 16 / 3;

64

Chapter 2

—
2.16

-t

Introduction to C++

Comments

CONCEPT: Comments are notes of explanation that document lines or sections of a
program.

It may surprise you that one of the most important parts of a program has absolutely no
impact on the way it runs. We are speaking, of course, of the comments. Comments are
part of the program, but the compiler ignores them. They are intended for people who may
be reading the source code.

Some programmers resist putting more than just a few comments in their source code.
After all, it may seem like enough work to type the parts of the program that actually do
something. It is crucial, however, that you develop the habit of thoroughly annotating your
code with descriptive comments. It might take extra time now, but it will almost certainly
save time in the future.

Imagine writing a program of medium complexity with about 8,000 to 10,000 lines of
C++ code. Once you have written the code and satisfactorily debugged it, you happily
put it away and move on to the next project. Ten months later you are asked to make a
modification to the program (or worse, track down and fix an elusive bug). You pull
out the massive pile of paper that contains your source code and stare at thousands of
statements only to discover they now make no sense at all. You find variables with
names like z2, and you can’t remember what they are for. If only you had left some
notes to yourself explaining all the program’s nuances and oddities. But it’s too late
now. All that’s left to do is decide what will take less time: figuring out the old program
or completely rewriting it!

This scenario might sound extreme, but it’s one you don’t want to happen to you. Real-
world programs are big and complex. Thoroughly documented programs will make your life
easier, not to mention the work of other programmers who may have to read your code in
the future. In addition to telling what the program does and describing the purpose of vari-
ables, comments can also be used to explain complex procedures in your code and to provide
information such as who wrote the program and when it was written or last modified.

Single Line Comments

You have already seen one way to place comments in a C++ program. As was illustrated in
Program 2-20, you simply place two forward slashes (//) where you want the comment to
begin. The compiler ignores everything from that point to the end of the line.

Multi-Line Comments

The second type of comment in C++ is the multi-line comment. Multi-line comments start
with /* (a forward slash followed by an asterisk) and end with */ (an asterisk followed by
a forward slash). Everything between these markers is ignored. Program 2-21 illustrates
the use of both a multi-line comment and single line comments. The multi-line comment
starts on line 1 with the /* symbol, and ends on line 6 with the */ symbol.

Focus on Software Engineering: Programming Style

Program 2-21

/*

*/

PROGRAM: PAYROLL.CPP

Written by Herbert Dorfmann

This program calculates company payroll
Last modified: 8/20/2006

#include <iostream>
using namespace std;

int main()

{

int employeelD; // Employee ID number
double payRate; // Employees hourly pay rate
double hours; // Hours employee worked this week

(The remainder of this program is left out.)

<&

L3

Notice that unlike a comment started with //, a multi-line comment can span several lines.
This makes it more convenient to write large blocks of comments because you do not have
to mark every line. On the other hand, the multi-line comment is inconvenient for writing
single line comments because you must type both a beginning and ending comment symbol.

NOTE: Many programmers use a combination of single line comments and multi-line
comments, as illustrated in the previous sample program. Convenience usually dictates
which style to use.

When using multi-line comments:

e Be careful not to reverse the beginning symbol with the ending symbol.
¢ Be sure not to forget the ending symbol.

Both of these mistakes can be difficult to track down, and will prevent the program from
compiling correctly.

Focus on Software Engineering: Programming Style

CONCEPT: Programming style refers to the way a programmer uses identifiers,
spaces, tabs, blank lines, and punctuation characters to visually arrange a
program’s source code. These are some, but not all, of the elements of
programming style.

In Chapter 1 you learned that syntax rules govern the way a language may be used. The
syntax rules of C++ dictate how and where to place key words, semicolons, commas,
braces, and other components of the language. The compiler’s job is to check for syntax
errors and, if there are none, to generate object code.

When the compiler reads a program it processes it as one long stream of characters. The
compiler is not influenced by whether each statement is on a separate line, or whether spaces

65

66 Chapter 2 Introduction to C++

separate operators from operands. Humans, on the other hand, find it difficult to read pro-
grams that aren’t written in a visually pleasing manner. Consider Program 2-22 for example.

Program 2-22

#include <iostream>

using namespace std;int main(){double shares=220.0;double
avgPrice=14.67;cout

<<"There were "<<shares<<" shares sold at $"<<avgPrice<<
" per share.\n";return 0;}

Program Output
There were 220 shares sold at $14.67 per share.

Although the program is syntactically correct (it doesn’t violate any rules of C++), it is
difficult to read. The same program is shown in Program 2-23, written in a more reasonable
style.

Program 2-23
// This program is visually arranged to make it readable.
#include <iostream>

using namespace std;

int main()

{
double shares = 220.0;
double avgPrice = 14.67;
cout << "There were " << shares << " shares sold at $";
cout << avgPrice << " per share.\n";
return 0;
}

Program Output
There were 220 shares sold at $14.67 per share.

Programming style refers to the way source code is visually arranged. Ideally, it is a consis-
tent method of putting spaces and indentions in a program so visual cues are created.
These cues quickly tell a programmer important information about a program.

For example, notice in Program 2-23 that the opening and closing braces of the main func-
tion align and inside the braces each line is indented. It is a common C++ style to indent all
the lines inside a set of braces. You will also notice the blank line between the variable def-
initions and the cout statements. This is intended to visually separate the definitions from
the executable statements.

0 NOTE: Although you are free to develop your own style, you should adhere to
common programming practices. By doing so, you will write programs that visually
make sense to other programmers and that minimize the likelihood of errors.

Tying It All Together: Smile! 67

Another aspect of programming style is how to handle statements that are too long to fit
on one line. Because C++ is a free-flowing language, it is usually possible to spread a state-
ment over several lines. For example, here is a cout statement that uses four lines:

cout << "The fahrenheit temperature is "
<< fahrenheit
<< " and the celsius temperature is "
<< celsius << endl;

This statement works just as if it were typed on one line. You have already seen variable
definitions treated similarly:

int fahrenheit,
celsius,
kelvin;

Other issues related to programming style will be presented throughout the book.

1

218 Tying It All Together: Smile!

L

With just the little bit of C++ covered so far, you can print pictures using cout statements.
Here is the code to make a simple smiley face. Try it!

Program 2-24
// This program prints a simple smiley face.
#include <iostream>

using namespace std;

int main()

{
cout << "\n\n";
cout << " » ~ \n";
cout << " * \n";
cout << " __/ \n";
return 0;

}

Now try revising Program 2-24 to make faces like these.

68

Chapter 2

Introduction to C++

Review Questions and Exercises

Fill-in-the-Blank and Short Answer

1.

SRS O

on

10.

11.

12.

13.

14.

Every complete statement ends with a

To use cout statements you must include the file in your program.
Every C++ program must have a function named

Preprocessor directives begin with a

A group of statements, such as the body of a function, must be enclosed in

72, 'A', and "Hello World" are all examples of
978.65 x 1012 would be written in E notation as

The character constant 'A' requires byte(s) of memory, whereas the

string constant "A" requires byte(s).

Which of the following are not valid assignment statements?

A) total = 9;

B) 72 = amount;

C) yourAge = myAge;

If the variable letter has been defined as a char variable, which of the following are
not valid assignment statements?

A) letter = w;

B) 1letter
C) letter

‘W'
r

gt s
Which of the following are zot valid cout statements?
A) cout << "Hello" << endl;

B) cout << "Hello" << \n;
C) cout << Hello;

Which of the following are not valid cout statements?

A) cout << "Hello world";
B) cout << Hello world;
C) cout << "Hello" << " world";

Assume x = 4,y = 7,and z = 2. What value will be stored in integer variable
result by each of the following statements?

A) result = x + y;
B) result =y * 2;
C) result =y / z;

Assume x = 2.5,y = 7.0,and z = 3. What value will be stored in integer variable
result by each of the following statements?

A) result = x + y;
B) result =y * 2;
C) result =y / z;

15.

16.

17.

18.

19.

20.

Review Questions and Exercises

Werite a C++ statement that defines the double variables temp, weight, and height
all in the same statement.

Write a C++ statement that defines the int variables months, days, and years all in
the same statement, with months initialized to 2 and years initialized to 3.

Werite assignment statements that perform the following operations with int variable
i, double variables d1 and d2, and char variable c.

>

) Add 2 to d1 and store the result in d2.

) Multiply d2 time 4 and store the result in d1.

) Store the character 'K' in c.

) Store the ASCII code for the character 'K' in i.
) Subtract 1 from i and store the result back in 1.

=)

RN

Werite assignment statements that perform the following operations with int variable
i, double variables d1 and d2, and char variable c.

>

) Subtract 8.5 from d2 and store the result in d1.
) Divide d1 by 3.14 and store the result in d2.

) Store the ASCII code for the character 'F' in c.
)

=)

O 0

Add 1 to i and store the new value back in i.
E) Add d1 to the current value of d2 and store the result back in d2 as its new value.

Modify the following program segment so it prints two blank lines between each line
of text.

cout << "Two mandolins like creatures in the";
cout << "dark";

cout << "Creating the agony of ecstasy.";
cout << " - George Barker";

Rewrite the follow statement to use the newline escape character, instead of an end1,
each time subsequent output is to be displayed on a new line.

cout << "L" << endl
<< "E" << endl
<< "A" << endl
<< "F" << endl;

Algorithm Workbench

21.

22.

23.

24,

Create detailed pseudocode for a program that calculates how many days are left
until Christmas, when given as an input how many weeks are left until Christmas.
Use variables named weeks and days.

Create detailed pseudocode for a program that determines how many full 12-egg
cartons of eggs a farmer can pack when given as an input the number of eggs he has
collected on a given day. Use variables named eggs and cartons.

Create detailed pseudocode for a program that determines distance traveled when
given inputs of speed and time. Use variables named speed, time, and distance.

Create detailed pseudocode for a program that determines miles per gallon a vehicle
gets when given inputs of miles traveled and gallons of gas used. Use variables named
miles, gallons, and milesPerGallon.

69

70 Chapter 2

Introduction to C++

Predict the Output

25. What will the following programs print on the screen?

A)

26. A)

#include <iostream>
using namespace std;
int main()

{
int freeze = 32, boil = 212;
freeze = 0;
boil = 100;
cout << freeze << endl << boil << endl;
return 0;
}

#include <iostream>
using namespace std;
int main()

{
int x =0, y = 2;
X =y * 4;
cout << x << endl << y << endl;
return 0;
}

#include <iostream>
using namespace std;
int main()

{
cout << "I am the incredible";
cout << "computing\nmachine";
cout << "\nand I will\namaze\n";
cout << "you.\n";
return 0;

)

#include <iostream>
using namespace std;

int main()

{
cout << "Be careful!\n";
cout << "This might/n be a trick ";
cout << "question.\n";
return 0;
}

#include <iostream>
using namespace std;

int main()
{

int a, x = 23;
a=x % 2;
cout << x << endl << a << endl;
return 0;

Review Questions and Exercises

Find the Error

27. There are a number of syntax errors in the following program. Locate as many as you
can.

/ What's wrong with this program? /
#include iostream
using namespace std;

int main();

}
int a, b, c\\ Three integers
a=3
b =4
c=a+b
Cout < "The value of c is %d" < C;
return 0;

{

Soft Skills

Programmers need good communication skills as well as good analytical and problem-
solving skills. Good communication can minimize misunderstandings that easily arise
when expectations of different individuals involved in a project are not clearly enough
articulated before the project begins. A detailed set of project specifications can clarify the
scope of a project, what interaction will occur between the user and the program, and
exactly what the program will and will not do.

28. Pair up with another student in the class. One of you is the client and the other is the
software developer. Briefly discuss a simple program the client wants that the pro-
grammer will create. Here are some possible ideas.

e the paint problem described in the Chapter 1 Soft Skills exercise
e a program that can halve the quantities of ingredients for a recipe
e 3 program that determines how long it will take to drive from point A to point B

Once you have decided on a program, you should independently, with no further commu-
nication, each write down detailed specifications. The client writes down exactly what he
wants the program to do and the developer writes down her understanding of exactly what
the program will do. When you are done, compare what you have written. Rarely will the
two agree.

Now discuss the discrepancies and see if you can come to a clear understanding of exactly
what the program must do. Together create a program specification sufficiently detailed
that both of you believe it leaves no room for misunderstanding.

71

72

Chapter 2

L") myCodefate

o>

A W ¥
—

VideoNote
Solving the
Restaurant
Bill Problem

L") myCodefate

Introduction to C++

Programming Challenges

1. Sum of Two Numbers

Write a program that stores the integers 62 and 99 in variables, and stores the sum of these
two in a variable named total. Display the total on the screen.

2. Sales Prediction

The East Coast sales division of a company generates 62 percent of total sales. Based on
that percentage, write a program that will predict how much the East Coast division will
generate if the company has $4.6 million in sales this year. Display the result on the screen.

3. Sales Tax

Write a program that computes the total sales tax on a $52 purchase. Assume the state
sales tax is 4 percent and the county sales tax is 2 percent. Display the purchase price, state
tax, county tax, and total tax amounts on the screen.

4. Restaurant Bill

Werite a program that computes the tax and tip on a restaurant bill for a patron with a
$44.50 meal charge. The tax should be 6.75 percent of the meal cost. The tip should be 15
percent of the total after adding the tax. Display the meal cost, tax amount, tip amount,
and total bill on the screen.

5. Cyborg Data Type Sizes

You have been given a job as a programmer on a Cyborg supercomputer. In order to
accomplish some calculations, you need to know how many bytes the following data types
use: char, int, float, and double. You do not have any manuals, so you can’t look up
this information. Write a C++ program that will determine the amount of memory used by
these types and display the information on the screen.

6. Miles per Gallon

A car holds 16 gallons of gasoline and can travel 350 miles before refueling. Write a pro-
gram that calculates the number of miles per gallon the car gets. Display the result on the
screen.

7. Distance per Tank of Gas

A car with a 20 gallon gas tank averages 21.5 miles per gallon when driven in town and
26.8 miles per gallon when driven on the highway. Write a program that calculates and
displays the distance the car can travel on one tank of gas when driven in town and when
driven on the highway.

8. Land Calculation

In the United States, land is often measured in square feet. In many other countries it is
measured in square meters. One acre of land is equivalent to 43,560 square feet. A square
meter is equivalent to 10.7639 square feet. Write a program that computes and displays
the number of square feet and the number of square meters in % acre of land.

Hint: Because a square meter is larger than a square foot, there will be fewer square meters
in i acre than there are square feet.

Review Questions and Exercises

9. Circuit Board Price

An electronics company sells circuit boards at a 40 percent profit. Write a program that
calculates the selling price of a circuit board that costs them $12.67 to produce. Display
the result on the screen.

10. Personal Information
Write a program that displays the following information, each on a separate line:

Your name

Your address, with city, state, and zip code
Your telephone number

Your college major

Use only a single cout statement to display all of this information.

11. Triangle Pattern
Werite a program that displays the following pattern on the screen:

*
* % %
*kxk*k

*hkkkkkk

12. Diamond Pattern
Werite a program that displays the following pattern on the screen:

*

* % %
*kxk*k
*kkkkhkkx
*kkk*k
* % %

*

13. Pay Period Gross Pay

A particular employee earns $32,500 annually. Write a program that determines and dis-
plays what the amount of his gross pay will be for each pay period if he is paid twice a
month (24 pay checks per year) and if he is paid bi-weekly (26 checks per year).

14. Basketball Player Height
The star player of a high school basketball team is 73 inches tall. Write a program to com-
pute and display the height in feet / inches form.

Hint: Try using the modulus and integer divide operations.

15. Stock Loss

Kathryn bought 600 shares of stock at a price of $21.77 per share. A year later she sold
them for just $16.44 per share. Write a program that calculates and displays the following:

e The total amount paid for the stock.
e The total amount received from selling the stock.
e The total amount of money she lost.

73

74

Chapter 2

Introduction to C++

16. Energy Drink Consumption

A soft drink company recently surveyed 12,467 of its customers and found that approxi-
mately 14 percent of those surveyed purchase one or more energy drinks per week.
Of those customers who purchase energy drinks, approximately 64 percent of them prefer
citrus flavored energy drinks. Write a program that displays the following:

® The approximate number of customers in the survey who purchase one or more
energy drinks per week.

e The approximate number of customers in the survey who prefer citrus flavored
energy drinks.

17. Past Ocean Levels

The Earth’s ocean levels have risen an average of 1.8 millimeters per year over the past cen-
tury. Write a program that computes and displays the number of centimeters and number
of inches the oceans rose during this time. One millimeter is equivalent to 0.1 centimeters.
One centimeter is equivalent to 0.3937 inches.

18. Future Ocean Levels

During the past decade ocean levels have been rising faster than in the past, an average of
approximately 3.1 millimeters per year. Write a program that computes how much ocean
levels are expected to rise during the next 20 years if they continue rising at this rate.
Display the answer in both centimeters and inches.

oooQ
Ooogoon

0 o e e
i L i) i

Expressions and
Interactivity

o
(NN]
—
o
<
I
)

TOPICS

3.1 The cin Object 3.10 Using C-Strings

3.2 Mathematical Expressions 3.11 More Mathematical Library Functions
3.3 Implicit Type Conversion 3.12 Introduction to Files

3.4 Explicit Type Conversion 3.13 Focus on Debugging: Hand Tracing
3.5 Overflow and Underflow a Program

3.6 Named Constants 3.14 Green Fields Landscaping Case

3.7 Multiple and Combined Assignment Study—~Part 1

3.8 Formatting Output 3.15 Tying It All Together: Word Game

3.9 Working with Characters and
String Objects

=]
3.1) The cin Object

1 CONCEPT: cin can be used to read data typed at the keyboard.

So far you have written programs with built-in information. You have initialized the
variables with the necessary starting values without letting the user enter his or her own
data. These types of programs are limited to performing their task with only a single set
of starting information. If you decide to change the initial value of any variable, the
program must be modified and recompiled.

In reality, most programs ask for values that will be assigned to variables. This means the
program does not have to be modified if the user wants to run it several times with differ-
L ent sets of information. For example, a program that calculates the area of a circle might

'd- - ask the user to enter the circle’s radius. When the circle area has been computed and
Jgn:oﬂotz printed, the program could be run again and a different radius could be entered.
cin
Read Input Just as C++ provides the cout object to produce console output, it provides an object

named cin that is used to read console input. (You can think of the word cin as meaning
console input.) Program 3-1 shows cin being used to read values input by the user.

75

76

Chapter 3 Expressions and Interactivity

Program 3-1

// This program calculates and displays the area of a rectangle.
#include <iostream>
using namespace std;

int main()

{

int length, width, area;
cout << "This program calculates the area of a rectangle.\n";

// Have the user input the rectangle's length and width
cout << "What is the length of the rectangle? ";

cin >> length;

cout << "What is the width of the rectangle? ";

cin >> width;

// Compute and display the area

area = length * width;

cout << "The area of the rectangle is " << area << endl;
return 0;

Program Output with Example Input Shown in Bold
This program calculates the area of a rectangle.
What is the length of the rectangle? T10[Enter]
What is the width of the rectangle? 20[Enter]
The area of the rectangle is 200.

Instead of calculating the area of one rectangle, this program can be used to compute the
area of any rectangle. The values that are stored in the length and width variables are
entered by the user when the program is running. Look at lines 12 and 13.

cout << "What is the length of the rectangle? ";
cin >> length;

In line 12 cout is used to display the question “What is the length of the rectangle?” This is
called a prompt. It lets the user know that an input is expected and prompts them as to what
must be entered. When cin will be used to get input from the user, it should always be pre-
ceded by a prompt.

Line 13 uses cin to read a value from the keyboard. The >> symbol is the stream extrac-
tion operator. It gets characters from the stream object on its left and stores them in the
variable whose name appears on its right. In this example line, the characters read in by
cin are taken from the cin object and stored in the length variable.

Gathering input from the user is normally a two-step process:

1. Use cout to display a prompt on the screen.
2. Use cin to read a value from the keyboard.

The prompt should ask the user a question, or tell the user to enter a specific value. For
example, the code we just examined from Program 3-1 displays the following prompt:

What is the length of the rectangle?

The cin Object

This tells the user to enter the rectangle’s length. After the prompt displays, the program
uses cin to read a value from the keyboard and store it in the length variable.

Notice that the << and >> operators appear to point in the direction that data is flowing.
It may help to think of them as arrows. In a statement that uses cout, the << operator
always points toward cout, as shown here. This indicates that data is flowing from a vari-
able or a literal to the cout object.

cout << "What is the length of the rectangle? ";
cout <« "What is the length of the rectangle? ";

In a statement that uses cin, the >> operator always points toward the variable receiving
the value. This indicates that data is flowing from the cin object to a variable.

cin >> length;
cin — length;

The cin object causes a program to wait until data is typed at the keyboard and the
[Enter] key is pressed. No other lines will be executed until cin gets its input.

When the user enters characters from the keyboard, they are temporarily placed in an
area of memory called the input buffer, or keyboard buffer. cin automatically converts
this data to the data type of the variable it is to be stored in. If the user types 10, it is read
as the characters ‘1’ and ‘0’, but cin is smart enough to know this will have to be con-
verted to the int value 10 before it is stored in length. If the user enters a floating-point
number like 10.7, however, there is a problem. cin knows such a value cannot be stored in
an integer variable, so it stops reading when it gets to the decimal point, leaving the deci-
mal point and the rest of the digits in the input buffer. This can cause a problem when the
next value is read in. Program 3-2 illustrates this problem.

Program 3-2

// This program illustrates what can happen when a

// floating-point number is entered for an integer variable.
#include <iostream>

using namespace std;

int main()

{

int intNumber;
double floatNumber;

cout << "Input a number. ";

cin >> intNumber;

cout << "Input a second number.\n";

cin >> floatNumber;

cout << "You entered: " << intNumber
<< " and " << floatNumber << endl;

return 0;

(program continues)

77

78

Chapter 3 Expressions and Interactivity

Program 3-2 (continued)

Program Output with Example Input Shown in Bold

Input a number. 12.3[Enter]
Input a second number.
You entered: 12 and 0.3

<&

Let’s look more closely at what occurred in Program 3-2. When prompted for the first
number, the user entered 12.3 from the keyboard. However, because cin was reading a
value into intNumber, an integer variable, it stopped reading when it got to the decimal
point and a 12 was stored in intNumber. When the second cin statement needed a value to
read into floatNumber, it found that it already had a value in the input buffer, the .3 left
over from the user’s first input. Instead of waiting for the user to enter a second number,
the .3 was read in and stored in £loatNumber.

Later you will learn how to prevent something like this from happening, but for now this
illustrates the need to provide the user with clear prompts. If the user had been specifically
prompted to enter an integer for the first number, there would have been less chance of a
problem occurring.

NOTE: You must include the iostream file in any program that uses cin.

Entering Multiple Values

You can use cin to input multiple values at once. Look at Program 3-3, which is a modi-
fied version of Program 3-1.

Program 3-3

//

This program calculates and displays the area of a rectangle.

#include <iostream>
using namespace std;

int main()

{

int length, width, area;
cout << "This program calculates the area of a rectangle.\n";

// Have the user input the rectangle's length and width
cout << "Enter the length and width of the rectangle ";
cout << "separated by a space.\n";

cin >> length >> width;

// Compute and display the area

area = length * width;

cout << "The area of the rectangle is " << area << endl;
return 0;

(program continues)

Program 3-3

(continued)

Program Output with Example Input Shown in Bold

This program calculates the area of a rectangle.
Enter the length and width of the rectangle separated by a space.

10 20[Enter]

The area of the rectangle is 200

The cin Object

Line 14 waits for the user to enter two values. The first is assigned to length and the sec-
ond to width.

cin >> length >> width;

In the example output, the user entered 10 and 20, so 10 is stored in length and 20 is
stored in width.

Notice the user separates the numbers by spaces as they are entered. This is how cin
knows where each number begins and ends. It doesn’t matter how many spaces are entered
between the individual numbers. For example, the user could have entered

10

20

@ NOTE: The [Enter] key is pressed after the last number is entered.

cin will also read multiple values of different data types. This is shown in Program 3-4.

Program 3-4

// This program demonstrates how cin can read multiple values
// of different data types.
#include <iostream>
using namespace std;

int main()

{

int whole;
double fractional;
char letter;

cout <<
cin >>

cout <<
cout <<
cout <<

"Enter an integer, a double, and a character:
whole >> fractional >> letter;

"whole: " << whole << endl;
"fractional: " << fractional << endl;
"letter: " << letter << endl;

return 0;

Program Output with Example Input Shown in Bold
Enter an integer, a double, and a character: 4 5.7 b[Enter]

whole: 4
fractional:
letter: b

5.7

",
r

79

80

Chapter 3 Expressions and Interactivity

As you can see in the example output, the values are stored in the order entered in their
respective variables.

But what if the user had entered the values in the wrong order, as shown in the following
sample run?

Program 3-4 Output with Different Example Input Shown in Bold

Enter an integer, a double, and a character: 5.7 4 b[Enter]
whole: 5

fractional: 0.7

letter: 4

Because the data was not entered in the specified order, there is a complete mix-up of what
value is stored for each variable. The cin statement on line 13 reads 5 for int variable
whole, .7 for double variable fractional, and 4 for char variable letter. The charac-
ter b is left in the input buffer. For a program to function correctly it is important that the
user enter data values in the order the program expects to receive them and that a floating-
point number not be entered when an integer is expected.

Checkpoint

3.1 What header file must be included in programs using cin?

3.2 What is the >> symbol called?

3.3 Where does cin read its input from?

3.4 True or False: cin requires the user to press the [Enter] key after entering data.

3.5 Assume value is an integer variable. If the user enters 3.14 in response to the fol-
lowing programming statement, what will be stored in value?

cin >> value;
3.6 A program has the following variable definitions.

long miles;
int feet;
double inches;

Write a single cin statement that reads a value into each of these variables.

3.7 The following program will run, but the user will have difficulty understanding
what to do. How would you improve the program?

// This program multiplies two numbers and displays the result.
#include <iostream>
using namespace std;

int main()

{
double first, second, product;
cin >> first >> second;
product = first * second;
cout << product;
return 0;

|

3.2

Mathematical Expressions

3.8 Complete the following program skeleton so it asks for the user’s weight (in
pounds) and displays the equivalent weight in kilograms.

#include <iostream>
using namespace std;

int main()

{

double pounds, kilograms;

// Write a prompt to tell the user to enter his or her weight
// in pounds.

// Write code here that reads in the user's weight in pounds.
// The following line does the conversion.

kilograms = pounds / 2.2;

// Write code here that displays the user's weight in kilograms.

return 0;

Mathematical Expressions

1 CONCEPT: C++ allows you to construct complex mathematical expressions using

VideoNote
Evaluating
Mathematical
Expressions

multiple operators and grouping symbols.

In Chapter 2 you were introduced to the basic mathematical operators, which are used to
build mathematical expressions. An expression is a programming statement that has a
value. Usually, an expression consists of an operator and its operands. Look at the follow-
ing statement:

sum = 21 + 3;

Since 21 + 3 has a value, it is an expression. Its value, 24, is stored in the variable sum.
Expressions do not have to be in the form of mathematical operations. In the following
statement, 3 is an expression.

number = 3;

Here are some programming statements where the variable result is being assigned the
value of an expression. They are called assignment statements.

result = x;

result = 4;

result = 15 / 3;
result = 22 * number;
result = sizeof(int);
result = a + b + c;

In each of these statements, a number, variable name, or mathematical expression appears
on the right side of the = symbol. A value is obtained from each of these and stored in the

81

82

Chapter 3 Expressions and Interactivity

variable result. These are all examples of a variable being assigned the value of an
expression.

Although some instructors prefer that you not perform mathematical operations within a
cout statement, it is possible to do so. Program 3-§ illustrates how to do this.

Program 3-5

// This program displays the decimal value of a fraction.
#include <iostream>
using namespace std;

int main()

{

double numerator, denominator;
cout << "This program shows the decimal value of a fraction.\n";

// Have the user enter the numerator and denominator
cout << "Enter the numerator: ";

cin >> numerator;

cout << "Enter the denominator: ";

cin >> denominator;

// Compute and display the decimal value
cout << "The decimal value is "<< (numerator / denominator) << endl;
return 0;

Program Output with Example Input Shown in Bold

This program shows the decimal value of a fraction.
Enter the numerator: 3[Enter]

Enter the denominator: 16[Enter]

The decimal value is 0.1875

The cout object can display the value of any legal expression in C++. In Program 3-5 the
value of the expression numerator / denominator is displayed.

O NOTE: The Program 3-5 example input shows the user entering 3 and 16. Because
these values are assigned to double variables, they are stored as 3.0 and 16.0.

0 NOTE: When sending an expression that includes an operator to cout, it is always a
good idea to put parentheses around the expression. Some operators will yield
unexpected results otherwise.

Operator Precedence

It is possible to build mathematical expressions with several operators. The following
statement assigns the sum of 17, x, 21, and y to the variable answer.

answer = 17 + x + 21 + y;

Mathematical Expressions

Some expressions are not that straightforward, however. Consider the following statement:
outcome = 12 + 6 / 3;

What value will be stored in outcome? It could be assigned either 6 or 14, depending on
whether the addition operation or the division operation takes place first. The answer is 14
because the division operator has higher precedence than the addition operator. This is
exactly the same as the operator precedence found in algebra.

Mathematical expressions are evaluated from left to right. However, when there are two
operators and one has higher precedence than the other, it is done first. Multiplication and
division have higher precedence than addition and subtraction, so the example statement
works like this:

A) 6 is divided by 3, yielding a result of 2

B) 12 is added to 2, yielding a result of 14

It could be diagrammed in the following way:

12+6/3

\
12+ 2

1
14

Table 3-1 shows the precedence of the arithmetic operators. The operators at the top of the
table have higher precedence than the ones below it.

Table 3-1 Precedence of Arithmetic Operators (Highest to Lowest)

(

)

Expressions within parentheses are evaluated first

unary Negation of a value, e.g., -6
2 binary Multiplication, division, and modulus
binary Addition and subtraction

The multiplication, division, and modulus operators have the same precedence. This is also
true of the addition and subtraction operators. Table 3-2 shows some expressions with
their values.

Table 3-2 Some Expressions

Expression Value
5+ 2 * 4 13
10 /2 -3 2
8 + 12 * 2 - 4 28
4 + 17 & 2 -1 4

6 -3 *2+7 -1 6

83

84

Chapter 3 Expressions and Interactivity

Associativity

Associativity is the order in which an operator works with its operands. Associativity is
either left to right or right to left. The associativity of the division operator is left to right,
so it divides the operand on its left by the operand on its right. Table 3-3 shows the arith-
metic operators and their associativity.

Table 3-3 Associativity of Arithmetic Operators

Operator Associativity
(unary negation) - Right to left
/8 Left to right

+ -

Left to right

Grouping with Parentheses

Parts of a mathematical expression may be grouped with parentheses to force some opera-
tions to be performed before others. In the following statement, the sum of a plus b is

divided by 4.
average = (a + b) / 4;

Without the parentheses b would be divided by 4 before adding a to the result. Table 3-4
shows more expressions and their values.

Table 3-4 More Arithmetic Expressions

Expression Value
(5 +2) * 4 28
10 / (5 - 3) N
8 + 12 * (6 - 2) 56
(4 +17) 2 -1 0

(6 - 3) * (2 +7) /3

Converting Algebraic Expressions to Programming
Statements
In algebra it is not always necessary to use an operator for multiplication. C++, however,

requires an operator for any mathematical operation. Table 3-5 shows some algebraic
expressions that perform multiplication and the equivalent C++ expressions.

Table 3-5 Algebraic and C++ Multiplication Expressions

Algebraic Expression Operation C++ Equivalent
6B 6 times B 6 * B

(3)(12) 3 times 12 3 * 12

4xy 4 times X times y 4 * x *y

Mathematical Expressions

When converting some algebraic expressions to C++, you may have to insert parentheses
that do not appear in the algebraic expression. For example, look at the following
expression:

a+b
¢

X =

To convert this to a C++ statement, a + b will have to be enclosed in parentheses:
x = (a + b) / c;

Table 3-6 shows more algebraic expressions and their C++ equivalents.

Table 3-6 Algebraic and C++ Expressions

Algebraic Expression C++ Expression

y

k4

= 3%
2

= 3bc+4 z
_ 3x+2

4a

y=x/2* 3;

3 *b * c + 4;

(3 *x+2) / (4 *a-1)

)
1]

-1

No Exponents Please!

Unlike many programming languages, C++ does not have an exponent operator. Raising a
number to a power requires the use of a library function. The C++ library isn’t a place where
you check out books, but a collection of specialized functions. Think of a library function as
a “routine” that performs a specific operation. One of the library functions is called pow, and
its purpose is to raise a number to a power. Here is an example of how it’s used:

area = pow(4.0, 2);

This statement contains a call to the pow function. The numbers inside the parentheses are
arguments. Arguments are information being sent to the function. The pow function always
raises the first argument to the power of the second argument. In this example, 4.0 is raised
to the power of 2. The result is returned from the function and used in the statement where
the function call appears. The pow function expects floating-point arguments. On some
C++ compilers integer arguments will also work, but since many compilers require that at
least the first argument be a double, that is the convention we use in this book. The value
returned from the function is always a double number. In this case, 16.0 is returned from
pow and assigned to the variable area. This is illustrated in Figure 3-1.

Figure 3-1

arguments

area = 4¢——— pow (4.0, 2);
16.0
return value

85

86

Chapter 3 Expressions and Interactivity

The statement area = pow (4.0, 2) is equivalent to the following algebraic statement:
area = 42

Here is another example of a statement using the pow function. It assigns 3 times 6° to x:
x =3 * pow(6.0, 3);

And the following statement displays the value of 5 raised to the power of 4:
cout << pow(5.0, 4);

It might be helpful to think of pow as a “black box” that accepts two numbers and then
sends a third number out. The number that comes out has the value of the first number
raised to the power of the second number, as illustrated in Figure 3-2.

Figure 3-2

Argument 1 x —
pow function |—=xY

Argument2 y —>

There are some guidelines that should be followed when the pow function is used. First, the
program must include the cmath header file. Second, at least the first of the two arguments
you pass to the function, if not both, should be a double. Third, because the pow function
returns a double value, any variable that value is assigned to should also be a double. For
example, in the following statement the variable area should be defined as a double:

area = pow(4.0, 2);

Program 3-6 solves a simple algebraic problem. It asks the user to enter the radius of a cir-
cle and then calculates the area of the circle. The formula is

Area =
which is expressed in the program as

area = 3.14159 * pow(radius, 2);

Program 3-6

// This program calculates the area of a circle. The formula for the
// area of a circle is PI times the radius squared. PI is 3.14159.
#include <iostream>

#include <cmath> // Needed for the pow function

using namespace std;

int main()

double area, radius;
cout << "This program calculates the area of a circle.\n";

(program continues)

Mathematical Expressions

Program 3-6 (continued)

// Get the radius
cout << "What is the radius of the circle? ";
cin >> radius;

// Compute and display the area

area = 3.14159 * pow(radius, 2);

cout << "The area is " << area << endl;
return 0;

}

Program Output with Example Input Shown in Bold
This program calculates the area of a circle.
What is the radius of the circle? 10[Enter]
The area is 314.159

0 NOTE: Program 3-6 is presented as a demonstration of the pow function. In reality,
there is no reason to use this function in such a simple operation. Line 18 could just as
easily be written

area = 3.14159 * radius * radius;

The pow function is useful, however, in operations that involve larger exponents.

Checkpoint

3.9 In each of the following cases, tell which operator has higher precedence or whether
they have the same precedence.

A) +and *
B) *and/
C) /ands
3.10 Complete the following table by writing the value of each expression in the Value
column.
Expression Value
6+3%5
12/2-4
9+14%2-6
5+19%3-1
(6+2)*3
14/ (11 - 4)
9+12*(8-3)

6+17) % 2-1
(9-3)*(6+9)/3

87

88 Chapter 3 Expressions and Interactivity

3.11 Write C++ expressions for the following algebraic expressions:

y = 6x a = 2b+4c y = x°
x +2 x*
g: y:_
2 2

3.12 Study the following program and complete the table.

#include <iostream>
#include <cmath>

int main()

{
double valuel, value2, value3;
cout << "Enter a number: ";
cin >> valuel;
value2 = 2 * pow(valuel, 2);
value3 = 3 + value2 / 2 - 1;
cout << value3;
return 0;

The program will display what number
If the user enters... (stored in value3)?

4.3
6

3.13 Complete the following program skeleton so it displays the volume of a cylindrical
fuel tank. The formula for the volume of a cylinder is

Volume = 1tr2h

where

wis 3.14159

r is the radius of the tank
b is the height of the tank

#include <iostream>
#include <cmath>

int main()
{
double volume, radius, height;
cout << "This program will tell you the volume of\n";
cout << "a cylinder-shaped fuel tank.\n";
cout << "How tall is the tank? ";
cin >> height;
cout << "What is the radius of the tank? ";
cin >> radius;

// You must complete the program.
return 0;

—
3.3

Implicit Type Conversion

Implicit Type Conversion

1 CONCEPT: When an operator’s operands are of different data types, C++ will

automatically convert them to the same data type. This can affect the
results of mathematical expressions.

If a floating-point value is assigned to an int variable, what value will the variable receive?
If an int is multiplied by a £loat, what data type will the result be? What if a double is
divided by an unsigned int? Is there any way of predicting what will happen in these
instances? The answer is yes. C++ follows a set of rules when performing mathematical
operations on variables of different data types. It’s helpful to understand these rules to pre-
vent subtle errors from creeping into your programs.

Just like officers in the military, data types are ranked. One data type outranks another if it
can hold a larger number. For example, a float outranks an int and a double outranks a
float. Table 3-7 lists the data types in order of their rank, from highest to lowest.

Table 3-7 Data Type Ranking

long double

double
float

unsigned long

long

unsigned int

int

unsigned short

short
char

One exception to the ranking in Table 3-7 is when an int and a long are the same size. In
that case, an unsigned int outranks long because it can hold a higher value.

When C++ is working with an operator, it strives to convert the operands to the same type.
This implicit, or automatic, conversion is known as #ype coercion. When a value is
converted to a higher data type, it is said to be promoted. To demote a value means to
convert it to a lower data type. Let’s look at the specific rules that govern the evaluation of
mathematical expressions.

Rule 1: char, short, and unsigned short are automatically promoted to int.

Anytime these data types are used in a mathematical expression, they are automatically
promoted to an int.*

* The only exception to this rule is when an unsigned short holds a value larger than can be held by an int.
This can happen on systems where a short is the same size as an int. In this case, the unsigned short is

promoted to unsigned int.

89

20

Chapter 3 Expressions and Interactivity

3

Rule 2: When an operator works with two values of different data types, the lower-ranking
value is promoted to the type of the higher-ranking value.

In the following expression, assume that years is an int and interestRate is a double:
years * interestRate
Before the multiplication takes place, the value in years will be promoted to a double.

Rule 3: When the final value of an expression is assigned to a variable, it will be converted
to the data type of that variable.

This means that if the variable receiving the value is of a lower data type than the value
it is receiving, the value will be demoted to the type of the variable. If the variable’s data
type does not have enough storage space to hold the value, part of the value will be lost,
and the variable could receive an inaccurate result. As mentioned in Chapter 2, if the
variable receiving the value is an integer and the value being assigned to it is a floating-
point number, the value will be #runcated before being stored in the variable. This means
everything after the decimal point will be discarded:

int x;

double y = 3.75;

X =y; // x is assigned 3
// y remains 3.75

If the variable receiving the value has a higher data type than the value being assigned to it,
there is no problem.

In the following statement, assume that area is a long int, while length and width are
both int:

area = length * width;

Because length and width are both an int, they will not be converted to any other data
type. The result of the multiplication, however, will be converted to long so it can be
stored in area.

Explicit Type Conversion

CONCEPT: Type casting allows you to explicitly perform data type conversion.

A type cast expression lets you manually promote or demote a value. The general format
of a type cast expression is

static_cast<DataType>(Value)

where value is a variable or literal value that you wish to convert and pataType is the
data type you wish to convert it to. Here is an example of code that uses a type cast
expression:

double number = 3.7;
int val;
val = static_cast<int>(number);

Explicit Type Conversion

This code defines two variables: number, a double, and val, an int. The type cast expres-
sion in the third statement returns a copy of the value in number, converted to an int.
When a double or float is converted to an int the fractional part is truncated, so this
statement stores 3 in val. The value of number, 3.7, is not changed.

Type cast expressions are useful in situations where C++ will not perform the desired
conversion automatically. Program 3-7 shows an example where a type cast expression is
used to prevent integer division from taking place. The statement that uses the type cast
expression is

booksPerMonth = static_cast<double>(books) / months;

Program 3-7
// This program uses a type cast to avoid an integer division.
#include <iostream>

using namespace std;

int main()

{
int books,
months;
double booksPerMonth;
// Get user inputs
cout << "How many books do you plan to read? ";
cin >> books;
cout << "How many months will it take you to read them? ";
cin >> months;
// Compute and display books read per month
booksPerMonth = static_cast<double>(books) / months;
cout << "That is " << booksPerMonth << " books per month.\n";
return 0;
}

Program Output with Example Input Shown in Bold

How many books do you plan to read? 30[Enter]
How many months will it take you to read them? 7[Enter]
That is 4.28571 books per month.

The variable books is an integer, but a copy of its value is converted to a double before
it is used in the division operation. Without the type cast expression in line 18, integer
division would have been performed, resulting in an incorrect answer.

91

92 Chapter 3 Expressions and Interactivity

@ WARNING! In Program 3-7, the following statement would still have resulted in
integer division:

booksPerMonth = static_cast<double>(books / months);

The result of the expression books / months is 4. When 4 is converted to a double, it
is 4.0. To prevent the integer division from taking place, one of the operands should be

converted to a double prior to the division operation. This forces C++ to automatically
convert the value of the other operand to a double.

Program 3-8 shows another use of a type cast.

Program 3-8
// This program prints a character from its ASCII code.
#include <iostream>

using namespace std;

int main()

{
int number = 65;
// Display the value of the number variable
cout << number << endl;
// Use a type cast to display the value of number
// converted to the char data type
cout << static_cast<char>(number) << endl;
return 0;
}
Program Output
65
A

Let’s take a closer look at this program. In line 7 the int variable number is initialized with
the value 65. In line 10, number is sent to cout, causing 65 to be displayed. In line 14, a
type cast expression is used to convert the value in number to the char data type before
sending it to cout. Recall from Chapter 2 that characters are stored in memory as integer
ASCII codes. Because the number 65 is the ASCII code for the letter ‘A’, the statement on
line 14 causes the letter ‘A’ to be displayed.

@ NOTE: C++ provides several different type cast expressions. A static_cast is the

most commonly used type cast expression, so it is the one we will primarily use in this
book. Additional information on type casts is contained in Appendix I, which can be
found on the CD accompanying your textbook.

Explicit Type Conversion

C-style and Prestandard C++ Type Cast Expressions

C++ also supports two older methods of creating type cast expressions: the C-style form
and the prestandard C++ form. The C-style cast places the data type to be converted to,
enclosed in parentheses, in front of the operand whose value is to be converted. Here are
three examples.

cout << (int) 2.6; // Displays integer 2

intval = (int)number; // Assigns intVal the value of
// number, converted to an int

booksPerMonth = // Converts a copy of the value
(double)books / months; // stored in books to a double
// before performing the division
// operation

Because the typecast operator appears in parentheses preceding the operand, this form of
type cast notation is called prefix notation.

The prestandard C++ form of the type cast expression also places the data type to be con-
verted to before the operand whose value is to be converted, but it places the parentheses
around the operand, rather than around the data type. Here are the same three examples
as they would be written using the prestandard C++ form of type casting.

cout << int(2.6);
intval = int(number);
booksPerMonth = double(books) / months;

This type cast notation is called functional notation.

The static_cast expression is recommended by the ANSI standard for this type of data
type conversion and is now considered preferable to either the C-style or the prestandard
C++ form of type casting. However, you will probably see code in the workplace that uses
these older styles. Program 3-9 illustrates how Program 3-7 would be written using a pre-
standard C++ type cast.

Program 3-9

// This program illustrates the prestandard C++ form of type casting.
#include <iostream>
using namespace std;

int main()

{

int books,
months;
double booksPerMonth;

// Get user inputs

cout << "How many books do you plan to read? ";

cin >> books;

cout << "How many months will it take you to read them? ";
cin >> months;

(program continues)

923

924 Chapter 3 Expressions and Interactivity

Program 3-9 (continued)

// Compute and display books read per month

booksPerMonth = double(books) / months;

cout << "That is " << booksPerMonth << " books per month.\n";
return 0;

The output is identical to that produced by Program 3-7.

= |
35 Overflow and Underflow

1 CONCEPT: When a value cannot fit in the number of bits provided by a variable’s
data type, overflow or underflow occurs.

Just as a bucket will overflow if you try to put more water in it than it can hold, a variable
will experience a similar problem if you try to store a value in it that requires more bits
than it has available. Let’s look at an example. Suppose a short int that uses 2 bytes of
memory has the following value stored in it.

Lofafafafafu]afufafafafafafafu]s]

This is the binary representation of 32,767, the largest value that will fit in this data type.
Without going into the details of how negative numbers are stored, it is helpful to under-
stand that for integer data types that store both positive and negative numbers, a number
with a 0 in the high order (i.e., leftmost) bit is interpreted as a positive number and a
number with a 1 in the high order bit is interpreted as a negative number. If 1 is added to
the value stored above, the variable will now be holding the following bit pattern.

[2]ofofofofofofojofojofofofofo]o]

But this is not 32,768. It is interpreted as a negative number instead, which was not
what was intended. A binary 1 has “flowed” into the high bit position. This is called
overflow.

Likewise, when an integer variable is holding the value at the far end of its data type’s negative
range and 1 is subtracted from it, the 1 in its high order bit will become a 0 and the resulting
number will be interpreted as a positive number. This is another example of overflow.

In addition to overflow, floating-point values can also experience underflow. This occurs
when a value is too close to zero, so small that more digits of precision are needed to
express it than can be stored in the variable holding it. Program 3-10 illustrates both over-
flow and underflow.

Overflow and Underflow

Program 3-10

// This program demonstrates overflow and underflow.
#include <iostream>
using namespace std;

int main()

{
// Set intVar to the maximum value a short int can hold
short intVar = 32767;
// Set floatVar to a number too small to fit in a float
float floatvVar = 3.0E-47;
// Display intVar
cout << "Original value of intVar " << intVar << endl;
// Add 1 to intVar to make it overflow
intvar = intvVar + 1;
cout << "intVar after overflow " << intVar << endl;
// Subtract 1 from intVar to make it overflow again
intVar = intvVar - 1;
cout << "intVar after 2nd overflow " << intVar << endl;
// Display floatVar
cout << "Value of very tiny floatvVar " << floatVar;
return 0}
}

Program Output

Original value of intVar 32767

intvVar after overflow -32768

intvar after 2nd overflow 32767
Value of very tiny floatVar 0

Although some systems display an error message when an overflow or underflow occurs,
most do not. The variable simply holds an incorrect value now and the program keeps run-
ning. Therefore, it is important to select a data type for each variable that has enough bits
to hold the values you will store in it.

Checkpoint

3.14 Assume the following variable definitions:
int a =5, b = 12;
double x = 3.4, z = 9.1;

What are the values of the following expressions?
A) b/ a

B) x * a

C) static_cast<double>(b / a)

95

%26 Chapter 3 Expressions and Interactivity

D) static_cast<double>(b) / a

F

G) b / static_cast<int>(x)

E) b / static_cast<double>(a)
)

static_cast<double>(b) / static_cast<double>(a)

H) static_cast<int>(x) * static_cast<int>(z)
I) static cast<int>(x * z)

J) static_cast<double>(static_cast<int>(x) * static_cast<int>(z))

3.15 What will the following program display if a capital B is entered when the cin
statement asks the user to input a letter?

#include <iostream>
using namespace std;

int main()

{

char letter;

cout << "The ASCII values of uppercase letters are "
<< static_cast<int>('A') << " - "
<< static_cast<int>('Z') << endl;

cout << "The ASCII values of lowercase letters are "
<< static_cast<int>('a') << " - "
<< static_cast<int>('z') << endl << endl;

cout << "Enter a letter and I will tell you its ASCII code: ";
cin >> letter;
cout << "The ASCII code for " << letter << " is "

<< static_cast<int>(letter) << endl;

return 0;

}
3.16 What will the following program display?

#include <iostream>
using namespace std;

int main()
{
int integerl = 19,
integer2 = 2;
double doubleval;

doubleval = integerl / integer2;

cout << doubleVal << endl;

doubleval = static_cast<double>(integerl) / integer2;
cout << doubleVal << endl;

doubleval = static_cast<double>(integerl / integer2);
cout << doublevVal << endl;

return 0;

—
3.6

Named Constants

Named Constants

1 CONCEPT: Constants may be given names that symbolically represent them in a

program.

In Chapter 2 you learned about numbers and strings being expressed as constants. For
example, the following statement contains the numeric constant 0.129:

newAmount = balance * 0.129;

Let’s assume this statement appears in a banking program that calculates data pertain-
ing to loans. In such a program, two potential problems arise. First, it is not clear to
anyone other than the original programmer what 0.129 is. It appears to be an interest
rate, but in some situations there are fees associated with loan payments. How can the
purpose of this statement be determined without painstakingly checking the rest of the
program?

The second problem occurs if this number is used in other calculations throughout the pro-
gram and must be changed periodically. Assuming the number is an interest rate, what if
the rate changes from 12.9 percent to 13.2 percent? The programmer will have to search
through the source code for every occurrence of the number.

Both of these problems can be addressed by using named constants. A named constant,
also called a constant variable, is like a variable, but its content is read-only and cannot be
changed while the program is running. Here is a definition of a named constant:

const double INTEREST RATE = 0.129;

It looks just like a regular variable definition except that the word const appears before
the data type name. The key word const is a qualifier that tells the compiler to make the
variable read-only. This ensures that its value will remain constant throughout the pro-
gram’s execution. If any statement in the program attempts to change its value, an error
results when the program is compiled. A named constant can have any legal C++ identifier
name, but many programmers use all uppercase letters in the name, as we have done here,
to distinguish it from a regular variable.

When a named constant is defined it must be initialized with a value. It cannot be defined
and then later assigned a value with an assignment statement.

const double INTEREST RATE; // illegal
INTEREST RATE = 0.129; // illegal

An added advantage of using named constants is that they make programs more self-
documenting. If the named constant INTEREST RATE has been correctly defined, the pro-
gram statement

newAmount = balance * 0.129;
can be changed to read

newAmount = balance * INTEREST RATE;

97

98

Chapter 3 Expressions and Interactivity

A new programmer can read the second statement and better understand what is
happening. It is evident that balance is being multiplied by the interest rate. Another
advantage to this approach is that widespread changes can easily be made to the program.
No matter how many places the interest rate is used in the program, if the rate changes the
programmer only has to change one line of code—the statement that defines and initializes
the named constant. The following line of code, for example, would be used to set a new
interest rate of 13.2 percent.

const double INTEREST RATE = 0.132;

All that has to be done then is to recompile the program and every statement that uses
INTEREST RATE will use the new value.

It is also useful to define named constants for common values that are difficult to remem-
ber. For example, Program 3-6 calculated the area of a circle. The number 3.14159 is used
for pi in the formula. This value could easily be defined as a named constant, as shown in
line 9 of Program 3-11.

Program 3-11

// This program calculates the area of a circle. The formula for the
// area of a circle is PI times the radius squared. PI is 3.14159.
#include <iostream>

#include <cmath> // Needed for the pow function
using namespace std;

int main()

{

const double PI = 3.14159; // PI is a named constant
double area, radius;

cout << "This program calculates the area of a circle.\n";

// Get the radius
cout << "What is the radius of the circle? ";
cin >> radius;

// Compute and display the area

area = PI * pow(radius, 2);

cout << "The area is " << area << endl;
return 0;

The #define Directive

The older C-style method of creating named constants is with the #define preprocessor
directive. Although it is preferable to use the const modifier, there are programs with the
#define directive still in use. In addition, the #define directive has other uses, so it is
important to understand. Program 3-12 shows how the preprocessor can be used to create
a named constant.

Program 3-12

// This program calculates the area
// area of a circle is PI times the
#include <iostream>
#include <cmath> //
using namespace std;

#define PI 3.14159 //

int main()

{

Named Constants

of a circle. The formula for the
radius squared. PI is 3.14159.

Needed for the pow function

PI is "defined" to be 3.14159

double area, radius;
cout << "This program calculates the area of a circle.\n";

// Get the radius
cout << "What is the radius of the circle? ";
cin >> radius;

// Compute and display the area

area = PI * pow(radius, 2);

cout << "The area is " << area << endl;
return 0;

Remember, the preprocessor scans your program before it is compiled. It looks for direc-
tives, which are lines that begin with the # symbol. Preprocessor directives cause your
source code to be modified prior to being compiled. Line 7 of Program 3-12 uses the
following #define directive:

#define PI 3.14159

The word P1 is a named constant and 3.14159 is its value. Anytime PI is used in the
program, it will be replaced by the value 3.14159. The code on line 20 that reads

area = PI * pow(radius, 2);
will be sent to the compiler as

area = 3.14159 * pow(radius, 2);
If there had been a line that read

cout << PI << endl;
it would be compiled as

cout << 3.14159 << endl;

It is important to realize the difference between constant variables created with the key
word const and constants created with the #define directive. Constant variables are
defined like regular variables. They have a data type and a specific storage location in
memory. They are like regular variables in every way except that you cannot change their

29

100

Chapter 3 Expressions and Interactivity

value while the program is running. Constants created with the #define directive,
however, are not variables at all, but text substitutions. Each occurrence of the named
constant in your source code is removed and the value of the constant is written in its
place when it is sent to the compiler.

Be careful not to put a semicolon at the end of a #define directive. If you used a semicolon
it would actually become part of the value of the constant. If the #define directive in
line 7 of Program 3-12 had read like this,

#define PI 3.14159;
the mathematical statement
area = PI * pow(radius, 2);
would have been modified to read
area = 3.14159; * pow(radius, 2);

Because of the semicolon, the preprocessor would have created a syntax error in the state-
ment and the compiler would have given an error message when trying to process this
statement.

NOTE: #define directives are intended for the preprocessor and C++ statements are
intended for the compiler. The preprocessor does not look for semicolons to terminate
directives.

Checkpoint

3.17 Write statements using the const qualifier to create named constants for the follow-
ing literal values:

Constant Value Description
2.71828 Euler’s number (known in mathematics as e)
5.256E5 Number of minutes in a year
32.2 The gravitational acceleration constant (in feet per second?)
9.8 The gravitational acceleration constant (in meters per second?)
1609 Number of meters in a mile

3.18 Write #define directives for the literal values listed in question 3.17.

3.19 Assuming the user enters 6 in response to the question, what will the following pro-
gram display on the screen?

#include <iostream>
using namespace std;

#define GREETINGl "This program calculates the number "
#define GREETING2 "of candy pieces sold."

#define QUESTION "How many jars of candy have you sold? "
#define RESULTS "The number of pieces sold: "

#define YOUR _COMMISSION "Candy pieces you get for commission: "
#define COMMISSION_ RATE .20

Multiple and Combined Assignment 101

int main()

{
const int PIECES_PER JAR = 1860;
int jars, pieces;
double commission;

cout << GREETING1;

cout << GREETING2 << endl;
cout << QUESTION;

cin >> jars;

pieces = jars * PIECES_PER_JAR;

cout << RESULTS << pieces << endl;

commission = pieces * COMMISSION_ RATE;

cout << YOUR_COMMISSION << commission << endl;
return 0;

}

3.20 Complete the following program skeleton so it properly converts a speed entered in
miles per hour to feet per second. One mile per hour is 1.467 feet per second.

#include <iostream>
using namespace std;

int main()

{
// Define a named constant called CONVERSION

// with the value 1.467.
double milesPerHour, feetPerSecond;

cout << "This program converts miles per hour to\n";

cout << "feet per second.\n";

cout << "Enter a speed in MPH: ";

cin >> milesPerHour;

// Insert a mathematical statement here to

// calculate feet per second and assign the result

// to the feetPerSecond variable.

cout << "That is " << feetPerSecond << " feet per second.\n";
return 0;

—
3.7) Multiple and Combined Assignment

1 CONCEPT: Multiple assignment means to assign the same value to several variables
with one statement.

C++ allows you to assign a value to multiple variables at once. If a program has several
variables, such as a, b, ¢, and d, and each variable needs to be assigned a value, such as 12,
the following statement may be constructed:

a=b=c=d-=12;

The value 12 will be assigned to each variable listed in the statement. This works because
the assignment operations are carried out from right to left. First 12 is assigned to d. Then

102 Chapter 3 Expressions and Interactivity

I

VideoNote
Combined

Assignment

Operators

d’s value, now a 12, is assigned to c. Then c’s value is assigned to b, and finally b’s value is
assigned to a.

Program 3-13 uses the following multiple assignment statement to store a value entered by
the user into two different variables:

storel = store2 = beglnv;

Combined Assignment Operators

Quite often programs have assignment statements of the following form:
number = number + 1;

The expression on the right side of the assignment operator gives the value of number
plus 1. The result is then assigned to number, replacing the value that was previously stored
there. Effectively, this statement adds 1 to number. In a similar fashion, the following state-
ment subtracts 5 from number.

number = number — 5;

If you have never seen this type of statement before, it might cause some initial confu-
sion because the same variable name appears on both sides of the assignment operator.
Table 3-8 shows other examples of statements written this way.

Table 3-8 Assignment Statements that Change a Variable’s Value (Assume x = 6)

Value of x
Statement What It Does After the Statement
X = X + 4; Adds 4 to x 10
X = x - 3; Subtracts 3 from x 3
X = x * 10; Multiplies x by 10 60
x=x/ 2; Divides x by 2 3
X =x5% 4 Makes x the remainder of x / 4

Because these types of operations are so common in programming, C++ offers a special
set of operators designed specifically for these jobs. Table 3-9 shows the combined
assignment operators, also known as compound operators or arithmetic assignment
operators.

Table 3-9 Combined Assignment Operators

Operator Example Usage Equivalent To
+= X += 5; X =x + 5;
-= y -= 2; y=y-2;
*= z *= 10; z =2z * 10;
/= a /= b; a=a/ b;
%= c %= 3; c =c % 3;

Multiple and Combined Assignment

As you can see, the combined assignment operators do not require the programmer to type
the variable name twice. Also, they give a clear indication of what is happening in the
statement. Program 3-13 uses combined assignment operators.

Program 3-13

// This program tracks the inventory of two widget stores.

// It illustrates the use of multiple and combined assignment.
#include <iostream>

using namespace std;

int main()

{
int beglnv, // Beginning inventory for both stores
sold, // Number of widgets sold
storel, // Store 1l's inventory
store2; // Store 2's inventory
// Get the beginning inventory for the two stores
cout << "One week ago, 2 new widget stores opened\n";
cout << "at the same time with the same beginning\n";
cout << "inventory. What was the beginning inventory? ";
cin >> beglInv;
// Set each store's inventory
storel = store2 = begInv;
// Get the number of widgets sold at each store
cout << "How many widgets has store 1 sold? ";
cin >> sold;
storel -= sold; // Adjust store 1's inventory
cout << "How many widgets has store 2 sold? ";
cin >> sold;
store2 -= sold; // Adjust store 2's inventory
// Display each store's current inventory
cout << "\nThe current inventory of each store:\n";
cout << "Store 1l: " << storel << endl;
cout << "Store 2: " << store2 << endl;
return 0;
}

Program Output with Example Input Shown in Bold

One week ago, 2 new widget stores opened

at the same time with the same beginning

inventory. What was the beginning inventory? 100[Enter]
How many widgets has store 1 sold? 25[Enter]

How many widgets has store 2 sold? 15[Enter]

The current inventory of each store:
Store 1: 75
Store 2: 85

103

104

Chapter 3 Expressions and Interactivity

More elaborate statements may be expressed with the combined assignment operators.
Here is an example:

result *= a + 5;

In this statement, result is multiplied by the sum of a + 5. Notice that the precedence of
the combined assignment operators is lower than that of the regular arithmetic operators.
The above statement is equivalent to

result = result * (a + 5);
which is different from
result = result * a + 5;

Table 3-10 shows additional examples using combined assignment operators.

Table 3-10 Examples Using Combined Assignment Operators and Arithmetic Operators

Example Usage Equivalent To

X += b + 5; x =x+ (b + 5);

y -=a*z2; y =y - (a*2);

z *= 10 - c; z =12z * (10 - ¢c);

a /=b + c; a=a/ (b+c);

c %=d - 3; c=c¢c % (d- 3);
Checkpoint

3.21 Write a multiple assignment statement that assigns O to the variables total,
subtotal, tax, and shipping.

3.22 Write statements using combined assignment operators to perform the following:

A) Add 6 to x.

B) Subtract 4 from amount.

C) Multiply y by 4.

D) Divide total by 27.

E) Store in x the remainder of x divided by 7.
F) Addy * 5tox.

G) Subtract discount times 4 from total.
H) Multiply increase by salesRep times 5.
I) Divide profit by shares minus 1000.

3.23 What will the following program display?

#include <iostream>
using namespace std;

int main()

{

int unus, duo, tres;

unus = duo = tres = 5;
unus += 4;

duo *= 2;

tres -= 4;

unus /= 3;

duo += tres;

cout << unus << endl;
cout << duo << endl;
cout << tres << endl;
return 0;

- |
38 Formatting Output

Formatting Output

1 CONCEPT: cout provides ways to format data as it is being displayed. This affects
the way data appears on the screen.

The same data can be printed or displayed in several different ways. For example, all of the
following numbers have the same value, although they look different:

720

720.0
720.00000000
7.2e+2
+720.0

The way a value is printed is called its formatting. The cout object has a standard way of
formatting variables of each data type. Sometimes, however, you need more control over
the way data is displayed. Consider Program 3-14, for example, which displays three rows
of numbers with spaces between each one.

Program 3-14
// This program displays
#include <iostream>

using namespace std;

int main()

{
int numl = 2897, num2 = 5, num3 =
num4 = 34, num5 = 7, numé6 =
num7 = 390, num8 = 3456, num9 =
// Display the first row of numbers
cout << numl << " " << num2 << " "
// Display the second row of numbers
cout << num4 << " " << numb5 << " "
// Display the third row of numbers
cout << num7 << " " << num8 << " "
return 0;
}

three rows of numbers.

837,
1623,
12;

<< num3 << endl;

<< numé << endl;

<< num9 << endl;

(program continues)

105

106 Chapter 3 Expressions and Interactivity

Program 3-14 (continued)

Program Output

2897

34
390

5 837
1623
3456 12

Unfortunately, the numbers do not line up in columns. This is because some of the num-
bers, such as 5 and 7, occupy one position on the screen, while others occupy two or three
positions. cout uses just the number of spaces needed to print each number.

To remedy this, cout offers a way of specifying the minimum number of spaces to use for
each number. A stream manipulator, setw, can be used to establish print fields of a speci-
fied width. Here is an example of how it is used:

value = 23;
cout << setw(5) << value;

The number inside the parentheses after the word setw specifies the field width for the
value immediately following it. The field width is the minimum number of character posi-
tions, or spaces, on the screen to print the value in. In our example, the number 23 will be
displayed in a field of five spaces.

To further clarify how this works, look at the following statements:

value = 23;
cout << "(" << setw(5) << value << ")";

This will produce the following output:
(23

Because the number did not use the entire field, cout filled the extra three positions with
blank spaces. Because the number appears on the right side of the field with blank spaces
“padding” it in front, it is said to be right-justified.

Program 3-15 shows how the numbers in Program 3-14 can be printed in columns that line
up perfectly by using setw. In addition, because we used a setw(6), and the largest num-
ber has four digits, the numbers will be separated without having to print a string constant
containing blanks between the numbers.

Program 3-15

// This program uses setw to display three rows of numbers so they align.
#include <iostream>

#include <iomanip> // Header file needed to use setw

using namespace std;

int main()

{

int numl = 2897, num2 = 5, num3 = 837,
num4 = 34, numb5 = 7, num6 = 1623,
num7 = 390, num8 = 3456, num9 = 12;

(program continues)

Formatting Output

Program 3-15 (continued)

// Display the first row of numbers
cout << setw(6) << numl << setw(6) << num2 << setw(6) << num3 << endl;

// Display the second row of numbers
cout << setw(6) << numé << setw(6) << num5 << setw(6) << num6 << endl;

// Display the third row of numbers
cout << setw(6) << num7 << setw(6) << num8 << setw(6) << num9 << endl;

return 0;

Program Output
2897 5 837
34 7 1623
390 3456 12

<&

NOTE: A new header file, iomanip, is included on line 3 of Program 3-15. It must be
used in any program that uses setw.

Notice that a setw manipulator is used with each value. This is because setw only estab-
lishes a field width for the value immediately following it. After that value is printed, cout
goes back to its default method of printing.

You might wonder what will happen if the number is too large to fit in the field, as in the
following statement:

value = 18397;
cout << setw(2) << value;

In cases like this, cout will print the entire number. setw only specifies the minimum num-
ber of positions in the print field. Any number larger than the minimum will cause cout to
override the setw value.

You may specify the field width of any type of data. Program 3-16 shows setw being used
with an integer, a floating-point number, and a string.

Program 3-16

//
//

This program demonstrates the setw manipulator
being used with variables of various data types.

#include <iostream>
#include <iomanip>
#include <string>
using namespace std;

(program continues)

107

108

Chapter 3 Expressions and Interactivity

Program 3-16 (continued)

int main()

{

int intvValue = 3928;
double doublevalue = 91.5;

string stringObjectvalue = "Jill Q. Jones";

cout << "(" << setw(5) << intValue << ")" << endl;

cout << " (" << setw(8) << doubleValue << ")" << endl;

cout << " (" << setw(1l6) << stringObjectValue << ")" << endl;

return 0;

Program Output
(3928)

(
(

91.5)

Jill Q. Jones)

Program 3-16 illustrates the following points:

e The field width of a floating-point number includes a position for the decimal point.

o The field width of a string includes all characters in the string, including spaces.

e The values printed in the field are right-justified by default. This means they are
aligned with the right side of the print field, and any blanks that must be used to pad

it are inserted in front of the value.

The setprecision Manipulator

Floating-point values may be rounded to a number of significant digits, or precision, which
is the total number of digits that appear before and after the decimal point. You can con-
trol the number of significant digits with which floating-point values are displayed by using
the setprecision manipulator. Program 3-17 shows the results of a division operation

displayed with different numbers of significant digits.

Program 3-17

// This program demonstrates how the setprecision manipulator

// affects the way a floating-point value is displayed.

#include <iostream>
#include <iomanip>
using namespace std;

int main()

{

double, numberl = 132.364, number2 = 26.91;
double quotient = numberl / number2;

cout << quotient << endl;
cout << setprecision(5) << quotient << endl;

(program continues)

Formatting Output 109

Program 3-17 (continued)

cout << setprecision(4) << quotient << endl;
cout << setprecision(3) << quotient << endl;
cout << setprecision(2) << quotient << endl;
cout << setprecision(l) << quotient << endl;
return 0;

}

Program Output
4.91877

4.9188

4.919

4.92

4.9

5

0 NOTE: With prestandard compilers, your output may be different from that shown in
Program 3-17.

The first value in Program 3-17 is displayed in line 12 without the setprecision manipu-
lator. (By default, the system displays floating-point values with six significant digits.) The
subsequent cout statements print the same value, but rounded to five, four, three, two, and
one significant digits. Notice that, unlike setw, setprecision does not count the decimal
point. When we used setprecision(5), for example, the output contained five significant
digits, which required six positions to print 4.9188.

If the value of a number is expressed in fewer digits of precision than specified by
setprecision, the manipulator will have no effect. In the following statements, the
value of dollars only has four digits of precision, so the number printed by both
cout statements is 24.51.

double dollars = 24.51;
cout << dollars << endl; // displays 24.51
cout << setprecision(5) << dollars << endl; // displays 24.51

Table 3-11 shows how setprecision affects the way various values are displayed. Notice
that when fewer digits are to be displayed than the number holds, setprecision rounds,
rather than truncates, the number. Notice also that trailing zeros are omitted. Therefore,
for example, 21.40 displays as 21.4 even though setprecision(5) is specified.

Table 3-11 The setprecision Manipulator

Number Manipulator Value Displayed
28.92786 setprecision(3) 28.9

21.40 setprecision(5) 21.4

109.50 setprecision(4) 109.5

34.78596 setprecision(2) 35

110

Chapter 3 Expressions and Interactivity

Unlike field width, the precision setting remains in effect until it is changed to some other
value. As with all formatting manipulators, you must include the header file iomanip to
use setprecision.

Program 3-18 shows how the setw and setprecision manipulators may be combined to
control the way floating-point numbers are displayed.

Program 3-18

// This program asks for sales figures for three days.

// The total sales are calculated and displayed in a table.
#include <iostream>

#include <iomanip>

using namespace std;

int main()

{
double dayl, day2, day3, total;
// Get the sales for each day
cout << "Enter the sales for day 1l: ";
cin >> dayl;
cout << "Enter the sales for day 2: ";
cin >> day2;
cout << "Enter the sales for day 3: ";
cin >> day3;
// Calculate total sales
total = dayl + day2 + day3;
// Display the sales figures
cout << "\nSales Figures\n";
cout << "mmmmmmmm—— \n";
cout << setprecision(5);
cout << "Day 1l: " << setw(8) << dayl << endl;
cout << "Day 2: " << setw(8) << day2 << endl;
cout << "Day 3: " << setw(8) << day3 << endl;
cout << "Total: " << setw(8) << total << endl;
return 0;
}

Program Output with Example Input Shown in Bold

Enter the sales for day 1: 321.57[Enter]
Enter the sales for day 2: 269.60[Enter]
Enter the sales for day 3: 307.00[Enter]

Sales Figures

Day 1: 321.57
Day 2: 269.6
Day 3: 307

Formatting Output

The output created by Program 3-18, as we directed, allows a maximum of five significant
digits to be displayed and is printed right justified in a field width of eight characters. How-
ever, the result is clearly not what is desired. In just a moment, we’ll look at another
manipulator that provides additional control over the format of the output.

The fixed Manipulator

If a number is too large to print using the number of digits specified with setprecision,
many systems print it in scientific notation. For example, here is the output of Program 3-18
with larger numbers being input.

Enter the sales for day 1: 145678.99[Enter]
Enter the sales for day 2: 205614.85[Enter]
Enter the sales for day 3: 198645.22[Enter]

Sales Figures

Day 1: 1.4568e+005
Day 2: 2.0561e+005
Day 3: 1.9865e+005
Total: 5.4994e+005

To prevent this, you can use another stream manipulator, fixed, which indicates that
floating-point output should be printed in fixed-point, or decimal, notation.

cout << fixed;

What is perhaps most important about the £ixed manipulator, however, is that when the
setprecision manipulator is used in conjunction with fixed, it behaves in a new way. It
specifies the number of digits to be displayed after the decimal point of a floating-point
number, rather than the total number of digits to be displayed. This is usually what we
want. For example, if we rewrite line 25 of Program 3-18 as

cout << fixed << setprecision(2);
and rerun the program using the same sample data, we get the following results:

Enter the sales for day 1: 321.57[Enter]
Enter the sales for day 2: 269.60[Enter]
Enter the sales for day 3: 307.00[Enter]

Sales Figures

Day 1: 321.57
Day 2: 269.60
Day 3: 307.00
Total: 898.17

By using fixed and setprecision together, we get the desired output. Notice in this case,
however, we set the precision to 2, the number of decimal places we wish to see, not to 5.

The showpoint Manipulator

Another useful manipulator is showpoint, which indicates that a decimal point should
be printed for a floating-point number, even if the value being displayed has no decimal

111

112

Chapter 3 Expressions and Interactivity

digits. Program 3-19 illustrates the use of fixed, showpoint, and setprecision. As with
setprecision, the fixed and showpoint manipulators remain in effect until the pro-
grammer explicitly changes them.

Program 3-19

// This program illustrates how the fixed, showpoint, and

// setprecision manipulators operate when used together.

#include <iostream>

#include <iomanip> // Needed to use stream manipulators
using namespace std;

int main()

{
double amount = 125.0;
cout << setw(6) << amount << endl;
cout << showpoint;
cout << setw(6) << amount << endl;
cout << fixed << showpoint << setprecision(2);
cout << setw(6) << amount << endl;
return 0;
}
Program Output
125
125.000
125.00

When amount is printed the first time, in line 11, the showpoint and setprecision
manipulators have not yet been set. Therefore, since the value being displayed requires no
decimal digits, only 125 is displayed. When amount is printed the second time, in line 14,
the showpoint manipulator has been set, so a decimal point followed by zeroes is dis-
played. However, since the setprecision manipulator has not yet been set, we have no
control over how many zeroes are to be printed, and 125.000 is displayed. Finally, when
amount is printed the third time, in line 17, the fixed and setprecision manipulators
have both been set, specifying that exactly two decimal digits are to be printed, so
125.00 is displayed.

Actually, when the fixed and setprecision manipulators are both used, it is not neces-
sary to use the showpoint manipulator. For example,

cout << fixed << setprecision(2);

will automatically display a decimal point before the two decimal digits. However, many
programmers prefer to use it anyway as shown here:

cout << fixed << showpoint << setprecision(2);

The left and right Manipulators

Normally, as you have seen, output is right-justified. This means if the field it prints in is
larger than the value being displayed, it is printed on the far right of the field, with leading

Formatting Output

blanks. There are times when you may wish to force a value to print on the left side of its
field, padded by blanks on the right. To do this you can use the left manipulator. It
remains in effect until you use a right manipulator to set it back. These manipulators can
be used with any type of value, even a string. Program 3-20 illustrates the left and right
manipulators. It also illustrates that the fixed, showpoint, and setprecision manipula-
tors have no effect on integers, only on floating-point numbers.

Program 3-20

// This program illustrates the use of the left and right manipulators.
#include <iostream>

#include <iomanip> // Needed to use stream manipulators

#include <string>

using namespace std;

int main()
{
string monthl = "January",
month2 = "February",
month3 = "March";

int daysl = 31,
days2 = 28,
days3 31;

double highl = 22.6,
high2 37.4,
high3 53.9;

cout << fixed << showpoint << setprecision(l);
cout << "Month Days High\n";

cout << left << setw(1l2) << monthl

<< right << setw(4) << daysl << setw(9) << highl << endl;
cout << left << setw(1l2) << month2

<< right << setw(4) << days2 << setw(9) << high2 << endl;
cout << left << setw(1l2) << month3

<< right << setw(4) << days3 << setw(9) << high3 << endl;

return 0;

Program Output

Month Days High
January 31 22.6
February 28 37.4
March 31 53.9

Chapter 13 introduces additional stream manipulators and output formatting methods.
However, the six manipulators we have covered in this chapter are normally sufficient to
produce the output you desire. Table 3-12 summarizes these six manipulators.

113

114

Chapter 3 Expressions and Interactivity

Table 3-12 Output Stream Manipulators

Stream Manipulator Description

setw(n) Sets the display field width to size n.

fixed Displays floating-point numbers in fixed (i.e., decimal) form.
showpoint Displays the decimal point and trailing zeroes for floating-point

setprecision(n)

left

right

numbers even if there is no fractional part.

If the fixed manipulator is ot set, n indicates the total number of
significant digits to display. If the £ixed manipulator is set, n indicates
the number of decimal digits to display.

Causes subsequent output to be left-justified.

Causes subsequent output to be right-justified.

Checkpoint

3.24 Write cout statements with stream manipulators that perform the following:

3.25

A)
B)

C)
D)

Display the number 34.789 in a field of nine spaces with two decimal places of
precision.

Display the number 7.0 in a field of five spaces with three decimal places of pre-
cision. The decimal point and any trailing zeroes should be displayed.

Display the number 5.789e+12 in fixed-point notation.

Display the number 67 left-justified in a field of seven spaces.

The following program skeleton asks for an angle in degrees and converts it to radians.
The formatting of the final output is left to you.

#include <iostream>
#include <iomanip>
using namespace std;

int main()

{

const double PI = 3.14159;
double degrees, radians;

cout << "Enter an angle in degrees and I will convert it\n";
cout << "to radians for you: ";

cin >> degrees;

radians = degrees * PI / 180;

// Display the value in radians left-justified, in fixed-point
// notation, with four decimal places of precision, in a field
// seven spaces wide.

return 0;

Working with Characters and String Objects 115

=
39 Working with Characters and String Objects

1 CONCEPT: Special functions exist for working with characters and string objects.

In Chapter 2 you were introduced to characters and to string objects. A char variable can
hold only one character, whereas a variable defined as a string can hold a whole set of
characters. The following variable definitions and initializations illustrate this.

char letterl = 'A',
letter2 = 'B';
string namel "Mark Twain",
name2 = "Samuel Clemens";

As with numeric data types, characters and strings can be assigned values.

letter2 = letterl; // Now letter2's value is 'A'
name2 = namel; // Now name2's value is "Mark Twain"

They can also be displayed with the cout statement. The following line of code outputs a
character variable, a string constant, and a string object.

cout << letterl << ", " << namel << endl;
The output produced is
A. Mark Twain

Inputting characters and strings, however, is a little trickier than reading in numeric values.

Inputting a String

Although it is possible to use cin with the >> operator to input strings, it can cause prob-
lems you need to be aware of. When cin reads data it passes over and ignores any leading
whitespace characters (spaces, tabs, or line breaks). However, once it comes to the first
nonblank character and starts reading, it stops reading when it gets to the next whitespace
character. If we use the following statement

cin >> namel;

we can input “Mark”, or even “ Mark”, but not “Mark Twain” because cin cannot input
strings that contain embedded spaces.

Program 3-21 illustrates this problem.
Program 3-21

// This program illustrates a problem that can occur if

// cin is used to read character data into a string object.
#include <iostream>

#include <string>

using namespace std;

(program continues)

116 Chapter 3 Expressions and Interactivity

Program 3-21 (continued)

int main()

{
string name;
string city;
cout << "Please enter your name: ";
cin >> name;
cout << "Enter the city you live in: ";
cin >> city;
cout << "Hello, " << name << endl;
cout << "You live in " << city << endl;
return 0;
}

Program Output with Example Input Shown in Bold

Please enter your name. John Doe[Enter]
Enter the city you live in: Hello, John
You live in Doe

Notice that the user was never given the opportunity to enter the city. In the first input
statement, when cin came to the space between John and Doe, it stopped reading, storing
just John as the value of name. In the second input statement, cin used the leftover charac-
ters it found in the keyboard buffer and stored Doe as the value of city.

To solve this problem, C++ provides a special function called getline. This function will
read in an entire line, including leading and embedded spaces, and store it in a string object.
The getline function looks like the following, where cin is the input stream we are reading
from and inputLine is the name of the string variable receiving the input string.

getline(cin, inputLine);

Program 3-22 illustrates using the getline function.

Program 3-22

// This program illustrates using the getline function
// to read character data into a string object.
#include <iostream>

#include <string>

using namespace std;

int main()

{
string name;
string city;

cout << "Please enter your name: ";
getline(cin, name);
cout << "Enter the city you live in: ";
getline(cin, city);
(program continues)

Working with Characters and String Objects

Program 3-22 (continued)

cout << "Hello, " << name << endl;
cout << "You live in " << city << endl;
return 0;

Program Output with Example Input Shown in Bold
Please enter your name. John Doe[Enter]

Enter the city you live in: Chicago[Enter]
Hello, John Doe

You live in Chicago

Inputting a Character

Sometimes you want to read only a single character of input. For example, some programs
display a menu of items for the user to choose from. Often the selections will be denoted
by the letters A, B, C, and so forth. The user chooses an item from the menu by typing a
character. The simplest way to read a single character is with cin and the >> operator, as
illustrated in Program 3-23.

Program 3-23

// This program reads a single character into a char variable.
#include <iostream>
using namespace std;

int main()

{

char ch;

cout << "Type a character and press Enter: ";
cin >> ch;
cout << "You entered " << ch << endl;

return 0;

Program Output with Example Input Shown in Bold

Type a character and press Enter: A[Enter]
You entered A

Using cin.get

As with string input, however, there are times when using cin >> to read a character does
not do what we want. For example, because it passes over all leading whitespace, it is
impossible to input just a blank or [Enter] with cin >>. The program will not continue past
the cin statement until some character other than the spacebar, the tab key, or the [Enter]
key has been pressed. (Once such a character is entered, the [Enter] key must still be pressed
before the program can continue to the next statement.) Thus, programs that ask the user
to "Press the enter key to continue." cannot use the >> operator to read only the
pressing of the [Enter] key.

117

118 Chapter 3 Expressions and Interactivity

In those situations, a cin function called get becomes useful. The get function reads a
single character, including any whitespace character. If the program needs to store the
character being read, the get function can be called in either of the following ways. In
both cases, ch is the name of the variable that the character is being read into.

cin.get(ch);
ch = cin.get();

If the program is using the get function simply to hold the screen until the [Enter] key is
pressed and does not need to store the character, the function can also be called like this:

cin.get();

Program 3-24 illustrates all three ways to use the get function.

Program 3-24

// This program demonstrates three ways
// to use cin.get() to pause a program.
#include <iostream>
using namespace std;

int main()

{
char ch;
cout << "This program has paused. Press Enter to continue.";
cin.get(ch);
cout << "It has paused a second time. Please press Enter again.";
ch = cin.get();
cout << "It has paused a third time. Please press Enter again.";
cin.get();
cout << "Thank you!";
return 0;

}

Program Output with Example Input Shown in Bold

This program has paused. Press Enter to continue.[Enter]

It has paused a second time. Please press Enter again.[Enter]
It has paused a third time. Please press Enter again.[Enter]
Thank you!

Mixing cin >> and cin.get

Mixing cin >> with cin.get can cause an annoying and hard-to-find problem. For exam-
ple, look at the following code segment. The lines are numbered for reference.

1 char ch; // Define a character variable
2 int number; // Define an integer variable
3 cout << "Enter a number: ";

4 cin >> number; // Read an integer

3 cout << "Enter a character: ";

6 ch = cin.get(); // Read a character

7 cout << "Thank You!\n";

Working with Characters and String Objects 119

These statements allow the user to enter a number, but not a character. It will appear that
the cin.get statement on line 6 has been skipped.

This happens because both cin >> and cin.get read the user’s keystrokes from the key-
board buffer. After entering a number in response to the first prompt, the user presses the
[Enter] key. Pressing this key causes a newline character (*\n") to be stored in the keyboard
buffer. For example, suppose the user enters 100 and presses [Enter]. The input will be
stored in the keyboard buffer as shown in Figure 3-3.

Figure 3-3
Keyboard buffer
[t [ofofw] | |
cinbeginsj

reading here

When the cin >> statement reads data from the keyboard buffer, it stops reading at the new-
line character. In our example, 100 is read in and stored in the number variable. The newline
character is left in the keyboard buffer. However, cin.get always reads the next character in
the buffer, no matter what it is, without skipping over whitespace. It only waits for the user
to input a value if the keyboard buffer is empty. When cin.get finds the newline character
in the buffer, it uses it and does not wait for the user to input another value. You can remedy
this situation by using the cin.ignore function, described in the following section.

Using cin.ignore
To solve this problem, the cin.ignore function can be used. This function tells the cin
object to skip characters in the keyboard buffer. Here is its general form:

cin.ignore(n, c);

The arguments shown in the parentheses are optional. If they are used, n is an integer and
c is a character. They tell cin to skip n number of characters, or until the character ¢ is
encountered. For example, the following statement causes cin to skip the next 20 charac-
ters or until a newline is encountered, whichever comes first:

cin.ignore(20,'\n");
If no arguments are used, cin will only skip the very next character. Here’s an example:
cin.ignore();

The statements that mix cin >> and cin.get can be repaired by inserting a cin.ignore
statement after the cin >> statement:

cout << "Enter a number: ";

cin >> number;

cin.ignore(); // Skip the newline character
cout << "Enter a character: ";

cin.get(ch);

cout << "Thank You!" << endl;

120

Chapter 3 Expressions and Interactivity

ey

Useful String Functions and Operators

The C++ string class provides a number of functions, called member functions, for work-
ing with strings. One that is particularly useful is the length function, which tells you how
many characters there are in a string. Here is an example of how to use it.

string state = "New Jersey";
int size = state.length();

The size variable now holds the value 10. Notice that a blank space is a character and is
counted just like any other character. On the other hand, notice that the \0’ null character
you learned about in Chapter 2 that marks the end of a string constant, is not counted.

The string class also has special operators for working with strings. One of them is the +
operator.

You have already encountered the + operator to add two numeric quantities. Because strings
cannot be added, when this operator is used with string operands it concatenates them, or joins
them together. Assume we have the following definitions and initializations in a program.

string greetingl = "Hello ",
greeting2;
string namel = "World";

string name2 "People";
The following statements illustrate how string concatenation works.

greeting2 = greetingl + namel; // greeting2 now holds "Hello World"
greetingl = greetingl + name2; // greetingl now holds "Hello People"

Notice that the string stored in greetingl has a blank as its last character. If the blank

were not there, greeting2 would have been assigned the string "Helloworld".

The last statement could also have been written using the += combined assignment operator.
greetingl += name2;

You will learn about other useful string class functions and operators in Chapter 12.

Using C-Strings

CONCEPT: C-strings provide another way to store and work with strings.

In C, and in C++ prior to the introduction of the string class, strings were stored as a set of
individual characters. A group of contiguous 1-byte memory cells was set up to hold them, with
each cell holding just one character of the string. A group of memory cells like this is called an
array. You will learn more about arrays in Chapter 8, but for now all you need to know is how
to set one up and use it to hold and work with the characters that make up a string.

Because this was the way to create a string variable in C, a string defined in this manner is
called a C-string. Here is a statement that defines word to be an array of characters that will
hold a C-string and initializes it to "Hello".

char word[10] = "Hello";

Notice that the way we define word is similar to the way we define any other variable. The
data type is specified first and then the variable name is given. The only difference is the [10]
that follows the name of the variable. This is called a size declarator. It tells how many mem-
ory cells to set up to hold the characters in the C-string.

Using C-Strings

As with string constants, the null character is automatically appended to the end of a
C-string to mark its end. Figure 3-4 shows what the contents of the word variable would
look like in memory.

Figure 3-4

LelelrJafofr] [| | |
[0] [(2] (31 (4 (5] (61 [71 (8] [9]

Because one space must be reserved for the null terminator, word can only hold a string of
up to nine characters.

Like string objects, C-strings can have their contents input using cin, and they can have
their contents displayed using cout. This is illustrated in Program 3-25. Because name
is defined in line 8 to have 12 memory cells, it can store a name of up to 11 characters. No
special header file is needed to use C-strings.

Program 3-25

// This program uses cin >> to read a word into a C-string.
#include <iostream>
using namespace std;

int main()

{

const int SIZE = 12;
char name[SIZE]; // name is a set of 12 memory cells

cout << "Please enter your first name." << endl;
cin >> name;

cout << "Hello, " << name << endl;

return 0;

Program Output with Example Input Shown in Bold

Please enter your first name.
Sebastian[Enter]
Hello, Sebastian

Except for inputting and displaying them with cin >> and cout <<, almost everything
else about using string objects and C-strings is different. This is because the string class
includes functions and operators that save the programmer having to worry about many of
the details of working with strings. When using C-strings, however, it is the responsibility
of the programmer to handle these things.

Because C-strings are harder to work with than string objects, you might be wondering
why you are learning about them. There are two reasons. First, you are apt to encounter
older programs that use them, so you need to understand them. Second, even though
strings can now be declared as string objects in most cases, there are still times when only
C-strings will work. You will be introduced to some of these cases later in the book.

121

122

Chapter 3 Expressions and Interactivity

Assigning a Value to a C-String

The first way in which using a C-string differs from using a string object is that, except for
initializing it at the time of its definition, it cannot be assigned a value using the assignment
operator. In Program 3-25 we could not, for example, replace the cin statement with the
following line of code.

name = "Sebastian"; // Wrong!

Instead, to assign a value to a C-string, we must use a function called strepy (pronounced
string copy) to copy the contents of one string into another. In the following line of code
Cstring is the name of the variable receiving the value, and value is either a string con-
stant or the name of another C-string variable.

strcpy(Cstring, value);

Program 3-26 shows how the strcpy function works.

Program 3-26

// This program uses the strcpy function to copy one C-string to another.
#include <iostream>
using namespace std;

int main()

{

const int SIZE = 12;
char namel[SIZE],
name2[SIZE];

strcpy(namel, "Sebastian");
cout << "namel now holds the string " << namel << endl;

strcpy(name2, namel);
cout << "name2 now also holds the string " << name2 << endl;

return 0;

Program Output

namel now holds the string Sebastian
name2 now also holds the string Sebastian

Keeping Track of a How Much a C-String Can Hold

Another crucial way in which using a C-string differs from using a string object
involves the memory allocated for it. With a string object, you do not have to worry
about there being too little memory to hold a string you wish to place in it. If the
storage space allocated to the string object is too small, the string class functions
will make sure more memory is allocated to it. With C-strings this is not the case. The
number of memory cells set aside to hold a C-string remains whatever size you origi-
nally set it to in the definition statement. It is the job of the programmer to ensure that
the number of characters placed in it does not exceed the storage space. If the pro-
grammer uses cin to read a value into a C-string and the user types in more characters

Using C-Strings

than it can hold, cin will store all the characters anyway. The ones that don’t fit will
spill over into the following memory cells, overwriting whatever was previously stored
there. This type of error, known as a buffer overrun, can lead to serious problems.

One way to prevent this from happening is to use the setw stream manipulator. This
manipulator, which we used earlier in this chapter to format output, can also be used to
control the number of characters that cin >> inputs on its next read, as illustrated here:

char word[5];
cin >> setw(5) >> word;

Another way to do the same thing is by using the cin width function.

char word[5];
cin.width(5);
cin >> word;

In both cases the field width specified is 5 and cin will read, at most, one character less
than this, leaving room for the null character at the end. Program 3-27 illustrates the use of
the setw manipulator with cin, while Program 3-28 uses its width function. Both pro-
grams produce the same output.

Program 3-27

// This program uses setw with the cin object.
#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

const int SIZE = 5;
char word[SIZE];

cout << "Enter a word: ";
cin >> setw(SIZE) >> word;

cout << "You entered " << word << endl;

return 0;

Program 3-28

// This program uses cin's width function.
#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

const int SIZE = 5;
char word[SIZE];
(program continues)

123

124

Chapter 3 Expressions and Interactivity

Program 3-28 (continued)

cout << "Enter a word: ";
cin.width(SIZE);

cin >> word;

cout << "You entered " << word << endl;

return 0;

Program Output for Programs 3-27 and 3-28 with Example Input Shown in Bold

Enter a word: Eureka[Enter]
You entered Eure

In Program 3-28, cin only reads and stores four characters into word. If the field width had
not been specified, cin would have written the entire word “Eureka” into memory, overflow-
ing the space set up to hold word. Figure 3-5 illustrates the way memory would have been
affected by this. The shaded area is the 5 bytes of memory allocated to hold the C-string.

Figure 3-5

The 5 bytes allocated
to hold the word array

Next item in memory,
overwritten with ‘a’
and null character

There are three important points to remember about the way cin handles field widths:

e The field width only pertains to the very next item entered by the user.

e To leave space for the \O' character, the maximum number of characters read and
stored will be one less than the size specified.

e If cin comes to a whitespace character before reading the specified number of char-
acters, it will stop reading.

Reading a Line of Input

Still another way in which using C-strings differs from using string objects is that you must use a
different set of functions when working with them. To read a line of input, for example, you
must use cin.getline rather than getline. These two names look a lot alike, but they are two
different functions and are not interchangeable. Like getline, cin.getline allows you to read
in a string containing spaces. It will continue reading until it has read the maximum specified
number of characters, or until the [Enter] key is pressed. Here is an example of how it is used:

cin.getline(sentence, 20);

Using C-Strings

The getline function takes two arguments separated by a comma. The first argument is the
name of the array that the string is to be stored in. In the statement above, the name of the
array is sentence. The second argument is the size of the array. cin will read up to
one character less than this number, leaving room for the null terminator. This elimi-
nates the need for using the setw manipulator or the width function. The statement
above will read up to 19 characters. The null terminator will automatically be placed in
the array, after the last character. Program 3-29 shows the getline function being used to
read a sentence of up to 80 characters.

Program 3-29
// This program demonstrates cin's getline function
// to read a line of text into a C-string.
#include <iostream>

using namespace std;

int main()

{
const int SIZE = 81;
char sentence[SIZE];
cout << "Enter a sentence: ";
cin.getline(sentence, SIZE);
cout << "You entered " << sentence << endl;
return 0;

}

Program Output with Example Input Shown in Bold

Enter a sentence: To be, or not to be, that is the question.[Enter]
You entered To be, or not to be, that is the question.

Later chapters cover more on C-strings and how they differ from string objects.

Checkpoint

3.26 Will the following string constant fit in the space allocated for name? Why or why not?
char name[4] = "John";

3.27 If a program contains the definition string name; indicate whether each of the
following lettered program statements is legal or illegal.

A) cin >> name;

B) cin.getline(name, 20);
C) cout << name;

D) name = "John";

3.28 If a program contains the definition char name[20]; indicate whether each of the
following lettered program statements is legal or illegal.

) cin >> name;

) cin.getline(name, 20);

cout << name;

SO= >

)
) name = "John";

125

126 Chapter 3 Expressions and Interactivity

"
3.11

More Mathematical Library Functions

1 CONCEPT: The C++ run-time library provides several functions for performing
complex mathematical operations.

Earlier in this chapter you learned to use the pow function to raise a number to a power. The
C++ library has numerous other functions that perform specialized mathematical operations.
These functions are useful in scientific and special purpose programs. Table 3-13 shows sev-
eral of these, each of which requires the cmath header file.

Table 3-13 Selected Mathematical Library Functions

Function Example

Description

abs

Cos

exp

fmod

log

1logl0

round

sin

sgrt

tan

y = abs(x);

y = cos(x);

y = exp(x);

y = fmod(x, z);

y = log(x);

y = loglO(x);

y = round(x);

y = sin(x);

y = sqrt(x);

y = tan(x);

Returns the absolute value of the argument. The argument and
the return value are integers.

Returns the cosine of the argument. The argument should be an
angle expressed in radians. The return type and the argument
are doubles.

Computes the exponential function of the argument, which is x.
The return type and the argument are doubles.

Returns, as a double, the remainder of the first argument divided
by the second argument. Works like the modulus operator, but the
arguments are doubles. (The modulus operator only works with
integers.) Take care not to pass zero as the second argument.
Doing so would cause division by zero.

Returns the natural logarithm of the argument. The return type
and the argument are doubles.

Returns the base-10 logarithm of the argument. The return type
and the argument are doubles.

Returns the argument rounded to the nearest whole number. The
return value is an integer.

Returns the sine of the argument. The argument should be an
angle expressed in radians. The return type and the argument
are doubles.

Returns the square root of the argument. The return type and
argument are doubles. The argument must be zero or greater.

Returns the tangent of the argument. The argument should be
an angle expressed in radians. The return type and the argument
are doubles.

With the exception of the abs and round functions, all of the functions listed in Table 3-13
take one or more double arguments and return a double value. However, most C++ compilers

More Mathematical Library Functions 127

allow them to be called with int arguments as well. So, for example, both of the following will
work to print the square root of 30.

cout << sqrt(30.0); // Displays 5.47723
cout << sqrt(30); // Displays 5.47723

Program 3-30 shows the sqrt function being used to find the hypotenuse of a right tri-
angle. The program uses the following formula, taken from the Pythagorean theorem:

In the formula, ¢ is the length of the hypotenuse, and a and b are the lengths of the other
sides of the triangle.

Program 3-30

// This program inputs the lengths of the two sides of a right

// triangle, then calculates and displays the length of the hypotenuse.
#include <iostream>

#include <cmath> // Needed to use the sqgrt function

using namespace std;

int main()

{
double a, b, c;
// Get the length of the two sides
cout << "Enter the length of side a: ";
cin >> a;
cout << "Enter the length of side b: ";
cin >> b;
// Compute and display the length of the hypotenuse
c = sqrt(pow(a, 2.0) + pow(b, 2.0));
cout << "The length of the hypotenuse is ";
cout << ¢ << endl;
return 0;
}

Program Output with Example Input Shown in Bold

Enter the length of side a: 5.0[Enter]
Enter the length of side b: 12.0[Enter]
The length of the hypotenuse is 13

The following statement, taken from line 18 of Program 3-30, calculates the square root of
the sum of the squares of the triangle’s two sides:

c = sqrt(pow(a, 2.0) + pow(b, 2.0));
Notice that the following mathematical expression is used as the sqrt function’s argument:

pow(a, 2.0) + pow(b, 2.0)

128

Chapter 3 Expressions and Interactivity

This expression calls the pow function twice: once to calculate the square of a and again to
calculate the square of b. These two squares are then added together, and the sum is sent to
the sqrt function.

Random Numbers

Some programs need to use randomly generated numbers. The C++ library has a function
called rand () for this purpose. To use the rand() function, you must include the cstdlib
header file in your program. The number returned by the function is an int. Here is an
example of how it is used.

randomNum = rand();

However, the numbers returned by the function are really pseudorandom. This means they
have the appearance and properties of random numbers, but in reality are not random.
They are actually generated with an algorithm. The algorithm needs a starting value, called
a seed, to generate the numbers. If it is not given one, it will produce the same stream of
numbers each time it is run. Program 3-31 illustrates this.

Program 3-31

// This program demonstrates what happens in C++ if you

// try to generate random numbers without setting a "seed".
#include <iostream>

#include <cstdlib>

using namespace std;

int main ()

{
int numl, num2, num3; // These hold the 3 random numbers
// Now generate and print three random numbers
numl = rand();
num2 = rand();
num3 = rand();
cout << numl << " " << num2 << " " << num3 << endl;
return 0;
}
Program Output from Run 1 Program Output from Run 2
41 18467 6334 41 18467 6334

Program 3-32 illustrates what happens when random numbers are generated after giving
the generator a seed to start with. In C++ this is done by calling the srand() function and
passing it a positive integer. The srand() function should be called only once for the
whole program.

Notice in line 10 of the program that the variable created to hold the seed is unsigned. As
you may recall, this data type holds only non-negative integers. This is the data type the
srand function expects to receive when it is called and it guarantees that no negative num-
bers will be sent to srand.

More Mathematical Library Functions

Program 3-32

1/
1/

This program demonstrates random numbers, providing
a "seed" for the random number generator.

#include <iostream>
#include <cstdlib>

us

ing namespace std;

int main()

{

int numl, num2, num3; // These hold the 3 random numbers
unsigned seed; // Random generator seed

// Get a "seed" value from the user
cout << "Enter a seed value: ";
cin >> seed;

// Set the random generator seed before calling rand()
srand(seed);

// Now generate and print three random numbers

numl = rand();

num2 = rand();

num3 = rand();

cout << numl << " " << num2 << " " << num3 << endl;
return 0;

Program Output with Example Input Shown in Bold

Run 1:
Enter
100

<&

Run 2:
a seed value: 19[Enter] Enter a seed value: 171[Enter]
15331 209 597 10689 28587

As you can see from the Program 3-32 output, when the program is run with a different
seed, a different stream of random numbers is generated. However, if we run the program
a third time using 19 or 171 as the seed again, we will get exactly the same numbers we did
the first time.

NOTE: The stream of random numbers generated on your computer system may be
different.

Notice that on line 14 of Program 3-32 cin is used to get a value from the user for the ran-
dom number generator seed. Another common practice for getting a seed value is to call
the time function, which is part of the standard library. This function returns the number
of seconds that have elapsed since midnight, January 1, 1970. To use the time function in
a program you must include the ctime header file, and you must pass 0 as an argument to
the function when you call it. The following code segment illustrates how to “seed” the
random number generator with a value obtained this way.

seed = time(0);
srand(seed);

129

130

Chapter 3 Expressions and Interactivity

<&

—
3.12

If you wish to limit the range of the random number to an integer between 1 and
maxRange, use the following formula.

randomNum = 1 + rand() % maxRange;

For example, if you wish to generate a random number in the range of 1 through 6 to rep-
resent the roll of a dice, you would use

dice = 1 + rand() % 6;

NOTE: The mod operation gives us the remainder of an integer divide. When the
integer returned by rand () is divided by 6, the remainder will be a number
between 0 and 5. Because we want a number between 1 and 6, we simply add 1 to
the result.

Checkpoint

3.29

3.30

3.31

Assume the variables anglel and angle2 hold angles stored in radians. Write a
statement that adds the sine of anglel to the cosine of angle2 and stores the result
in the variable x.

To find the cube root (the third root) of a number, raise it to the power of 3.
To find the fourth root of a number, raise it to the power of V4. Write a state-
ment that will find the fifth root of the variable x and store the result in the
variable y.

The cosecant of the angle a is

1

sina

Write a statement that calculates the cosecant of the angle stored in the variable a
and stores it in the variable y.

Introduction to Files

1 CONCEPT: Program input can be read from a file and program output can be written

to a file.

The programs you have written so far require you to re-enter data each time the program
runs. This is because the data stored in RAM disappears once the program stops running
or the computer is shut down. If a program is to retain data between the times it runs, it
must have a way of saving it. Data is saved in a file, which is usually stored on a
computer’s disk. Once the data is saved by writing it into a file, it will remain there after
the program stops running. The data can then be retrieved and used at a later time.

There are five steps that must be taken when a file is used by a program:

1. Include the header file needed to perform file input/output.
2. Define a file stream object.

Introduction to Files

3. Open the file.
4. Use the file.
5. Close the file.

Step 1: Include the header file needed to perform
file input/output.

Just as cin and cout require the iostrean file to be included in the program, C++ file access
requires another header file. The file fstream contains all the definitions necessary for file
operations. It is included with the following statement:

#include <fstream>

Step 2: Define a file stream object.

The next step in setting up a program to perform file I/O is to define one or more file
stream objects. They are called stream objects because a file can be thought of as a stream
of data. File stream objects work very much like cin and cout objects. A stream of data
can be sent to cout, which causes values to be displayed on the screen. A stream of data
can be read from the keyboard by cin and stored in variables. Likewise, streams of data
can be sent to a file stream object, which writes the data to a file. Data that is read from a
file flows from a file stream object into other variables.

The fstream header file contains definitions for the data types ofstream, ifstream, and
fstream. Before a C++ program can work with a file, it must define an object of one of
these data types. The object will be associated with an actual file stored on some secondary
storage medium, and the operations that may be performed on that file depend on which
of these three data types you pick for the file stream object. Table 3-14 lists and describes
file stream data types.

Table 3-14 File Stream Data Types

File Stream
Data Type Description

ofstream Output file stream. This data type can be used to open output files and write

data to them. If the file does not yet exist, the open operation will automatically
create it. If the file already exists, the open operation will destroy it and create a
new, empty file of the same name in its place. With the ofstream data type,
data may only be copied from variables to the file, but not vice versa.

ifstream Input file stream. This data type can be used to open existing input files and

read data from them into memory. With the ifstream data type, data may only
be copied from the file into variables, not but vice versa.

fstream File stream. This data type can be used to open files, write data to them, and

read data from them. With the fstream data type, data may be copied from
variables into a file, or from a file into variables.

<&

NOTE: In this section we only discuss the ofstream and ifstream types. The
fstream type is covered in Chapter 13.

131

132

Chapter 3 Expressions and Interactivity

Here are example statements that define ofstream and ifstream objects:

ofstream outputFile;
ifstream inputFile;

These two file stream objects, outputFile and inputFile, could have been named using
any legal C++ identifier names. However, as is good programming practice, they were
given descriptive names that clarify their use. The outputFile object is of the ofstream
type, so data can be written to any file associated with it. The inputFile object is of the
ifstream type, so data can be read from any file it is associated with.

Step 3: Open the file.

Before data can be written to or read from a file, the file must be opened. Outside of the
C++ program, a file is identified by its name. Inside a C++ program, however, a file is iden-
tified by a stream object. The object and the file name are linked when the file is opened.

Files can be opened through the open function that exists for file stream objects. Assume
inputFile is an ifstream object, defined as

ifstream inputFile;
The following statement uses inputFile to open a file named customer.dat:
inputFile.open("customer.dat"); // Open an input file

The argument to the open function in this statement is the name of the file. This links the file
customer.dat with the stream object inputFile. Until inputFile is associated with
another file, any operations performed with it will be carried out on the file customer.dat.

It is also possible to define a file stream object and open a file all in one statement. Here is
an example:

ifstream inputFile("customer.dat");

In our example open statement, the customer.dat file was specified as a simple file name,
with no path given. When no path is given, the program will look for the file in a default
directory. If the program is being executed from the command line, the default directory is
the current directory. If the program is being executed from within an integrated develop-
ment environment (IDE), the default directory depends on the particular compiler you are
using. Further information on default directories can be found in Appendices L and M on
wxDev-C++ and Microsoft Visual C++, and your instructor can provide you with specific
information for your particular system. If the file you want to open is not in the default
directory, you will need to specify its location as well as its name.

For example, on a Windows system the following statement opens file C: \data\inventory.dat
and associates it with outputFile.

outputFile.open("C:\\data\\invetory.dat");

Notice the use of the double back slashes in the file’s path. This is because, as mentioned
earlier, two back slashes are needed to represent one backslash in a string.

Introduction to Files 133

0 NOTE: Some systems cannot handle file names that contain spaces. In this case, the
entire pathname should be enclosed in an additional set of quotation marks. For example,
if the file above had been named Truck Inventory, it could be opened like this:

outputFile.open("\"C:\\data\\Truck Inventory.dat\"");

Step 4: Use the file.

Now that the file is open and can be accessed through a file stream object, you are ready to
use it. When a program is actively working with data, the data is located in random-access
memory, usually in variables. When data is written into a file, it is copied from variables
into the file. This is illustrated in Figure 3-6.

Figure 3-6

Writing data to a file

Variables
:
¥

Data is copied from variables into the file.

When data is read from a file, it is copied from the file into variables. Figure 3-7
illustrates this.

Figure 3-7

Reading data from a file

Variables 10]25)40
x
x

2 [i]

Data is copied from the file into variables.

Writing information to a file

You already know how to use the stream insertion operator (<<) with the cout object to
write information to the screen. It can also be used with file stream objects to write
information to a file. Assuming outputFile is a file stream object, the following statement
demonstrates using the << operator to write a string to a file:

outputFile << "I love C++ programming";

As you can see, the statement looks like a cout statement, except the file stream object
name replaces cout. Here is a statement that writes both a string and the contents of a
variable to a file:

outputFile << "Price: " << Price;

134 Chapter 3 Expressions and Interactivity

This statement writes the stream of information to outputFile exactly as cout would
write it to the screen.

Program 3-33 demonstrates opening a file, writing information to it, and closing it.

Program 3-33

// This program uses the << operator to write information to a file.
#include <iostream>

#include <fstream> // Needed to use files

using namespace std;

int main()

{

ofstream outputFile;
outputFile.open("demofile.txt");

cout << "Now writing information to the file.\n";
// Write 3 great names to the file

outputFile << "Bach\n";

outputFile << "Beethoven\n";

outputFile << "Mozart\n";

// Close the file
outputFile.close();
cout << "Done.\n";
return 0;

Program Screen Output

Now writing information to the file.
Done.

Output to File demofile.txt

Bach
Beethoven
Mozart

Output files have two common uses. The first is to hold computer program output. When a
program writes output to a file, rather than to the computer screen, it can be saved for later
viewing and printing. This is often done with reports that would not easily fit on one
screen or that must be printed more than once. The second common use of output files is
to hold data generated by one program that will later be read in by another program.
Because these are simple text files, they can be viewed and printed with any text editor.

Reading information from a file

The >> operator not only reads user input from the cin object, but it can also be used to
read data from a file. Assuming inFile is a file stream object, the following statement
shows the >> operator reading data from the file into the variable name:

inFile >> name;

Introduction to Files

In Program 3-33, the file demofile.txt was created and the following list of names was stored
there.

Bach
Beethoven
Mozart

Program 3-34 demonstrates the use of the >> operator to read the names from the file and
store them in a variable.

Program 3-34

// This program uses the >> operator to read information from a file.
#include <iostream>

#include <fstream> // Needed to use files

#include <string>

using namespace std;

int main()

{
ifstream inFile;
string name;
inFile.open("demofile.txt");
cout << "Reading information from the file.\n\n";
inFile >> name; // Read name 1 from the file
cout << name << endl; // Display name 1
inFile >> name; // Read name 2 from the file
cout << name << endl; // Display name 2
inFile >> name; // Read name 3 from the file
cout << name << endl; // Display name 3
inFile.close(); // Close the file
cout << "\nDone.\n";
return 0;

}

Program Screen Output
Reading information from the file.
Bach

Beethoven
Mozart

Done.

Data is read from files in a sequential manner. When a file is first opened, the file stream object’s
read position is at the first byte of the file. The first read operation extracts data starting at the
first byte. As data is read, the file stream object’s read position advances through the file.

When the >> operator extracts data from a file, it expects to read pieces of data that are
separated by whitespace characters (spaces, tabs, or newlines). In Program 3-34, the fol-
lowing statement reads a string from the file:

inFile >> name;

135

136 Chapter 3 Expressions and Interactivity

The >> operator extracts a string in this case because name is a string object. Figure 3-8
shows the first five bytes in the file:

Figure 3-8

(2 flafeln|\n]

The >> operator will extract all of the characters up to the newline, so “Bach” is the first
string read from the file. After “Bach” is extracted, the file stream object will be positioned
so the following read operation would extract the string “Beethoven.” This procedure is
followed until all three strings have been read from the file.

The file of data read in by Program 3-34 was created by Program 3-33. However, this is not
the only way to create a data file. A data file can be created with any text editor (such as
Windows WordPad). This is often done when a program has a substantial amount of input.
Placing the data in a text file ahead of time and then having the program read the data from
the file saves the user having to enter the data when the program is run. Program 3-335,
which finds the area of four rectangles, illustrates reading data from a text file named
dimensions.txt, which was previously created with a text editor. Here is a sample of the
file’s contents. Each pair of numbers is the length and width of a different rectangle.

0 2
7
20
3

0 o Ul =

Program 3-35

// This program uses the >> operator to read rectangle dimensions
// from a file. It demonstrates that, as with cin, more than one
// value can be read in from a file with a single statement.
#include <iostream>

#include <fstream>

using namespace std;

int main()

{
ifstream inFile;
int length, width;

inFile.open("dimensions.txt");
cout << "Reading dimensions of 4 rectangles from the file.\n\n";

// Process rectangle 1
inFile >> length >> width;
cout << "Area of rectangle 1: " << (length * width) << endl;

// Process rectangle 2
inFile >> length >> width;
cout << "Area of rectangle 2: " << (length * width) << endl;
(program continues)

Introduction to Files

Program 3-35 (continued)

// Process rectangle 3
inFile >> length >> width;
cout << "Area of rectangle 3: " << (length * width) << endl;

// Process rectangle 4
inFile >> length >> width;
cout << "Area of rectangle 4: " << (length * width) << endl;

// Close the file
inFile.close();
cout << "Done.\n";

return 0;

Program Output with Example Input Shown in Bold

Reading

Area of
Area of
Area of
Area of
Done

dimensions of 4 rectangles from the file.
rectangle 1: 20
rectangle 2: 35
rectangle 3: 120
rectangle 4: 24

Step 5: Close the file.

The opposite of opening a file is closing it. You have probably noticed that in Programs 3-33
through 3-35 the files were closed once the program was finished using them. Although a
program’s files are automatically closed when the program shuts down, it is a good
programming practice to write statements that explicitly close them. Here are two reasons
a program should close files when it is finished using them:

® Most operating systems temporarily store information in a file buffer before it is written
to a file. A file buffer is a small holding section of memory that file-bound information is
first written to. When the buffer is filled, all the information stored there is written to the
file. This technique improves the system’s performance. Closing a file causes any
unsaved information that may still be held in a buffer to be saved to its file. This means
the information will be in the file if you need to read it later in the same program.

e Some operating systems limit the number of files that may be open at one time. When
a program keeps open files that are no longer being used, it uses more of the operat-
ing system’s resources than necessary.

Calling the file stream object’s close function closes a file. Here is an example:

outputFile.close();

Checkpoint

3.32 What header file must be included in a program to use files?

3.33 What is the difference between a file stream object with the data type ifstream and

one with the data type ofstream?

137

138

Chapter 3 Expressions and Interactivity

1

3.13

L

Program 3-36

3.34 Which program statement links a file stream object with an actual disk file?

3.35 Assuming dataFile is an ofstream object associated with a disk file named
payroll.dat, which of the following statements would write the value of the

salary variable to the file?

) cout << salary;
) ofstream << salary;
dataFile << salary;

payroll.dat << salary;

Focus on Debugging: Hand Tracing a Program

Hand tracing is a debugging process where you pretend that you are the computer execut-
ing a program. You step through each of the program’s statements one by one. As you look
at a statement, you record the contents that each variable will have after the statement exe-
cutes. This process is often helpful in finding mathematical mistakes and other logic errors.

To hand trace a program you construct a chart with a column for each variable. The rows
in the chart correspond to the lines in the program. For example, Program 3-36 is shown
with a hand trace chart. The program uses the following four variables: num1, num2, num3,
and avg. Notice that the hand trace chart has a column for each variable and a row for
each line of code in function main.

(with hand trace chart empty)

// This program asks for three numbers, then displays

// their average.

#include <iostream>
using namespace std;

int main()

{

}

double numl,

cout <<

cin

>>

cout <<

cin

>>

cout <<

cin

avg

>>

num2,

"Enter the
numl;
"Enter the
num2;
"Enter the

num3;

It contains a bug. Can you

num3,

avg;

first number: ";

second number: ";

third number: ";

numl + num2 + num3 / 3;

cout << "The average is " << avg << endl;

return 0;

find it?

numl

num2

num3 avg

(program continues)

Focus on Debugging: Hand Tracing a Program

Program 3-36 (with hand trace chart empty)(continued)

Program Output with Example Input Shown in Bold
Enter the first number: T1O[Enter]

Enter the second number: 20[Enter]

Enter the third number: 3O0[Enter]

The average is 40

Notice that the program runs, but it displays an incorrect average. The correct average of
10, 20, and 30 is 20, not 40. To find the error we will hand trace the program.

To hand trace a program, you step through each statement, observe the operation that is
taking place, and then record the contents of the variables after the statement executes.
After the hand trace is complete, the chart will appear as follows. We have written question

marks in the chart where we do not yet know the contents of a variable.

Program 3-36 (with hand trace chart filled in)

// This program asks for three numbers, then disp

lays

// their average. It contains a bug. Can you find it?

#include <iostream>

using namespace std;

int main()

{ numl num?2 num3 avg
double numl, num2, num3, avg; ? ? ? ?
cout << "Enter the first number: "; ? ? ? ?
cin >> numl; 10 ? ? ?
cout << "Enter the second number: "; 10 ? ? ?
cin >> num2; 10 20 ? ?
cout << "Enter the third number: "; 10 20 ? ?
cin >> num3; 10 20 30 ?
avg = numl + num2 + num3 / 3; 10 20 30 40
cout << "The average is " << avg << endl; 10 20 30 40
return 0;

}

Do you see the error? By examining the statement on line 16 that computes the average, we
find a mistake. The division operation takes place before the addition operations, so we

must rewrite that statement as

avg = (numl + num2 + num3) / 3;

139

140 Chapter 3 Expressions and Interactivity

Hand tracing is a simple process that focuses your attention on each statement in a pro-
gram. Often this helps you locate errors that are not obvious.

=g
3.14 Green Fields Landscaping Case Study—Part 1
el

Problem Statement

One of the services provided by Green Fields Landscaping is the sale and delivery of
mulch, which is measured and priced by the cubic yard. You have been asked to create a
program that will determine the number of cubic yards of mulch the customer needs and
the total price.

Program Design

Program Steps

The program must carry out the following general steps (This list of steps is sometimes
called General Pseudocode):

1. Set the price for a cubic yard of mulch (currently 22.00).

2. Ask the user to input the number of square feet to be covered and the depth of the
mulch to be spread over this area.

Calculate the number of cubic feet of mulch needed.

Calculate the number of cubic yards of mulch needed.

Calculate the total price for the mulch.

Display the results.

N dw

Variables whose values will be input

double squareFeet // square feet of land to be covered
int depth // how many inches deep the mulch is to be spread

Variables whose values will be output

double cubicYards // number of cubic yards of mulch needed
double totalPrice // total price for all the cubic yards ordered

Program Constants

double PRICE_PER CUBIC_YD // the price for 1 delivered cubic yard of mulch

Additional Variables

double cubicFeet // number of cubic feet of mulch needed

Detailed Pseudocode (including actual variable names and needed calculations)

PRICE_PER CUBIC_YD = 22.00

Input squareFeet // with prompt
Input depth // with prompt
cubicFeet = squareFeet * (depth / 12.0)

Green Fields Landscaping Case Study—Part 1

cubicYards = cubicFeet / 27
totalPrice = cubicYards * PRICE PER_CUBIC_YD
Display cubicYards, PRICE_PER CUBIC YD, and totalPrice

The Program

The next step, after the pseudocode has been checked for logic errors, is to expand the
pseudocode into the final program. This is shown in Program 3-37.

Program 3-37

// Program used by Green Fields Landscaping to determine the number of
// cubic yards of mulch a customer needs and its price.

#include <iostream>

#include <iomanip>

using namespace std;

const double PRICE_PER CUBIC_YD = 22.00;

int main()

{

double squareFeet; // square feet of land to be covered

int depth; // inches deep the mulch is to be spread

double cubicFeet, // number of cubic feet of mulch needed
cubicYards, // number of cubic yards of mulch needed
totalPrice; // total price for all the cubic yards ordered

// Get inputs

cout << "Number of square feet to be covered with mulch: ";
cin >> squareFeet;

cout << "Number of inches deep: ";

cin >> depth;

// Perform calculations

cubicFeet = squareFeet * (depth / 12.0);
cubicYards = cubicFeet / 27;

totalPrice = cubicYards * PRICE_PER_CUBIC_YD;

// Display outputs
cout << "\n Number of cubic yards needed: " << cubicYards << endl;
cout << fixed << showpoint << setprecision(2);
cout << "Price per cubic yard: $" << setw(7)
<< PRICE_PER CUBIC_YD << endl;
cout << "Total price: $" << setw(7)
<< totalPrice << endl << endl;

return 0;

(program continues)

141

142

Chapter 3 Expressions and Interactivity

Program 3-37 (continued)

Program Output with Example Input Shown in Bold

Number of square feet to be covered with mulch: 270[Enter]
Number of inches deep: 12[Enter]

Number of cubic yards needed: 10
Price per cubic yard: $§ 22.00
Total price: $ 220.00

Program Output with Different Example Input Shown in Bold

Number of square feet to be covered with mulch: 800[Enter]
Number of inches deep: 3[Enter]

Number of cubic yards needed: 7.40741
Price per cubic yard: $ 22.00
Total price: $ 162.96

General Crates, Inc., Case Study

The following additional case study, which contains applications of material introduced in
Chapter 3, can be found on the student CD.

This case study develops a program that accepts the dimensions on a crate to be built and
outputs information on its volume, building cost, selling cost, and profit. The case study
illustrates the major program development steps: initial problem statement, program
design using hierarchy charts and pseudocode, development of the algorithm needed to
create the outputs, source code for the final working program, and output created by run-
ning the program with several test cases.

3.15 Tying It All Together: Word Game

With the programming knowledge you have learned so far, you can start constructing sim-
ple games. Here is one that creates a program to play a word game. It will ask the player to
enter the following:

e their name (name) ® a food or product you can buy (product)
e the name of a city (city) ¢ an adjective noun (petname)

e a fun activity (activity) e a number between 10 and 50 (age)

® atype of animal (animal) e a number between 0 and 15 (kids)

Then it will display a story using those words.

Tying It All Together: Word Game

Program 3-38

// This program uses strings to play a word game.
#include <iostream>

#include <string>

using namespace std;

int main()
{ // Stored strings

string sl = "There once was a person named ",
s2 = " who lived in ",
s3 = "\nand who loved ",
s4 = ". At the age of ",
s5 = "y "y
s6 = " graduated \nfrom high school and went to work in a
s7 = " factory.\n",
s8 = " got married and had ",
s9 = " children and a pet ",
s10= " named ",
sll= ".\nEvery weekend the family and ",
sl2= " had fun ",
sl3= " together.";

// Values input by the user
string name, city, activity, animal, product, petName;
int age, kids;

cout << "Enter the following information and I\'1l1l "
<< "tell you a story.\n\n";

cout << "Your name: ";

getline(cin, name);

cout << "The name of a city: ";
getline(cin, city);

cout << "A physical activity (e.g. jogging, playing baseball): ";
getline(cin, activity);

cout << "An animal: ";
getline(cin, animal);

cout << "A food or product you can buy: ";
getline(cin, product);

cout << "An adjective noun (e.g. blue car): ";
getline(cin, petName);

cout << "A number between 10 and 50: ";
cin >> age;

cout << "A number between 0 and 15: ";
cin >> kids;

(program continues)

143

144 Chapter 3 Expressions and Interactivity

Program 3-38 (continued)

cout << endl << sl << name << s2 << city << s3 << activity;
cout << s4 << age << s5 << name << s6 << product << s7;

cout << name << s8 << kids << s9 << animal << sl0 << petName;
cout << sll << petName << sl2 << activity << s13 << endl;

return 0;

Sample Run with User Input Shown in Bold
Enter the following information and I'll tell you a story.

Your name: Joe[Enter]

The name of a city: Honolulu[Enter]

A physical activity (e.g. jogging, playing baseball): scuba diving[Enter]
An animal: bear[Enter]

A food or product you can buy: potato chips[Enter]

An adjective noun (e.g. blue car): dish rag[Enter]

A number between 10 and 50: 20[Enter]

A number between 0 and 15: T10[Enter]

There once was a person named Joe who lived in Honolulu

and who loved scuba diving. At the age of 20, Joe graduated

from high school and went to work in a potato chips factory.

Joe got married and had 10 children and a pet bear named dish rag.
Every weekend the family and dish rag had fun scuba diving together.

Try running this program with a variety of inputs. Then try modifying it to make up new
stories.

Review Questions and Exercises
Short Answer
1. Assume a string object has been defined as follows:
string description;

A) Write a cin statement that reads in a one word description.
B) Write a statement that reads in a description that can contain multiple words
separated by blanks.

2. Write a definition statement for a character array large enough to hold any of the
following strings:

"Billy Bob's Pizza"

"Downtown Auto Supplies"

"Betty Smith School of Architecture"
"ABC Cabinet Company"

3. Assume the array name is defined as follows:

char name[25];

Review Questions and Exercises

A) Using a stream manipulator, write a cin statement that will read a string into
name, but will read no more characters than name can hold.

B) Using the getline function, write a cin statement that will read a string into
name but that will read no more characters than name can hold.

Assume the following variables are defined:

int age;
double pay;
char section;

Write a single cin statement that will read input into each of these variables.

What header files must be included in the following program?

int main()

{
double amount = 89.7;
cout << fixed << showpoint << setprecision(l);
cout << setw(8) << amount << endl;
return 0;
}

Write a definition statement for a character array named city. It should be large
enough to hold a string 30 characters in length.

Assume the following preprocessor directive appears in a program:
#define SIZE 12

How will the preprocessor rewrite the following lines?

A) price = SIZE * unitCost;
B) cout << setw(SIZE) << 98.7;
C) cout << SIZE;

Complete the following table by writing the value of each expression in the Value column.

Expression Value

28 / 4 - 2

6 + 12 * 2 - 8

4 + 8 % 2

6 + 17 % 3 - 2

2 422 % (9 - 7)

(8 + 7) * 2

(16 + 7) 32 - 1

12 / (10 - 6)

(19 - 3) * (2 +2) / 4

Write C++ expressions for the following algebraic expressions:

A) a = 12x
B) z = 5x + 14y + 6k
C) y=x4
h+ 12
D =
)&= %
3
E) ¢ = 4

145

146

Chapter 3 Expressions and Interactivity

10.

11.

12.

13.

14.

15.

Assume a program has the following variable definitions

int units;
float mass;
double weight;

and the following statement:
weight = mass * units;
Which automatic data type conversions will take place?

Assume a program has the following variable definitions

int a, b = 2;
double c 4.3;

and the following statement:
a=>b * c;
What value will be stored in a?

Assume that gty and salesReps are both integers. Use a type cast expression to
rewrite the following statement so it will no longer perform integer division.

unitsEach = gty / salesReps;

Rewrite the following variable definition so the variable is a named constant with the
value 12.

int rate;

Complete the following table by writing statements with combined assignment opera-
tors in the right-hand column. The statements should be equivalent to the statements
in the left-hand column.

Statements with Statements with
Assignment Operator Combined Assignment Operator

X =x + 5;

total = total + subtotal;
dist = dist / rep;

ppl = ppl * period;

inv inv - shrinkage;
num = num % 2;

Werite a multiple assignment statement that can be used instead of the following group
of assignment statements:

east = 1;
west = 1;
north = 1;
south = 1

.
r

16.

17.

18.

19.

20.

Review Questions and Exercises

Replace the following statements with a single statement that initializes sum to 0 at
the time it is defined.

int sum;
sum = 0;

Is the following code legal? Why or why not?

const int DAYS IN WEEK;
DAYS IN WEEK = 7;

Werite a cout statement so the variable divsales is displayed in a field of eight

spaces, in fixed-point notation, with a decimal point and two decimal digits.

Write a cout statement so the variable profit is displayed in a field of 12 spaces, in
fixed-point notation, with a decimal point and four decimal digits.

What header file must be included

A) to perform mathematical functions like sqrt?
B) to use files?
C) to use stream manipluators like setprecision?

Algorithm Workbench

21.

22.

23.

24.

A bowling alley is offering a prize to the bowler whose average score from bowling
three games is the lowest. Write a pseudocode algorithm for a program that inputs
three bowling scores and calculates and displays their average.

Pet World offers a 15% discount to senior citizens. Write a pseudocode algorithm for
a program that inputs the amount of a sale, then calculates and displays both the
amount the customer saves and the amount they must pay.

A retail store grants its customers a maximum amount of credit. Each customer’s
available credit is his or her maximum amount of credit minus the amount of credit
used. Write a pseudocode algorithm for a program that asks for a customer’s maxi-
mum credit and amount of credit used, then calculates and displays the customer’s
available credit.

Little Italy Pizza charges $12.00 for a 12-inch diameter sausage pizza and $14.00
for a 14-inch diameter sausage pizza. Write the pseudocode algorithm that calcu-
lates and displays how much each of these earns the establishment per square inch
of pizza sold. (Hint: you will need to first calculate how many square inches there
are in each pizza.)

Predict the Output

25.

Trace the following programs and tell what each will display. (Some require a calculator.)
A) (Assume the user enters 38711. Use a calculator.)

#include <iostream>
using namespace std;

147

148 Chapter 3 Expressions and Interactivity

B)

26. A)

int main()

{
double salary, monthly;
cout << "What is your annual salary? ";
cin >> salary;
monthly = static_cast<int>(salary) / 12;
cout << "Your monthly wages are " << monthly
return 0;

}

#include <iostream>
using namespace std;

int main()

{
long x, y, 2;
X =y =2z = 4;
X += 2;
y = 1;
zl *=3;
cout << x << " " K y << " " K< z << endl;
return 0;
}

#include <iostream>

using namespace std;

#define WHO "Columbus"

#define DID "sailed"

#define WHAT "the ocean blue."

int main()

{
const int WHEN = 1492;
cout << "In " << WHEN << " " << WHO << " "
<< DID << " " << WHAT << endl;
return 0;
}

(Assume the user enters George Washington.)

#include <iostream>
#include <iomanip>
#include <string>
using namespace std;
int main()

{

string userInput;

cout << "What is your name? ";

cin >> userInput;

cout << "Hello " << userInput << endl;
return 0;

<< endl;

Review Questions and Exercises

B) (Assume the user enters George Washington.)
#include <iostream>
#include <iomanip>
#include <string>
using namespace std;

int main()

{
string userInput;
cout << "What is your name? ";
getline(cin, userInput);
cout << "Hello " << userInput << endl;
return 0;

¥

C) (Assume the user enters 36720152. Use a calculator.)
#include <iostream>
#include <iomanip>
using namespace std;

int main()

{
long seconds;
double minutes, hours, days, months, years;
cout << "Enter the number of seconds that have\n";
cout << "elapsed since some time in the past and\n";
cout << "I will tell you how many minutes, hours,\n";
cout << "days, months, and years have passed: ";
cin >> seconds;
minutes = seconds / 60;
hours = minutes / 60;
days = hours / 24;
years = days / 365;
months = years * 12;
cout << fixed << showpoint << setprecision(4) << left;
cout << "Minutes: " << setw(6) << minutes << endl;
cout << "Hours: " << setw(6) << hours << endl;
cout << "Days: " << setw(6) << days << endl;
cout << "Months: " << setw(6) << months << endl;
cout << "Years: " << setw(6) << years << endl;
return 0;

}

Find the Errors
27. Each of the following programs has some errors. Locate as many as you can.

A) using namespace std;
int main()

{

double numberl, number2, sum;

149

150 Chapter 3 Expressions and Interactivity

Cout << "Enter a number: ";

Cin << numberl;

Cout << "Enter another number: ";

Cin << number2;

numberl + number2 = sum;

Cout "The sum of the two numbers is " << sum
return 0;

B) #include <iostream>

using namespace std;

int main()

{
int numberl, number2;
double quotient;
cout << "Enter two numbers and I will divide\n";
cout << "the first by the second for you.\n";
cin >> numberl, number2;
quotient = double<static_cast>(numberl)/number2;
cout << quotient

28. A) #include <iostream>;
using namespace std;
int main()

{
const int numberl, number2, product;
cout << "Enter two numbers and I will multiply\n";
cout << "them for you.\n";
cin >> numberl >> number?2;
product = numberl * number2;
cout << product
return 0;
}

B) #include <iostream>;
using namespace std;
main
{

int numberl, number2;

cout << "Enter two numbers and I will multiply\n"
cout << "them by 50 for you.\n"

cin >> numberl >> number2;

numberl =* 50;

number2 =* 50;

return 0;

cout << numberl << " " << number2;

29. A) #include <iostream>;
using namespace std;
main
{

double number, half;

I

VideoNote
Solving the
Stadium
Seating
Problem

Review Questions and Exercises

cout << "Enter a number and I will divide it\n"
cout << "in half for you.\n"

cin >> numberl;

half =/ 2;

B) #include <iostream>;
using namespace std;
int main()

{
char name, go;
cout << "Enter your name: ";
cin.width(20);
cin.getline >> name;
cout << "Hi " << name << endl;
cout "Press the ENTER key to end this program.";
cin >> go;
return 0;
¥

Soft Skills

Often programmers work in teams with other programmers to develop a piece of software.
It is important that the team members be able to communicate clearly with one another.

30. Suppose you and a fellow student have been assigned to develop together the pizza
cost program described in Problem 24. You have developed a pseudocode algorithm
for the program and emailed it to your partner, but he does not understand how it
works. Write a paragraph that you might email back clearly explaining how the
algorithm works, what steps must be done, why they must be done in a particular
order, and why the calculations you have specified in the pseudocode are the correct
ones to use. Write your answer using full English sentences with correct spelling and
grammar.

Programming Challenges

1. Miles per Gallon

Werite a program that calculates a car’s gas mileage. The program should ask the user to
enter the number of gallons of gas the car can hold and the number of miles it can be
driven on a full tank. It should then calculate and display the number of miles per gallon
the car gets.

2. Stadium Seating

There are three seating categories at a stadium. For a softball game, Class A seats cost $135,
Class B seats cost $12, and Class C seats cost $9. Write a program that asks how many
tickets for each class of seats were sold, then displays the amount of income generated
from ticket sales. Format your dollar amount in a fixed-point notation with two decimal
points and make sure the decimal point is always displayed.

151

152 Chapter 3 Expressions and Interactivity

3. Housing Costs

Write a program that asks the user to enter their monthly costs for each of the following
housing related expenses:

® rent or mortgage payment e phones
o utilities e cable

The program should then display the total monthly cost of these expenses, and the total
annual cost of these expenses.

4. How Much Insurance?

Many financial experts advise property owners to insure their homes or buildings for at
least 80 percent of the amount it would cost to replace the structure. Write a program that
asks the user to enter the replacement cost of a building and then displays the minimum
amount of insurance that should be purchased for the property.

5. Batting Average

Write a program to find a baseball player’s batting average. The program should ask the
user to enter the number of times the player was at bat and the number of hits he got. It
should then display his batting average to 4 decimal places.

6. Test Average

Werite a program that asks for five test scores. The program should calculate the average
test score and display it. The number displayed should be formatted in fixed-point nota-
tion, with one decimal point of precision.

7. Average Rainfall

Write a program that calculates the average monthly rainfall for three months. The
program should ask the user to enter the name of each month, such as June or July, and the
amount of rain (in inches) that fell that month. The program should display a message
similar to the following;:

The average monthly rainfall for June, July, and August was 6.72 inches.

8. Box Office

A movie theater only keeps a percentage of the revenue earned from ticket sales. The
remainder goes to the distibutor. Write a program that calculates a theater’s gross and net
box office profit for a night. The program should ask for the name of the movie, and how
many adult and child tickets were sold. (The price of an adult ticket is $6.00 and a child’s
ticket is $3.00.) It should display a report similar to the following:

Movie Name: “Wheels of Fury”
Adult Tickets Sold: 382

Child Tickets Sold: 127

Gross Box Office Profit: $ 2673.00
Amount Paid to Distributor: -$ 2138.40
Net Box Office Profit: $ 534.60

Assume the theater keeps 20 percent of the gross box office profit.

Review Questions and Exercises 153

@D 2. How Many Widgets?

The Yukon Widget Company manufactures widgets that weigh 9.2 pounds each. Write a
program that calculates how many widgets are stacked on a pallet, based on the total
weight of the pallet. The program should ask the user how much the pallet weighs by itself
and with the widgets stacked on it. It should then calculate and display the number of
widgets stacked on the pallet.

10. How many Calories?

A bag of cookies holds 40 cookies. The calorie information on the bag claims that there are
10 “servings” in the bag and that a serving equals 300 calories. Write a program that asks
the user to input how many cookies they actually ate and then reports how many total
calories were consumed.

11. Celsius to Fahrenheit

Write a program that converts Celsius temperatures to Fahrenheit temperatures. The
formula is

F = gc+3z

where F is the Fahrenheit temperature and C is the Celsius temperature. The program
should prompt the user to input a Celsius temperature and should display the corresponding
Farenheit temperature.

12. Currency

Write a program that will convert U.S. dollar amounts to Japanese yen and to euros,
storing the conversion factors in the constant variables YEN_PER_DOLLAR and
EUROS_PER_DOLLAR. To get the most up-to-date exchange rates, search the Internet
using the term “currency exchange rate” or “currency converter”. If you cannot find the
most recent exchange rates, use the following:

1 Dollar = .952 Yen
1 Dollar = .7175 Euros

13. Monthly Sales Tax

A retail company must file a monthly sales tax report listing the sales for the month and
the amount of sales tax collected. Write a program that asks for the month, the year, and
the total amount collected at the cash register (that is, sales plus sales tax). Assume the
state sales tax is 4 percent and the county sales tax is 2 percent.

If the total amount collected is known and the total sales tax is 6 percent, the amount of
product sales may be calculated as

T

1.06

where S is the product sales and T is the total income (product sales plus sales tax).

154

Chapter 3 Expressions and Interactivity

The program should display a report similar to the following:

Month: March 2008

Total Collected: $ 26572.89
Sales: S 25068.76
County Sales Tax: S 501.38
State Sales Tax: $ 1002.75
Total Sales Tax: $ 1504.13

@I 14. Property Tax

Madison County collects property taxes on the assessed value of property, which is 60 per-
cent of its actual value. For example, if a house is valued at $158,000 its assessed value is
$94,800. This is the amount the homeowner pays tax on. At last year’s tax rate of $2.64
for each $100 of assessed value, the annual property tax for this house would be $2502.72.
Write a program that asks the user to input the actual value of a piece of property and
the current tax rate for each $100 of assessed value. The program should then
calculate and report how much annual property tax the homeowner will be charged for
this property.

15. Senior Citizen Property Tax

Madison County provides a $5000 homeowner exemption for its senior citizens. For exam-
ple, if their house is valued at $158,000 its assessed value would be $94,800, as explained
above. However they would only pay tax on $89,800. At last year’s tax rate of $2.64 for each
$100 of assessed value, their property tax would be $2370.72. In addition to the tax break,
senior citizens are allowed to pay their property tax in 4 equal payments. The quarterly pay-
ment due on this property would be $592.68. Write a program that asks the user to input the
actual value of a piece of property and the current tax rate for each $100 of assessed value.
The program should then calculate and report how much annual property tax a senior home-
owner will be charged for this property and what their quarterly tax bill will be.

16. Math Tutor

Werite a program that can be used as a math tutor for a young student. The program should
display two random numbers between 1 and 9 to be added, such as

2
1

After the student has entered an answer and pressed the [Enter] key, the program should
display the correct answer so the student can see if his or her answer is correct.

17. Interest Earned

Assuming there are no deposits other than the original investment, the balance in a savings
account after one year may be calculated as

R T
Amount = Principal * (1 4 Lte)
T

where Principal is the balance in the account, Rate is the annual interest rate, and T is the
number of times the interest is compounded during a year. (e.g., T is 4 if the interest is com-
pounded quarterly.)

L) myCodefate

Review Questions and Exercises 155

Write a program that asks for the principal, the interest rate, and the number of times the
interest is compounded. It should display a report similar to the following:

Interest Rate: 4.25%
Times Compounded: 12
Principal: $ 1000.00
Interest: S 43.33
Final balance: $ 1043.33

18. Monthly Payments

The monthly payment on a loan may be calculated by the following formula:

Rate * (1 + Rate)N “
(1 + Rate) — 1

Payment = L

Rate is the monthly interest rate, which is the annual interest rate divided by 12. (A 12
percent annual interest would be 1 percent monthly interest.) N is the number of payments
and L is the amount of the loan. Write a program that asks for these values and displays
a report similar to the following:

Loan Amount: $ 10000.00
Monthly Interest Rate: 1%
Number of Payments: 36
Monthly Payment: S 332.14
Amount Paid Back: $ 11957.15
Interest Paid: $ 1957.15

19. Pizza Slices

Joe’s Pizza Palace needs a program to calculate the number of slices a pizza of any size can
be divided into. The program should perform the following steps:

A) Ask the user for the diameter of the pizza in inches.

B) Calculate the number of slices that may be taken from a pizza of that size if each
slice has an area of 14.125 square inches.

C) Display a message telling the number of slices.

The number of square inches in the total pizza can be calculated with this formula:

Area = mur?

where variable r is the radius of the pizza and = is the Greek letter PL. In your program
make PI a named constant with the value 3.14. Display the number of slices as a whole
number (i.e., with no decimals).

20. How Many Pizzas?

Modify the program you wrote in Programming Challenge 19 so that it reports the number
of pizzas you need to buy for a party if each person attending is expected to eat an average
of 4 slices. The program should ask the user for the number of people who will be at the
party and for the diameter of the pizzas to be ordered. It should then calculate and display
the number of pizzas to purchase. Because it is impossible to buy a part of a pizza, the
number of required pizzas should be displayed as a whole number.

156

Chapter 3 Expressions and Interactivity

21. Angle Calculator

Werite a program that asks the user for an angle, entered in radians. The program should
then display the sine, cosine, and tangent of the angle. (Use the sin, cos, and tan library
functions to determine these values.) The output should be displayed in fixed-point nota-
tion, rounded to four decimal places of precision.

22. Stock Transaction Program

Last month Joe purchased 100 shares of stock. Here are the details of the purchase:

e When Joe purchased the stock, he paid $32.87 per share.
e Joe paid his stock broker a commission that amounted to 2% of the amount he paid
for the stock.

Two months later Joe sold the stock. Here are the details of the sale:

e He sold the stock for $33.92 per share.
e He paid his stock broker another commission that amounted to 2% of the amount he
received for the stock.

Werite a program that displays the following information:

e The amount of money Joe paid for the stock.

e The amount of commission Joe paid his broker when he bought the stock.

e The amount that Joe sold the stock for.

e The amount of commission Joe paid his broker when he sold the stock.

e The amount of profit or loss that Joe had after selling his stock and paying both
broker commissions.

23. Using Files—Storing and Retrieving Numbers
For this assignment you will write two programs:

Program 1 ~ Write a program that asks the user to enter five floating-point numbers.
The program should create a file and save all five numbers to the file.

Program 2 Write a program that opens the file created by Program 1, reads the five
numbers, and displays them. The program should also calculate and
display the sum of the five numbers.

24. Using Files—Monthly Sales Tax Modification

Modify the program you wrote for Programming Challenge 13 (Monthly Sales Tax) so it
writes its output to a file instead of to the screen. After the program has finished running,
print the contents of the file to hand in.

25. Using Files—Average Rainfall Modification

Modify the program you wrote for Programming Challenge 7 (Average Rainfall) so it
reads its input from a file instead of from the keyboard. Sample data to test your program
can be found in the rainfall.dat file.

10000
ogoooaono
1000n0oon
Oonoo0ooog
EimEm i
1000
| @49 Making Decisions
oooo

o
(NN]
—
o
<
I
)

TOPICS
4.1 Relational Operators 4.10 Comparing Characters and Strings
4.2 The if Statement 4.11 The Conditional Operator
4.3 The if/else Statement 4.12 The switch Statement
4.4 The if/else if Statement 4.13 Enumerated Data Types
4.5 Menu-Driven Programs 4.14 Testing for File Open Errors
4.6 Nested if Statements 4.15 Focus on Testing and Debugging:
4.7 Logical Operators Validating Output Results
4.8 Validating User Input 4.16 Green Fields Landscaping Case
4.9 More About Variable Definitions Study—Part 2
and Scope 4.17 Tying It All Together: Fortune Teller

—
41 Relational Operators

1 CONCEPT: Relational operators allow you to compare numeric and char values and
determine whether one is greater than, less than, equal to, or not equal to
another.

So far, the programs you have written follow this simple scheme:

e Gather input from the user.
e Perform one or more calculations.
e Display the results on the screen.

Computers are good at performing calculations, but they are also quite adept at comparing
values to determine if one is greater than, less than, or equal to, the other. These types of
operations are valuable for tasks such as examining sales figures, determining profit and
loss, checking a number to ensure it is within an acceptable range, and validating the input
given by a user.

157

158

Chapter 4 Making Decisions

Numeric data is compared in C++ by using relational operators. Characters can also be com-
pared with these operators, because characters are considered numeric values in C++. Each
relational operator determines whether a specific relationship exists between two values. For
example, the greater-than operator (>) determines if a value is greater than another. The equality
operator (==) determines if two values are equal. Table 4-1 lists all of C++’s relational operators.

Table 4-1 Relational Operators

Relational

Operators Meaning

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

Equal to
Not equal to

NOTE: All the relational operators are binary operators with left-to-right associativity.
Recall that associativity is the order in which an operator works with its operands.

All of the relational operators are binary. This means they use two operands. Here is an
example of an expression using the greater-than operator:

X >y

This expression is called a relational expression. It is used to determine whether x is greater
than y. The following expression determines whether x is less than y:

x <y

The Value of a Relationship

So, how are relational expressions used in a program? Remember, all expressions have a
value. Relational expressions are Boolean expressions, which means their value can only
be true or false. If x is greater than y, the expression x >y will be true, while the expression
y == x will be false.

The == operator determines whether the operand on its left is equal to the operand on its
right. If both operands have the same value, the expression is true. Assuming that a is 4,
the following expression is true:

a == 4
But the following is false:

a == 2

WARNING! Notice the equality operator is two = symbols together. Don’t confuse this
operator with the assignment operator, which is one = symbol. The == operator determines
if a variable is equal to another value, but the = operator assigns the value on the operator’s
right to the variable on its left. There will be more about this later in the chapter.

Relational Operators

A couple of the relational operators actually test for two relationships. The >= operator
determines whether the operand on its left is greater than or equal to the operand on the
right. Assuming that a is 4, b is 6, and c is 4, both of the following expressions are true:

b >= a
a > ¢

But the following is false:
a >= 5

The <= operator determines whether the operand on its left is less than or equal to the
operand on its right. Once again, assuming that a is 4, b is 6, and c is 4, both of the follow-
ing expressions are true:

a <= c¢
b <= 10

But the following is false:
b <= a

The last relational operator is !=, which is the not-equal operator. It determines
whether the operand on its left is not equal to the operand on its right, which is the
opposite of the == operator. As before, assuming a is 4, b is 6, and ¢ is 4, both of the
following expressions are true:

These expressions are true because a is zot equal to b and b is not equal to c. But the fol-
lowing expression is false because a is equal to c:

a !l=c

Table 4-2 shows other relational expressions and their true or false values.

Table 4-2 Example Relational Expressions (Assume x is 10 and y is 7.)

Expression Value

x <y false, because x is not less than y.

X >y true, because x is greater than y.

X >=y true, because x is greater than or equal to y.
X <=y false, because x is not less than or equal to y.
y !=x true, because y is not equal to x.

What Is Truth?

If a relational expression can evaluate to either true or false, how are those values represented
internally in a program? How does a computer store ¢rue in memory? How does it store false?

As you saw in Program 2-16, those two abstract states are converted to numbers. This can
be confusing, especially for new programmers, because in C++ zero is considered false and
any non-zero value is considered true. The C++ keyword false is stored as 0 and the keyword
true is stored as 1. And when a relational expression is false it evaluates to 0. However,
when a relational expression is true it does not always evaluate to 1. Though it usually
does, it can actually evaluate to any non-zero value.

159

160 Chapter 4 Making Decisions

To illustrate this more fully, look at Program 4-1.

Program 4-1

// This program displays the values of true and false

#include <iostream>
using namespace std;

int main()

{
bool truevValue, falseValue;
int x = 5, y = 10;
truevalue = (x < y);
falsevalue = (y == x);
cout << "True 1is " << trueValue << endl;
cout << "False is " << falseValue << endl;
return 0;
}

Program Output

True is 1
False is 0

states.

Let’s examine the statements containing the relational expressions a little closer:

truevValue =
falsevValue =

(x <y);

(y == x);
These statements may seem odd because they are assigning the value of a comparison to a vari-
able. In the first statement, the variable truevalue is being assigned the result of x < y. Because
x is less than y, the expression is true, and the variable truevalue is assigned a non-zero value.
In the second statement, the expression y == x is false, so the variable falsevalue is set to 0.

When writing statements such as these, most programmers enclose the relational expres-
sion in parentheses, as shown above, to make it clearer.

Parentheses are not actually required, however, because even without them the relational

operation is carried out before the assignment operation is performed. This occurs because

relational operators have a higher precedence than the assignment operator. Likewise,

arithmetic operators have a higher precedence than relational operators.

The statement
result = x <y - 8;

is equivalent to the statement
result = x < (y - 8);

In both cases, y - 8 is evaluated first. Then this value is compared to x. Notice, however,
how much clearer the second statement is. It is always a good idea to place parentheses
around an arithmetic expression when its result will be used in a relational expression.

Relational Operators

Table 4-3 shows examples of other statements that include relational expressions.

Table 4-3 Statements that Include Relational Expressions
(Assume x is 10, y is 7, and z is an int or bool.)

Statement

Outcome

z =X<y
cout << (x > vy

zZ = (x >=Y);

):

cout << (x <=Y);
z = (v != x);
cout << (x == (y + 3));

z is assigned O because x is not less than y.

Displays 1 because x is greater than y.

z is assigned 1 because x is greater than or equal to y.
Displays 0 because x is not less than or equal to y.

z is assigned 1 because y is not equal to x.

Displays 1 because x is equal toy + 3.

Relational operators also have a precedence order among themselves. The two operators that
test for equality or lack of equality (== and !=) have the same precedence as each other. The
four other relational operators, which test relative size, have the same precedence as each
other. These four relative relational operators have a higher precedence than the two equality
relational operators. Table 4-4 shows the precedence of relational operators.

Table 4-4 Precedence of Relational Operators

(Highest to Lowest)

Here is an example of how this is applied. If a =
statement would cause a 1 to be printed.

9, b = 24,and ¢ = 0, the following

cout << (¢ == a > b);

Because of the relative precedence of the operators in this expression, a > b would be eval-
uated first. Since 9 is not greater than 24, it would evaluate to false, or 0. Then ¢ == 0
would be evaluated. Since ¢ does equal 0, this would evaluate to true, or 1. So a 1 would
be inserted into the output stream and printed.

In this chapter’s remaining sections you will see how to get the most from relational expres-
sions by using them in statements that take action based on the results of the comparison.

Checkpoint

4.1 Assuming x is 5, y is 6, and z is 8, indicate whether each of the following relational

expressions is true or false:

A) x ==5
B) 7 <= (x + 2)
C) z >4
D) (2 +x) !=y
E) z =4
F) x>=0
G) x <= (y * 2)

161

162 Chapter 4 Making Decisions

4.2 Indicate whether each of the following statements about relational expressions is
correct or incorrect.

A) x <= yisthesameasy > x.
B) x != yisthesameasy >= x.
C) x >= yisthesameasy <= x.

4.3 Answer the following questions with a yes or no.

A) Ifitis true that x > y and it is also true that x < z, does that meany < =z

is true?

B) Ifitis true that x >= y and it is also true that z == x, does that mean that
z == y Is true?

C) Ifitistrue that x = y anditis also true that x != z, does that mean that
z =y Is true?

4.4 What will the following program segment display?

int a=0, b=2, x=4,y =0;

cout << (a == b) << endl;
cout << (a != y) << endl;
cout << (b <= x) << endl;
cout << (y > a) << endl;

m—
42 The if Statement

CONCEPT: The if statement can cause other statements to execute only under
certain conditions.

 — You might think of the statements in a procedural program as individual steps taken as you
- are walking down a road. To reach the destination, you must start at the beginning and
VideoNote take each step, one after the other, until you reach the destination. The programs you have

351”9 anif \yritten so far are like a “path” of execution for the program to follow.
tatement

Figure 4-1

// A program to calculate the area of a rectangle

Step 1 fHinclude <iostream
A using namespace std;
Step 2
A int main()
‘ Step 3 {
double length, width, area;

Step 4 ‘
cout < "Enter the length of the rectangle: ";
Step5 cin >> length;

cout < "Enter the width of the rectangle: ";

StepG cin >> width;
A T area = length * width;
cout < "The area is: " << area << endl;

return O;

The if Statement 163

The type of code in Figure 4-1 is called a sequence structure because the statements are
executed in sequence, one after another, without branching off in another direction. Pro-
grams often need more than one path of execution, however. Many algorithms require a
program to execute some statements only under certain circumstances. This can be accom-
plished with a decision structure.

In a decision structure’s simplest form a specific action, or set of actions, is taken only
when a specific condition exists. If the condition does not exist, the actions are not per-
formed. The flowchart in Figure 4-2 shows the logic of a decision structure. The diamond
symbol represents a yes/no question or a true/false condition. If the answer to the question
is yes (or if the condition is true), the program flow follows one path which leads to the
actions being performed. If the answer to the question is no (or the condition is false), the
program flow follows another path which skips the actions.

Figure 4-2

Is it cold
outside?

Wear a coat.

Wear a hat.

Wear gloves.

A

In the flowchart, the actions “Wear a coat”, “Wear a hat”, and “Wear gloves” are performed
only when it is cold outside. If it is not cold outside, these actions are skipped. The actions
are conditionally executed because they are performed only when a certain condition (cold
outside) exists.

We perform mental tests like these every day. Here are some other examples:

If the car is low on gas, stop at a service station and get gas.
If it’s raining outside, go inside.
If you’re hungry, get something to eat.

The most common way to code a decision structure in C++ is with the if statement.
Figure 4-3 shows the general format of the if statement and a flowchart visually depicting
how it works.

164 Chapter 4 Making Decisions

Figure 4-3
if (condition) if (condition) {
{
statement 1; statement 1;
statement 2; or statement 2;
statement n; statement n; statement(s)
} }

Notice that the statements inside the body of the if construct are contained within a set of
curly braces. The opening brace must be located after the if condition and before the first
statement in the body. However, while following this requirement, different programmers
choose different places to locate it. The two most common placements are shown in Figure 4-3.
This book uses the form shown on the left. Your instructor will tell you what form he or
she wants you to use.

Program 4-2 illustrates the use of an if statement. The user enters three test scores and the
program calculates their average. If the average equals 100, the program congratulates the
user on earning a perfect score.

Program 4-2
// This program correctly averages 3 test scores.
#include <iostream>
#include <iomanip>

using namespace std;

int main()

{
int scorel, score2, score3;
double average;
// Get the three test scores
cout << "Enter 3 test scores and I will average them: ";
cin >> scorel >> score2 >> score3;
// Calculate and display the average score
average = (scorel + score2 + score3) / 3.0;
cout << fixed << showpoint << setprecision(l);
cout << "Your average is " << average << endl;
// 1If the average equals 100, congratulate the user
if (average == 100)
{ cout << "Congratulations! ";
cout << "That's a perfect score!\n";
}
return 0;
b

(program continues)

The if Statement

Program 4-2 (continued)

Program Output with Example Input Shown in Bold

Enter 3 test scores and I will average them: 80 90 70[Enter]
Your average is 80.0

Program Output with Other Example Input Shown in Bold

Enter 3 test scores and I will average them: 100 100 100[Enter]
Your average is 100.0
Congratulations! That's a perfect score!

Let’s look more closely at lines 21-24 of Program 4-2, which cause the congratulatory
message to be printed.
if (average == 100)
{ cout << "Congratulations! ";
cout << "That's a perfect score!\n";

}

There are four important things to notice. First, the word if, which begins the statement,
is a C++ key word and must be written in lowercase. Second, the condition to be tested
(average == 100) must be enclosed inside parentheses. Third, there is 70 semi-colon after
the test condition, even though there is a semi-colon after each action associated with the
if construct. We will explain why shortly. And finally, the block of statements to be condi-
tionally executed is surrounded by curly braces. This is required whenever two or more
actions are associated with an if statement.

If the block of statements to be conditionally executed contains only one statement, the
braces can be omitted. For example, in Program 4-2 if the two cout statements were com-
bined into one statement, they could be written as shown here.

if (average == 100)
cout << "Congratulations! That's a perfect score!\n";

However, some instructors prefer that you always place braces around a conditionally exe-
cuted block, even when it consists of only one statement.

Table 4-5 shows other examples of if statements and their outcomes.

Table 4-5 Example if Statements

Statements Outcome

if (hours > 40) Assigns true to Boolean variable overTime and doubles payRate

{ overTime = true; only when hours is greater than 40. Because there is more than one
payRate *= 2; statement in the conditionally executed block, braces {} are

} required.

if (temperature > 32) Assigns false to Boolean variable freezing only when
freezing = false; temperature is greater than 32. Because there is only one

statement in the conditionally executed block, braces {} are
optional.

165

166 Chapter 4 Making Decisions

Programming Style and the if Statement

Even though if statements usually span more than one line, they are technically one long
statement. For instance, the following if statements are identical except in style:

if (a >= 100)
cout << "The number is out of range.\n";

if (a >= 100) cout << "The number is out of range.\n";

The first of these two if statements is considered to be better style because it is easier to
read. By indenting the conditionally executed statement or block of statements you are
causing it to stand out visually. This is so you can tell at a glance what part of the program
the if statement executes. This is a standard way of writing if statements and is the
method you should use. Here are two important style rules you should adopt for writing
if statements:

e The conditionally executed statement(s) should begin on the line after the if statement.
e The conditionally executed statement(s) should be indented one “level” from the if
statement.

0 NOTE: In most editors, each time you press the tab key, you are indenting one level.

Three Common Errors to Watch Out For

When writing if statements, there are three common errors you must watch out for.

1. Misplaced semicolons
2. Missing braces
3. Confusing = with ==

Be Careful with Semicolons

Semicolons do not mark the end of a line, but the end of a complete C++ statement. The if
statement isn’t complete without the conditionally executed statement that comes after it. So,
you must not put a semicolon after the if (condition) portion of an if statement.

if (condition) <¢—— No semicolon goes here

{
statement 1;
statement 2;
Semicolons go here
statement n;
}

If you inadvertently put a semicolon after the if part, the compiler will assume you are
placing a null statement there. The null statement is an empty statement that does nothing.
This will prematurely terminate the if statement, which disconnects it from the block of

The if Statement

statements that follows it. These statements will then always execute. For example, notice
what would have happened in Program 4-2 if the if statement had been prematurely ter-
minated with a semicolon, as shown here.

if (average == 100); // Error. The semicolon terminates
{ // the if statement prematurely.
cout << "Congratulations! ";

cout << "That's a perfect score!\n";

Output of Revised Program 4-2 with Example Input Shown in Bold

Enter 3 test scores and I will average them: 80 90 70[Enter]
Your average is 80.0
Congratulations! That's a perfect score!

Because the if statement ends when the premature semicolon is encountered, the cout
statements inside the braces are considered to be separate statements following the if,
rather than statements belonging to the if. Therefore, they always execute, regardless of
whether average equals 100 or not. This erroneous version of the program can be found
on the student CD as Program 4-2B.

NOTE: Indentation and spacing are for the human reader of a program, not the
computer. Even though the cout statements following the if statement in this example
are indented, the semicolon still terminates the if statement.

Don’t Forget the Braces

If you intend to conditionally execute a block of statements, rather than just one
statement, with an if statement, don’t forget the braces. Without a set of braces,
the if statement only executes the very next statement. Any following statements are
considered to be outside the if statement and will always be executed, even when the
if condition is false. For example, notice what would have happened in the original
Program 4-2 if the braces enclosing the two cout statements to be conditionally executed
had been omitted.

if (average == 100)
cout << "Congratulations! "; // There are no braces.
cout << "That's a perfect score!\n"; // This is outside the if.

Output of Program 4-2 Revised a Second Time with Example Input Shown in Bold

Enter 3 test scores and I will average them: 80 90 70[Enter]
Your average is 80.0
That's a perfect score!

With no braces around the set of statement to be conditionally executed, only the first of
these statements is considered to belong to the if statement. Because the condition in our
test case (average == 100) was false, the Congratulations! message was skipped.
However the cout statement that prints That's a perfect score! was executed, as it
would be every time, regardless of whether average equals 100 or not. This erroneous
version of the program can be found on the student CD as Program 4-2C.

167

168

Chapter 4 Making Decisions

Not All Operators Are “Equal”

Earlier you saw a warning not to confuse the equality operator (==) with the assignment
operator (=), as in the following statement:

if (x = 2) // Caution here!
cout << "It is True!";

This statement does not determine whether x is equal to 2; instead it assigns x the value 2!
Furthermore, the cout statement will always be executed because the expression x = 2
evaluates to 2, which C++ considers true.

This occurs because the value of an assignment expression is the value being assigned to
the variable on the left side of the = operator. Therefore the value of the expression x = 2 is
2. Earlier you learned that C++ stores the value true as 1. But it actually considers all non-
zero values, not just 1, to be true. Thus 2 represents a true condition.

Let’s examine this more closely by looking at yet another variation of the original Program
4-2. This time notice what would have happened if the equal-to relational operator in the
if condition had been replaced by the assignment operator, as shown here.

if (average = 100) // Error. This assigns 100 to average.

{

cout << "Congratulations! ";
cout << "That's a perfect score!\n";

Output of Program 4-2 Revised a Third Time with Example Input Shown in Bold

Enter 3 test scores and I will average them: 80 90 70[Enter]
Your average is 80.0
Congratulations! That's a perfect score!

Rather than being compared to 100, average is assigned the value 100 in the if statement.
This causes the if test to evaluate to 100, which is considered true. Therefore the two cout
statements will execute every time, regardless of what test scores are entered by the user.
This erroneous version of the program can be found on the student CD as Program 4-2D.

More About Truth

Now that you’ve gotten your feet wet with relational expressions and if statements, let’s
look further at the subject of truth. You have seen that a relational expression has the value
1 when it is true and 0 when false. You have also seen that while 0 is considered false, all
values other than 0 are considered true. This means that any value, even a negative number,
represents true as long as it is not 0.

Just as in real life, truth is a complicated thing. Here is a summary of the rules you have
seen so far:

e When a relational expression is true, it has a non-zero value, which in most cases is
represented by the value 1.

e When a relational expression is false, it has the value 0.

e An expression that has the value 0 is considered false by the if statement. This
includes the bool value false, which is equivalent to 0.

e An expression that has any value other than 0 is considered true. This includes the
bool value true, which is equivalent to 1.

The if Statement 169

The fact that the if statement considers any nonzero value as true opens many possibilities.
Relational expressions are not the only conditions that may be tested. For example, the
following is a legal if statement in C++:

if (value)
cout << "It is True!";

This if statement is not testing a relational expression. It is testing the contents of a vari-
able. If the variable, value, contains any number other than 0, the message “It is True!”
will be displayed. If value is set to 0, however, the cout statement will be skipped. Here is
another example:

if (x + y)
cout << "It is True!";
In this statement the sum of x and y is tested. If the sum is 0, the expression is considered
false; otherwise it is considered true. You may also use the return value of a function call as
a conditional expression. Here is an example that uses the pow function:
if (pow(a, b))
cout << "It is True!";

This if statement uses the pow function to raise a to the power of b. If the result is any-
thing other than 0, the cout statement will be executed.

Flags

A flag is a variable that signals whether or not some condition currently exists in a program.
Because bool variables hold the values true and false, they are the perfect type of variables
to use for flags. When the flag variable is set to true, it means the condition does exist. When
the flag variable is set to false, it means that the condition does not exist, at least not yet.
Suppose we wanted to change Program 4-2 to find out if any of the scores read in equals
100, rather than finding out if the average equals 100. We could use a Boolean variable,
scored100, initialized to false.

bool scoredl00 = false; // No score of 100 found yet

Then, after reading in the three scores, we could test them, like this:

if (scorel == 100)
scoredl00 = true;

if (score2 == 100)
scoredl00 = true;

if (score3 == 100)

scoredl00 = true;
Finally, we could replace the lines that test for a perfect average, with the following code.

if (scoredl00)
cout << "You got 100% on at least one of the tests.\n";

Comparing Floating-Point Numbers

Testing floating-point numbers for equality can sometimes give erroneous results. Because
of a lack of precision or round-off errors, a number that should be mathematically equal to

170 Chapter 4 Making Decisions

another might not be. In Program 4-3, 6 is multiplied by 0.666667, a decimal version of 2/3.
Of course, 6 times 2/3 is 4. The program, however, disagrees.

Program 4-3
// This program demonstrates how a lack of precision in
// floating-point numbers can make equality comparisons unreliable.
#include <iostream>

using namespace std;

int main()

{
double result = .666667 * 6.0;
// 2/3 of 6 should be 4 and, if you print result, 4 is displayed.
cout << "result = " << result << endl;
// However, internally result is NOT precisely equal to 4.
if (result == 4.0)
cout << "result DOES equal 4!" << endl;
else
cout << "result DOES NOT equal 4!" << endl;
return 0;
}

Program Output

result = 4
result DOES NOT equal 4!

Typically, the value in result will be a number just short of 4, like 3.999996. To prevent
errors like this, it is wise to stick with greater-than and less-than comparisons when using
floating-point numbers. For example, instead of testing if the result equals 4.0, you could
test to see if it is very close to 4.0. Program 4-4 demonstrates this technique.

Program 4-4

// This program demonstrates how to safely test a floating-point number
// to see if it is, for all practical purposes, equal to some value.
#include <iostream>

#include <cmath>

using namespace std;

int main()
{
double result = .666667 * 6.0;

// 2/3 of 6 should be 4 and, if you print result, 4 is displayed.
cout << "result = " << result << endl;

(program continues)

The if Statement 171

Program 4-4 (continued)

// However, internally result is NOT precisely equal to 4.
// So test to see if it is "close" to 4.
if (abs(result - 4.0 < .0001))
cout << "result DOES equal 4!" << endl;
else
cout << "result DOES NOT equal 4!" << endl;

return 0;

Program Output

result = 4
result DOES equal 4!

Line 16 of the program uses the abs function introduced in Chapter 2. Recall that it returns
the absolute value of the argument. By using it, we ensure that the test condition will be true
if the difference between result and 4.0 is less than .0001, regardless of which one is larger.

Checkpoint
4.5 True or False: Both of the following if statements perform the same operation.

if (sales > 10000)
commissionRate = 0.15;

if (sales > 10000) commissionRate = 0.15;
4.6 True or false: Both of the following if statements perform the same operation.

if (calls == 20)
rate *= 0.5;
if (calls = 20)
rate *= 0.5;
4.7 Although the following code segments are syntactically correct, each contains an
error. Locate the error and indicate what is wrong.
A) hours = 12;
if (hours > 40);
cout << hours << " hours qualifies for over-time.\n";
B) interestRate = .05;
if (interestRate = .07)
cout << "This account is earning the maximum rate.\n";
C) interestRate = .05;
if (interestRate > .07)
cout << "This account earns a $10 bonus.\n";
balance += 10.0;

4.8 Write an if statement that assigns O to x if y is equal to 20.
4.9 Write an if statement that multiplies payRate by 1.5 if hours is greater than 40.

4.10 Write an if statement that assigns .20 to commission if sales is greater than or
equal to 10,000.00.

4.11 Write an if statement that sets fees to 50 if flag variable max is set to true.

172

Chapter 4 Making Decisions
43 The if/else Statement
1 CONCEPT: The if/else statement will execute one set of statements when the if
7 72 condition is true, and another set when the condition is false.
7}
LS SN
The if/else statement is an expansion of the if statement. Figure 4-4 shows the general
format of this statement and a flowchart visually depicting how it works.
VideoNote
Using an
if/else
Statement
Figure 4-4
if (condition) true false
{
statement set 1;
}
else statement statement
{ set 1 set 2
statement set 2;
}
As with the if statement, a condition is tested. If the condition is true, a block containing
one or more statements is executed. If the condition is false, however, a different group of
statements is executed. Program 4-5 uses the if/else statement along with the modulus
operator to determine if a number is odd or even.
Program 4-5

// This program uses the modulus operator to determine

// if a number is odd or even. If the number is evenly divisible
// by 2, it is an even number. A remainder indicates it is odd.
#include <iostream>

using namespace std;

int main()

{

int number;
cout << "Enter an integer and I will tell you if it\n";
cout << "is odd or even. ";

cin >> number;

(program continues)

The if/else Statement

Program 4-5 (continued)

if (number % 2 == 0)

cout << number << " is even.\n";
else

cout << number << " is odd.\n";
return 0;

Program Output with Example Input Shown in Bold
Enter an integer and I will tell you if it
is odd or even. 17[Enter]

17 is odd.

The else part at the end of the if statement specifies one or more statements that are to
be executed when the condition is false. When number % 2 does not equal 0, a message is
printed indicating the number is odd. Note that the program will only take one of the two
paths in the if/else statement. If you think of the statements in a computer program as
steps taken down a road, consider the if/else statement as a fork in the road. It causes
program execution to follow one of two mutually exclusive paths.

Notice the programming style used to construct the if/else statement. The word else is
at the same level of indention as if. The statements whose execution are controlled by the
if and by the else are indented one level. This makes the two paths of execution that may
be followed visually clear to anyone reading the code.

As with the if part, if you don’t use braces the else part controls a single statement. If
you wish to execute more than one statement with the else part, place these statements
inside a set of braces. Program 4-6 illustrates this. It also illustrates a way to handle a classic
programming problem: division by zero.

Division by zero is mathematically impossible to perform and it normally causes a program
to crash. This means the program will prematurely stop running, sometimes with an error
message. Program 4-6 shows a way to test the value of a divisor before the division takes
place. On line 15 the value of num2 is tested. If the user enters anything other than zero, the
lines controlled by the if are executed, allowing the division to be performed and the result
to be displayed. But if the user enters a zero for num2, the lines controlled by the else are
executed instead, causing an error message to be displayed.

Program 4-6

// This program makes sure that the divisor is not
// equal to 0 before it performs a divide operation.
#include <iostream>

using namespace std;

int main()

{

double numl, num2, quotient;

(program continues)

173

174

Chapter 4 Making Decisions

Program 4-6 (continued)

// Get the two numbers
cout << "Enter two numbers: ";
cin >> numl >> num2;

// If num2 is not zero, perform the division.
if (num2 != 0)
{
quotient = numl / num2;
cout << "The quotient of " << numl << " divided by "
<< num2 << " is " << quotient << ".\n";

}
else
{
cout << "Division by zero is not possible.\n"
<< "Please run the program again and enter "
<< "a number other than zero.\n";
}

return 0;

Program Output with Example Input Shown in Bold

Enter two numbers: 10 O[Enter]
Division by zero is not possible.
Please run the program again and enter a number other than zero.

Checkpoint

4.12 True or false: The following if/else statements cause the same output to display.
A) if (x > y)
cout << "x is the greater.\n";
else
cout << "x is not the greater.\n";
B) if (y <= x)
cout << "x is not the greater.\n";
else
cout << "x is the greater.\n";

4.13 Write an if/else statement that assigns 1 to x if y is equal to 100. Otherwise it
should assign 0 to x.

4.14 Write an if/else statement that assigns 0.10 to commission unless sales is
greater than or equal to 50,000.00, in which case it assigns 0.20 to commission.

4.15 Complete the following program skeleton so it computes the correct sales tax. If the

customer is an in-state resident, taxRate should be set to .035. If the customer is an
out-of-state resident, taxRate should be set to 0.

#include <iostream>
using namespace std;

The if/else if Statement 175

int main()

{
double taxRate, saleAmount;
char residence;
cout << "Enter the amount of the sale: ";
cin >> saleAmount;
cout << "Enter I for in-state residence or O for out-of-\n";
cout << "state: ";
cin.get(residence);
// Write code here that assigns 0 to taxRate if char
// variable residence is set to the letter 'O' or .05 to
// taxRate if residence is set to 'I'.
saleAmount += saleAmount * taxRate;
cout << "The total is " << saleAmount;
return 0;
}

4.16 Will the if/else statement shown below function exactly the same as the two
separate if statements?

if (x < y) if (x <)
cout << 1; cout << 1;
if (x > vy) else
cout << 2; cout << 2;

—
44 The if/else if Statement

1 CONCEPT: The if/else if statement is a chain of if statements. They perform their
tests, one after the other, until one of them is found to be true.

We make certain mental decisions by using sets of different but related rules. For example,
we might decide the type of coat or jacket to wear by consulting the following rules:

if it is very cold, wear a heavy coat,
VideoNote else, if it is chilly, wear a light jacket,
Using an else, if it is windy, wear a windbreaker,

if/else if else, if it is hot, wear no jacket.
Statement

The purpose of these rules is to determine which type of outer garment to wear. If it is cold,
the first rule dictates that a heavy coat must be worn. All the other rules are then ignored.
If the first rule doesn’t apply, however (if it isn’t cold), then the second rule is consulted. If
that rule doesn’t apply, the third rule is consulted, and so forth.

The way these rules are connected is very important. If they were consulted individually, we
might go out of the house wearing the wrong jacket or, possibly, more than one jacket. For
instance, if it is windy, the third rule says to wear a windbreaker. What if it is both windy and
very cold? Will we wear a windbreaker? A heavy coat? Both? Because of the order that the

176

Chapter 4 Making Decisions

rules are consulted in, the first rule will determine that a heavy coat is needed. The third rule
will not be consulted, and we will go outside wearing the most appropriate garment.

This type of decision making is also very common in programming. In C++ it can be
accomplished through the if/else if statement. Figure 4-5 shows its format and a flow-
chart visually depicting how it works.

Figure 4-5

if (condition 1)
statement 3
{ set 1
statement set 1;
}
else if (condition 2)
{
statement set 2;
} statement >
set 2
else if (condition n)
{
statement set n; true statement
} setn ’
false
<

This construction is like a chain of 1f/else statements. The else part of one statement is
linked to the if part of another. When put together this way, the chain of if/elses
becomes one long statement. Program 4-7 shows an example. The user is asked to enter a
numeric test score and the program displays the letter grade earned.

Program 4-7

// This program uses an if/else if statement to assign a
// letter grade (A, B, C, D, or F) to a numeric test score.
#include <iostream>

using namespace std;

int main()

{

int testScore; // Holds a numeric test score
char grade; // Holds a letter grade

// Get the numeric score

cout << "Enter your numeric test score and I will\n";
cout << "tell you the letter grade you earned: ";
cin >> testScore;

(program continues)

The if/else if Statement

Program 4-7 (continued)

// Determine the letter grade
if (testScore < 60)

grade = 'F';

else if (testScore < 70)
grade = 'D';

else if (testScore < 80)
grade = 'C';

else if (testScore < 90)
grade = 'B';

else if (testScore <= 100)
grade = 'A';

// Display the letter grade
cout << "Your grade is " << grade << ".\n";
return 0;

Program Output with Example Input Shown in Bold

Enter your numeric test score and I will
tell you the letter grade you earned: 88[Enter]
Your grade is B.

As with other forms of the if statement, braces are required in an if/else if whenever
there is more than one statement in a conditionally executed block. Otherwise they are
optional. Because each of the conditionally executed blocks of code in Program 4-7 con-
tains only one statement, braces were not used.

The if/else if statement has a number of notable characteristics. Let’s analyze how it
works in Program 4-7. First, the relational expression testScore < 60 is tested on line 17.

if (testScore < 60)
grade = 'F';

If testscore is less than 60, the letter ‘F’ is assigned to grade and the rest of the linked i £
statements are skipped. If testScore is not less than 60, the else part takes over and
causes the next if condition to be tested on line 19.

else if (testScore < 70)
grade = 'D';

The first if statement filtered out all of the grades less than 60, so when this next if state-
ment executes, testScore will have a value of 60 or greater. If testScore is less than 70,
the letter ‘D’ is assigned to grade and the rest of the if/else if statement is ignored. This
chain of events continues until one of the conditional expressions is found true or the end
of the statement is encountered. In either case, the program resumes at the statement
immediately following the if/else if statement. This is the cout statement on line 29
that prints the grade. Figure 4-6 shows the paths that may be taken by the if/else
if statement.

177

178 Chapter 4 Making Decisions

Figure 4-6

testScore
< 607

grade = 'F'
No testScore\ Yes

\ < 707

No testScore_ Yes

\ < 807

No “testScoreN_ Yes
< 90?

grade = 'D'

grade = 'C'

grade 'B!

testScore
<= 1007

grade = 'A'

Each if condition in the structure depends on all the if conditions before it being false.
The statements following a particular else if are executed when the conditional expres-
sion following the else if is true and all previous conditional expressions are false. To
demonstrate how this interconnection works, let’s look at Program 4-8, which uses inde-
pendent if statements instead of an if/else if statement.

Program 4-8

// This program illustrates a bug that occurs when independent if/else
// statements are used to assign a letter grade to a numeric test score.
#include <iostream>

using namespace std;

(program continues)

The if/else if Statement

Program 4-8 (continued)

int main()

{
int testScore; // Holds a numeric test score
char grade; // Holds a letter grade

// Get the numeric score

cout << "Enter your test score and I will tell you\n";
cout << "the letter grade you earned: ";

cin >> testScore;

// Determine the letter grade. What grade will be assigned?

if (testScore < 60)
grade = 'F';

if (testScore < 70)
grade = 'D';

if (testScore < 80)
grade = 'C';

if (testScore < 90)
grade = 'B';

if (testScore <= 100)
grade = 'A';

// Display the letter grade
cout << "Your grade is " << grade << ".\n";
return 0;

Program Output with Example Input Shown in Bold

Enter your numeric test score and I will tell you
the letter grade you earned: 40[Enter]
Your grade is A.

In Program 4-8, all the if statements execute because they are individual statements. In the
example output, testScore is assigned the value 40, yet the student receives an A. Here is
what happens. Because the student’s score is less than 60, the first i statement causes 'F"
to be assigned to grade. However, because the next if statement is not connected to the
first through an else, it executes as well. Since testScore is also less than 70, it causes
'D' to be assigned to grade, replacing the 'F' that was previously stored there. This con-
tinues until all the if statements have executed. The last one will cause 'A* to be assigned
to grade. (Most students prefer this method since 'aA' is the only grade it gives out!)

Using a Trailing else

A trailing else, placed at the end of an if/else if statement, provides a default set of
actions when none of the if expressions are true. It is often used to catch errors. This fea-
ture would be helpful, for example, in Program 4-7. What happens in the current version
of that program if the user enters a test score greater than 100? The if/else if statement
handles all scores through 100, but none greater. If the user enters 104, for example, the
program does not give any letter grade because there is no code to handle a score greater

179

180 Chapter 4 Making Decisions

than 100. Assuming that 100 is the highest score, we can fix the program by placing an
else at the end of the if/else if statement. This is shown in Program 4-9.

Program 4-9

// This program uses an if/else if statement to assign a

// letter grade (A, B, C, D, or F) to a numeric test score.
// A trailing else has been added to catch test scores > 100.
#include <iostream>

using namespace std;

int main()

{
int testScore; // Holds a numeric test score
char grade; // Holds a letter grade
bool goodScore = true; // Is the score valid?

// Get the numeric score

cout << "Enter your numeric test score and I will\n";
cout << "tell you the letter grade you earned: ";

cin >> testScore;

// Determine the letter grade

if (testScore < 60)
grade = 'F';

else if (testScore < 70)
grade = 'D';

else if (testScore < 80)
grade = 'C';

else if (testScore < 90)
grade = 'B';

else if (testScore <= 100)
grade = 'A';

else
goodScore = false; // The score was greater than 100

// If the score is valid, display the corresponding letter grade;
// otherwise, display an error message
if (goodScore)
cout << "Your grade is " << grade << endl;
else
cout << "We do not give scores higher than 100.\n";

return 0;

Program Output with Example Input Shown in Bold

Enter your numeric test score and I will
tell you the letter grade you earned: 104 [Enter]
We do not give scores higher than 100.

The trailing else catches any value that “falls through the cracks.” It provides a default
response when none of the ifs find a true condition.

—

45 Menu-Driven Programs

Menu-Driven Programs

1 CONCEPT: A menu is a set of choices presented to the user. A menu-driven program
allows the user to determine the course of action by selecting it from the
menu.

A menu is a screen displaying a set of choices the user selects from. For example, a pro-

gram that keeps a mailing list might give you the following menu:

1. Add a name to the list.
2. Remove a name from the list.

3. Change a
4. Print the

name in the list.
list.

5. Quit the program.

The user selects one of the operations by entering its number. Entering 4, for example, causes
the mailing list to be printed, and entering 5 causes the program to end. The if/else if
structure can be used to set up such a menu. After the user enters a number, it compares the
number to the available selections and executes the statements that perform that operation.

Program 4-10 calculates the charges for membership in a health club. The club has three
membership packages to choose from: standard adult membership, child membership, and
senior citizen membership. The program presents a menu that allows the user to choose the

desired package and then calculates the cost of the membership.

Program 4-10

// This menu-driven program uses an if/else statement to carry
// out the correct set of actions based on the user's menu choice.

#include <iostr
#include <ioman
using namespace

int main()

{
// Constants
const double
const double
const double

int choice;
int months;
double charg

// Display t
cout << "
cout << "1.
cout << "2.
cout << "3.
cout << "4.

eam>
ip>
std;

for membership rates
ADULT_RATE = 40.0;
CHILD_RATE = 20.0;
SENIOR_RATE 30.0;

// Menu choice
// Number of months
es; // Monthly charges

he menu and get the user's choice
Health Club Membership Menu\n\n";
Standard Adult Membership\n";
Child Membership\n";

Senior Citizen Membership\n";
Quit the Program\n\n";

(program continues)

181

182 Chapter 4 Making Decisions

Program 4-10 (continued)

cout << "Enter your choice: ";
cin >> choice;

// Set the numeric output formatting
cout << fixed << showpoint << setprecision(2);

// Use the menu selection to execute the correct set of actions
if (choice == 1)
{ cout << "\nFor how many months? ";

cin >> months;

charges = months * ADULT RATE;

cout << "The total charges are $" << charges << endl;
}
else if (choice == 2)
{ cout << "\nFor how many months? ";

cin >> months;

charges = months * CHILD RATE;

cout << "The total charges are $" << charges << endl;
}
else if (choice == 3)
{ cout << "For how many months? ";

cin >> months;

charges = months * SENIOR RATE;

cout << "The total charges are $" << charges << endl;
}
else if (choice != 4)
{ cout << "The valid choices are 1 through 4. Run the\n"

<< "program again and select one of those.\n";

}

return 0;

Program Output with Example Input Shown in Bold
Health Club Membership Menu

1. Standard Adult Membership
2. Child Membership
3. Senior Citizen Membership
4. Quit the Program

Enter your choice: 3[Enter]
For how many months? 6[Enter]
The total charges are $180.00

Notice that three double constants ADULT RATE, CHILD RATE, and SENIOR_RATE are
defined in lines 10 through 12. These constants hold the monthly membership rates for
adult, child, and senior citizen memberships. Also notice that the program lets the user
know when an invalid choice is made. If a number other than 1, 2, 3, or 4 is entered, an
error message is printed. This is known as input validation.

Nested if Statements 183

—
46 Nested if Statements

1 CONCEPT: To test more than one condition, an if statement can be nested inside
another if statement.

It is possible for one if statement or if/else statement to be placed inside another one.
This construct, called a nested if, allows you to test more than one condition to determine
which block of code should be executed. For example, consider a banking program that
determines whether a bank customer qualifies for a special, low interest rate on a loan. To
qualify, two conditions must exist:

1. The customer must be currently employed.
2. The customer must have recently graduated from college (in the past two years).

Figure 4-7 shows a flowchart for an algorithm that could be used in such a program.

Figure 4-7

employed =Y’

Display “You must be

employed to qualify.” recentGrad = ‘Y’

Y

Display “You must have

graduated from college Display “You qualify for
in the past two years to the special interest
qualify.” rate.

If we follow the flow of execution in the flowchart, we see that first the expression
employed == 'Y' is tested. If this expression is false, there is no need to perform any
other tests. We know that the customer does not qualify for the special interest rate. If
the expression is true, however, we need to test the second condition. This is done with
a nested decision structure that tests the expression recentGrad == ‘'y'. If this

184

Chapter 4 Making Decisions

expression is true, then the customer qualifies for the special interest rate. If this
expression is false, the customer does not qualify. Program 4-11 shows the code that
corresponds to the logic of the flowchart. It nests one if/else statement inside
another one.

Program 4-11

// This program determines whether a loan applicant qualifies for
// a special loan interest rate. It uses nested if/else statements.
#include <iostream>

using namespace std;

int main()

{

char employed, // Currently employed? (Y or N)
recentGrad; // Recent college graduate? (Y or N)

// Is the applicant employed and a recent college graduate?
cout << "Answer the following questions\n";
cout << "with either Y for Yes or N for No.\n";

cout << "Are you employed? ";

cin >> employed;

cout << "Have you graduated from college in the past two years? ";
cin >> recentGrad;

// Determine the applicant's loan qualifications

if (employed == 'Y')
{
if (recentGrad == 'Y') // Employed and a recent grad
{
cout << "You qualify for the special interest rate.\n";
}
else // Employed but not a recent grad
{
cout << "You must have graduated from college in the past\n";
cout << "two years to qualify for the special interest rate.\n";
}
}
else // Not employed
{
cout << "You must be employed to qualify for the "
<< "special interest rate. \n";
}

return 0;

(program continues)

Nested if Statements 185

Program 4-11 (continued)

Program Output with Example Input Shown in Bold

Answer the following questions

with either Y for Yes or N for No.

Are you employed? N[Enter]

Have you graduated from college in the past two years? Y[Enter]
You must be employed to qualify for the special interest rate.

Program Output with Other Example Input Shown in Bold

Answer the following questions

with either Y for Yes or N for No.

Are you employed? Y[Enter]

Have you graduated from college in the past two years? N[Enter]
You must have graduated from college in the past

two years to qualify for the special interest rate.

Program Output with Other Example Input Shown in Bold

Answer the following questions

with either Y for Yes or N for No.

Are you employed? Y[Enter]

Have you graduated from college in the past two years? Y[Enter]
You qualify for the special interest rate.

Let’s take a closer look at this program. The if statement that begins on line 21 tests the
expression employed == 'Y'. If the expression is true, the inner if statement that begins
on line 23 is executed. If the expression is false, the program jumps to line 33 and executes
the statements in the outer else block instead.

When you are debugging a program with nested if/else statements, it’s important to
know which if statement each else goes with. The rule for matching each else with the
proper if is this: An else goes with the closest previous if statement that doesn’t already
have its own else. This is easier to see when the statements are properly indented. Figure 4-8
shows lines similar to lines 21 through 37 of Program 4-11. It illustrates how each else
should line up with the if it belongs to. These visual cues are important because nested if
statements can be very long and complex.

Figure 4-8
» if (employed=="Y")
{
— if (recentGrad == ‘Y’) // Nested if
{
This if and else cout << “You qualify for the special ";
go together.] cout << “interest rate.\n”;
This if and else }
— L_p else // Not a recent grad, but employed

go together.
{

cout << “You must have graduated from ”;
cout << “college in the past two\n”;
cout << “years to qualify.\n”;
}
}
» else // Not employed
{

cout << “You must be employed to qualify.\n”

}

186 Chapter 4 Making Decisions

Checkpoint

4.17 Program 4-9 asks the user for a numeric test score and displays the letter grade for
that score. Modify it so an error message is displayed if the user enters a test score
less than 0.

4.18 What will the following program segment display?

int funny = 7, serious = 15;

funny = serious % 2;
if (funny != 1)
{ funny = 0;

serious 0;

}

else if (funny == 2)

{ funny = 10;
serious = 10;

}

else

{ funny = 1;
serious = 1;

}

cout << funny << serious << endl;

4.19 The following program is used in a bookstore to determine how many discount
coupons a customer gets. Complete the table that appears after the program.

#include <iostream>
using namespace std;
int main()

{

int numBooks, numCoupons;

cout << "How many books are being purchased? ";
cin >> numBooks;

if (numBooks < 1)
numCoupons = 0;
else if (numBooks < 3)
numCoupons = 1;
else if (numBooks < 5)
numCoupons = 2;

else
numCoupons = 3;
cout << "The number of coupons to give is " << numCoupons

<< endl;
return 0;

—

Logical Operators

If the customer purchases
this many books... ...This many coupons are given.

—_ AW N =

0

4.20 Write nested if statements that perform the following test: If amount1 is greater
than 10 and amount2 is less than 100, display the greater of the two.

47 Logical Operators

1 CONCEPT: Logical operators connect two or more relational expressions into one or

reverse the logic of an expression.

In the previous section you saw how a program tests two conditions with two if state-
ments. In this section you will see how to use logical operators to combine two or more
relational expressions into one. Table 4-6 lists C++’s logical operators.

Table 4-6 Logical Operators

Operator Meaning Effect

&&

AND Connects two expressions into one. Both expressions must be true
for the overall expression to be true.

OR Connects two expressions into one. One or both expressions must
be true for the overall expression to be true. It is only necessary for
one to be true, and it does not matter which.

NOT Reverses the “truth” of an expression. It makes a true expression
false, and a false expression true.

The && Operator

The s& operator is known as the logical AND operator. It takes two expressions as oper-
ands and creates an expression that is true only when both sub-expressions are true. Here
is an example of an if statement that uses the && operator:

if ((temperature < 20) && (minutes > 12))
cout << "The temperature is in the danger zone.";

Notice that both of the expressions being ANDed together are complete expressions that
evaluate to true or false. First temperature < 20 is evaluated to produce a true or false
result. Then minutes > 12 is evaluated to produce a true or false result. Then, finally,
these two results are ANDed together to arrive at a final result for the entire expression.

187

188

Chapter 4 Making Decisions

The cout statement will only be executed if temperature is less than 20 AND minutes is
greater than 12. If either relational test is false, the entire expression is false and the cout
statement is not executed.

Table 4-7 shows a truth table for the && operator. The truth table lists all the possible com-
binations of values that two expressions may have, and the resulting value returned by the
&& operator connecting the two expressions. As the table shows, both sub-expressions
must be true for the s& operator to return a true value.

Table 4-7 Logical AND

Expression Value of the Expression
false && false false (0)

false && true false (0)

true && false false (0)

true && true true (1)

<&

NOTE: If the sub-expression on the left side of an && operator is false, the expression
on the right side will not be checked. Because the entire expression is false if even just
one of the sub-expressions is false, it would waste CPU time to check the remaining
expression. This is called short circuit evaluation.

The s& operator can be used to simplify programs that otherwise would use nested if
statements. Program 4-12 is similar to Program 4-11, which determines if a bank customer
qualifies for a special interest rate. Program 4-12 uses a logical operator.

Program 4-12

//
//

This program determines whether a loan applicant qualifies for
a special loan interest rate. It uses the && logical operator.

#include <iostream>
using namespace std;

int main()

{

char employed, // Currently employed? (Y or N)
recentGrad; // Recent college graduate? (Y or N)

// Is the applicant employed and a recent college graduate?
cout << "Answer the following questions\n";
cout << "with either Y for Yes or N for No.\n";

cout << "Are you employed? ";

cin >> employed;

cout << "Have you graduated from college in the past two years? ";
cin >> recentGrad;

(program continues)

Logical Operators

Program 4-12 (continued)

// Determine the applicant's loan qualifications

if ((employed == 'Y') && (recentGrad == 'Y')) // Uses logical AND
cout << "\nYou qualify for the special interest rate.\n";
else

{ cout << "\nYou must be employed and have graduated\n";
cout << "from college in the past two years to qualify\n";
cout << "for the special interest rate.\n";

}

return 0;

Program Output with Example Input Shown in Bold

Answer the following questions

with either Y for Yes or N for No.

Are you employed? Y[Enter]

Have you graduated from college in the past two years? N[Enter]

You must be employed and have graduated
from college in the past two years to qualify
for the special interest rate.

Note that while this program is similar to Program 4-11, it is not the exact logical equiva-
lent. In Program 4-12 the message "You qualify for the special interest rate"is
displayed when both the expressions employed == 'Y' and recentGrad == 'Y' are true.
If either of these are false the following message displays: "You must be employed and
have graduated from college in the past two years to qualify for the special
interest rate." Program 4-11 displays different messages when the loan applicant does
not qualify.

The | | Operator

The | | operator is known as the logical OR operator. It takes two expressions as operands
and creates an expression that is true when either of the sub-expressions are true. Here is
an example of an if statement that uses the | | operator:

if ((temperature < 20) || (temperature > 100))
cout << "The temperature is in the danger zone.";

The cout statement will be executed if temperature is less than 20 OR temperature is
greater than 100. If either relational test is true, the entire expression is true and the cout
statement is executed.

@ NOTE: The two things being ORed should both be logical expressions that evaluate to
true or false. It would 7ot be correct to write the if condition as

if (temperature < 20 || > 100).

189

190 Chapter 4 Making Decisions

@ NOTE: There is no || key on the computer keyboard. Use two | symbols. This symbol
is on the backslash key. Press Shift and backslash to type it.

Table 4-8 shows a truth table for the | | operator.

Table 4-8 Logical OR

Expression Value of the Expression
false || false false (0)

false || true true (1)

true || false true (1)

true || true true (1)

All it takes for an OR expression to be true is for one of the sub-expressions to be true. It
doesn’t matter if the other sub-expression is false or true.

0 NOTE: The || operator also performs short circuit evaluation. If the sub-expression on
the left side of an | | operator is true, the sub-expression on the right side will not be

checked. Because it is only necessary for one of the sub-expressions to be true for the whole

expression to evaluate to true, it would waste CPU time to check the remaining expression.

Program 4-13 performs different tests to qualify a person for a loan. This one determines if
the customer earns at least $35,000 per year or has been employed for more than five
years.

Program 4-13

// This program determines whether or not an applicant qualifies
// for a loan. To qualify they must make at least $35,000 a year
// or have been at their current job for more than 5 years.

// It uses the logical || operator.

#include <iostream>

using namespace std;

int main()
{
double income; // Annual income
int years; // Years at the current job

// Get annual income and years on the job

cout << "What is your annual income? ";

cin >> income;

cout << "How many years have you worked at your current job? ";
cin >> years;

(program continues)

Logical Operators 191

Program 4-13 (continued)

// Determine if the applicant qualifies for a loan

if ((income >= 35000) || (years > 5)) // Uses logical OR
cout << "You qualify for a loan.\n";
else

{ ~cout << "You must earn at least $35,000 or have been employed\n";
cout << "for more than 5 years to qualify for a loan.\n";

}

return 0;

Program Output with Example Input Shown in Bold

What is your annual income? 40000[Enter]
How many years have you worked at your current job? 2[Enter]
You qualify for a loan.

Program Output with Other Example Input Shown in Bold

What is your annual income? 20000[Enter]
How many years have you worked at your current job? 7[Enter]
You qualify for a loan.

Program Output with Other Example Input Shown in Bold

What is your annual income? 30000[Enter]

How many years have you worked at your current job? 3[Enter]
You must earn at least $35,000 or have been employed

for more than 5 years to qualify for a loan.

The message "You qualify for a loan." is displayed when either or both the expres-
sions income >= 35000 or years > 5 are true. If both of these are false, the disqualifying
message is printed.

The ! Operator

The ! operator performs a logical NOT operation. It takes an operand and reverses its
truth or falsehood. In other words, if the expression is true, the ! operator returns false,
and if the expression is false, it returns true. Here is an if statement using the ! operator:

if (! (temperature > 100))
cout << "You are below the maximum temperature.\n";

First, the expression (temperature > 100) is tested to be true or false. Then the ! opera-
tor is applied to that value. If the expression (temperature > 100) is true, the ! operator
returns false. If it is false, the ! operator returns true. In the example, it is equivalent to
asking “is the temperature not greater than 100?”

Table 4-9 shows a truth table for the ! operator.

Table 4-9 Logical NOT

Expression Value of the Expression

!false true (1)

ltrue false (0)

192 Chapter 4 Making Decisions

Program 4-14 performs the same task as Program 4-13. The if statement, however, uses
the ! operator to determine if the user does not make at least $35,000 or has 7ot been on
the job more than five years.

Program 4-14

// This program determines whether or not an applicant qualifies

// for a loan. To qualify they must make at least $35,000 a year

// or have been at their current job for more than 5 years. It uses
// the ! logical operator to reverse the logic of the if statement.
#include <iostream>

using namespace std;

int main()

{
double income; // Annual income
int years; // Years at the current job
// Get annual income and years on the Jjob
cout << "What is your annual income? ";
cin >> income;
cout << "How many years have you worked at your current job? ";
cin >> years;
// Determine if the applicant qualifies for a loan
if (!((income >= 35000) || (years > 5))) // Uses logical NOT
{
cout << "You must earn at least $35,000 or have been employed\n";
cout << "for more than 5 years to qualify for a loan.\n";
}
else
cout << "You qualify for a loan.\n";
return 0;
}

Program Output 4-14 is the same as that of Program 4-13.

Boolean Variables and the ! Operator

An interesting feature of a Boolean variable is that its value can be tested just by naming it.
Suppose moreData is a Boolean variable. Then the test

if (moreData == true)
can be written simply as

if (moreData)
and the test

if (moreData == false)
can be written simply as

if (!moreData)

In fact, this second way of testing the value of a Boolean variable is preferable. This is
because the C++ constant true always has the value 1, but a condition that evaluates to

Logical Operators

true may have any non-zero value. For example, C++ has a function called isalpha(),
which tests whether or not a character is an alphabetic character. As you would expect, the
test isalpha('?') evaluates to false and the test isalpha('x') evaluates to true. How-
ever, for some alphabetic characters, this function returns a value other than 1 to represent
true. Program 4-135 illustrates this.

Program 4-15

// This program illustrates what can happen when a

// Boolean value is compared to the C++ constant true.

#include <iostream>

#include <cctype> // Needed to use the isalpha function
using namespace std;

int main()

{
cout << "Is '?' an alphabetic character? " << isalpha('?') << "\n";
cout << "Is 'X' an alphabetic character? " << isalpha('X') << "\n";
cout << "Is 'x' an alphabetic character? " << isalpha('x') << "\n\n";
cout << "Ask if(isalpha('x') == true) \n";
if (isalpha('x') == true)
cout << "The letter x IS an alphabetic character. \n\n";
else
cout << "The letter x is NOT an alphabetic character. \n\n";
cout << "Ask if(isalpha('x')) \n";
if (isalpha('x'))
cout << "The letter x IS an alphabetic character. \n";
else
cout << "The letter x is NOT an alphabetic character. \n";
return 0;
}

Program Output

Is '?' an alphabetic character? 0
Is 'X' an alphabetic character? 1
Is 'x' an alphabetic character? 2

Ask if(isalpha('x') == true
The letter x is NOT an alphabetic character

Ask if(isalpha('x"'))
The letter x IS an alphabetic character

In line 14 when the condition isalpha('x') == true was tested, the program did not
produce the desired result. The value 2 returned by the isalpha function was compared to
the value 1, so the condition evaluated to false even though, in fact, both values being
tested represent true. The code in line 20 worked correctly because the value 2, returned by
the isalpha function, was correctly interpreted as true.

193

194

Chapter 4 Making Decisions

Precedence and Associativity of Logical Operators

Table 4-10 shows the precedence of C++’s logical operators, from highest to lowest.

Table 4-10 Precedence of Logical Operators

!
&&

The ! operator has a higher precedence than many of the C++ operators. Therefore, to
avoid an error, it is a good idea always to enclose its operand in parentheses, unless you
intend to apply it to a variable or a simple expression with no other operators. For exam-
ple, consider the following expressions:

I(x > 2)

Ix > 2

The first expression applies the ! operator to the expression x > 2. It is asking “is x not
greater than 2?” The second expression, however, applies the ! operator to x only. It is ask-
ing “is the logical negation of x greater than 2?” Suppose x is set to 5. Since 5 is nonzero, it
would be considered true, so the ! operator would reverse it to false, which is 0. The >
operator would then determine if 0 is greater than 2. To avoid such an error, it is wise to
always use parentheses.

The && and | | operators rank lower in precedence than relational operators, which means
that relational expressions are evaluated before their results are logically ANDed or ORed.

a>b && x <y isthesameas (a > b) && (x < y)
a>b || x <y isthesameas (a > b) || (x <y)

Thus you don’t normally need parentheses when mixing relational operators with && and
| |. However it is a good idea to use them anyway to make your intent clearer for someone
reading the program.

Parentheses are even more strongly recommended anytime && and || operators are both
used in the same expression. This is because && has a higher precedence than | |. Without
parentheses to indicate which you want done first, && will always be done before | |, which
might not be what you intended. Assume recentGrad, employed, and goodCredit are
three Boolean variables. Then the expression

recentGrad || employed && goodCredit
is the same as

recentGrad || (employed && goodCredit)
and not the same as

(recentGrad || employed)&& goodCredit

Checking Numeric Ranges with Logical Operators

Logical operators are effective for determining if a number is in or out of a range. When
determining if a number is inside a numeric range, it’s best to use the && operator. For
example, the following if statement checks the value in x to determine if it is in the range
of 20 through 40.

Logical Operators

if ((x >= 20) && (x <= 40))
cout << x << " is in the acceptable range.\n";

The expression in the if statement will be true only when x is both greater than or equal
to 20 AND less than or equal to 40. The value of x must be within the range of 20 through
40 for this expression to be true.

When determining if a number is outside a range, the || operator is best to use. The
following statement determines if the value of x is outside the range of 20 to 40:

if ((x < 20) || (x > 40))
cout << x << " is outside the acceptable range.\n";

It’s important not to get the logic of these logical operators confused. For example, the
following if statement would never test true:

if ((x < 20) && (x > 40))
cout << x << " is outside the acceptable range.\n";

Obviously, x can never be less than 20 and at the same time greater than 40.

NOTE: C++ does not allow you to check numeric ranges with expressions such as
5 < x < 20. Instead you must use a logical operator to connect two relational
expressions, as previously discussed.

Checkpoint

4.21 The following truth table shows various combinations of the values true and
false connected by a logical operator. Complete the table by indicating if the result
of such a combination is true or false.

Logical Expression Result (true or false)

true && false
true && true
false && false

true || false
true || true
false || false
!true

!false

422 1Ifa = 2,b = 4,and ¢ = 6, indicate whether each of the following conditions is
true or false:

A) (a==14) || (b>2)
B) (6 <= c) && (a > 3)
C) (1 '=Db) && (c != 3)
D) (a >= -1) || (a <= b)
E) 1(a > 2)

423 1Ifa = 2,b = 4,and ¢ = 6, is the following expression true or false?
(b >a) || (b >c) && (c == 5)
4.24 Rewrite the following using the ! operator so that the logic remains the same.

if (activeEmployee == false)

195

196 Chapter 4 Making Decisions

- |

48 Validating User Input

1 CONCEPT: As long as the user of a program enters bad input, the program will

produce bad output. Programs should be written to filter out bad input.

Perhaps the most famous saying of the computer world is “garbage in, garbage out.” The
integrity of a program’s output is only as good as its input, so you should try to make sure
garbage does not go into your programs. Input validation is the process of inspecting
information given to a program by the user and determining if it is valid. A good program
should give clear instructions about the kind of input that is acceptable, and not assume
the user has followed those instructions. Here are just a few examples of input validations
performed by programs:

e Numbers are checked to ensure they are within a range of possible values. For exam-
ple, there are 168 hours in a week. It is not possible for a person to be at work longer
than 168 hours in one week.

e Values are checked for their “reasonableness.” Although it might be possible for a
person to be at work for 168 hours per week, it is not probable.

¢ Items selected from a menu or some other set of choices are checked to ensure they
are available options.

e Variables are checked for values that might cause problems, such as division by zero.

Program 4-16 is a modification of Program 4-7, the test score program. It rejects any test
score less than 0 or greater than 100.

Program 4-16

// This program uses an if/else if statement to assign a
// letter grade (A, B, C, D, or F) to a numeric test score.
// It validates the user's input.

#include <iostream>

using namespace std;

int main()

{

int testScore; // Holds a numeric test score
char grade; // Holds a letter grade

// Get the numeric score

cout << "Enter your numeric test score and I will\n";
cout << "tell you the letter grade you earned: ";
cin >> testScore;

if ((testScore < 0) || (testScore > 100)) // Input validation
{ // testScore is invalid
cout << testScore << " is an invalid score.\n";

cout << "Run the program again and enter a value\n";
cout << "in the range of 0 to 100.\n";

(program continues)

More About Variable Definitions and Scope

Program 4-16 (continued)

else

{

}

// testScore is valid so determine the letter grade
if (testScore < 60)

grade = 'F';
else if (testScore < 70)
grade = 'D';
else if (testScore < 80)
grade = 'C';
else if (testScore < 90)
grade = 'B';
else // If we got this far, testScore must be >= 90
grade = 'A';

// Display the letter grade
cout << "Your grade is " << grade << endl;

return 0;

}

Program Output with Example Input Shown in Bold
Enter your numeric test score and I will

tell you the letter grade you earned: -12[Enter]
-12 is an invalid score.

Run the program again and enter a value

in the range of 0 to 100.

Program Output with Other Example Input Shown in Bold
Enter your numeric test score and I will

tell you the letter grade you earned: 81[Enter]
Your grade is B

In Chapter 5 you will learn an even better way to validate input data.

More About Variable Definitions and Scope

=
49
1 CONCEPT: The scope of a variable is limited to the block in which it is defined.

C++ allows you to create variables almost anywhere in a program. It is a common
practice to define all of a function’s variables at the top of the function. However, espe-
cially in longer programs, variables are sometimes defined near the part of the program
where they are used. This makes the purpose of the variable more evident. Program 4-17
is a modification of Program 4-13, which determines if the user qualifies for a loan.
The definitions of the variables income and years have been moved to later points in
the program.

197

198

Chapter 4 Making Decisions

Program 4-17

// This program determines whether or not an applicant qualifies
// for a loan. It demonstrates late variable declaration.
#include <iostream>

using namespace std;

int main()

{
// Get annual income and years on the job
cout << "What is your annual income? ";
double income; // Variable definition
cin >> income;
cout << "How many years have you worked at "
<< "your current job? ";
int years; // Variable definition
cin >> years;
// Determine if the applicant qualifies for a loan
if ((income >= 35000) || (years > 5))
cout << "You qualify.\n";
else
{ cout << "You must earn at least $35,000 or have\n";
cout << "been employed for more than 5 years.\n";
}
return 0;
}

Recall from Chapter 2 that the scope of a variable is defined as the part of the program
where the variable may be used. In Program 4-17, the scope of the income variable is the
part of the program in lines 10 through 25. The scope of the years variable is the part of
the program in lines 15 through 25.

The variables income and years are defined inside function main’s braces. Variables
defined inside a set of braces are said to have local scope or block scope. They may only be
used in the part of the program between their definition and the block’s closing brace.

You may define variables inside any block. For example, look at Program 4-18. This version
of the loan program defines the variable years inside the block of the if statement.

Program 4-18

// This program determines whether or not an applicant qualifies

// for a loan. It demonstrates a variable defined in an inner block.
#include <iostream>

using namespace std;

int main()
{
// Get annual income
cout << "What is your annual income? ";
(program continues)

More About Variable Definitions and Scope 199

Program 4-18 (continued)

double income;
cin >> income;

// If income is high enough, get years worked
if (income >= 35000)
{ cout << "How many years have you worked at "
<< "your current job? ";
int years; // Variable defined inside the if block
cin >> years;

if (years > 5)
cout << "You qualify.\n";
else
cout << "You must have been employed for "
<< "more than 5 years to qualify.\n";

}

else
cout << "You must earn at least $35,000 to qualify.\n";

return 0;

The scope of years is the part of the program from lines 17 through 24, from the point of
its definition to the end of the block in which it is defined. The variable is not visible before
its definition or after the closing brace of the block. This is true of any variable defined
inside a set of braces.

0 NOTE: When a program is running and it enters the section of code that constitutes a

variable’s scope, it is said that the variable comes into scope. This simply means the
variable is now visible and the program may reference it. Likewise, when a variable
leaves scope, it may no longer be used.

Variables with the Same Name

When a block is nested inside another block, a variable defined in the inner block may have
the same name as a variable defined in the outer block. As long as the variable in the inner
block is visible, however, the variable in the outer block will be hidden. This is illustrated
by Program 4-19.

Program 4-19

// This program uses two variables with the same name.
#include <iostream>
using namespace std;

int main()
{
int number; // Define a variable named number
(program continues)

200

Chapter 4 Making Decisions

Program 4-19 (continued)

cout << "Enter a number greater than 0: ";
cin >> number;

if (number > 0)
{ int number; // Define another variable named number
cout << "Now enter another number: ";
cin >> number;
cout << "The second number you entered was ";
cout << number << endl;
}
cout << "Your first number was " << number << endl;
return 0;

Program Output with Example Input Shown in Bold

Enter a number greater than 0: 2[Enter]
Now enter another number: 7[Enter]
The second number you entered was 7

Your

0

first number was 2

Program 4-19 has two separate variables named number. The cin and cout statements in
the inner block (belonging to the if statement) can only work with the number variable
defined in that block. As soon as the program leaves that block, the inner number goes out
of scope, revealing the outer number variable.

WARNING! Although it’s perfectly acceptable to define variables inside nested
blocks, you should avoid giving them the same names as variables in the outer blocks.
It’s too easy to confuse one variable with another.

Checkpoint

4.25 Write an if statement that prints the message “The number is not valid” if the
variable speed is outside the range 0 through 200.

4.26 The following program skeleton asks the user for two numbers and then multiplies
them. The first should be negative and the second should be positive. Write the
input validation code for both numbers.

#include <iostream>
using namespace std;
int main()
{
int first, second, result;
cout << "Enter a negative integer: ";
cin >> first;
cout << "Now enter a positive integer: ";
cin >> second;

1/

More About Variable Definitions and Scope

// Write input validation code

//

result

cout <<
<<

first * second;
first << " times " << second << " is "
result << endl;

return 0;

}

4.27 Find and fix the errors in the following program.

4.28

#include <iostream>
using namespace std;

int main()
{

cout <<

<<

cin >>

cout <<

cin >>

"This program calculates the area of a "
"rectangle. Enter the length: ";

length;

"enter the width: ";

width;

int length, width, area;

area =
cout <<

length * width;

"The area is " << area << endl;

return 0;

}

What will the following program print if 40 is entered for testl and 30 for test2?

#include <iostream>
using namespace std;

int main()

{

cout <<

"Enter your first test score: ";

int testl;

cin >>
cout <<

testl;
"Enter your second test score: ";

int test2;
cin >> test2;

int sum

= testl + test2;

if (sum > 50)
{ testl += 10;
test2 += 10;
int sum = testl + test2;

}

cout <<

cout <<
cout <<

"test 1: " << testl << endl;
"test 2: " << test2 << endl;
"sum : " << sum << endl;

return 0;

201

202 Chapter 4 Making Decisions

—
4.10

Comparing Characters and Strings

{ CONCEPT: Relational operators can also be used to compare characters and string

objects.

Earlier in this chapter you learned to use relational operators to compare numeric values.
They can also be used to compare characters and string objects.

Comparing Characters

As you learned in Chapter 3, characters are actually stored in memory as integers. On most
systems, this integer is the ASCII value of the character. For example, the letter ‘A’ is repre-
sented by the number 635, the letter ‘B’ is represented by the number 66, and so on. Table
4-11 shows the ASCII numbers that correspond to some of the commonly used characters.

Table 4-11 ASCII Values of Commonly Used Characters

Character ASCII Value
‘-9 48-57
‘N7’ 65-90
‘a’=‘7’ 97-122
blank 32

period 46

Notice that every character, even the blank, has an ASCII code associated with it. Notice
also that the ASCII code of a character representing a digit, such as *1* or '2', is not the
same as the value of the digit itself. A complete table showing the ASCII values for all char-
acters can be found in Appendix A.

When two characters are compared, it is actually their ASCII values that are being compared.
'A' < 'B' because the ASCII value of 'A" (63) is less than the ASCII value of 'B' (66). Like-
wise '1' < '2' because the ASCII value of '1' (49) is less than the ASCII value of '2* (50).
However, as shown in Table 4-11, lowercase letters have higher numbers than uppercase let-
ters, so 'a' > 'z'. Program 4-20, which is similar to Program 4-10, shows how characters
can be compared with relational operators. Notice that the menu choices are now letters.

Program 4-20

// This menu-driven program shows how relational operators can be
// used to compare characters. Character inputs are tested to make
// sure they are within the set of legal menu choices.

#include <iostream>

#include <iomanip>

using namespace std;

(program continues)

Comparing Characters and Strings

Program 4-20 (continued)

int main()

{

// Constants for membership rates
const double ADULT RATE = 40.0;
const double CHILD RATE = 20.0;
const double SENIOR RATE = 30.0;

char choice; // Menu choice
int months; // Number of months
double charges; // Monthly charges

// Display the menu and get the user's choice
cout << " Health Club Membership Menu\n";
cout << "A. Standard Adult Membership\n";
cout << "B. Child Membership\n";

cout << "C. Senior Citizen Membership\n";
cout << "D. Quit the Program\n\n";

cout << "Enter your choice: ";
cin.get(choice);

// Set the numeric output formatting
cout << fixed << showpoint << setprecision(2);

if ((choice < 'A') || (choice > 'D'))
{ cout << "The valid choices are A through D.\n";
cout << "Run the program again and select one of those.
}
else if (choice == 'A'")

{ cout << "For how many months? ";
cin >> months;
charges = months * ADULT_ RATE;
cout << "The total charges are $" << charges << endl;
}
else if (choice == 'B'")
{ cout << "For how many months? ";
cin >> months;
charges = months * CHILD_ RATE;
cout << "The total charges are $" << charges << endl;
}
else if (choice == 'C")
{ cout << "For how many months? ";
cin >> months;
charges = months * SENIOR_RATE;
cout << "The total charges are $" << charges << endl;

}

return 0;

\n";

(program continues)

203

204

Chapter 4 Making Decisions

Program 4-20 (continued)

Program Output with Example Input Shown in Bold

A.
B.
C.
Do

Health Club Membership Menu
Standard Adult Membership
Child Membership

Senior Citizen Membership
Quit the Program

Enter your choice: C[Enter]
For how many months? 6[Enter]
The total charges are $180.00

Comparing String Objects

String objects can also be compared with relational operators. As with individual characters,
when two strings are compared, it is actually the ASCII value of the characters making up the
strings that are being compared. For example, assume the following definitions exist in a
program:

string setl "ABC";
string set2 = "XYZ";

The object setl is considered less than the object set2 because the characters "aBc"
alphabetically precede (have lower ASCII values than) the characters "xyz". So,
the following if statement will cause the message “setl is less than set2.” to be
displayed on the screen.

if (setl < set2)
cout << "setl is less than set2.";

One by one, each character in the first operand is compared with the character in the corre-
sponding position in the second operand. If all the characters in both strings match, the two
strings are equal. Other relationships can be determined if two characters in corresponding
positions do not match. The first operand is less than the second operand if the first mis-
matched character in the first operand is less than its counterpart in the second operand.
Likewise, the first operand is greater than the second operand if the first mismatched charac-
ter in the first operand is greater than its counterpart in the second operand.

For example, assume a program has the following definitions:

string namel = "Mary";
string name2 = "Mark";

The value in namel, "Mary", is greater than the value in name2, "Mark". This is because
the first three characters in name1 have the same ASCII values as the first three characters
in name2, but the 'y in the fourth position of "Mary" has a greater ASCII value than the
'k in the corresponding position of "Mark".

Any of the relational operators can be used to compare two string objects. Here are some
of the valid comparisons of namel and name2.

namel > name2 // true
namel <= name?2 // false
namel != name2 // true

String objects can also, of course, be compared to string constants:

namel < "Mary Jane" // true

Comparing Characters and Strings

Program 4-21 further demonstrates how relational operators can be used with string

objects.

Program 4-21

// This program uses relational operators to compare a string
// entered by the user with valid stereo part numbers.
#include <iostream>

#include <iomanip>

#include <string>

using namespace std;

int main()

{
const double PRICE A = 249.0,
PRICE B = 299.0;

string partNum; // Holds a stereo part number
// Display available parts and get the user's selection
cout << "The stereo part numbers are:\n";
cout << "Boom Box : part number S-29A \n";
cout << "Shelf Model: part number S-29B \n";
cout << "Enter the part number of the stereo you\n";
cout << "wish to purchase: ";
cin >> partNum;
// Set the numeric output formatting
cout << fixed << showpoint << setprecision(2);
// Determine and display the correct price
if (partNum == "S-29A")

cout << "The price is $" << PRICE_A << endl;
else if (partNum == "S-29B")

cout << "The price is $" << PRICE_B << endl;
else

cout << partNum << " is not a valid part number.\n";
return 0;

}

Program Output with Example Input Shown in Bold

The stereo part numbers are:

Boom Box : part number S-29A

Shelf Model: part number S-29B

Enter the part number of the stereo you
wish to purchase: S-29A[Enter]

The price is $249.00

@ NOTE: C-strings, unlike string objects, cannot be compared with relational operators.

To compare C-strings (i.e., strings defined as arrays of characters) you must use the
strcmp function, which is introduced in Chapter 12.

205

206 Chapter 4 Making Decisions

Checkpoint

4.29 Indicate whether each of the following relational expressions is true or false. Refer
to the ASCII table in Appendix A if necessary.

A) 'a'< 'z
B) 'a'=="A'
C) 'S'< "7
D) 'a'< 'A’
E) '1'==1
F) '1'==49

4.30 Indicate whether each of the following relational expressions is true or false. Refer
to the ASCII table in Appendix A if necessary.
A) "Bill" == "BILL"
B) "Bill" < "BILL"
C) "Bill" < "Bob"
D) "189" > "23"
E) "189" > "Bill"
F) "Mary" < "MaryEllen"
G) "MaryEllen" < "Mary Ellen"

=
411 The Conditional Operator

1 CONCEPT: You can use the conditional operator to create short expressions that
work like if/else statements.

The conditional operator is powerful and unique. It provides a shorthand method of
expressing a simple if/else statement. The operator consists of the question-mark (?) and
the colon(:). Its format is

expression ? expression : expression;
Here is an example of a statement using the conditional operator:

X< 0?y=10 : z = 20;
This statement is called a conditional expression and consists of three sub-expressions sep-
arated by the ? and : symbols. The expressions are x < 0, y = 10,and z = 20.

x <0 ? y = 10 : z = 20;

The conditional expression above performs the same operation as this if/else statement:

if (x < 0)
y = 10;
else

z = 20;

The Conditional Operator 207

The part of the conditional expression that comes before the question mark is the condi-
tion to be tested. It’s like the expression in the parentheses of an if statement. If the con-
dition is true, the part of the statement between the ? and the : is executed. Otherwise,
the part after the : is executed. Figure 4-9 illustrates the roles played by the three sub-

expressions.
Figure 4-9
First expression: 3rd expression:
condition to executes if the
be tested condition is false

v

x <0 ? y = 10 : z = 20;

2nd expression:
executes if the
condition is true

If it helps, you can put parentheses around the sub-expressions, as shown here:

(x < 0) ?2 (y =10) = (z = 20);

O NOTE: Because it takes three operands, the conditional operator is a ternary operator.

Using the Value of a Conditional Expression

Remember, in C++ all expressions have a value, and this includes the conditional
expression. If the first sub-expression is true, the value of the conditional expression is
the value of the second sub-expression. Otherwise it is the value of the third sub-
expression. Here is an example of an assignment statement that uses the value of a
conditional expression:

a = (x >100) 2 0 : 1;

The value assigned to variable a will be either 0 or 1, depending upon whether x is greater
than 100. This statement has the same logic as the following i£/else statement:

if (x > 100)
else
Program 4-22 can be used to help a consultant calculate her charges. Her rate is $50.00 per

hour, but her minimum charge is for five hours. The conditional operator is used in a state-
ment that ensures the number of hours does not go below five.

208 Chapter 4 Making Decisions

Program 4-22

// This program illustrates the conditional operator.

// It adjusts hours to 5 if fewer than 5 hours were worked.
#include <iostream>

#include <iomanip>

using namespace std;

int main()

{
const double PAY RATE = 50.0;
double hours, charges;
cout << "How many hours were worked? ";
cin >> hours;
hours = (hours < 5) ? 5 : hours; // Conditional operator
charges = PAY RATE * hours;
cout << fixed << showpoint << setprecision(2);
cout << "The charges are $" << charges << endl;
return 0;

}

Program Output with Example Input Shown in Bold

How many hours were worked? T1O0[Enter]
The charges are $500.00

Program Output with Other Example Input Shown in Bold

How many hours were worked? 2[Enter]
The charges are $250.00

Let’s look more closely at the statement in line 15 with the conditional expression:
hours = hours < 5 ? 5 : hours;

If the value in hours is less than 5, then 5 is stored in hours. Otherwise hours is assigned
the value it already has hours will not have a value less than 5 when it is used in the next
statement, which calculates the consultant’s charges.

As you can see, the conditional operator gives you the ability to pack decision-makin
Y p & y ytop g
power into a concise line of code. With a little imagination it can be applied to many other
programming problems. For instance, consider the following statement:

cout << "Your grade is: " << (score < 60 ? "Fail." : "Pass.");
If you were to use an if/else statement, this statement would be written as follows:

if (score < 60)

cout << "Your grade is: Fail.";
else

cout << "Your grade is: Pass.";

The Conditional Operator

NOTE: The parentheses are placed around the conditional expression because the <<
operator has higher precedence than the 2: operator. Without the parentheses, just the

value of the expression score < 60 would be sent to cout.

Checkpoint

4.31 Rewrite the following if/else statements as conditional expressions.
A) if (x > y)
z = 1;
else
z = 20;
B) if (temp > 45)
population = base * 10;
else
population = base * 2;
C) if (hours > 40)
wages *= 1.5;
else
wages *= 1;
D) if (result >= 0)
cout << "The result is positive\n";
else
cout << "The result is negative.\n";

4.32 Rewrite the following conditional expressions as if/else statements.
A) 3 =% >90 2 57 : 12;
B) factor = x >= 10 2 y * 22 : y * 35;
C) total += count == 1 ? sales : count * sales;
D) cout << ((num % 2) == 0) ? "Even\n" "0dd\n");

.

4.33 What will the following program display?

#include <iostream>
using namespace std;

int main()
{
const int UPPER = 8, LOWER = 2;
int numl, num2, num3 = 12, num4 = 3;

numl = num3 < num4 ? UPPER : LOWER;
num2 = num4 > UPPER ? num3 : LOWER;
cout << numl << " " << num2 << endl;
return 0;

209

210

Chapter 4 Making Decisions

—
412

The switch Statement

1 CONCEPT: The switch statement lets the value of a variable or expression determine

where the program will branch to.

A branch occurs when one part of a program causes another part to execute. The if/else
if statement allows your program to branch into one of several possible paths. It performs
a series of tests (usually relational) and branches when one of these tests is true. The
switch statement is a similar mechanism. It, however, tests the value of an integer expres-
sion and then uses that value to determine which set of statements to branch to. Here is the
format of the switch statement:

switch (IntegerExpression)

{
case ConstantExpression: // Place one or more
// statements here
case ConstantExpression: // Place one or more
// statements here
// case statements may be repeated
// as many times as necessary
default: // Place one or more
// statements here
}

The first line of the statement starts with the word switch, followed by an integer expres-
sion inside parentheses. This can be either of the following:

e A variable of any of the integer data types (including char).
¢ An expression whose value is of any of the integer data types.

On the next line is the beginning of a block containing several case statements. Each case
statement is formatted in the following manner:

case ConstantExpression: // Place one or more
// statements here

After the word case is a constant expression (which must be of an integer type such as an
int or char), followed by a colon. The constant expression can be either an integer literal
or an integer named constant. The expression cannot be a variable and it cannot be a Boolean
expression such as x < 22 or n == 25. The case statement marks the beginning of a
section of statements. These statements are branched to if the value of the switch expres-
sion matches that of the case expression.

WARNING! The expressions of each case statement in the block must be unique.

The switch Statement

An optional default section comes after all the case statements. This section is branched
to if none of the case expressions match the switch expression. Thus it functions like a
trailing else in an if/else if statement.

Program 4-23 shows how a simple switch statement works.

Program 4-23

// This program demonstrates the use of a switch statement.

// The program simply tells the user what character they entered.
#include <iostream>
using namespace std;

int main()

{
char choice;
cout << "Enter A, B,
cin >> choice;
switch (choice)
{
case 'A':cout <<
break;
case 'B':cout <<
break;
case 'C':cout <<
break;
default: cout <<
}
return 0;
}

or C: ";

"You

"You

"You

"You

entered A.\n";
entered B.\n";
entered C.\n";

did not enter A, B, or C!\n";

Program Output with Example Input Shown in Bold

Enter A, B, or C: B[Enter]
You entered B.

Program Output with Different Example Input Shown in Bold

Enter A, B, or C: F[Enter]
You did not enter A, B, or C!

The first case statement is case 'A':, the second is case 'B':, and the third is case 'C':.
These statements mark where the program is to branch to if the variable choice contains the
values 'a', 'B', or 'C'. (Remember, character variables and constants are considered inte-
gers.) The default section is branched to if the user enters anything other than A, B, or C.

Notice the break statements at the end of the case 'A', case 'B', and case 'C"' sections.

211

212 Chapter 4 Making Decisions

switch (choice)

{
case 'A':cout << "You entered A.\n";
break; -———
case 'B':cout << "You entered B.\n";
break; -——
case 'C':cout << "You entered C.\n";
break; +———
default:cout << "You did not enter A, B, or C!\n";
}

The break statement causes the program to exit the switch statement. The next statement
executed after encountering a break statement will be whatever statement follows the closing
brace that terminates the switch statement. A break statement is needed whenever you want
to “break out of” a switch statement because it is not automatically exited after carrying out a
set of statements the way an if/else if statement is.

The case statements show the program where to start executing in the block and the break
statements show the program where to stop. Without the break statements, the program
would execute all of the lines from the matching case statement to the end of the block.

@ NOTE: The default section (or the last case section if there is no default) does not
need a break statement. Some programmers prefer to put one there anyway for
consistency.

Program 4-24 is a modification of Program 4-23 that demonstrates what happens if the
break statements are omitted.

Program 4-24

// This program demonstrates how a switch statement
// works if there are no break statements.

#include <iostream>

using namespace std;

int main()

{
char choice;
cout << "Enter A, B, or C: ";
cin >> choice;
// The following switch statement is missing its break statements!
switch (choice)
{
case 'A':cout << "You entered A.\n";
case 'B':cout << "You entered B.\n";
case 'C':cout << "You entered C.\n";
default :cout << "You did not enter A, B, or C!\n";
}
return 0;
}

(program continues)

The switch Statement

Program 4-24 (continued)

Program Output with Example Input Shown in Bold
Enter A, B, or C: A[Enter]

You
You
You
You

entered A.
entered B.
entered C.
did not enter A, B, or C!

Program Output with Different Example Input Shown in Bold
Enter A, B, or C: C[Enter]

You
You

entered C.
did not enter A, B, or C!

Without the break statement, the program “falls through” all of the statements below
the one with the matching case expression. Sometimes this is what you want. Program
4-25 lists the features of three TV models a customer may choose from. The model 100
has remote control. The model 200 has remote control and stereo sound. The model 300
has remote control, stereo sound, and picture-in-a-picture capability. The program uses a
switch statement with carefully omitted breaks to print the features of the selected
model.

Program 4-25

// This program is carefully constructed to use the "fall through"
// feature of the switch statement.

#include <iostream>

using namespace std;

int main()

{

int modelNum;

// Display available models and get the user's choice
cout << "Our TVs come in three models:\n";

cout << "The 100, 200, and 300. Which do you want? ";
cin >> modelNum;

// Display the features of the selected model
cout << "That model has the following features:\n";
switch (modelNum)

{
case 300: cout << " Picture-in-a-picture\n";
case 200: cout << " Stereo sound\n";
case 100: cout << " Remote control\n";
break;
default : cout << "You can only choose the 100, 200, or 300.\n ";
}

return 0;

(program continues)

213

Chapter 4 Making Decisions

Program 4-25 (continued)

Program Output with Example Input Shown in Bold
Our TVs come in three models:
The 100, 200, and 300. Which do you want? T100[Enter]
That model has the following features:
Remote control

Program Output with Different Example Input Shown in Bold
Our TVs come in three models:
The 100, 200, and 300. Which do you want? 200[Enter]
That model has the following features:
Stereo sound
Remote control

Program Output with Different Example Input Shown in Bold

Our TVs come in three models:
The 100, 200, and 300. Which do you want? 300[Enter]
That model has the following features:
Picture-in-a-picture
Stereo sound
Remote control

Program Output with Different Example Input Shown in Bold
Our TVs come in three models:
The 100, 200, and 300. Which do you want? 500[Enter]
That model has the following features:
You can only choose the 100, 200, or 300.

Another example of how useful this “fall through” capability can be is when you want the
program to branch to the same set of statements for multiple case expressions. For instance,
Program 4-26 asks the user to select a grade of dog food. The available choices are A, B, and
C. The switch statement will recognize either upper or lowercase letters.

Program 4-26

// The switch statement in this program uses the "fall through" feature
// to catch both uppercase and lowercase letters entered by the user.
#include <iostream>

using namespace std;

int main()

{

char feedGrade;

// Get the desired grade of feed

cout << "Our dog food is available in three grades:\n";
cout << "A, B, and C. Which do you want pricing for? ";
cin >> feedGrade;

(program continues)

The switch Statement

Program 4-26 (continued)

// Find and display the price
switch(feedGrade)

{
case 'a':
case 'A': cout << "30 cents per pound.\n";
break;
case 'b':
case 'B': cout << "20 cents per pound.\n";
break;
case 'c':
case 'C': cout << "15 cents per pound.\n";
break;
default : cout << "That is an invalid choice.\n";
}

return 0;

Program Output with Example Input Shown in Bold

Our dog food is available in three grades:
A, B, and C. Which do you want pricing for? b[Enter]
20 cents per pound.

Program Output with Different Example Input Shown in Bold
Our dog food is available in three grades:
A, B, and C. Which do you want pricing for? B[Enter]
20 cents per pound.

When the user enters 'a' the corresponding case has no statements associated with it, so
the program falls through to the next case, which corresponds with 'a".

case 'a':
case 'A':cout << "30 cents per pound.\n";
break;

The same is technique is used for 'b' and 'c'.

Using switch in Menu-Driven Systems

The switch statement is a natural mechanism for building menu-driven systems like the
one we built in Program 4-10. However in that program, once the user selects which health
club package to purchase, the program uses an if/else if statement to calculate the
charges. Program 4-27 is a modification of that program that uses a switch statement
instead. Notice that this program also uses a logical AND operator so that the prompt and
input for the number of months only has to appear once.

215

216 Chapter 4 Making Decisions

Program 4-27

// This menu-driven program uses a switch statement to carry out
// the appropriate set of actions based on the user's menu choice.
#include <iostream>

#include <iomanip>

using namespace std;

int main()

{
// Constants for membership rates
const double ADULT RATE = 40.0;
const double CHILD RATE = 20.0;
const double SENIOR RATE 30.0;

int choice; // Menu choice
int months; // Number of months
double charges; // Monthly charges

// Display the menu and get the user's choice
cout << " Health Club Membership Menu\n\n";
cout << "1. Standard Adult Membership\n";
cout << "2. Child Membership\n";

cout << "3. Senior Citizen Membership\n";
cout << "4. Quit the Program\n\n";

cout << "Enter your choice: ";

cin >> choice;

// Validate and process the menu choice
if ((choice >= 1) && (choice <= 3))
{ cout << "For how many months? ";

cin >> months;

// Set charges based on user input
switch (choice)
{
case 1: charges = months * ADULT RATE;
break;
case 2: charges = months * CHILD_ RATE;
break;
case 3: charges = months * SENIOR RATE;
}
// Display the monthly charges
cout << fixed << showpoint << setprecision(2);
cout << "The total charges are $" << charges << endl;
}
else if (choice != 4)
{ cout << "The valid choices are 1 through 4.\n";
cout << "Run the program again and select one of these.\n";
}

return 0;

(program continues)

Program 4-27 (continued)

Program Output with Example Input Shown in Bold
Health Club Membership Menu

1. Standard Adult Membership
2. Child Membership
3. Senior Citizen Membership
4. Quit the Program

Enter your choice: 2[Enter]
For how many months? 6[Enter]
The total charges are $120.00

Checkpoint

4.34

4.35

4.36

The switch Statement

Explain why you cannot convert the following if/else if statement into a

switch statement.

if (temp == 100)
x = 0;

else if (population > 1000)
x = 1;

else if (rate < .1)
x = -1;

What is wrong with the following switch statement?

switch (temp)

{
case temp < 0 : cout <<
break;
case temp == 0: cout <<
break;
case temp > 0 : cout <<
break;
}

"Temp

"Temp

"Temp is positive

What will the following program segment display?

int funny = 7, serious = 15;

funny = serious * 2;
switch (funny)

{ case 0 : cout << "That
break;

case 30: cout << "That
break;

case 32: cout << "That
break;

default: cout << funny

r

is

is

<<

funny.\n";

serious.\n";

seriously funny.

endl;

is zero.\n";

is negative.\n";

.\n";

\n";

217

218 Chapter 4 Making Decisions

4.37 Complete the following program skeleton by writing a switch statement that dis-
plays "one" if the user has entered 1, "two" if the user has entered 2, and "three"
if the user has entered 3. If a number other than 1, 2, or 3 is entered, the program
should display an error message.

#include <iostream>
using namespace std;

int main()

{

int userNum;

cout << "Enter one of the numbers 1, 2, or 3: ";
cin >> userNum;

// Write the switch statement here.

return 0;

}

4.38 Rewrite the following program. Use a switch statement instead of the if/else if
statement.

#include <iostream>
using namespace std;

int main()

{

int selection;

cout << "Which formula do you want to see?\n\n";
cout << "1l. Area of a circle\n";

cout << "2. Area of a rectangle\n";

cout << "3. Area of a cylinder\n"

cout << "4. None of them!\n";

cin >> selection;

if (selection == 1)
cout << "Pi times radius squared\n";
else if (selection == 2)
cout << "Length times width\n";
else if (selection == 3)
cout << "Pi times radius squared times height\n";
else if (selection == 4)
cout << "Well okay then, good-bye!\n";
else

cout << "Not good with numbers, eh?\n";
return 0;

Enumerated Data Types 219

=
413) Enumerated Data Types

1 CONCEPT: An enumerated data type in C++ is a data type whose legal values are a set
of named constant integers.

So far we have used data types that are built into the C++ language, such as int and
double, and object types, like string, which are provided by C++ classes. However, C++
also allows programmers to create their own data types. An enumerated data type is a
programmer-defined data type that contains a set of named integer constants. Here is an
example of an enumerated type declaration.

enum Roster { Tom, Sharon, Bill, Teresa, John };

This creates a data type named Roster. It is called an enumerated type because the legal set
of values that variables of this data type can have are enumerated, or listed, as part of the
declaration. A variable of the Roster data type may only have values that are in the list
inside the braces.

It is important to realize that the example enum statement does not actually create any
variables—it just defines the data type. It says that when we later create variables of
this data type, this is what they will look like—integers whose values are limited to the
integers associated with the symbolic names in the enumerated set. The following
statement shows how a variable of the Roster data type would be defined.

Roster student;

The form of this statement is like any other variable definition: first the data type
name, then the variable name. Notice that the data type name is Roster, not enum
Roster.

Because student is a variable of the Roster data type, we may store any of the values
Tom, Sharon, Bill, Teresa, or John in it. An assignment operation would look like
this:

student = Sharon;
The value of the variable could then be tested like this:
if (student == Sharon)

Notice in the two examples that there are no quotation marks around Sharon. It is a
named constant, not a string literal.

In Chapter 3 you learned that named constants are constant values that are accessed
through their symbolic name. So what is the value of Sharon? The symbol Tom is stored as
the integer 0. Sharon is stored as the integer 1. Bill is stored as the integer 2, and so forth.

Even though the values in an enumerated data type are actually stored as integers, you can-
not always substitute the integer value for the symbolic name. For example, assuming that
student is a variable of the Roster data type, the following assignment statement is illegal.

student = 2; // Error!

220

Chapter 4 Making Decisions

You can, however, test an enumerated variable by using an integer value instead of a sym-
bolic name. For example, the following two if statements are equivalent.

if (student == Bill)
if (student == 2)

You can also use relational operators to compare two enumerated variables. For example,

the following if statement determines if the value stored in studentl is less than the value
stored in student2:

if (studentl < student2)

If studentl equals Bill and student2 equals John, this statement would be true. How-
ever, if student1 equals Bill and student2 equals Sharon, the statement would be false.

By default, the symbols in the enumeration list are assigned the integer values 0, 1, 2, and so forth.
If this is not appropriate, you can specify the values to be assigned, as in the following example.

enum Department { factory = 1, sales = 2, warehouse = 4 };

Remember that if you do assign values to the enumerated symbols, they must be integers.
The following value assignments would produce an error.

enum Department { factory = 1.1, sales = 2.2, warehouse = 4.4 };
// Error!

While there is no requirement that assigned integer values be placed in ascending order, it
is generally considered a good idea to do this.

If you leave out the value assignment for one or more of the symbols, it will be assigned a
default value, as illustrated here:

enum Colors { red, orange, yellow = 9, green, blue };

red will be assigned the value 0, orange will be 1, yellow will be 9, green will be 10, and
blue will be 11.

One of the purposes of an enumerated data type is that the symbolic names help to make a
program self-documenting. However, because these names are not strings, they are for use
inside the program only. Using the Roster data type in our example, the following two
statements would output a 2, not the name Sharon.

Roster studentl = Sharon;
cout << studentl;

Because the symbolic names of an enumerated data type are associated with integer values,
they may be used in a switch statement, as shown in Program 4-28. This program also
demonstrates that it is possible to use an enumerated data type without actually creating
any variables of that type.

Program 4-28

// This program demonstrates an enumerated data type.
#include <iostream>
using namespace std;

(program continues)

Program 4-28

Enumerated Data Types

(continued)

// Declare the enumerated type
enum Roster { Tom = 1, Sharon, Bill, Teresa, John };

int main()

// Sharon — John will be assigned default values 2-5.

{
int who;
cout << "This program will give you a student's birthday.\n";
cout << "Whose birthday do you want to know?\n";
cout << "1 = Tom\n";
cout << "2 = Sharon\n";
cout << "3 = Bill\n";
cout << "4 = Teresa\n";
cout << "5 = John\n";
cin >> who;
switch (who)
{
case Tom cout << "\nTom's birthday is January 3.\n";
break;
case Sharon: cout << "\nSharon's birthday is April 22.\n";
break;
case Bill cout << "\nBill's birthday is December 19.\n";
break;
case Teresa: cout << "\nTeresa's birthday is February 2.\n";
break;
case John cout << "\nJohn's birthday is June 17.\n";
break;
default cout << "\nInvalid selection\n";
}
return 0;
}

Program Output with Example Input Shown in Bold

This program will give you a student's birthday.
Whose birthday do you want to know?

1 = Tom

2 = Sharon
3 = Bill

4 = Teresa
5 = John
2[Enter]

Sharon's birthday is April 22.

Checkpoint

4.39 Find all the things that are wrong with the following declaration.

Enum Pet = { "dog", "cat", "bird", "fish" }

221

222

Chapter 4 Making Decisions

—
4.14

4.40 Follow the instructions to complete the following program segment.

enum Paint { red, blue, yellow, green, orange, purple };
Paint color = green;

// Write an if/else statement that will print out "primary color"
// if color is red, blue, or yellow, and will print out

// "mixed color" otherwise. The if test should use a relational
// expression.

Testing for File Open Errors

1 CONCEPT: When opening a file you can test the file stream object to determine if an

error occurred.

In Chapter 3 you were introduced to file operations and saw that the file stream member
function open is used to open a file. Sometimes the open member function will not work.
For example, the following code will fail if the file info.txt does not exist:

ifstream inputFile;
inputFile.open("info.txt");

You can determine when a file has failed to open by testing the value of the file stream
object with the ! operator. The following program segment attempts to open the file
customers.txt. If the file cannot be opened, an error message is displayed.

ifstream inputFile;
inputFile.open("customers.txt");
if (!inputFile)
{
cout << "Error opening file.\n";

}

Another way to detect a failed attempt to open a file is with the fail member function, as
shown in the following code.

ifstream inputFile;
inputFile.open("customers.txt");
if (inputFile.fail())

{
cout << "The customer.txt file could not be opened.\n"
<< "Make sure it is located in the default directory\n"
<< "where your program expects to find it.\n";
}

The fail member function returns true whenever an attempted file operation is
unsuccessful. When using file I/O, you should always test the file stream object to make
sure the file was opened successfully. If the file could not be opened, the user should be
informed and appropriate action taken by the program.

—
4.15

Focus on Testing and Debugging: Validating Output Results

Focus on Testing and Debugging:

.t Validating Output Results

CONCEPT: When testing a newly created or modified program, the output it produces
must be carefully examined to ensure it is correct.

Once a program being developed has been designed, written in a programming language,
and found to compile and link without errors, it is easy to jump to the conclusion that it
works correctly. This is especially true if it runs without aborting and produces “reason-
able” output. However, just because a program runs and produces output does not mean
that it is correct. It may still contain logic errors that cause the output to be incorrect. To
determine if a program actually works correctly it must be tested with data whose output
can be predicted and the output examined to ensure it is accurate.

Program 4-29 runs and produces output that may initially appear reasonable. However, it
contains a bug that causes it to produce incorrect output.

Program 4-29

// This program determines total buffet luncheon cost when
// the number of guests and the per person cost are known.
// It contains a logic error.

#include <iostream>

#include <iomanip>

using namespace std;

const int ADULT MEAL COST = 6.25; // Child meal cost = 75% of this

int main()

{

int numAdults, // Number of guests ages 12 and older
numChildren; // Number of guests ages 2-11

double adultMealTotal, // Cost for all adult meals
childMealTotal, // Cost for all child meals
totalMealCost;

// Get number of adults and children attending
cout << "This program calculates total cost "
<< "for a buffet luncheon.\n";
cout << "Enter the number of adult guests (age 12 and over): ";
cin >> numAdults;
cout << "Enter the number of child guests (age 2-11): ";
cin >> numChildren;

// Calculate meal costs

adultMealTotal = numAdults * ADULT MEAL COST;
childMealTotal numChildren * ADULT MEAL COST * .75;
totalMealCost adultMealTotal + childMealTotal;

(program continues)

223

224

Chapter 4 Making Decisions

Program 4-29 (continued)

// Display total meal cost

cout << fixed << showpoint << setprecision(2);

cout << "\nTotal buffet cost is $" << totalMealCost << endl;
return 0;

Program Output with Example Input Shown in Bold

This program calculates total cost for a buffet luncheon.
Enter the number of adult guests (age 12 and over): 92[Enter]
Enter the number of child guests (age 2-11): 4[Enter]

Total buffet cost is $570.00

At first glance the program may appear to run correctly. The per person charge for
adults is $6.25, so if there were 100 adult guests the price would be $625. But there are
only 96 guests and four of them are children, so it should cost less. $570 sounds
“about right”.

However, “about right” is not an a sufficient test of accuracy. If the program had been
run with data whose output could have been more easily checked, the programmer
would have quickly seen that there is an error. Here is the output from two more runs of
the same program using more carefully selected sample data.

Program Output with Different Example Input Shown in Bold

This program calculates total cost for a buffet luncheon.
Enter the number of adult guests (age 12 and over): 1[Enter]
Enter the number of child guests (age 2-11): O[Enter]

Total buffet cost is $6.00

Program Output with Still Different Example Input Shown in Bold

This program calculates total cost for a buffet luncheon.
Enter the number of adult guests (age 12 and over): O[Enter]
Enter the number of child guests (age 2-11): T1[Enter]

Total buffet cost is $4.50

From this output we can see that the cost of a child meal is correctly being calculated as
75% of the cost of an adult meal, but the adult meal cost is wrong. For one adult, it is
coming out as $6.00, when it should have been $6.25.

To find the problem, the programmer should determine which lines of code are most apt to
have caused the problem. Most likely something is wrong either in the initialization or
storage of ADULT MEAL_COST on line 8, in the calculation or storage of adultMealTotal
or totalMealCost on lines 14, 16, 27, and 29 or in the printing of totalMealCost on
line 33. Because the cost for one adult meal is erroneously coming out as a whole dollar
amount, even though it is formatted to appear as a floating-point number, one of the things
to check is whether all the variables that need to hold floating-point values have been defined
as type float or double. Sure enough, although adultMealTotal and totalMealCost

)|

4.16

L

Green Fields Landscaping Case Study—Part 2

have each been defined as a double, the named constant ADULT MEAL_coOST has been defined
to be an int. So the 6.25 with which it is initialized is truncated to 6 when it is stored. When
the definition of this named constant is rewritten as

const double ADULT MEAL COST = 6.25;

and the program is rerun, we get the following results.

Output of Revised Program with Example Input Shown in Bold

This program calculates total cost for a buffet luncheon.
Enter the number of adult guests (age 12 and over): T1[Enter]
Enter the number of child guests (age 2-11): O[Enter]

Total buffet cost is $6.25

Now that this error has been found and fixed, the program is correct. However, additional
testing with carefully developed test cases should be used to confirm this. The topic of how
to develop good test cases will be dealt with further in the next chapter.

Green Fields Landscaping Case Study—Part 2

Problem Statement

Another of the services provided by Green Fields Landscaping is the sale of evergreen trees,
which are priced by height. Customers have the choice of purchasing a tree on a “cash and
carry” basis, of purchasing a tree and having it delivered, or of purchasing a tree and hav-
ing it both delivered and planted. You have been asked to develop a program that uses the
number of trees purchased, their height, and the delivery and planting information to cre-
ate a customer invoice. Assume for now that all trees purchased are the same height.

Table 4-12 Evergreen Tree Pricing Information

Under 3 feet tall 39.00 (tax included)

3 to 5 feet tall 69.00 (tax included)

6 to 8 feet tall 99.00 (tax included)

over 8 feet tall 199.00 (tax included)

delivery only (per tree) 20.00 (100.00 max. per order)
delivery + planting 50% of the cost of the tree

Program Design

Program Steps
The program must carry out the following general steps:

Have the user input the number of trees purchased and their height.

Have the user indicate if the trees will be planted by Green Fields.

If planting service is not desired, have the user indicate if they want delivery.
Calculate the total tree cost.

Calculate the planting and delivery charges.

Calculate the total of all charges.

Print a bill that displays the purchase information and all charges.

Nk wbhe=

225

226 Chapter 4 Making Decisions

Named constants

double PRICE_1 = 39.00
double PRICE 2 = 69.00
double PRICE 3 = 99.00

double PRICE 4 = 199.00
double PER_TREE DELIVERY = 20.00
double MAX DELIVERY = 100.00

Variables whose values will be input

int numTrees // Number of evergreen trees purchased
int height // Tree height to the nearest foot
char planted // Are trees to be planted?('Y'/'N')
char delivered // Are trees to be delivered?('Y'/'N')

Variables whose values will be output

double treeCost // Cost of each tree

double totalTreeCost // Total price for all the trees
double deliveryCost // Delivery cost for all the trees
double plantingCost // Planting cost for all the trees
double totalCharges // Total invoice amount

Detailed Pseudocode (including actual variable names and needed calculations)

Initialize deliveryCost and plantingCost to 0
Display screen heading
Input numTrees, height, planted
If planted = 'N'
Input delivery
End If
If height < 3
treeCost = PRICE 1
Else If height <= 5
treeCost = PRICE 2
Else If height <= 8
treeCost = PRICE 3
Else
treeCost = PRICE 4
End If
totalTreeCost = numTrees * treeCost
If planted = 'Y'
plantingCost = totalTreeCost / 2 // deliveryCost stays 0
Else If delivered = 'Y'
If numTrees <= 5
deliveryCost = PER_TREE DELIVERY * numTrees
Else
deliveryCost = MAX DELIVERY
End If
End If
totalCharges = totalTreeCost + deliveryCost + plantingCost
Display invoice heading
Display numTrees, treeCost, totalTreeCost,
deliveryCost, plantingCost, totalCharges

The P

Green Fields Landscaping Case Study—Part 2

rogram

The next step, after the pseudocode has been checked for logic errors, is to expand the

pseudocode into the final program. This is shown in Program 4-30.

Program 4-30

// This program is used by Green Fields Landscaping to create

// custome
#include <
#include <
using name

int main()

{

const d

const d

int
char

double

// Disp
cout <<

<<
cout <<
cin >>
cout <<
cin >>
cout <<
cin >>

if (!(p
{ cou
cin

r invoices for evergreen tree sales.
iostream>

iomanip>

space std;

ouble PRICE 1 = 39.00, // Set prices for different
PRICE 2 = 69.00, // size trees
PRICE_3 = 99.00,
PRICE 4 = 199.00;

ouble PER_TREE DELIVERY = 20.00,
MAX DELIVERY = 100.00;

// Set delivery fees

numTrees, // Number of evergreen trees purchased
height; // Tree height to the nearest foot
planted, // Are trees to be planted?('Y'/'N')
delivered; // Are trees to be delivered?('Y'/'N')
treeCost, // Cost of each tree

totalTreeCost, // Total price for all the trees
deliveryCost = 0.0, // Delivery cost for all the trees
plantingCost = 0.0, // Planting cost for all the trees
totalCharges; // Total invoice amount

lay purchase
" Green Fields Landscaping\n"

" Evergreen Tree Purchase\n\n";
"Number of trees purchased: ";

numTrees;

"Tree height to the nearest foot: ";
height;

"Will Green Fields do the planting?(Y/N): ";
planted;

lanted == 'Y' || planted == 'y'))
t << "Do you want the trees delivered?
>> delivered;

(Y/N):

screen and get purchase information

",
4

(program continues)

227

228

Chapter 4 Making Decisions

Program 4-30 (continued)

// Calculate costs
if (height < 3)
treeCost = PRICE_1;
else if(height <= 5)
treeCost = PRICE_2;
else if(height <= 8)
treeCost = PRICE_3;
else
treeCost = PRICE 4;

totalTreeCost = numTrees * treeCost;

if ((planted == 'Y') || (planted == 'y'))
plantingCost = totalTreeCost / 2;
else if((delivered == 'Y') || (delivered == 'y'))

if (numTrees <= 5)
deliveryCost = PER_TREE_DELIVERY * numTrees;
else
deliveryCost = MAX DELIVERY;
//else planting and delivery costs both remain 0.0

totalCharges = totalTreeCost + deliveryCost + plantingCost;

// Display information on the invoice
cout << fixed << showpoint << setprecision(2);

cout << "\n\n Green Fields Landscaping\n"
<< " Evergreen Tree Purchase\n\n";
cout << setw(2) << numTrees << " trees @ $" << setw(6) << treeCost
<< " each = $" << setw(8) << totalTreeCost << endl;
cout << "Delivery charge s"
<< setw(8) << deliveryCost << endl;
cout << "Planting charge s"
<< setw(8) << plantingCost << endl;
cout << " " << endl;
cout << "Total Amount Due s"

<< setw(8) << totalCharges << endl << endl;
return 0;

Program Output with Example Input Shown in Bold

Green Fields Landscaping
Evergreen Tree Purchase

Number of trees purchased: 4[Enter]

Tree height to the nearest foot: 7[Enter]
Will Green Fields do the planting?(Y/N): y[Enter]

(program continues)

Tying It All Together: Fortune Teller

Program 4-30 (continued)

Green Fields Landscaping
Evergreen Tree Purchase

4 trees @ $ 99.00 each = $ 396.00
Delivery charge S 0.00
Planting charge $ 198.00
Total Amount Due $ 594.00

|
4.17
et

Crazy Al's Computer Emporium Case Study

The following additional case study, which contain applications of material introduced in
Chapter 4, can be found on the student CD.

Crazy Als is a retail seller of home computers whose sales staff work on commission. The
commission rate varies depending on the amount of sales. This case study develops a pro-
gram that computes monthly sales commission and then subtracts any pay already
advanced to the salesperson to calculate how much remaining pay is due at the end of the
month. The case study, which employs branching logic to determine the correct commis-
sion rate, includes problem definition, general and detailed pseudocode design, and a final
running program with sample output.

Tying It All Together: Fortune Teller

With the rand () function you learned about in Chapter 3 and the if/else if statement
you learned about in this chapter, you can now create a simple fortune telling game. Your
program will start by asking users to enter three careers they would like to have some day.
The program will then use random numbers to predict their future.

Program 4-31

// This program predicts the player's future using

// random numbers and an if/else if statement.

#include <iostream>

#include <string> // Needed to use strings
#include <cstdlib> // Needed for random numbers
using namespace std;

int main()

{

// Strings to hold user entered careers
string careerl, career2, career3;

int randomNum; // Will hold the randomly generated integer

(program continues)

229

230

Chapter 4 Making Decisions

Program 4-31 (continued)
// "Seed" the random generator
unsigned seed = time(0);

srand(seed);

// Explain the game and get the player's career choices

cout << "I am a fortune teller. Look into my crystal screen \n"
<< "and enter 3 careers you would like to have. Example:
Sl chef \n astronaut \n CIA agent \n\n"

<< "Then I will predict what you will be. \n\n";

cout << "Career choice 1: ";
getline(cin, careerl);
cout << "Career choice 2: ";
getline(cin, career2);
cout << "Career choice 3: ";
getline(cin, career3);

// Randomly generate an integer between 1 and 4.
randomNum = 1 + rand() % 4;

// Use branching logic to output the prediction

if (randomNum == 1)

cout << "\nYou will be a " << careerl << ". \n";
else if (randomNum == 2)

cout << "\nYou will be a " << career2 << ". \n";
else if (randomNum == 3)

cout << "\nYou will be a " << career3 << ". \n";
else

cout << "\nSorry. You will not be any of these. \n";
return 0;

Sample Run with User Input Shown in Bold

I am a fortune teller. Look into my crystal screen
and enter 3 careers you would like to have. For example,

chef

astronaut

CIA agent
Then I will predict what you will be.
Career choice 1: radio announcer[Enter]
Career choice 2: sky diving instructor[Enter]

Career choice 3: circus clown[Enter]

You will be a radio announcer.

Review Questions and Exercises

Review Questions and Exercises

Fill-in-the-Blank and Short Answer

1.

10.
11.

12.

13.

14.
15.

16.

17.
18.

An expression using the greater-than, less-than, greater-than-or-equal-to, less-than-or-
equal-to, equal, or not-equal operator is called a(n) expression.

The value of a relational expression is 0 if the expression is or 1 if the
expression is

The if statement regards an expression with the value 0 as and an
expression with a nonzero value as

For an if statement to conditionally execute a group of statements, the statements
must be enclosed in a set of

In an if/else statement, the if part executes its statement(s) if the expression is
, and the else part executes its statement(s) if the expression is

The trailing else in an if/else if statement has a similar purpose as the
section of a switch statement.

If the sub-expression on the left of the && logical operator is , the right
sub-expression is not checked.

If the sub-expression on the left of the | | logical operator is , the right
sub-expression is not checked.

The logical operator has higher precedence than the other logical
operators.

Logical operators have precedence than relational operators.

The logical operator works best when testing a number to determine if it

is within a range.

The logical operator works best when testing a number to determine if it
is outside a range.

A variable with scope is only visible when the program is executing in the
block containing the variable’s definition.

The expression that follows the switch statement must have a(n) value.

A program will “fall through” to the following case section if it is missing the
statement.

What value will be stored in the variable t after each of the following statements
executes?

A) t (12 > 1);
B) t =(2<0);
C) t=(5==1(3*2));
) & = (9 ==)7

Werite an if statement that assigns 100 to x when y is equal to 0.

Werite an if/else statement that assigns 0 to x when y is equal to 10. Otherwise it
should assign 1 to x.

231

232

Chapter 4 Making Decisions

19.

20.

21.

22.

23.

24.

Write an if/else statement that prints “Excellent” when score is 90 or higher,
“Good” when score is between 80 and 89, and “Try Harder” when score is less
than 80.

Write an if statement that sets the variable hours to 10 when the flag variable
minimum is set.

Convert the following conditional expression into an if/else statement.
qg=(x<y)? (a+bhb): (x*2);

Convert the following if/else if statement into a switch statement:

if (choice == 1)
{

cout << fixed << showpoint << setprecision(2);
}
else if ((choice == 2) || (choice == 3))
{

cout << fixed << showpoint << setprecision(4);
}
else if (choice == 4)
{

cout << fixed << showpoint << setprecision(6);
¥
else
{

cout << fixed << showpoint << setprecision(8);
}

Assume the variables x = 5,y = 6,and z = 8. Indicate if each of the following
conditions is true or false:

A) (x==15) [| (v >3)
B) (7 <= x) && (z > 4)
C) (2 '=y) && (z != 4)

Assume the variables x = 5,y = 6,and z
conditions is true or false:

8. Indicate if each of the following

A) (x>=0) || (x <=y)
B) (z-y) >y
C) '((z - y) > x)

Algorithm Workbench

25.

26.

27.

28.

Werite a C++ statement that prints the message “The number is valid.” if the variable
grade is within the range 0 through 100.

Write a C++ statement that prints the message “The number is valid.” if the variable
temperature is within the range —50 through 150.

Write a C++ statement that prints the message “The number is not valid.” if the
variable hours is outside the range 0 through 80.

Werite a C++ statement that displays the strings titlel and title2 in alphabetical
order.

Review Questions and Exercises

29. Using the following chart , write a C++ statement that assigns .10, .15, or .20 to
commission, depending on the value in sales.

Sales Commission Rate
Up to $10,000 10%
$10,000 to $15,000 15%
Over $15,000 20%

30. Write one or more C++ statements that assign the correct value to discount, using
the logic described here:

Assign .20 to discount if dept equals 5 and price is $100 or more.
Assign .15 to discount if dept is anything else and price is $100 or more.
Assign .10 to discount if dept equals 5 and price is less than $100.
Assign .05 to discount if dept is anything else and price is less than $100.

31. The following statement should determine if x is not greater than 20. What is wrong
with it?

if (!'x > 20)

32. The following statement should determine if count is within the range of 0 through
100. What is wrong with it?

if (count >= 0 || count <= 100)

33. The following statement should determine if count is outside the range of 0 through
100. What is wrong with it?

if (count < 0 && count > 100)

34. The following statement should determine if x has a value other than 1 or 2. What is
wrong with it?

if (x! =1 || x! = 2)

Find the Errors
35. Each of the following program segments has errors. Find as many as you can.

A) cout << "Enter your 3 test scores and I will ";
<< "average them:";
int scorel, score2, score3,
cin >> scorel >> score2 >> score3;

double average;
average = (scorel + score2 + score3) / 3.0;
if (average = 100);
perfectScore = true;// Set the flag variable
cout << "Your average is " << average << endl;
bool perfectScore;
if (perfectScore);
{
cout << "Congratulations!\n";
cout << "That's a perfect score.\n";
cout << "You deserve a pat on the back!\n";

233

234 Chapter 4 Making Decisions

B) double numl, num2, quotient;

cout << "Enter a number: ";

cin >> numl;

cout << "Enter another number: ";
cin >> num2;

if (num2 == 0)

cout << "Division by zero is not possible.\n";

cout << "Please run the program again ";

cout << "and enter a number besides zero.\n";
else

quotient = numl / num2;

cout << "The quotient of " << numl <<

cout << " divided by " << num2 << " is ";

cout << quotient << endl;

C) int testScore;

cout << "Enter your test score and I will tell you\n";
cout << "the letter grade you earned: ";
cin >> testScore;

if (testScore < 60)

cout << "Your grade is F.\n";
else if (testScore < 70)

cout << "Your grade is D.\n";
else if (testScore < 80)

cout << "Your grade is C.\n";
else if (testScore < 90)

cout << "Your grade is B.\n";
ellise

cout << "That is not a valid score.\n";
else if (testScore <= 100)

cout << "Your grade is A.\n";

D) double testScore;

cout << "Enter your test score and I will tell you\n";
cout << "the letter grade you earned: ";
cin >> testScore;

switch (testScore)
{ case (testScore < 60.0):
cout << "Your grade is F.\n";
break;
case (testScore < 70.0):
cout << "Your grade is D.\n";
break;
case (testScore < 80.0):
cout << "Your grade is C.\n";
break;
case (testScore < 90.0):
cout << "Your grade is B.\n";
break;
case (testScore <= 100.0):
cout << "Your grade is A.\n";
break;
default: cout << "That score isn't valid\n"; }

Review Questions and Exercises 235

Soft Skills

Programmers need to be able to look at alternative approaches to solving a problem and at
different ways of implementing a solution, weighing the pros and cons of each. Further,
they need to be able to clearly articulate to others why they recommend, or have chosen, a
particular solution. Come to class prepared to discuss the following:

36. Sometimes either a switch statement or an if/else if statement can be used to
implement logic that requires branching to different blocks of program code. But the
two are not interchangeable.

A) Under what circumstances would an if/else if statement be a more appropri-
ate choice than a switch statement?

B) Under what circumstances would a switch statement be a more appropriate
choice than an if/else if statement?

C) Under what circumstances would a set of nested if/else statements be more
appropriate than either of the other two structures?

Try to come up with at least one example case for each of the three, where it is the best
way to implement the desired branching logic.

Programming Challenges

1. Minimum/Maximum

Werite a program that asks the user to enter two numbers. The program should use the con-
ditional operator to determine which number is the smaller and which is the larger.

2. Roman Numeral Converter
Write a program that asks the user to enter a number within the range of 1 through 10.
Use a switch statement to display the Roman numeral version of that number.

Input Validation: Do not accept a number less than 1 or greater than 10.

3. Magic Dates

The date June 10, 1960, is special because when we write it in the following format, the
month times the day equals the year.

6/10/60

Write a program that asks the user to enter a month (in numeric form), a day, and a two-
digit year. The program should then determine whether the month times the day is equal to
the year. If so, it should display a message saying the date is magic. Otherwise, it should
display a message saying the date is not magic.

4. Areas of Rectangles

The area of a rectangle is the rectangle’s length times its width. Write a program that asks
for the length and width of two rectangles. The program should tell the user which rectan-
gle has the greater area, or if the areas are the same.

236

Chapter 4 Making Decisions

VideoNote
Solving

the Time
Calculator
Problem

5. Book Club Points

An online book club awards points to its customers based on the number of books purchased
each month. Points are awarded as follows:

Books Purchased Points Earned
0 0
1 S
2 15
3 30
4 or more 60

Werite a program that asks the user to enter the number of books purchased this month and
then displays the number of points awarded.

6. Mass and Weight

Scientists measure an object’s mass in kilograms and its weight in newtons. If you know an
object’s mass, you can calculate its weight in newtons with the following formula:

weight = mass X 9.8

Write a program that asks the user to enter an object’s mass, and then calculates and displays
its weight. If the object weighs more than 1000 newtons, display a message indicating that
it is too heavy. If the object weighs less than 10 newtons, display a message indicating that
the object is too light.

7. Time Calculator

Write a program that asks the user to enter a number of seconds.

e There are 86400 seconds in a day. If the number of seconds entered by the user is
greater than or equal to 86400, the program should display the number of days in
that many seconds.

e There are 3600 seconds in an hour. If the number of seconds entered by the user is
less than 86400, but is greater than or equal to 3600, the program should display the
number of hours in that many seconds.

e There are 60 seconds in a minute. If the number of seconds entered by the user is less
than 3600, but is greater than or equal to 60, the program should display the number
of minutes in that many seconds.

8. Math Tutor

This is a modification of the math tutor problem in Chapter 3. Write a program that can be
used as a math tutor for a young student. The program should display two random num-
bers between 10 and 50 that are to be added, such as:

24
+ 12

The program should then wait for the student to enter the answer. If the answer is correct,
a message of congratulations should be printed. If the answer is incorrect, a message
should be printed showing the correct answer.

Review Questions and Exercises 237

) myCodellate 9. Software Sales
A software company sells a package that retails for $99. Quantity discounts are given
according to the following table.

Quantity Discount
10-19 20%
20-49 30%
50-99 40%
100 or more 50%

Werite a program that asks for the number of units purchased and computes the total cost
of the purchase.

Input Validation: Make sure the number of units is greater than 0.

10. Bank Charges

A bank charges $10 per month plus the following check fees for a commercial checking
account:

$.10 each for fewer than 20 checks
$.08 each for 20-39 checks

$.06 each for 40-59 checks

$.04 each for 60 or more checks

Werite a program that asks for the number of checks written during the past month, then
computes and displays the bank’s fees for the month.

Input Validation: Do not accept a negative value for the number of checks written.

11. Geometry Calculator
Write a program that displays the following menu:

Geometry Calculator

. Calculate the Area of a Circle

. Calculate the Area of a Rectangle
. Calculate the Area of a Triangle
. Quit

=W N =

Enter your choice (1-4):

If the user enters 1, the program should ask for the radius of the circle and then display its
area. Use 3.14159 for n. If the user enters 2, the program should ask for the length and
width of the rectangle, and then display the rectangle’s area. If the user enters 3, the pro-
gram should ask for the length of the triangle’s base and its height, and then display its
area. If the user enters 4, the program should end.

Input Validation: Display an error message if the user enters a number outside the
range of 1 through 4 when selecting an item from the menu. Do not accept negative
values for the circle’s radius, the rectangle’s length or width, or the triangle’s base or
height.

238

Chapter 4 Making Decisions

) myCodellle | 12. Running the Race

Write a program that asks for the names of three runners and the time it took each of them
to finish a race. The program should display who came in first, second, and third place.
Think about how many test cases are needed to verify that your problem works correctly.
(That is, how many different finish orders are possible?)

Input Validation: Only accept positive numbers for the times.

13. Personal Best

Write a program that asks for the name of a pole vaulter and the dates and vault heights (in
meters) of the athlete’s three best vaults. It should then report in height order (best first),
the date on which each vault was made, and its height.

Input Validation: Only accept values between 2.0 and 5.0 for the heights.

14. Body Mass Index

Werite a program that calculates and displays a person’s body mass index (BMI). The BMI
is often used to determine whether a person with a sedentary lifestyle is overweight or
underweight for his or her height. A person’s BMI is calculated with the following formula:

BMI = weight x 703/height”

where weight is measured in pounds and height is measured in inches. The program should
display a message indicating whether the person has optimal weight, is underweight, or is
overweight. A sedentary person’s weight is considered to be optimal if his or her BMI is
between 18.5 and 25. If the BMI is less than 18.5, the person is considered to be under-
weight. If the BMI value is greater than 25, the person is considered to be overweight.

15. Fat Gram Calculator

Write a program that asks for the number of calories and fat grams in a food. The program
should display the percentage of calories that come from fat. If the calories from fat are less
than 30 percent of the total calories of the food, it should also display a message indicating
the food is low in fat.

One gram of fat has 9 calories, so
Calories from fat = fat grams * 9

The percentage of calories from fat can be calculated as
Calories from fat + total calories

Input Validation: Make sure the number of calories is greater than 0 and the number
of fat grams is 0 or more. Also, the number of calories from fat cannot be greater than
the total number of calories. If that happens, display an error message indicating that
either the calories or fat grams were incorrectly entered.

Review Questions and Exercises 239

() myCodellate 16. The Speed of Sound

The speed of sound varies depending on the medium through which it travels. In general,
sound travels fastest in rigid media, such as steel, slower in liquid media, such as water, and
slowest of all in gases, such as air. The following table shows the approximate speed of
sound, measured in feet per second, in air, water, and steel.

Medium Speed (feet per sec.)
Air 1,100
Water 4,900
Steel 16,400

Write a program that displays a menu allowing the user to select air water, or steel. After
the user has made a selection, the number of feet a sound wave will travel in the selected
medium should be entered. The program will then display the amount of time it will take.
(Round the answer to four decimal places.)

Input Validation: Check that the user has selected one of the available menu choices.
Do not accept distances less than 0.

17. The Speed of Sound in Gases

When traveling through a gas, the speed of sound depends primarily on the density of the
medium. The less dense the medium, the faster the speed will be. The following table
shows the approximate speed of sound at 0 degree celsius, measured in meters per second,
when traveling through carbon dioxide, air, helium, and hydrogen.

Medium Speed (meters per sec.)
Carbon dioxide 258.0
Air 331.5
Helium 972.0
Hydrogen 1270.0

Write a program that displays a menu allowing the user to select one of these 4 gases. After
a selection has been made, the user should enter the number of seconds it took for the
sound to travel in this medium from its source to the location at which it was detected. The
program should then report how far away (in meters) the source of the sound was from the
detection location.

Input Validation: Check that the user has selected one of the available menu choices.
Do not accept times less than 0 seconds or more than 30 seconds.

240

Chapter 4 Making Decisions

18. Spectral Analysis

If a scientist knows the wavelength of an electromagnetic wave she can determine what
type of radiation it is. Write a program that asks for the wavelength in meters of an electro-
magnetic wave and then displays what that wave is according to the following chart. (For
example, a wave with a wavelength of 1E-10 meters would be an X-ray.)

1 x 10-1 1x10-8 4 x 10-7 7 x 10-7 1x10-3 1x 102

AIIII|IIII|IIII|IIII|IIII|IIII|IIII;
¢ >

Gamma Rays X Rays Ultraviolet / Visible Light / Infrared Microwaves / Radio Waves

19. Long-Distance Calls

A long-distance carrier charges the following rates for telephone calls between the United
States and Mexico:

Starting Time of Call Rate per Minute
00:00-06:59 $0.12
07:00-19:00 0.55
19:01-23:59 0.35

Write a program that asks for the starting time and the number of minutes of the call, and
displays the charges. The program should ask for the time to be entered as a floating-point
number in the form HH.MM. For example, 07:00 hours will be entered as 07.00, and
16:28 hours will be entered as 16.28.

Input Validation: The program should not accept times that are greater than 23:59.
Also, no number whose last two digits are greater than 59 should be accepted.
Hint: Assuming num is a floating-point variable, the following expression will give you
its fractional part:

num - static_cast<int>(num)

20. Freezing and Boiling Points

The following table lists the freezing and boiling points of several substances. Write a pro-
gram that asks the user to enter a temperature, and then shows all the substances that will
freeze at that temperature and all that will boil at that temperature. For example, if the
user enters —20 the program should report that water will freeze and oxygen will boil at
that temperature.

Substance Freezing Point (°F) Boiling Point (°F)
Ethyl alcohol -173 172
Mercury -38 676
Oxygen =362 =306

Water 32 212

Review Questions and Exercises

21. Using Files—Freezing and Boiling Points Modification

Modify the freezing and boiling points program described in Programming Challenge 20 so it
reads its input from a file instead of from the keyboard. Perform the necessary test to deter-
mine if an error occurs when the file is opened. If an error occurs, display a message informing
the user. The following data to test your program can be found in the FrzBoil.dat file.

-173 -38 -362 32
172 676 -306 212

It is important that your program read the data from the file in the same order it is written
in the file. Notice that the four freezing point values come first, followed by the four boil-
ing point values.

22. Using Files—Internet Service Provider Part 1

An Internet service provider has three different subscription packages for its customers:

Package A: For $9.95 per month 10 hours of access are provided. Additional hours
are $2.00 per hour.

Package B: For $14.95 per month 20 hours of access are provided. Additional
hours are $1.00 per hour.

Package C: For $19.95 per month unlimited access is provided.

Werite a program that calculates a customer’s monthly bill. It should input customer name,
which package the customer has purchased, and how many hours were used. It should
then create a bill that includes the input information and the total amount due. The bill
should be written to a file.

Input Validation: Be sure the user only selects package A, B, or C. Also, the number
of hours used in a month cannot exceed 744.

23. Using Files—Internet Service Provider Part 2

Modify the program in problem 22 so it also displays how much money Package A cus-
tomers would save if they purchased packages B or C, and how much money package B
customers would save if they purchased package C. If there would be no savings, no mes-
sage should be printed.

24. Using Files—Internet Service Provider Part 3

Months with 30 days have 720 hours, and months with 31 days have 744 hours. February,
with 28 days, has 672 hours. Enhance the input validation of the Internet Service Provider
program by asking the user for the month (by name), and validating that the number of
hours entered is not more than the maximum for the entire month. Here is a table of the
months, their days, and number of hours in each.

Month Days Hours
January, March, May, July, 31 744
August, October, December

April, June, September, 30 720
November

February 28 672

241

This page intentionally left blank

o
(N]
—
o
<
I
O

5.1 The Increment and Decrement Operators

5.2 Introduction to Loops:
The while Loop

5.3 Using the while Loop for Input
Validation

5.4 Counters

5.5 The do-while Loop

5.6 The for Loop

5.7 Keeping a Running Total

5.8 Sentinels

5.9 Using a Loop to Read Data from a File

5.10
5.1
5.12
5.13
5.14
5.15

5.16

Focus on Software Engineering:
Deciding Which Loop to Use
Nested Loops

Breaking Out of a Loop

The continue Statement

Focus on Testing and Debugging:
Creating Good Test Data

Central Mountain Credit Union
Case Study

Tying It All Together: What a Colorful
World

The Increment and Decrement Operators

CONCEPT: C++ provides a pair of unary operators for incrementing and decrementing

variables.

To increment a value means to increase it, and to decrement a value means to decrease it. In

the example below, gtyordered is incremented by 10 and numSold is decremented by 3.

gtyOrdered = gtyOrdered + 10;
numSold = numSold — 3;

Although the values stored in variables can be increased or decreased by any amount, it
is particularly common to increment them or decrement them by 1. In fact, if we say that

243

244

Chapter 5 Looping

a value is being incremented or decremented without specifying by how much, it is
understood that it is being incremented or decremented by 1. C++ provides a pair of
unary operators to do this. The ++ operator increases its operand’s value by 1. The ——
operator decreases its operand’s value by 1.

Here are three different ways to increment the value of the variable num by 1.

num = num + 1;
num += 1;
num++;

And here are three different ways to decrement it by 1:

num = num - 1;
num -= 1;
num--;

NOTE: The expression num++ is pronounced “num plus plus,” and num-- is
>
pI'OIlOUHCCd “num minus minus.”

Our examples so far show the increment and decrement operators used in postfix mode,
which means the operator is placed after the variable. The operators also work in prefix
mode, where the operator is placed before the variable name:

++num;
——num;

In both prefix and postfix mode, these operators add 1 to, or subtract 1 from, their operand.
The following example illustrates the use of these operators in both prefix and postfix
mode. Notice that there is no space between the name of the variable and the ++ or —— pre-
ceding it or following it.

num = 4;

num++; // now num has the value 5
++num; // now num has the value 6
num--; // now num has the value 5 again
——num; // now num has the value 4 again

Program 5-1 includes these 5 lines of code along with cout statements to further illustrate
how they work.

Program 5-1
// This program demonstrates the ++ and -- operators.
#include <iostream>

using namespace std;

int main()

int num = 4; // num starts out with 4
// Display the value in num
cout << "The variable num is " << num << endl;

cout << "I will now increment num.\n\n";

(program continues)

The Increment and Decrement Operators

Program 5-1 (continued)

// Use postfix ++ to increment num

num++;

cout << "Now the variable num is " << num << endl;
cout << "I will increment num again.\n\n";

// Use prefix ++ to increment num

++num;

cout << "Now the variable num is " << num << endl;
cout << "I will now decrement num.\n\n";

// Use postfix -- to decrement num

num--;

cout << "Now the variable num is " << num << endl;
cout << "I will decrement num again.\n\n";

// Use prefix -- to increment num

—-num;

cout << "Now the variable num is " << num << endl;
return 0;

Program Output

The variable num is 4
I will now increment num.

Now the variable num is 5
I will increment num again.

Now the variable num is 6
I will now decrement num.

Now the variable num is 5
I will decrement num again.

Now the variable num is 4

The Difference Between Postfix and Prefix Modes

In the simple statements used in Program 5-1, it doesn’t matter if the increment or decre-
ment operator is used in postfix or prefix mode. The difference is important, however,
when these operators are used in statements that do more than just increment or decre-
ment. For example, look at the following lines:

num = 4;
cout << num++;

This cout statement is doing two things: 1) displaying the value of num, and 2) incrementing
num. But which happens first? cout will display a different value if num is incremented first
than if num is incremented last. The answer depends on the mode of the increment operator.

Postfix mode causes the increment to happen after the value of the variable is used in the
expression. In the example, cout will display 4, then num will be incremented to 5. Prefix

245

246

Chapter 5 Looping

mode, however, causes the increment to happen first. In the following statements, num will
first be incremented to 5, then cout will display 5:

num = 4;
cout << ++num;

Program 5-2 illustrates these dynamics further by placing increment and decrement opera-
tors in cout statements. This makes it easy to see the difference between using them in
prefix and postfix mode. However, this should not normally be done. That is, in actual
programming applications it is not recommended to place increment or decrement opera-
tors in cout statements. So you should not write code like this.

Program 5-2

// This program demonstrates the postfix and prefix
// modes of the increment and decrement operators.
#include <iostream>

using namespace std;

int main()

{

int num = 4;

// Illustrate postfix and prefix ++ operator
cout << num << " " // Displays 4

’
cout << num++ << " " // Displays 4, then adds 1 to num
cout << num << " "; // Displays 5
cout << ++num << "\n\n"; // Adds 1 to num, then displays 6
// Illustrate postfix and prefix -- operator
cout << num << " "; // Displays 6
cout << num-- << " ", // Displays 6, then subtracts 1 from num
cout << num << " "; // Displays 5
cout << —--num << "\n\n"; // Subtracts 1 from num, then displays 4

return 0;

Program Output

4

4

5 6

Let’s analyze the statements in this program. In line 8, num is initialized with the value 4, so
the cout statement in line 11 displays 4. Then, line 12 sends the expression num++ to cout.
Because the ++ operator is used in postfix mode, the value 4 is first sent to cout, and then
1 is added to num, making its value 3.

When line 13 executes, num will hold the value 5, so 5 is displayed. Then, line 14 sends the
expression ++num to cout. Because the ++ operator is used in prefix mode, 1 is first added
to num (making it 6), and then the value 6 is sent to cout. This same sequence of events
happens in lines 17 through 20, except the —— operator is used.

The Increment and Decrement Operators

For another example, look at the following code:

int x = 1;

int y

y = xX++; // Postfix increment
The first statement defines the variable x (initialized with the value 1) and the second state-
ment defines the variable y. The third statement does two things:

e It assigns the value of x to the variable y.
e The variable x is incremented.

The value that will be stored in y depends on when the increment takes place. Because the
++ operator is used in postfix mode, the old value of x (which is 1) is assigned to y before x
is incremented. After the statement executes, y will contain 1, and x will contain 2. Let's
look at the same code, but with the ++ operator used in prefix mode:

int x = 1;
int y;
y = ++x; // Prefix increment

In the third statement, the ++ operator is used in prefix mode, causing variable x to be
incremented before the assignment takes place. So, this code will store 2 in y. After the
code has executed, x and y will both contain 2.

Using ++ and -- in Mathematical Expressions

The increment and decrement operators can also be used on variables in mathematical
expressions. Consider the following program segment:

a = 2;

b =5;

c = a * bt++;

cout << a << " " << b << " " << ¢c;

In the statement ¢ = a * b++, c is assigned the value of a times b, which is 10. The variable
b is then incremented. The cout statement will display

2 6 10
If the statement were changed to read
c = a * ++b;

the variable b would be incremented before it was multiplied by a. In this case ¢ would be
assigned the value of 2 times 6, so the cout statement would display

2 6 12

You can pack a lot of action into a single statement using the increment and decrement
operators, but don’t get too tricky with them. You might be tempted to try something like
the following, thinking that ¢ will be assigned 11:

a = 2;
b = 5;
c = ++(a * b); // Error!

247

248

Chapter 5 Looping

But this assignment statement simply will not work because the operand of the increment
and decrement operators must be an Ivalue. Recall from Chapter 2 that an Ivalue identifies
a place in memory whose contents may be changed. The increment and decrement opera-
tors usually have variables for their operands, but generally speaking, anything that can go
on the left side of an = operator is legal.

Using ++ and -- in Relational Expressions

The ++ and -- operators may also be used in relational expressions. Just as in mathemat-
ical expressions, the difference between postfix and prefix mode is critical. Consider the
following program segment:

x = 10;
if (x++ > 10)
cout << "x is greater than 10.\n";

Two operations are happening in this if statement: 1) The value in x is tested to determine
if it is greater than 10, and 2) x is incremented. Because the increment operator is used
in postfix mode, the comparison happens first. Since 10 is not greater than 10, the cout
statement won’t execute. If the mode of the increment operator is changed, however, the if
statement will compare 11 to 10 and the cout statement will execute:

x = 10;
if (++x > 10)
cout << "x is greater than 10.\n";

NOTE: Some instructors prefer that you only use the ++ and —— operators in
statements whose sole purpose is to increment or decrement a variable. They may ask
you not to use them in assignment statements, mathematical expressions, or relational
expressions.

Checkpoint
5.1 What will the following program segments display?
A) x = 2;
y = X++;

cout << x << y;
B) x = 2;

y = ++x;

cout << x << y;
C) x = 2;

y = 4;

cout << xX++ << --y;
D) x = 2;

y = 2 * x++;

cout << x << y;

E) x = 99;
if (x++ < 100)
cout "It is

else
cout << "It
F) x = 0;
if (++x)
cout << "It
else

cout << "It

—

Introduction to Loops: The while Loop

true!\n";

is false!\n";

is true!\n";

is false!\n";

5.2 Introduction to Loops: The while Loop

1 CONCEPT: A loop is part of a program that repeats.

Chapter 4 introduced the concept of control structures, which direct the flow of a
1{ program. A loop is a control structure that causes a statement or group of statements
— to repeat. C++ has three looping control structures: the while loop, the do-while
= loop, and the for loop. The difference between each of these is how they control the
V'deolNOte repetition.
The while
Loop
The while Loop
The while loop has two important parts: (1) an expression that is tested for a true or
false value, and (2) a statement or block that is repeated as long as the expression is true.
Figure 5-1 shows the general format of the while loop and a flowchart visually depicting
how it works.
Figure 5-1
—
while (condition) false
{
statement;
statement; true
// Place as many statements
// here as necessary statement(s)
']

Let’s look at each part of the while loop. The first line, sometimes called the loop header,
consists of the key word while followed by a condition to be tested enclosed in parentheses.

249

250

Chapter 5

Looping

The condition is expressed by any expression that can be evaluated as true or false. Next
comes the body of the loop. This contains one or more C++ statements.

Here’s how the loop works. The condition expression is tested, and if it is true, each
statement in the body of the loop is executed. Then, the condition is tested again. If it is still
true, each statement is executed again. This cycle repeats until the condition is false.

Notice that, as with an if statement, each statement in the body to be conditionally exe-
cuted ends with a semicolon, but there is no semicolon after the condition expression in
parentheses. This is because the while loop is not complete without the statements that
follow it. Also, as with an if statement, when the body of the loop contains two or more
statements, these statements must be surrounded by braces. When the body of the loop
contains only one statement, the braces may be omitted. Essentially, the while loop works
like an if statement that can execute over and over. As long as the expression in the paren-
theses is true, the conditionally executed statements will repeat.

Program 5-3 uses a while loop to print “Hello” five times.

Program 5-3

//

This program demonstrates a simple while loop.

#include <iostream>
using namespace std;

int main()

{

int number = 1;

while (number <= 5)
{
cout << "Hello "
number++;
}
cout << "\nThat's all!\n";
return 0;

Program Output

Hello

Hello Hello Hello Hello

That's all!

Let’s take a closer look at this program. In line 7 an integer variable number is defined and
initialized with the value 1. In line 9 the while loop begins with this statement:

while (number <= 5)

This statement tests the variable number to determine whether its value is less than or equal
to 5. Because it is, the statements in the body of the loop (lines 11 and 12) are executed:

cout << "Hello "
number++;

Introduction to Loops: The while Loop 251

The statement in line 11 prints the word “Hello”. The statement in line 12 uses the incre-
ment operator to add one to number, giving it the value 2. This is the last statement in the
body of the loop, so after it executes the loop starts over. It tests the expression number
<= 5 again, and because it is still true, the statements in the body of the loop are executed
again. This cycle repeats until the value of number equals 6, making the expression number
<= 5 false. Then the loop is exited. This is illustrated in Figure 5-2.

Figure 5-2

Test this condition.

If the condition is false, exit the loop
If the condition is true, perform
these statements.

{
cout << "Hello "; <——————J

number++;

while (number <= 5)

After executing the body of the loop, start over.

Each execution of a loop is known as an iteration. This loop will perform five itera-
tions before the expression number <= 5 is tested and found to be false, causing the
loop to terminate. The program then resumes execution at the statement immediately
following the loop. A variable that controls the number of time a loop iterates is
referred to as a loop control variable. In the example we have just seen, number is the
loop control variable.

while is a Pretest Loop

The while loop is known as a pretest loop, which means it tests its expression before each
iteration. Notice the variable definition of number in line 7 of Program 5-3:

int number = 1;

The number variable is initialized with the value 1. If number had been initialized with a value
greater than 5, as shown in the following program segment, the loop would never execute:

int number = 6;
while (number <= 5)

{

cout << "Hello "
number++;

}

An important characteristic of the while loop is that the loop will never iterate if the test
expression is false to start with. If you want to be sure a while loop executes the first
time, you must initialize the relevant data in such a way that the test expression starts
out as true.

252

Chapter 5 Looping

Infinite Loops

In all but rare cases, loops must contain within themselves a way to terminate. This means
that something inside the loop must eventually make the test expression false. The loop in
Program 5-3 stops when the expressions number <= 5 is false.

If a loop does not have a way of stopping, it is called an infinite loop. Infinite loops keep
repeating until the program is interrupted. Here is an example:

int number = 1;
while (number <= 5)
{
cout << "Hello "
}

This is an infinite loop because it does not contain a statement that changes the value of the
number variable. Each time the expression number <= 5 is tested, number will contain the
value 1.

It’s also possible to create an infinite loop by accidentally placing a semicolon after the first
line of the while loop. Here is an example:

int number = 1;
while (number <= 5); // This semicolon is an ERROR!

{

cout << "Hello "
number++;

}

The semicolon at the end of the first line is assumed to be a null statement and disconnects the
while statement from the block that comes after it. To the compiler, this loop looks like this:

while (number <= 5);

This while loop will forever execute the null statement, which does nothing. The program
will appear to have “gone into space” because there is nothing to display screen output or
show any activity.

Don’t Forget the Braces with a Block of Statements

If you write a loop that conditionally executes a block of statements, don’t forget to
enclose all of the statements in a set of braces. If the braces are accidentally left out, the
while statement conditionally executes only the very next statement. For example, look at
the following code.

int number = 1;
// This loop is missing its braces!
while (number <= 5)

cout << "Hello "

number++;

In this code the number++ statement is not in the body of the loop. Because the braces are miss-
ing, the while statement only executes the statement that immediately follows it. This loop will
execute infinitely because there is no code in its body that changes the number variable.

Using the while Loop for Input Validation 253

Another common pitfall with loops is accidentally using the = operator when you intend to
use the == operator. The following is an infinite loop because the test expression assigns 1
to remainder each time it is evaluated rather than testing if remainder is equal to 1:

while (remainder = 1) // Error: Notice the assignment.

{

cout << "Enter a number: ";
cin >> num;
remainder = num % 2;

}

Remember, any nonzero value is evaluated as true.

Programming Style and the while Loop
It’s possible to create loops that look like this:

while (number <= 5) { cout << "Hello "; number++; }

Avoid this style of programming, however. The programming layout style you should use
with the while loop is similar to that of the if statement:

o If there is only one statement repeated by the loop, it should appear on the line after
the while statement and be indented one level.

e If the loop repeats a block of statements, the block should begin on the line after the
while statement and each line inside the braces should be indented.

In general, you’ll find a similar layout style being used with the other types of loops
presented in this chapter.

=g
53) Using the while Loop for Input Validation

1 CONCEPT: The while loop can be used to create input routines that repeat until
acceptable data is entered.

Perhaps the most famous saying of the computer industry is “garbage in, garbage out.”
The integrity of a program’s output is only as good as its input, so you should try to make
sure garbage does not go into your programs. Input validation is the process of inspecting
data given to a program by the user and determining if it is valid. A good program should
give clear instructions about the kind of input that is acceptable, and not assume the user
has followed those instructions.

The while loop is especially useful for validating input. If an invalid value is entered, a
loop can require that the user re-enter it as many times as necessary. For example, the
following loop asks for a number in the range of 1 through 100:

254

Chapter 5 Looping

cout << "Enter a number in the range 1 - 100: ";
cin >> number;

while ((number < 1) || (number > 100))

{

cout << "ERROR: Enter a value in the range 1 - 100: ";
cin >> number;

}

This code first allows the user to enter a number. This takes place just before the loop. If
the input is valid, the loop will not execute. If the input is invalid, however, the statements
in the body of the loop will be executed. They will display an error message and require the
user to enter another number. The loop will continue to execute until the user enters a valid
number. The general logic of performing input validation is shown in Figure 5-3.

Figure 5-3

Read the first
value

Is the Yes -
value Display an .| Read another
invalid? error message value

The read operation that takes place just before the loop is called a priming read. It provides
the first value for the loop to test. Subsequent values are obtained by the loop.

Program 5-4 calculates the number of soccer teams a youth league may create, based on a
given number of players and a maximum number of players per team. The program uses
while loops (in lines 20 through 25 and lines 31 through 35) to validate the user’s input.

Program 5-4

// This program calculates the number of soccer teams a youth
// league may create from the number of available players.
// Input validation is done with while loops.
#include <iostream>
using namespace std;
(program continues)

Using the while Loop for Input Validation

Program 5-4 (continued)

int main()

{

int players, // Number of available players
teamPlayers, // Number of desired players per team
numTeams, // Number of teams
leftover; // Number of players left over

// Get the number of players per team

cout << "How many players do you wish per team?\n";
cout << " (Enter a value in the range 9 - 15): ";
cin >> teamPlayers;

// Validate the input

while ((teamPlayers) < 9) || (teamPlayers > 15))

{
cout << "Team size should be 9 to 15 players.\n";
cout << "How many players do you wish per team? ";
cin >> teamPlayers;

}

// Get the number of players available

cout << "How many players are available? ";

cin >> players;

// Validate the input

while (players <= 0)

{
cout << "Please enter a positive number: ";
cin >> players;

}

// Calculate the number of teams

numTeams = players / teamPlayers;

// Calculate the number of leftover players
leftOver = players % teamPlayers;

// Display the results

cout << "\nThere will be " << numTeams << " teams with
cout << leftOver << " players left over.\n";

return 0;

Program Output with Example Input Shown in Bold
How many players do you wish per team?

(Enter a value in the range 9 - 15): 4[Enter]
Team size should be 9 to 15 players.

How many players do you wish per team? 12[Enter]
How many players are available? -142[Enter]
Please enter a positive number: 142[Enter]

There will be 11 teams with 10 players left over.

"o,
’

255

256

Chapter 5 Looping

Checkpoint

5.2 How many times will “sunday\n” be printed in each of the following program
segments?

A) int count = 1;
while (count < 5)
{ cout << "My favorite day is "
cout << "Sunday\n;
count++;
}
B) int count = 10;
while (count < 5)
{ cout << "My favorite day is "
cout << "Sunday\n;
count++;
}
C) int count = 1;
while (count < 5);
{ cout << "My favorite day is "
cout << "Sunday\n;
count++;
}
D) int count = 1;
while (count < 5)
cout << "My favorite day is "
cout << "Sunday\n;
count++;

5.3 In Checkpoint 5.2A, what is the loop control variable?
5.4 Write input validation loops that ask the user to do each of the following:
A) Enter a menu choice between 1 and 4.
B) Enter °Y’, y’, ‘N’, or “n’.
—
54 Counters

1 CONCEPT: A counter is a variable that is regularly incremented or decremented each
time a loop iterates.

Sometimes it’s important for a program to keep track of the number of iterations a loop
performs. For example, Program 5-5 displays a table consisting of the numbers 1 through
5 and their squares, so its loop must iterate 5 times.

Program 5-5

// This program uses a while loop to display the numbers 1-5
// and their squares.

#include <iostream>

#include <iomanip>

using namespace std;

(program continues)

Counters

Program 5-5 (continued)

int main()

{

int num = 1;

cout << "Number Square\n";

cout << Memmmmmmm e \n";

while (num <= 5)

{
cout << setw(4) << num << setw(7) << (num * num) << endl;
num++; // Increment counter

}

return 0;

Program Output

Number Square

In Program 5-5 the loop control variable num starts at 1 and is incremented each time through the
loop. When num reaches 6, the condition num <= 5 becomes false, and the loop is exited. Vari-
able num also acts as a counter, keeping count of how many times the loop has iterated so far.

NOTE: It’s important that num be properly initialized. Remember, variables defined
inside a function have no guaranteed starting value.

Letting the User Control the Loop

Sometimes we want to let the user decide how many times a loop should iterate. Program
5-6, which is a revision of Program 5-5, does this. It prompts the user to enter the maxi-
mum integer value to be displayed and squared. Then it has num, the loop counter, count
up to that value.

Program 5-6

// This program displays integer numbers and their squares, beginning
// with one and ending with whatever number the user requests.
#include <iostream>

#include <iomanip>

using namespace std;

int main()

(program continues)

257

258

Chapter 5 Looping

Program 5-6 (continued)
{
int num, // Counter telling what number to square
lastNum; // The final integer value to be squared

// Get and validate the last number in the table

cout << "This program will display a table of integer\n"
<< "numbers and their squares, starting with 1.\n"
<< "What should the last number be?\n"
<< "Enter an integer between 2 and 10: ";

cin >> lastNum;

while ((lastNum < 2) || (lastNum > 10))

{ cout << "Please enter an integer between 2 and 10: ";
cin >> lastNum;

}

// Display the table

cout << "\nNumber Square\n";

cout << Memmmmmme \n";

num = 1; // Set the counter to the starting value
while (num <= lastNum)

{

cout << setw(4) << num << setw(7) << (num * num) << endl;
num++; // Increment the counter

}

return 0;

Program Output with Example Input Shown in Bold

This program will display a table of integer
numbers and their squares, starting with 1.
What should the last number be?

Enter an integer between 2 and 10: 3[Enter]

Number Square

1 1
2 4
3 9

55 The do-while Loop

1 CONCEPT: The do-while loop is a post test loop, which means its expression is
tested after each iteration.

In addition to the while loop, C++ also offers the do-while loop. The do-while loop
looks similar to a while loop turned upside down. Figure 5-4 shows its format and a flow-
chart visually depicting how it works.

The do-while Loop 259

Figure 5-4
—
do statement(s)
{ statement;
statement; l
// Place as many statements
// here as necessary. true
} while (condition);
false

As with the while loop, if there is only one conditionally executed statement in the loop
body, the braces may be omitted.

0 NOTE: The do-while loop must be terminated with a semicolon after the closing
parenthesis of the test expression.

Besides the way it looks, the difference between the do-while loop and the while loop is
that do-while is a post test loop. It tests its expression after each iteration is complete.
This means do-while always performs at least one iteration, even if the test expression is
false at the start. For example, in the following while loop the cout statement will not
execute at all:

int x = 1;
while (x < 0)
cout << x << endl;

But the cout statement in the following do-while loop will execute once because the
do-while loop does not evaluate the expression x < 0 until the end of the iteration.

int x = 1;
do

cout << x << endl;
while (x < 0);

You should use the do-while loop when you want to make sure the loop executes at least
once. For example, Program 5-7 computes and displays the average of a set of test scores
before asking if the user wants to repeat the process with another set of scores. As with the
while loop, a do-while loop can be written to iterate a set number of times or to allow
the user to control how many times to loop. Program 5-7 illustrates another method for
letting the user control the loop. It will repeat as long as the user enters a Y or y for yes.

Program 5-7

// This program averages 3 test scores. It uses a do-while loop
// that allows the code to repeat as many times as the user wishes.
#include <iostream>
using namespace std;
(program continues)

260 Chapter 5 Looping

Program 5-7 (continued)

int main()

{
int scorel, score2, score3; // Three test scores
double average; // Average test score
char again; // Loop again? Y or N
do
{ // Get three test scores
cout << "\nEnter 3 scores and I will average them: ";
cin >> scorel >> score2 >> score3;
// Calculate and display the average
average = (scorel + score2 + score3) / 3.0;
cout << "The average is " << average << ".\n";
// Does the user want to average another set?
cout << "Do you want to average another set? (Y/N) ";
cin >> again;
} while ((again == 'Y') || (again == 'y'));
return 0;
}

Program Output with Example Input Shown in Bold

Enter 3 scores and I will average them: 80 90 70[Enter]
The average is 80.
Do you want to average another set? (Y/N) y[Enter]

Enter 3 scores and I will average them: 60 75 88[Enter]
The average is 74.3333.
Do you want to average another set? (Y/N) n[Enter]

Using do-while with Menus

The do-while loop is a good choice for repeating a menu. Recall Program 4-27, which
displays a menu of health club packages. Program 5-8 is a modification of that program
that uses a do-while loop to repeat the program until the user selects item 4 from
the menu.

Program 5-8

// This menu-driven Health Club membership program carries out the
// appropriate actions based on the menu choice entered. A do-while loop
// allows the program to repeat until the user selects menu choice 4.
#include <iostream>
#include <iomanip>
using namespace std;
(program continues)

Program 5-8

int main()

{

(continued)

// Constants for membership rates
const double ADULT RATE = 40.0;
const double CHILD RATE = 20.0;

const double SENIOR_RATE

int choice;
int months;
double charges;

do

30.0;

// Menu choice

// Number of months

// Monthly charges

The do-while Loop

{ // Display the menu and get the user's choice
"\n Health Club Membership Menu\n\n";

cout
cout
cout
cout
cout
cout
cin

<<
<<
<<
<<
<<
<<
>>

"1. Standard Adult Membership\n";

"2. Child Membership\n";

"3. Senior Citizen Membership\n";

"4, Quit the Program\n\n";
"Enter your choice: ";
choice;

// Validate the menu selection

while ((choice < 1)

{
cout << "Please enter 1, 2, 3,
cin >> choice;

}

// Process the user's choice

if (choice != 4)

{ cout << "For how many months? "
cin >> months;

// Compute charges

switch (choice)

{

}

case 1l: charges

break;

|| (choice > 4))

based on user input

months * ADULT RATE

r

case 2: charges = months * CHILD RATE;

case 3: charges

break;

// Display the monthly charges
cout << fixed << showpoint << setprecision(2);
cout << "The total charges are $" << charges << endl;

}

months * SENIOR_RATE;

} while (choice != 4); // Loop again if the user did not
// select choice 4 to quit

return 0;

(program continues)

261

262 Chapter 5 Looping

Program 5-8 (continued)

Program Output with Example Input Shown in Bold
Health Club Membership Menu

1. Standard Adult Membership
2. Child Membership
3. Senior Citizen Membership
4. Quit the Program

Enter your choice: 1[Enter]
For how many months? 12[Enter]
The total charges are $480.00

Health Club Membership Menu

1. Standard Adult Membership
2. Child Membership
3. Senior Citizen Membership
4. Quit the Program

Enter your choice: 4[Enter]

Checkpoint
5.5 What will each of the following program segments display?

A) int count = 10;
do
cout << "Hello World\n";
while (count++ < 1);

B) int v = 0;
do
cout << v++;
while (v < 5);

C) int count = 0, funny = 1, serious = 0, limit = 4;
do
{ funny++;
serious += 2;
} while (count++ < limit);
cout << funny << " " << serious << " ";
cout << count << endl;

5.6 Write a program segment with a do-while loop that displays whether a user-
entered integer is even or odd. The code should then ask the user if he or she wants
to test another number. The loop should repeat so long as the user enters Y or y.

—
56

The for Loop 263

The for Loop

1 CONCEPT: The for loop is a pretest loop that combines the initialization, testing,

VideoNote
The for Loop

and updating of a loop control variable in a single loop header.

In general, there are two categories of loops: conditional loops and count-controlled loops.
A conditional loop executes as long as a particular condition exists. For example, an input
validation loop executes as long as the input value is invalid. When you write a conditional
loop, you have no way of knowing the number of times it will iterate.

Sometimes you know the exact number of iterations that a loop must perform. A loop
that repeats a specific number of times is known as a count-controlled loop. For exam-
ple, if a loop asks the user to enter the sales amounts for each month in the year, it will
iterate twelve times. In essence, the loop counts to twelve and asks the user to enter a
sales amount each time it makes a count. A count-controlled loop must possess three
elements:

1. It must initialize a counter variable to a starting value.

2. It must test the counter variable by comparing it to a final value. When the counter
variable reaches its final value, the loop terminates.

3. Tt must update the counter variable during each iteration. This is usually done by
incrementing the variable.

Count-controlled loops are so common that C++ provides a type of loop specifically for
them. It is known as the for loop. The for loop is specifically designed to initialize, test,
and update a counter variable. Here is the format of the for loop.

for (initialization; test; update)

{
statement;
statement;
// Place as many statements
// here as necessary.
¥

As with the other loops you have used, if there is only one statement in the loop body, the
braces may be omitted.

The first line of the for loop is the loop header. After the key word for, there are three
expressions inside the parentheses, separated by semicolons. (Notice there is no semicolon
after the third expression.) The first expression is the initialization expression. It is typically
used to initialize a counter to its starting value. This is the first action performed by the loop
and it is only done once.

The second expression is the fest expression. It tests a condition in the same way the test
expression in the while and do-while loop does, and controls the execution of the loop.
As long as this condition is true, the body of the for loop will repeat. The for loop is a
pretest loop, so it evaluates the test expression before each iteration.

The third expression is the update expression. It executes at the end of each iteration.
Typically, this is a statement that increments the loop’s counter variable.

264 Chapter 5 Looping

Here is an example of a simple for loop that prints “Hello” five times:

for (count = 1; count <= 5; count++)
cout << "Hello" << endl;

In this loop, the initialization expression is count = 1, the test expression is count <= 5,
and the update expression is count++. The body of the loop has one statement, which is the
cout statement. Figure 5-5 illustrates the sequence of events that take place during the loop’s
execution. Notice that Steps 2 through 4 are repeated as long as the test expression is true.

Figure 5-5
Step 1: Perform the initialization expression.
Step 2: Evaluate the test expression.

If it is true, go to step 3.
Otherwise, terminate the loop.

for (count = 1; count <= 5; count++)

{ cout << "Hello" << endl; T

}

Step 3: Execute the body Step 4: Perform the update expression.
of the loop. Then go back to step 2.

Figure 5-6 shows the loop’s logic in the form of a flowchart.

Figure 5-6

Assign 1 to
count

cout Increment
statement count

Notice how the counter variable count is used to control the number of times the loop iter-
ates. During the execution of the loop, this variable takes on the values 1 through 5, and
when the test expression count <= 5 becomes false, the loop terminates. Also notice that
in this example the count variable is used only in the loop header, to control the number of
loop iterations. It is not used for any other purpose. However, it is also possible to use the
counter variable within the body of a loop. For example, look at the following code:

for (number = 1; number <= 5; number++)
cout << number << " ";

The for Loop

The counter variable in this loop is number. In addition to controlling the number of
iterations, it is also used in the body of the loop. This loop will produce the following
output:

12345
As you can see, the loop displays the contents of the number variable during each iteration.

Program 5-9 is a new version of Program 5-5 that displays the numbers 1-5 and their
squares by using a for loop instead of a while loop.

Program 5-9

// This program uses a for loop to display the numbers 1-5
// and their squares.

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{ int num;
cout << "Number Square\n";
cout << M————m————— - \n";
for (num = 1; num <= 5; numt+t)
cout << setw(4) << num << setw(7) << (num * num) << endl;
return 0;
}
Program Output
Number Squared
1 1
2 4
3 9
4 16
5 25

The for Loop is a Pretest Loop

Because the for loop tests its test expression before it performs an iteration, it is possible
to write a for loop in such a way that it will never iterate. Here is an example:

for (count = 11; count <= 10; count++)
cout << "Hello" << endl;

Because the variable count is initialized to a value that makes the test expression false
from the beginning, this loop terminates as soon as it begins.

265

266

Chapter 5 Looping

Avoid Modifying the Counter Variable in the Body of
the for Loop

Be careful not to place a statement that modifies the counter variable in the body of the for
loop. All modifications of the counter variable should take place in the update expression,
which is automatically executed at the end of each iteration. If a statement in the body of the
loop also modifies the counter variable, the loop will probably not terminate when you
expect it to. The following loop, for example, increments x twice for each iteration:

for (x = 1; x <= 10; x++)

{

cout << x << endl;
X++; // Wrong!

Other Forms of the Update Expression

You are not limited to incrementing the loop control variable by just 1 in the update
expression. Here is a loop that displays all the even numbers from 2 through 100 by add-
ing 2 to its counter:

for (num = 2; num <= 100; num += 2)
cout << num << endl;

And here is a loop that counts backward from 10 down to 0:

for (num = 10; num >= 0; num--)
cout << num << endl;

Defining a Variable in the for Loop’s Initialization
Expression

Not only may the counter variable be initialized in the initialization expression, it may be
defined there as well. The following code shows an example. This is a modified version of
the loop in Program 5-9.

for (int num = 1; num <= 5; numt+)
cout << setw(4) << num << setw(7) << (num * num) << endl;

In this loop, the num variable is both defined and initialized in the initialization expression.
If the counter variable is used only in the loop, it is considered good programming practice
to define it in the loop header. This makes the variable’s purpose clearer.

When a variable is defined in the initialization expression of a for loop, the scope of the
variable is limited to the loop. This means you cannot access the variable in statements
outside the loop. For example, the following program segment will not compile because
the last cout statement cannot access the variable count.

for (int count = 1; count <= 10; count++)
cout << count << endl;
cout << "count is now " << count << endl; // ERROR!

The for Loop

Creating a User-Controlled for Loop

In Program 5-6 we allowed the user to control how many times a while loop should iter-
ate. This can also be done with a for loop by having the user enter the final value for the
counter variable. The following program segment illustrates this.

// Get the final counter value
cout << "How many times should the loop execute? ";
cin >> finalValue;

for (int num = 1; num <= finalValue; numt+)

{
// Statements in the loop body go here.

Using Multiple Statements in the Initialization

and Update Expressions

It is possible to execute more than one statement in the initialization expression and the
update expression. When using multiple statements in either of these expressions, simply
separate the statements with commas. For example, look at the loop in the following code,
which has two statements in the initialization expression.

for (int x =1, y = 1; x <= 5; x++)
{

cout << x << " plus " << y << " equals " << (x + y) << endl;

}
The loop’s initialization expression is
intx=1, y=1

This defines and initializes two int variables, x and y. The output produced by this loop is:

1 plus 1 equals 2
2 plus 1 equals 3
3 plus 1 equals 4
4 plus 1 equals 5
5 plus 1 equals 6

We can further modify the loop to execute two statements in the update expression. Here is
an example:

for (int x = 1, y = 1; x <= 5; x++, y++)

{

cout << x << " plus " << y << " equals " << (x + y) << endl;

}

The loop’s update expression increments both the x and y variables.
x++, y++

The output produced by this loop is:

1 plus 1 equals 2
2 plus 2 equals 4
3 plus 3 equals 6
4 plus 4 equals 8
5 plus 5 equals 10

267

268

Chapter 5 Looping

Connecting multiple statements with commas works well in the initialization and update
expressions, but do 7ot try to connect multiple expressions this way in the test expression.
If you wish to combine multiple expressions in the test expression, you must use the && or
| | operators.

Omitting the for Loop’s Expressions or Loop Body

Although it is generally considered bad programming style to do so, one or more of the
for loop’s expressions, or even its loop body, can be omitted.

The initialization expression may be omitted from inside the for loop’s parentheses if it
has already been performed or if no initialization is needed. Here is an example a loop with
the initialization being performed prior to the loop:

int num = 1;
for (; num <= maxValue; num++)
cout << num << " " << (num * num) << endl;

The update expression may be omitted if it is being performed elsewhere in the loop or if
none is needed. Although this type of code is not recommended, the following for loop
works just like a while loop:

int num = 1;

for (; num <= maxValue;)

{ cout << num << " " << (num * num) << endl;
num++;

}

It is also possible, though not recommended, to write a for loop that has no formal body.
In this case, all the work of the loop is done by statements in the loop header. Here is an
example that displays the numbers from 1 to 10. The combined increment operation and
cout statement in the update expression perform the work of each iteration.

for (number = 1; number <= 10; cout << number++);

Checkpoint

5.7 Name the three expressions that appear inside the parentheses in the for loop’s

header.

5.8 You want to write a for loop that displays “I love to program” 50 times. Assume
that you will use a counter variable named count.
A) What initialization expression will you use?
B) What test expression will you use?
C) What update expression will you use?
D) Write the loop.

5.9 What will each of the following program segments display?

A) for (int count = 0; count < 6; count++)
cout << (count + count) << " ";

B) for (int value = -5; value < 5; value++)
cout << value << " ";

Keeping a Running Total 269

C) int x
for (x = 3; x <= 10; x += 3)
cout << x << " "
cout << x << " "

5.10 Write a for loop that displays your name 10 times.
5.11 Write a for loop that displays all of the odd numbers, 1 through 49.
5.12 Write a for loop that displays every fifth number, 0 through 100.

Keeping a Running Total

18

CONCEPT: A running total is a sum of numbers that accumulates with each iteration of a
loop. The variable used to keep the running total is called an accumulator.

Many programming tasks require you to add up a series of numbers. For example, if you
want to find the average of a set of number, you must first add them up. Programs that add
a series of numbers typically use two elements:

® A loop that reads each number in the series.
e A variable that accumulates the total of the numbers as they are read.

The variable that is used to accumulate the total of the numbers is called an accumulator. 1t
is often said that the loop keeps a running total because it accumulates the total as it reads
each number in the series. Figure 5-7 shows the general logic of a loop that calculates a
running total.

Figure 5-7

Set
accumulator
to0

Y

Is there
another Yes | Read the next
number number

to read?

Add the
number to the
accumulator

Y

No

When the loop finishes, the accumulator will contain the total of the numbers read by the
loop. Notice that the first step in the flowchart is to set the accumulator variable to 0. This
is a critical step. Each time the loop reads a number, it adds it to the accumulator. If the
accumulator starts with any value other than 0, it will not contain the correct total when
the loop finishes.

270

Chapter 5 Looping

Let’s look at a program that keeps a running total. Program 5-10 calculates a company’s
total sales over a period of time by reading daily sales figures and adding them to an accu-
mulator. It then uses this total to find the average sales per day.

Program 5-10

// This program takes daily sales figures over a period of time
// and calculates their total. It then uses this total to compute
// the average daily sales.

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{
int numDays; // Number of days
double dailySales, // The sales amount for a single day
totalSales = 0.0, // Accumulator, initialized with 0
averageSales; // The average daily sales amount
// Get the number of days
cout << "For how many days do you have sales figures? ";
cin >> numDays;
// Get the sales for each day and accumulate a total
for (int day = 1; day <= numDays; day++) // day is the counter
{
cout << "Enter the sales for day " << day << ": ";
cin >> dailySales;
totalSales += dailySales; // Accumulate the running total
}
// Compute the average daily sales
averageSales = totalSales / numDays;
// Display the total sales and average daily sales
cout << fixed << showpoint << setprecision(2);
cout << "\nTotal sales: $" << setw(8) << totalSales;
cout << "\nAverage daily sales: $" << setw(8) << averageSales
<< endl;
return 0;
}

Program Output with Example Input Shown in Bold
For how many days do you have sales figures? 5[Enter]

Enter the sales for day 1: 425.16[Enter]
Enter the sales for day 2: 397.20[Enter]
Enter the sales for day 3: 404.11[Enter]
Enter the sales for day 4: 468.43[Enter]
Enter the sales for day 5: 502.19[Enter]
Total sales: $ 2197.09

Average daily sales: $§ 439.42

16

Sentinels

Let’s take a closer look at a few of the key lines in this program. In line 12 the totalsales
variable is defined. This is the accumulator. Notice that it is initialized with 0. In line 17 the user
enters how many days of sales figures there are. This number is stored in the numbays variable
and determines how many times the loop beginning in line 20 iterates. The variable day, which
is defined in the loop’s initialization expression, is initialized with 1. This variable is the counter
that controls the loop and keeps track of which day’s sales amount is currently being read in and
processed. The test expression specifies the loop will repeat as long as day is less than or equal to
numDays. The update expression increments day by one at the end of each loop iteration.

During each loop iteration, in line 23, the user enters the amount of sales for one specific
day. This amount is stored in the dailySales variable. Then, in line 24, this amount is
added to the existing value stored in the totalsales variable. Note that line 24 does not
assign dailySales to totalSales, but rather increases the value stored in totalsSales by
the amount in dailySales. After the loop has finished, totalsales will contain the total of
all the daily sales figures entered. In line 27, this total is used to calculate the average daily
sales amount. To do this the value stored in totalsales is divided by the value stored in
numbDays and the result is placed in the variable averagesales. The program now has all the
information needed to display the totalsales and averageSales in lines 31-33.

Sentinels

CONCEPT: A sentinel is a special value that marks the end of a list of values.

Program 5-10, in the previous section, requires the user to know in advance the number of
days there are sales figures for. Sometimes the user has a list that is very long and doesn’t
know how many items there are. In other cases, the user might be entering several lists and
it is impractical to require that every item in every list be counted.

A technique that can be used in these situations is to ask the user to enter a sentinel at the
end of the list. A sentinel is a special value that cannot be mistaken as a member of the list
and signals that there are no more values to be entered. When the user enters the sentinel,
the loop terminates.

Program 5-11 provides an example of using an end sentinel. This program calculates the
total points earned by a soccer team over a series of games. It allows the user to enter the
series of game points, then enter —1 to signal the end of the list.

Program 5-11

//

This program illustrates the use of an end sentinel. It calculates

// the total number of points a soccer team has earned over a series
// of games. The user enters the point values, then -1 when finished.
#include <iostream>
using namespace std;

int main()

{

int game = 1, // Game counter
points, // Holds number of points for a specific game
total = 0; // Accumulates total points for all games

(program continues)

271

272

Chapter 5 Looping

Program 5-11

// Read
cout <<
cout <<
cout <<
cin >>

// Loop

while (points

(continued)

in the points for game 1

"Enter the number of points your team has earned\n";
"so far this season. Then enter -1 when finished.\n\n";
"Enter the points for game " << game << ": ";

points;

as long as the end sentinel has not yet been entered

1= -1)

{ // Add point just read in to the accumulator
total += points;

// Enter the points for the next game
cout << "Enter the points for game " << ++game << ": ";
>> points;

cin

}

// Display the total points
cout << "\nThe total points are " << total << endl;
return 0;

Program Output with Example Input Shown in Bold

Enter the number of points your team has earned
so far this season.

Enter
Enter
Enter
Enter
Enter

The t

the points for
the points for
the points for
the points for
the points for

otal points are

game
game
game
game
game

26

Then enter -1 when finished.

[I~V IREN |

Program Output with Different Example Input Shown in Bold

Enter the number of points your team has earned
so far this season.

Then enter -1 when finished.

Enter the points for game 1: -1

The total points are 0

The value -1 was chosen for the sentinel in this program because it is not possible for a
team to score negative points. Notice that this program performs a priming read in line 17
to get the first value. This is done so the while loop will not try to test the value of points
until a first value has been read in. It also makes it possible for the loop to immediately ter-
minate if the user enters -1 for the first value, as shown in the second sample run. Also

note that the sentinel value is not included in the running total.

Using a Loop to Read Data from a File 273

Checkpoint

5.13 In the following program segment, which variable is the counter and which is the
accumulator?

int x = 0, vy =0, z;

cout << "How many numbers do you wish to enter? ";
cin >> z;

while (x < z)

{
int a;
cout << "Enter a number: ";
cin >> a;
y += a;
X++;
}

cout << "The sum of those numbers is " << y << endl;

5.14 Write a for loop that sums up the squares of the integers from 1 through 10.
5.15 Write a for loop that sums up the squares of the odd integers from 1 through 9.

5.16 Write a for loop that repeats seven times, asking the user to enter a number each
time and summing the numbers entered.

5.17 Write a for loop that calculates the total of the following series of numbers:
1,234, 3
30 29 28 27 1

5.18 Write a for loop that calculates the total of the following series of numbers:
Ll L, L
2 4 8 16 1024

5.19 Write a sentinel controlled while loop that accumulates a series of test scores input

by the user, until -99 is entered. The code should then report how many scores were
entered and the average of these scores. Do not count the end sentinel -99 as a score.

=g
59 Using a Loop to Read Data from a File

1 CONCEPT: Itis possible to read data from an input file without knowing how many
values there are. This can be done by placing a read statement in a loop
and reading data until all the values have been read.

You already know how easy it is for a program to read data from a file. By placing the state-
ment that reads the data in a loop, the same statement can be executed multiple times and
can therefore be used to read many different pieces of data. For example, it would be easy to
modify Program 5-10 to read the sales figures or Program 5-11 to read the game points from
a data file, rather than having these input from the keyboard by the user. However, both of
these programs require the user to know how much data there is. Program 5-10 requires the
user to enter the number of data values to be read and Program 5-11 requires the user to
input a sentinel value to signal there is no more data when all the values have been entered.

When reading data from a file, it is not necessary for the user to know how many data val-
ues there are or where the data ends. This is because files have an end of file mark at their
end. You cannot see it, but it is there, and a program can test to see whether or not it has

274

Chapter 5 Looping

been reached. One way to do this is with the eof member function, which can be called for
any ifstream object. It returns true when the previous read encountered the end of file.

Otherwise it returns false. The format of the function call is
inputFile.eof ()

where inputFile is the name of an ifstream object. The following code segment shows a
call to this function being used to control a loop.

inputFile >> item; // Read a value from the file
while (!inputFile.eof()) // While the end of file was not reached yet
{ cout << item; // Display the value just read
inputFile >> item; // Read the next value
}

This loop will read and display items from the file until the end of file is reached. Notice that
the first read from the data file is done before the while loop, and thus before the eof func-
tion is called the first time. This is necessary because the eof function does not return true,
signaling you are at the end of the file, even if a file is empty. It only returns true when
the end of file is detected while attempting to do a read. If the first read attempt fails because
the file is empty, the loop body will never be executed and no data values will be processed. If
a data value is successfully read, the loop will be entered, the value will be processed (in this
case displayed), and then the next read operation will be performed. Program 5-12 demon-
strates how to use a loop controlled by the return value of the eof function to read all the
numbers from a file, regardless of how many there are.

Program 5-12

// This program uses a loop to read and display all the numbers in a
// file. The ifstream eof member function is used to control the loop.
#include <iostream>

#include <fstream>

using namespace std;

int main()

{
int number;
ifstream inputFile;
inputFile.open("numbers.dat"); // Open the file
if (!inputFile) // Test for errors
cout << "Error opening file.\n";
else
{ inputFile >> number; // Read the first number
while (!inputFile.eof()) // While read was good; no eof yet
{
cout << number << " "; // Display the number
inputFile >> number; // Read the next number
}
cout << endl;
inputFile.close(); // Close the file
}
return 0;
}

(program continues)

Using a Loop to Read Data from a File

Program 5-12 (continued)

Program Output

2

4

6 8 10 12 14

Although the eof function is commonly used to test if the end of a file has been reached,
there is a potential problem with using it. For it to work correctly, using the method we
have shown, there must be whitespace (a space, tab, or [Enter]) in the file after the last data
value. Otherwise the eof function will return a true when the last value is read, rather
than when no more values exist to be read, and this last value will never be processed. For
example, the data file used for input in Program 5-12 contained the 7 numbers shown in
the output, followed by a space. If the final space is removed from the data file and the pro-
gram is rerun, the following output will be produced.

Program Output with Final Whitespace Removed from the File
2 4 6 8 10 12

Luckily a safer method exists in C++ to determine when there is no more data in a file. The
stream extraction operator (>>) not only can read data from a file, but it also returns a
value indicating whether the data was successfully read or not. If the operator returns
true, then a value was successfully read. If the operator returns false, it means that no
value was read from the file. For example, look at the following code.

if (inputFile >> number)

{
// Data was successfully read from the file
cout << "The data read from the file is " << number << endl;
}
else
{
// No data was read from the file
cout << "Could not read an item from the file.\n";
}

Notice that the read operation and the test to see if it was successful are both done in the
same statement. Combining a read and its test for success like this can also be used to
control a loop. By using the return value of the >> operator to control a while loop that
reads from a file, data will be read in until a read fails. This only occurs when there is no
more data to read (or some catastophic event, such as a disk crash). All the data in the
file will be read, regardless of whether the final data value is followed by whitespace or
not. Program 5-13 modifies Program 5-12 to use this method to control the loop.

Program 5-13

// This program uses a loop to read and display all of the numbers in
// a file. The >> operator return value is used to control the loop.
#include <iostream>

#include <fstream>

using namespace std;

(program continues)

275

276

Chapter 5 Looping

Program 5-13 (continued)

int main()

{
int number;
ifstream inputFile;
inputFile.open("numbers.dat"); // Open the file
if (!inputFile) // Test for errors
cout << "Error opening file.\n";
else
{ while(inputFile >> number) // Read a number and execute the
{ // loop while read was successful
cout << number << " "y // Display the number
}
cout << endl;
inputFile.close(); // Close the file
}
return 0;
}

Program Output
2 4 6 8 10 12 14

=
5.100 Focus on Software Engineering:

Deciding Which Loop to Use

CONCEPT: Although most repetitive algorithms can be written with any of the three
types of loops, each works best in different situations.

Each of C++’s three loops are ideal to use in different situations. Here’s a short summary of
when each loop should be used.

The while Loop

The while loop is a pretest loop. It is ideal in situations where you do not want the loop to
iterate if the test condition is false from the beginning. For example, validating input that
has been read and reading lists of data terminated by a sentinel value are good applications
of the while loop.

cout << "This program finds the square of any integer.\n";
cout << "\nEnter an integer, or -99 to quit: ";
cin >> num;

while (num != -99)

{ cout << num << " squared is " << pow(num, 2.0) << endl;
cout << "\nEnter an integer, or -99 to quit ";
cin >> num;

Nested Loops

The do-while Loop

The do-while loop is a post test loop. It is ideal in situations where you always want the
loop to iterate at least once. The do-while loop is a good choice for repeating a menu or
for asking the user if they want to repeat a set of actions.

cout << "This program finds the square of any integer.\n";
do
{ cout << "\nEnter an integer: ";
cin >> num;
cout << num << " squared is " << pow(num, 2.0) << endl;
cout << "Do you want to square another number? (Y/N) ";
cin >> doAgain;
} while ((doAgain == "Y") || (doAgain == "y"));

The for Loop

The for loop is a pretest loop with built-in expressions for initializing, testing, and updating
a counter variable. The for loop is ideal in situations where the exact number of iterations is
known.

cout << "This program finds the squares of the integers "
<< "from 1 to 8.\n\n";
for (num = 1; num <= 8; num+t+)

{

cout << num << " squared is " << pow(num, 2.0) << endl;

—
5.11) Nested Loops

1 CONCEPT: A loop that is inside another loop is called a nested loop.

— In Chapter 4 you saw how one if statement could be nested inside another one. It is

also possible to nest one loop inside another loop. The first loop is called the outer
VideoNote '00p- The one nested inside it is called the inner loop. This is illustrated by the follow-
Nested Loops ing two while loops. Notice how the inner loop must be completely contained within
the outer one.

while (conditionl) // Beginning of the outer loop
{ —_—
while (condition2) // Beginning of the inner loop
{ —_—
} // End of the inner loop
} // End of the outer loop

Nested loops are used when, for each iteration of the outer loop, something must be
repeated a number of times. Here are some examples from everyday life:

For each batch of cookies to be baked we must put each cookie on the cookie sheet.
For each salesperson, we must add up each sale to determine total commission.
For each teacher we must produce a class list for each of their classes.

o
°
)
e For each student we must add up each test score to find the student’s test average.

277

278 Chapter 5 Looping

Whatever the task, the inner loop will go through all its iterations each time the outer loop
is executed. This is illustrated by Program 5-14, which handles this last task, finding stu-
dent test score averages. Any kind of loop can be nested within any other kind of loop.
This program uses two for loops.

Program 5-14

// This program averages test scores. It asks the user for the
// number of students and the number of test scores per student.
#include <iostream>

using namespace std;

int main()
{
int numStudents, // Number of students
numTests; // Number of tests per student
double average; // Average test score for a student

// Get the number of students

cout << "This program averages test scores.\n";
cout << "How many students are there? ";

cin >> numStudents;

// Get the number of test scores per student

cout << "How many test scores does each student have? ";
cin >> numTests;

cout << endl;

// Read each student's scores and compute their average
for (int snum = 1; snum <= numStudents; snum++) // Outer loop
{ double total = 0.0; // Initialize accumulator

for (int test = 1; test <= numTests; test++) // Inner loop
{ int score;

// Read a score and add it to the accumulator
cout << "Enter score " << test << " for ";
cout << "student " << snum << ": ";
cin >> score;
total += score; //
} // End inner loop
// Compute and display the student's average
average = total / numTests;
cout << "The average score for student " << snum;
cout << " is " << average << "\n\n";
} // End outer loop
return 0;

(program continues)

Breaking Out of a Loop

Program 5-14 (continued)

Program Output with Example Input Shown in Bold

This program averages test scores.
How many students are there? 2[Enter]
How many test scores does each student have? 3[Enter]

Enter score 1 for student 1: 84[Enter]
Enter score 2 for student 1: 79[Enter]
Enter score 3 for student 1: 97[Enter]
The average for student 1 is 86.6667
Enter score 1 for student 2: 92[Enter]
Enter score 2 for student 2: 88[Enter]
Enter score 3 for student 2: 94[Enter]
The average for student 2 is 91.3333

LR

Let’s trace what happened in Program 5-14, using the sample data shown. In this case,
for each of two students, each of three scores were input and summed. First in line 23 the
outer loop was entered and snum was set to 1. Then, once the total accumulator was
initialized to zero for that student, the inner loop, which begins on line 26, was entered.
While the outer loop was still on its first iteration and snum was still 1, the inner loop
went through all of its iterations, handling tests 1, 2, and 3 for that student. It then
exited the inner loop and in lines 36 through 38 calculated and output the average for
student 1. Only then did the program reach the bottom of the outer loop and go back up
to do its second iteration. The second iteration of the outer loop processed student 2. For
each iteration of the outer loop, the inner loop did all its iterations.

It might help to think of each loop as a rotating wheel. The outer loop is a big wheel that is
moving slowly. The inner loop is a smaller wheel that is spinning quickly. For every rota-
tion the big wheel makes, the little wheel makes many rotations. Since, in our example, the
outer loop was done twice, and the inner loop was done three times for each iteration of
the outer loop, the inner loop was done a total of six times in all. This corresponds to the
six scores input by the user. The following points summarize this.

e An inner loop goes through all of its iterations for each iteration of an outer loop.

e Inner loops complete their iterations faster than outer loops.

e To get the total number of iterations of an inner loop, multiply the number of itera-
tions of the outer loop by the number of iterations done by the inner loop each time
the outer loop is done.

Breaking Out of a Loop

CONCEPT: The break statement causes a loop to terminate early.

Sometimes it’s necessary to stop a loop before it goes through all its iterations. The break
statement, which was used with switch in Chapter 4, can also be placed inside a loop.
When it is encountered, the loop stops and the program jumps to the statement immedi-
ately following the loop.

280 Chapter 5 Looping

The while loop in the following program segment appears to execute 10 times, but the
break statement causes it to stop after the fifth iteration.

int count = 1;
while (count <= 10)

{
cout << count << endl;
count++;
if (count == 6)
break;
}

This example is just to illustrate what a break statement inside a loop will do. You would
not normally want to use one in this way because it violates the rules of structured pro-
gramming and makes code more difficult to understand, debug, and maintain. The exit
from a loop should be controlled by its condition test at the top of the loop, as in a while
loop or for loop, or at the bottom, as in a do-while loop. Normally the only time a
break statement is used inside a loop is to exit the loop early if an error condition occurs.
Program 5-135 illustrates an example of this.

Program 5-15

// This program is supposed to find the square root of 5 numbers
// entered by the user. However, if a negative number is entered
// an error message displays and a break statement is used to

// stop the loop early.

#include <iostream>

#include <cmath>

using namespace std;

int main()

{
double number;
cout << "Enter 5 positive numbers separated by spaces and \n"
<< "I will find their square roots: ";
for (int count = 1; count <= 5; count++)
{
cin >> number;
if (number >= 0.0)
{ cout << "\nThe square root of " << number << " is "
<< sgrt(number) ;
}
else
{ cout << "\n\n" << number << " is negative. "
<< "I cannot find the square root \n"
<< "of a negative number. The program is terminating.\n";
break;
}
}
return 0;
}

(program continues)

The continue Statement

Program 5-15 (continued)

Program Output with Example Input Shown in Bold

Enter 5 positive numbers separated by spaces and
I will find their square roots: 12 15 17 19 31[Enter]

The square root of 12 is 3.4641
The square root of 15 is 3.87298

-17 is negative. I cannot find the square root
of a negative number. The program is terminating.

Using break in a Nested Loop

In a nested loop, the break statement only interrupts the loop it is placed in. The following
program segment displays five rows of asterisks on the screen. The outer loop controls the
number of rows and the inner loop controls the number of asterisks in each row. The inner
loop is designed to display 20 asterisks, but the break statement stops it during the
11th iteration.

for (row = 0; row < 3; row++)

{
for (star = 0; star < 20; star++)
{
cout << '*';
if (star == 10)
break;
}
cout << endl;
¥

The output of this program segment is

EEE R R R R
*khkkkkkrkkhkxk

*khkkkkhkkkkhkxk

@ WARNING! Use the break statement with great caution. Because it bypasses the loop

condition to terminate a loop, it violates the rules of structured programming and
makes code more difficult to understand, debug, and maintain. For this reason, we do
not recommend using it to exit a loop. Because it is part of the C++ language, however,
we have discussed it briefly in this section.

—
513 The continue Statement

1 CONCEPT: The continue statement causes a loop to stop its current iteration and
begin the next one.

The continue statement causes the current iteration of a loop to end immediately. When
continue is encountered, all the statements in the body of the loop that appear after it are

281

282

Chapter 5 Looping

ignored, and the loop prepares for the next iteration. In a while loop, this means the program
jumps to the test expression at the top of the loop. As usual, if the expression is still true, the
next iteration begins. In a do-while loop, the program jumps to the test expression at the bot-
tom of the loop, which determines if the next iteration will begin. In a for loop, continue
causes the update expression to be executed, and then the test expression to be evaluated.

The following program segment demonstrates the use of continue in a while loop:

int testval = 0;
while (testval < 10)

{
testVal++;
if (testval) == 4
continue; // Terminate this iteration of the loop
cout << testVal << " ";
}

This loop looks like it displays the integers 1-10. However, here is the output:
1235678910

Notice that the number 4 does not print. This is because when testval is equal to 4, the
continue statement causes the loop to skip the cout statement and begin the next iteration.

WARNING! As with the break statement, the continue statement violates the rules
of structured programming and makes code more difficult to understand, debug, and
maintain. For this reason, you should use continue with great caution.

There are some practical uses of the continue statement, however, and Program 5-16
illustrates one of these. The program calculates the charges for DVD rentals where current
releases cost $3.50 and all others cost $2.50. If a customer rents several DVDs, every third
one is free. The continue statement is used to skip the part of the loop that calculates the
charges for every third DVD.

Program 5-16

// This program calculates DVD rental charges where every third DVD
// is free. It illustrates the use of the continue statement.
#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

int numDVDs; // Number of DVDs being rented
double total = 0.0; // Accumulates total charges for all DVDs
char current; // Current release? (Y/N)

// Get number of DVDs rented
cout << "How many DVDs are being rented? ";
cin >> numDVDs;

(program continues)

The continue Statement

Program 5-16 (continued)

// Determine the charges
for (int dvdCount = 1; dvdCount <= numDVDs; dvdCount++)

{

}

if (dvdCount % 3 == 0) // 1f it's a 3rd DVD it's free
{
cout << "DVD #" << dvdCount << " is free!\n";
continue;
}
cout << "Is DVD #" << dvdCount << " a current release (Y/N)? ";
cin >> current;
if ((current == 'Y') || (current == 'y'))
total += 3.50;
else
total += 2.50;

// Display the total charges

cout << fixed << showpoint << setprecision(2);
cout << "The total is $" << total << endl;
return 0;

Program Output with Example Input Shown in Bold

How many DVDs are being rented? 6[Enter]

Is DVD #1 a current release (Y/N)? y[Enter]
Is DVD #2 a current release (Y/N)? n[Enter]
DVD #3 is free!

Is DVD #4 a current release (Y/N)? n[Enter]
Is DVD #5 a current release (Y/N)? y[Enter]
DVD #6 is free!

The total is $12.00

Checkpoint

5.20 Which loop (while, do-while, or for) is best to use in the following situations?

5.21

A) The user must enter a set of exactly 14 numbers.

B) A menu must be displayed for the user to make a selection.

C) A calculation must be made an unknown number of times. (Maybe even no times.)
D) A series of numbers must be entered by the user, terminated by a sentinel value.
E) A series of values must be entered. The user specifies exactly how many.

How many stars be displayed in each of the following program segments?

A) for (x = 0; x < 20; x++)
{ for (y = 0; y < 30; y++)
cout << '*' << endl;
}
B) for (x = 0; x < 20; X++)
{ for (y = 0; y < 30; y*++)
{ if (y > 10)
break;
cout << '*' << endl;

283

284 Chapter 5 Looping

5.14

5.22 What will the following program segment display?
int x = 0, y = 0;

while (x++ < 5)

{
if (x == 3)
continue;
y = %5
cout << y << endl;
}

Focus on Testing and Debugging: Creating Good
Test Data

CONCEPT: Thorough testing of a program requires good test data.

Once a program has been designed, written in a programming language, and found to
compile and link without errors, it must be thoroughly tested to find any logic errors and
to ensure that it works correctly according to the original problem specification. When it
comes to creating test data, quality is more important than quantity. That is, a small set of
good test cases can provide more information about how a program works than twice as
many cases that are not carefully thought out. Each test case should be designed to test a
different aspect of the program and you should always know what each test set you use is
checking for. To illustrate this, look at Program 5-17. It uses a sentinel-controlled loop to
average two test scores for each student in the class, where all test scores are between 0 and
100. The program compiles, links, and runs. But it contains several logic errors.

Program 5-17

// This program averages 2 test scores for each student in a class.
// It contains logic errors.

#include <iostream>

#include <string>

#include <iomanip>

using namespace std;

int main()

{

string name; // Student first name
int count = 1, // Student counter
score, // An individual score read in
totalScore = 0; // Total of a student's 2 scores
double average; // Average of a student’s 2 scores

cout << fixed << showpoint << setprecision(l);
cout << "Enter the first name of student " << count
<< " (or Q to quit): ";
cin >> name;
(program continues)

Focus on Testing and Debugging: Creating Good Test Data

Program 5-17 (continued)

while ((name != "Q") && (name != "g"))

{

}

// Get and validate the first score

cout << "Enter score 1l: ";

cin >> score;

if ((score <= 0) || (score >= 100))

{ cout << "Score must be between 0 and 100. Please reenter: ";
cin >> score;

}

totalScore += score; // Add the first score onto the total

// Get and validate the second score

cout << "Enter score 2: ";

cin >> score;

if ((score <= 0) || (score >= 100))

{ cout << "Score must be between 0 and 100. Please reenter: ";
cin >> score;

}

totalScore += score; // Add the second score onto the total

// Calculate and print average
average = totalScore / 2;
cout << name << setw(6) << average << endl;

// Get the next student name

cout << "Enter the first name of student " << count++
<< " (or Q to quit): ";

cin >> name;

return 0;

Table 5-1 Preliminary Test Plans for Program 5-17

Name Score 1 Score 2 Expected Outcome
Test 1: Mary 80 80 80.0

Q program quits
Test 2: Bill 70 80 75.0

Q program quits
Test 3: Tom 80 90 85.0

q program quits
Test 4: Sam -1 then 1 999 then 99 50.0

q program quits

285

286

Chapter 5 Looping

Try running the program using the four test cases shown in Table 5-1. The program con-
tains five logic errors. However, if it is run with just these four test cases, none of the errors
will be revealed. The test data is not designed carefully enough to catch them. Tests 1, 2,
and 3 are really just three versions of the same test. They all simply check that the program
can compute a correct average for a single student where the result has no decimal digits.
The final test checks that the program can catch a single invalid value that is too small or
too big, but does not check what will happen if a second invalid value is entered for the
same input. Table 5-2 contains a better set of tests and illustrates some of the kinds of
things you should check for when you test a program. These tests will reveal all five of the
program’s errors.

Table 5-2 Modified Test Plans for Program 5-17

Expected
Test Name Score 1 Score 2 Purpose Outcome
1 Mary 80 80 Program correctly 80.0
Bill 70 80 handles both even 75.0
Tom 80 91 results and ones with 85.5
Q decimal values. program ends
Program can loop to
handle multiple students.
Program ends when Q is
entered for the name.
2 Sam -1 then 1 101 then 99 Program correctly 50.0
Ted -1 then-2 then1 200 then 500 handles invalid scores, 50.0
q then 99 even when more than program ends
one bad score is entered
in a row.
Program catches bad
inputs immediately outside
the valid range
(e.g., -1 & 101).
Program ends when q
is entered for the name.
3 Bob 0 100 Program allows values 50.0
q at extreme ends of the program ends

valid range.

Rerun Program 5-17 using the test cases from Table 5-2 and examine the incorrect output
to identify the errors. Then see if you can fix these errors. Do not rewrite the program. Just
make the smallest changes necessary to correct the errors. Now test the program again
using the test cases in Table 5-2. Continue making corrections and retesting until the pro-
gram successfully passes all three of these test cases. A correct solution can be found on the
student CD in the pr5-17B.cpp file of the Chapter 5 programs folder.

1

5.15

L

Central Mountain Credit Union Case Study

Central Mountain Credit Union Case Study

The Central Mountain Credit Union uses a central data processing system where each
branch accesses a minicomputer at the Credit Union’s main office. The minicomputer has a
tendency to slow down when many users are on the system. Because of this, the loan
officer at one of the branch offices has asked you to write a loan amortization program to
run locally, on a desktop PC.

Problem Statement

When given the loan amount, annual interest rate, and number of years of a loan, the pro-
gram must determine and display the monthly payment amount. It must then create and
display an amortization table that lists the following information for each month of
the loan:

e payment number

e amount of that month’s payment that was applied to interest
e amount of that month’s payment that was applied to principal
e balance after that payment.

The following report may be used as a model. It shows all the required information on a
$2000 loan at 7.5% annual interest for .5 years (i.e., 6 months).

Monthly payment: $340.66

Month Interest Principal Balance

1 12.50 328.16 1671.84

2 10.45 330.21 1341.62

3 8.39 332.28 1009.34

4 6.31 334.35 674.99

5 4.22 336.44 338.55

6 2.12 338.55 0.00
Calculations

The credit union uses the following formula to calculate the monthly payment of a loan:

Loan * Rate/12 * Term

Payment =
Term — 1

where:

Loan = the amount of the loan
Rate = the annual interest rate
Term = (1+ Rate/12)Years"12

Variables
Table 5-3 lists the variables needed in the program.

287

288 Chapter 5

Looping

Table 5-3 Variables Used in the Central Mountain Credit Union Case Study

Variable Description

loan A double. Holds the loan amount.

rate A double. Holds the annual interest rate.

moInterestRate A double. Holds the monthly interest rate.

years A double. Holds the number of years of the loan.

balance A double. Holds the remaining balance to be paid.

term A double. Used in the monthly payment calculation.

payment A double. Holds the monthly payment amount.

numPayments An int. Holds the total number of payments.

month An int. Loop control variable that holds the current payment number.
moInterest A double. Holds the monthly interest amount.

principal A double. Holds the amount of the monthly payment that pays down the loan.

Program Design
Figure 5-8 shows a hierarchy chart for the program.
Figure 5-8
Main
[
[I |
Input loan Perfgrm Display
starting
parameters ! report
calculations
[[I_l—I
[[| [[|
Read loan Read annual Read years Calculate Calculate Calculate Print For each month calculate
amount interest rate of loan number of monthly monthly header interest, principal, new
payments interest rate payment za|a"|‘<l3€- Display report
etail line

Detailed Pseudocode (including actual variable names and needed calculations)

Input loan, rate, years

numPayments = years * 12.0

moInterestRate = rate / 12.0

term = (1 + moInterestRate)numPayments

payment = (loan * moInterestRate * term) / (term — 1.0)

Display payment

Display a report header with column headings

balance = loan // Remaining balance starts out as full loan amount

Central Mountain Credit Union Case Study 289

For each month of the loan

moInterest = moInterestRate * balance // Calculate interest first

If it’s not the final month

principal = payment — moInterest // Rest of pmt goes to principal

Else // It’s the last month so
principal = balance // pay off exact final balance
payment = balance + moInterest

End If

balance = balance — principal // Only principal reduces the

// balance, not the whole pmt

Display month, moInterest, principal, balance
End of loop

The Program

The next step, after the pseudocode has been checked for logic errors, is to expand the

pseudocode into the final program. This is shown in Program 5-18.

Program 5-18

// This program produces a loan amortization table for the
// Central Mountain Credit Union.

#include <iostream>

#include <iomanip>

#include <cmath> // Needed for the pow function
using namespace std;

int main()

{

double loan, // Loan amount
rate, // Annual interest rate
moInterestRate, // Monthly interest rate
years, // Years of loan
balance, // Monthly balance
term, // Used to calculate payment
payment; // Monthly payment

int numPayments; // Number of payments

// Get loan information

cout << "Loan amount: $";

cin >> loan;

cout << "Annual interest rate (entered as a decimal):
cin >> rate;

cout << "Years of loan: ";

cin >> years;

// Calculate monthly payment

numPayments = static_cast<int>(12 * years);
moInterestRate = rate / 12.0;

term = pow((l + moInterestRate), numPayments);

",
r

payment = (loan * moInterestRate * term) / (term - 1.0);

// Display monthly payment
cout << fixed << showpoint << setprecision(2);
cout << "Monthly payment: $" << payment << endl;

(program continues)

290 Chapter 5 Looping

Program 5-18 (continued)

// Display report header
cout << endl;

cout << setw(5) << "Month" << setw(10) << "Interest";

cout << setw(10) << "Principal" << setw(9) << "Balance" << endl;

CoUt << M \n";

balance = loan; // Remaining balance starts out as full loan amount

// Produce a listing for each month
for (int month = 1; month <= numPayments; month++)
{
double moInterest, // Amount of pmt that pays interest
principal; // Amount of pmt that lowers the balance

// Calculate amount paid for this month's interest and principal
moInterest = moInterestRate * balance; // Calculate interest first
if (month != numPayments) // If not the final month
principal = payment - moInterest; // rest of pmt goes
// to principal

else // It's the last month so

{ principal = balance; // pay exact final balance
payment = balance + moInterest;

}

// Calculate new loan balance // Only principal reduces the

balance -= principal; // balance, not the whole pmt

// Display this month's payment figures
cout << setw(4) << month << setw(10) << moInterest;
cout << setw(10) << principal << setw(10) << balance << endl;

}

return 0;

Program Output with Example Input Shown in Bold

Loan amount: $1200[Enter]

Annual interest rate (entered as a decimal): .08[Enter]
Years of loan: T[Enter]

Monthly payment: $104.39

Month 1Interest Principal Balance

1 8.00 96.39 1103.61
2 7.36 97.03 1006.59
3 6.71 97.68 908.91
4 6.06 98.33 810.58
5 5.40 98.98 711.60
6 4.74 99.64 611.96
7 4.08 100.31 511.65
8 3.41 100.98 410.68
9 2.74 101.65 309.03
10 2.06 102 - 33 206.70
11 1.38 103.01 103.69
12 0.69 103.69 0.00

L5 4

Tying It All Together: What a Colorful World

NOTE: You might have noticed in the output that for some months, such as months 5
and 6, the interest amount plus the principal amount does not add up to the monthly
payment amount. Also, for some months, the previous balance minus the principal paid
does not exactly equal the new balance. These problems are due to round-off error,
which is caused by a disparity between the precision of a value the computer stores
internally and the precision of the value it displays. Do not worry about this for now.
You will learn later how to deal with this.

Testing the Program

Testing the program has been left as an exercise for you to do. Use what you learned in
Section 5.14 about developing good test cases to develop a set of cases you can use to
test Program 5-18. The program runs correctly except for one special case, where it fails.
The program design failed to realize the need to handle this special case differently than
it handles other data. Try to come up with input data for a test case that reveals the
error. Then, once you have identified the problem, see if you can revise the program to
fix it. A corrected version of Program 5-18 can be found in the pr5-18B.cpp file of the
Chapter 5 programs folder on the student CD.

Lightening Lanes Case Study

The following additional case study, which contain applications of material introduced in
Chapter 5, can be found on the student CD.

On Tuesday afternoons, Lightening Lanes Bowling Alley runs a special class to teach chil-
dren to bowl. Each lane has an instructor who works with a team of four student bowlers
and instructs them as they bowl three lines (i.e., games). The management of Lightening
Lanes has asked you to develop a program that will report each student’s three-game aver-
age score and compare it to the average score they bowled the previous week. In this way,
the students can see how much they are improving. The program will use looping struc-
tures and data validation techniques learned in Chapter 5.

Tying It All Together: What a Colorful World

In Chapter 5’s Tying It All Together section we’ll take a look at how to use the looping
constructs you learned about in this chapter, along with colorful output characters, to
create interesting screen displays.

All the C++ programs you have seen so far produce output that is white on a black back-
ground. This is because they use the standard C++ iostream libraries, which can only
display output in these two colors. However, C++ compilers provide other libraries you
can use to call operating system functions that can display output in many colors.
Because these libraries are tailored to specific operating systems, programs that use them
will only run on the system they were written for.

Here is how to use Microsoft Windows functions to create programs with colorful output
that can run on Windows 2000, XP, Vista, and 7.

291

292

Chapter 5

Looping

The first thing you need to do is include the following file in your program so you will be
able to use the functions you need:

#include <windows.h>

Next, because programs can actually access more than one screen device at a time, you will
need to indicate which screen you want the colors you set to appear on. The cout object
writes to the standard output screen. You can set colors on this screen by providing a han-
dle to it. A handle is an object of type HANDLE, which is defined by Microsoft Windows.
Here is how to obtain a handle to the standard output screen:

HANDLE screen = GetStdHandle(STD_ OUTPUT HANDLE);

GetStdHandle is a Windows-specific library function and STD OUTPUT HANDLE is a
Windows-specific constant.

The easiest way to set a color is to call the SetConsoleTextAttribute function and pass
it the name of the handle to the output screen and a number that tells what color you want
the output text to appear in. Table 5-4 shows the number that corresponds to each color.

Table 5-4 Windows Text Colors

Number Text Color Number Text Color

0 Black 8 “Bright” Black
1 Blue 9 Bright Blue

2 Green 10 Bright Green

3 Cyan 11 Bright Cyan

4 Red 12 Bright Red

S Purple 13 Bright Purple
6 Yellow 14 Bright Yellow
7 White 15 Bright White

Once you set a color it will remain in effect for all output text until you set a new one.

The following code segment shows how you can write the string “red” in red, “white” in
white, “blue” in blue, and “bright yellow” in bright yellow.

SetConsoleTextAttribute(screen, 4);
cout << "Red" << endl;
SetConsoleTextAttribute(screen, 7);
cout << "White" << endl;
SetConsoleTextAttribute(screen, 1);
cout << "Blue" << endl;
SetConsoleTextAttribute(screen, 14);
cout << "Bright Yellow" << endl;

Here are two programs that use color. Neither one requires any input. Try running them to
see their output displayed in color. Program 5-19 uses a loop to display "Hello World" on
a black background in each of the 16 colors shown in Table 5-4.

Tying It All Together: What a Colorful World 293

Program 5-19

// This program demonstrates Windows functions to print colored

// text. It displays " Hello World!" in 16 different colors.
#include <iostream>

#include <windows.h> // Needed to display colors and call Sleep
using namespace std;

int main()

{
// Create a handle to the computer screen.
HANDLE screen = GetStdHandle(STD_OUTPUT HANDLE) ;

// Write 16 lines in 16 different colors.
for (int color = 0; color < 16; color++)
{
SetConsoleTextAttribute (screen, color);
cout << " Hello World!" << endl;
Sleep(400); // Pause between lines to watch them appear

}

// Restore the normal text color)
SetConsoleTextAttribute(screen, 7);
return 0;

Notice in Program 5-19 that each cout statement ended with an endl. This is needed to
“flush” the buffer to ensure that all the output has been written to the screen before you
change to another color. A '\n' will not work because it causes output to go to the next
line, but does not flush the output buffer.

Program 5-20 provides another example of creating colorful output. It uses a loop to print
the ABCs in color, alternating between bright green, red, and yellow.

Program 5-20

// This program writes the ABCs in green, red, and yellow.

#include <iostream>

#include <windows.h> // Needed to display colors and call sleep
using namespace std;

int main()

{
// Bright Green = 10 Bright Red = 12 Bright Yellow = 14

// Get the handle to standard output device (the console)
HANDLE screen = GetStdHandle(STD_OUTPUT_ HANDLE) ;

// Write the ABCs using 3 colors
int color = 10; // Staring color = green
(program continues)

Chapter 5 Looping

Program 5-20 (continued)

for (char letter = 'A'; letter <= 'Z'; letter++)

SetConsoleTextAttribute (screen, color); // Set the color
cout << letter << " " << endl; // Print the letter

color +=2; // Choose next color
if (color > 14)
color = 10;

Sleep(280); // Pause between characters to watch them appear

}

// Restore normal text attribute (i.e. white)
SetConsoleTextAttribute(screen, 7);
return 0;

There are three important things to remember when working with colors:

¢ Include the <windows.h> header file.
e Follow each cout statement with an end1.
e Always set the text color back to normal (i.e., white) before quitting.

Review Questions and Exercises
Fill-in-the-Blank

1. To a value means to increase it by one

2. To a value means to decrease it by one.

3. When the increment or decrement operator is placed before the operand (or to the
operand’s left), the operator is being used in mode.

4. When the increment or decrement operator is placed after the operand (or to the
operand’s right), the operator is being used in mode.
The statement or block that is repeated is known as the of the loop.

Each repetition of a loop is known as a(n)

A loop that evaluates its test expression before each repetition is a(n)

loop.
8. A loop that evaluates its test expression after each repetition is a(n) loop.
9. A loop that does not have a way of stopping is a(n) loop.
10. A(n) is a variable that “counts” the number of times a loop repeats.
11. A(n) is a sum of numbers that accumulates with each iteration of a loop.
12. A(n) is a variable that is initialized to some starting value, usually zero,

and then has numbers added to it in each iteration of a loop.
13. A(n) is a special value that marks the end of a series of values.

14. The loop is ideal for situations that require a counter.

15.
16.

17.

18.
19.
20.

Review Questions and Exercises

The loop always iterates at least once.

The and loops will not iterate at all if their test expressions
are false to start with.

Inside the for loop’s parentheses, the first expression is the , the second
expression is the , and the third expression is the

A loop that is inside another is called a(n) loop.

The statement causes a loop to terminate immediately.

The statement causes a loop to skip the remaining statements in the cur-

rent iteration.

Algorithm Workbench

21.

22.

23.

24.

25.

26.

27.

28.

Write code that lets the user enter a number. The number should be multiplied by 2
and printed until the number exceeds 50. Use a while loop.

Write a do-while loop that asks the user to enter two numbers. The numbers should
be added and the sum displayed. The user should be asked if he or she wishes to per-
form the operation again. If so, the loop should repeat; otherwise it should terminate.

Write a for loop that displays the following set of numbers:
o, 10, 20, 30, 40, 50 . . . 1000

Write a loop that asks the user to enter a number. The loop should iterate 10 times
and keep a running total of the numbers entered.

Write a nested loop that displays the following ouput:

*kx k)
*kxkk

*kxk*k

Write a nested loop that displays 10 rows of ‘#’ characters. There should be 15 “#
characters in each row.

Rewrite the following code, converting the while loop to a do-while loop:

char doAgain = 'y';
int sum = 0;

cout << "This code will in